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Introduction

During some postulated accidents inside a nuclear reactor building, a large amount of hot water vapor can be released inside the containment. The steam condensation at the walls and structures of the reactor building has a mitigation effect in pressure rise inside in the containment. In order to assess this effect, one has to have a reliable physical 5 model in which heat and mass transfer phenomena, including coupling between them, are extensively validated. In a large number of scientific works the authors do not include the coupling effects into their models, without providing any justifications. However, these can be very important inside boundary layers where large temperature and concentration gradients are present. This paper represents a first step of the validation work where 10 we consider a comprehensive physical model involving all coupling effects. For the sake of simplicity, we test our model using a two-dimensional square cavity depicted on the Figure 1a.

At the left wall of the cavity, called in what follows, the hot wall, water evaporation takes place at a constant temperature T H . A constant concentration of water vapor Y v is taken at saturation condition at temperature T H . At the right wall, further called the cold wall, water condensation occurs at constant temperature T C . The value for the mass fraction of vapor Y v,C is determined, as before, at saturation condition at T C . The boundary values at the hot (resp. cold) wall will be denoted in this paper with a subscript • H (resp. • C ). Double diffusion model for temperature and concentration, which has been widely applied to this problem [START_REF] Weaver | Natural convection due to horizontal temperature and concentration gradients-1. Variable thermophysical property effects[END_REF][START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF], neglect species interdiffusion, Soret effect and Dufour effect. Sun et al. [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF] applied the low Mach number model to a similar problem and the effect of the total pressure variation was taken into account. The dimensionless form of their system of equations does not allow to consider a mixture of two gases having different specific heat ratios, which is an essential shortcoming. Moreover, the authors neglected the species interdiffusion phenomenon meaning that the model remains double-diffusive. In order to enforce the energy conservation inside the computational domain, the authors redefined the Nusselt number and Sherwood number according to the mathematical form of their energy transport equation. This modification enables them to balance the total Nusselt numbers on the left and right sides of the cavity at the steady state at the cost of losing the physical meaning of these numbers.

Weaver and Viskanta [START_REF] Weaver | Natural convection due to horizontal temperature and concentration gradients-2. Species interdiffusion, Soret and Dufour effects[END_REF] investigated the influence of species interdiffusion under small heat capacity variation, alongside with Soret and Dufour effects. But the formulation of their Dufour effect heat flux is not consistent and more development is needed. A simplified model, as recently applied by Kefayati [START_REF] Kefayati | FDLBM simulation of entropy generation in double diffusive natural convection of power-law fluids in an enclosure with Soret and Dufour effects[END_REF][START_REF] Kefayati | Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer)[END_REF][START_REF] Kefayati | Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part II: Entropy generation)[END_REF], takes into account these effects. The study is carried out in a similar square cavity without condensation or evaporation.

The aim of our paper is to propose a low-Mach number model which satisfies the energy conservation law which will be confirmed by the balance of total Nusselt numbers on both sides of the cavity. The definition of the total Nusselt number involve all coupling effects in accordance to the solved equations. Moreover, the model allows having different specific heat ratios for each component of the binary mixture. The paper is organized as follows. Section 2 describes the physical phenomena that we consider. Section 3 introduces the nondimensionalization. Section 4 describes our algorithm. Section 5 compares the current results to the litterature. Section 6 presents the computed results for air-steam mixture.

Analysis

We denote in the following ρ the density, P the pressure, T the temperature, Y i the mass fraction of a component c p (c v respectively) the specific heat at constant pressure (at constant volume respectively), h the specific enthalpy, U the velocity, φ the mass flux, g the gravitational acceleration and m the total mass of gas in the cavity. An indexed physical quantity s i means the partial quantity s of component i ∈ {a, v}.The binary mass diffusion coefficient D and the kinetic viscosity ν are supposed to be constant. The gas mixture satisfies the Navier-Stokes equations as follows [START_REF] Poinsot | Theoretical and Numerical Combustion[END_REF]: where j i = j i,d + j i,S and q = q d + q I + q D . We apply Fick's law j i,d = -ρD∇Y i and Fourier's law q d = -k∇T following [START_REF] Bird | Transport Phenomena[END_REF]. In addition, (1) and (2) lead to i j i = 0. From (2), one identifies the partial mass flux of i-th component φ i = Y i φ + j i and one defines the i-th component partial velocity as U i = U + j i ρY i .

∂ρ ∂t + ∇ • ρU = 0, (1) 
∂ρY i ∂t + ∇ • ρY i U = -∇ • j i , (2) 
∂ρU ∂t + ∇ • ρU ⊗ U = -∇P + ∇ • τ + ρg, (3) 
∂ρ h + 1 2 U 2 ∂t + ∇ • ρU h + 1 2 U 2 = -∇ • (q + U • τ ) + ∂P ∂t , (4) 

Gas properties

All the definitions in the following section can be found in [START_REF] Bird | Transport Phenomena[END_REF]. We consider the ideal gas model for the gas mixture. To simplify the work, we consider a binary mixture consists of two gases with the following propertiees: the two gases obey separately the ideal gas law ρ i = P i r i T where we define r i = R/M i the specific gas constant; for each gas, the specific heat ratio γ i = c p,i /c v,i is constant; the internal energy of the mixture is equal to the sum of the partial internal energies: ρe = i ρ i e i . These assumptions lead to the following properties of the binary gas mixture: c p,i and c v,i are constant; the mixture satisfies the ideal gas law ρ = P rT ; the enthalpy of the mixture is equal to the sum of the partial enthalpies: ρh = i ρ i h i ; the specific gas constant r and the specific heats of the mixture c v and c p are independent of temperature and equal to the weighted average of the each substance weighted by their mass fraction: s = i Y i s i where s = r, c v or c p ; the specific heat ratio γ is independent of temperature and function only of the composition; the Mayer's relation holds:

r = c p -c v .

Species interdiffusion

The enthalpy per unit volume of the mixture is the sum of partial enthalpies per unit volume of each component:

i ρY i h i = ρh. However, the enthalpy flux per unit volume is not equal to the sum of partial fluxes per unit volume, i.e.

i ρ i h i U i = i h i (ρ i U + j i ) = ρhU + i h i j i .
The term i h i j i shows that there exists a heat flux induced by the concentration transport, which we call species interdiffusion flux or simply the interdiffusion flux, noted q I = i h i j i . Note that the interdiffusion flux is independent of the transport of specific heat induced by the transport of concentration. In the case of a binary mixture, the expression yields to q I = (c p,v -c p,a ) T j v .

Soret and Dufour effects

According to [START_REF] Bird | Transport Phenomena[END_REF], Soret and Dufour effects appear in the case of simultaneous mass and heat transfer as a result of chemical potential. We shall use expressions [START_REF] Bird | Transport Phenomena[END_REF]:

j v,S = α d ρDY v (1 -Y v ) 1
T ∇T and q D = α d RT M MaMv j v where α d is the thermal diffusion ratio for vapour in air. Note that j v = j v,d + j v,S and that q I and q D depend both on j v . We define respectively the interdiffusion heat flux and the Dufour effect heat flux originated from Fick's law mass flux and Soret effect mass flux, noted as q Id , q IS , q Dd and q DS .

Velocity boundary conditions modelling wall condensation and evaporation

In the case of binary mixture of air and steam, one obtains by noticing 

Y a = 1-Y v and j v = -j a , U a = U -1 ρ(1-Yv) j v .

Scaling analysis

Nondimensionalization

In the square cavity problem, we have Y v,H and Y v,C as the highest and lowest steam mass fractions, and we define 

Y v,ref = 1 2 (Y v,H + Y v,C ), ∆Y v = Y v,H -Y v,

Low Mach number model

The low Mach number model is based on the acoustic wave filtering introduced by Paolucci. [START_REF] Paolucci | On the filtering of sound from the Navier-Stokes equations[END_REF]. The idea is, with a low Mach number of the flow, to separate the pressure into a thermodynamic pressure P th and a dynamic one p d . The calculation of the thermodynamic pressure is based on the total mass conservation in the volume, and it can be calculated by

P th = m Ω 1 rT dV -1 .
Furthermore, the assumption of low Mach number enables us to neglect the dissipation of kinetic energy by viscous force and the spatial variation of pressure [START_REF] Paolucci | On the filtering of sound from the Navier-Stokes equations[END_REF]. By defining φ = ρU , we write the non-dimensional low Mach number model for (1, 2, 3, 4) as :

∂ ∂t ρ + ∇ • φ = 0 (5) ∂ ∂t (ρ U ) + ∇ • (φ ⊗ U ) = ∇ • τ + ρ -1 ε t + ε m g g -∇ p d (6) 
∂ ∂t ρ c p T + ∇ • φ c p T = γ -1 γε t dP th dt - 1 Re Pr ∇ (q d + q Id + q IS + q Dd + q DS ) (7) ∂ ∂t (ρ Y ) + ∇ • (φ Y ) = - 1 Re Sc ∇ • j v,d + j v,S (8) 
where τ is the viscosity stress tensor:

τ (U ) = 1 Re ∇ U + (∇ U ) T -2 3 1
Re ∇ • U I and the thermodynamic pressure is

P th = m Ω (1 + ε t T ) -1 (1 + ε m Y ) -1 dV -1 .
Using the result from Section 2.4, the boundary conditions are the following:

• on the horizontal walls, U x = U y = 0 and ∂T ∂n = 0, ∂Y ∂n = 0 . • on the cold (resp. hot) wall, T = Y = -0.5, (resp., T = Y = +0.5).

• on the hot and cold walls, U y = 0 and

U x = U wall,n = ∆Yv 1-Yv 1 Re Sc 1 ρ j v,d + j v,S • e x .

Definition of Nusselt and Sherwood number

The Nusselt number consists, like the heat flux itself, of 6 parts: Nu a due to advection, 

q a = Re Pr ρ c p 1 εt + T U , q d = -∇ T , q Id = -Pr Sc ∆cp c p,ref 1 εt + T ρ ∇ Y , q IS = -Pr Sc ∆cp c p,ref Yv(1-Yv) Y v,H -Y v,C α d ρ ∇ T , q Dd = -Pr Sc α d R 2 rc p,ref MaMv 1 εt + T ρ ∇ Y , q DS = -Pr Sc α 2 d R 2 rc p,ref MaMv Yv(1-Yv) Y v,H -Y v,C ρ ∇ T .
In the same way, the different contributions to the mass flux, due to advection, diffusion and Soret effect, are identified as following:

j v,a = Re Sc ρ Y v,ref Y v,H -Y v,C + Y U , j v,d = -ρ ∇ Y , j v,S = -α d ρ Yv(1-Yv) Y v,H -Y v,C εt 1+εtT ∇ T .
In the following sections, these average values of Nusselt and Sherwood numbers are going to be computed along either cold or hot wall by the following:

Nu • = wall q • • e n , Sh • = wall j v,• • e n
, where e n is the normal vector to the surface.

Numerical solution

The solution of the original system demands non-zero velocity boundary conditions given by Stefan's velocity calculated from the vapour distribution at current time step.

However, this definition of boundary condition may cause instability of the algorithm. Our solution to this problem is to build a decomposition of U as U int + U b , where U int = 0 on each wall (no matter if there is a phase change or not) and U b is a partial velocity indicating the boundary condition of U .

Definition of a boundary condition of velocity

For the case of a square cavity, there exists actually two types of walls with or without phase changes in our physical scenario. In the case of an adiabatic and impermeable wall, the boundary condition is U = 0. The condition for U b is therefore U b = 0. In the case of a wall with evaporation or condensation, the tangential velocity U t = 0 and the normal velocity

U n = ρ -1 (1 -Y v ) -1 j v • e n therefore U b = (ρ -1 (1 -Y v ) -1 j v • e n )e n .
The idea is to define a phase-change factor f k associated with each wall k such that

U b = -k f k (ρ -1 (1 -Y v ) -1 j v • e n,k
)e n,k . On each wall k, f k is either equal to 1 if phase change is present or 0 otherwise. Now we need to search for the value of f k inside the domain. The simplest possible definition, which consists in taking f k = 0 in the interior of the domain, is actually equivalent to the Stefan's-velocity-type boundary condition and causes the discontinuity of U b . We need a more "smooth" definition of f k . In order to keep the continuity of U b , one may assume ∇ 2 f k = 0. In practice, we solve the factors f k at the initialization step of the algorithm. The dimensionless air diffusive velocity is calculated by

U a,d = 1 Re Sc Y v,H -Y v,C 1-Yv ∇ Y + α d Yv(1-Yv) Y v,H -Y v,C ε T 1+ε T T ∇ T .
Finally, in the low Mach model, the equation ( 6) is replaced by

∂ ∂t (ρ U int ) + ∇ • (φ U int ) = ∇ • τ (U int ) + ρ -1 ε T + ε m g g -∇ p d - ∂ ∂t (ρ U b ) + ∇ • (φ U b ) -∇ • τ (U b ) (9) 
and the whole system of ( 5), ( 9), ( 7) and ( 8) is subject to the boundary conditions in 3.2 and U int = 0 when x = 0, 1 or y = 0, 1. For the computation of U int and p d , we apply the Pressure Implicit Splitting of Operators (PISO) algorithm based on OpenFOAM framework.

Adjustment of thermodynamic pressure

Mass conservation needs to be enforced through the Poisson equation. In an incompressible system, the only way to keep the mass conservation is to balance the inlet and outlet of mass. However, in a low Mach system, we gain the possibility to adjust the mass in a constant volume by raising the density of the fluid. The way that we implement this idea is to adjust the thermodynamic pressure P th . In order to adjust P th we calculate first the mass flux dm dt = Ω ∇ • φdV and thus at time t + ∆t:

P th (t + ∆t ) = m (t )+ dm dt ∆t Ω 1 (1+ε T T )(1+εmY ) dV
This updated value P th (t + ∆t) is used to calculate the physical parameters in the following iterations within the time step. Once the internal iteration is finished, we enforce the total air mass unchanged by updating

m(t + ∆t ) = m a Ω 1 (1+ε T T )(1+εmY ) dV Ω 1-Y v,0 -∆Yv Y (1+ε T T )(1+εmY ) dV
.

Validation and comparisons

Validation of our model was established [START_REF] Jiang | Improvement Of Physical Modeling For Coupled Heat And Mass Transfer In A Square Cavity With Condensation In The Presence Of Non-Condensable Gas[END_REF] for purely thermal convection [START_REF] Paillère | Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 2[END_REF] as well as cases for the mixture with evaporation and condensation under nearly constant thermodynamic pressure [START_REF] Weaver | Natural convection due to horizontal temperature and concentration gradients-1. Variable thermophysical property effects[END_REF]. The mesh convergence was obtained with a resolution of 160 × 160. All results in the present paper are computed using a mesh of 320 × 320.

The low Mach approximation is applied to the double-diffusive model in the work of Sun and Lauriat [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF] in 2010. In their work, a case of large thermodynamic pressure variation is examined.

Case description

Since the dimensionless heat transport equation in the double-diffusive model can be transformed into conservative form, conservative heat fluxes may be reconstructed. In their paper [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF], the definition of the Sherwood and Nusselt numbers are given by such reconstruction, which shall be translated in our notations as:

Sh = Re Sc ρ Y U • e n - ρ ∇ Y • e n , Nu = Re Pr ρ T U • e n -ρ ∇ T • e n .
It is clear that these definitions, which will be called the reconstructed definitions in the following to be differentiated from the physical definitions, do not take into account neither the reference mass fraction nor the reference temperature in advection and therefore are not equivalent to the physical definitions of advection Sherwood and Nusselt number. The transport properties of case 1 in Table 5 in [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF] are shown in Table 1 (s1). In addition, in the initial conditions, the dimensionless temperature and concentration are set to be -0.5 in order to reinforce the evaporation and to increase the thermodynamic pressure variation. Since the amount of steam in the cavity is expected to increase from its initial value, the thermodynamic pressure is supposed to be bigger than 1. Table 1 compares results from the reference [START_REF] Sun | Transient double-diffusive convection in an enclosure with large density variations[END_REF], results based on the double-diffusive approach using incorrect (reconstructed) definitions (ddR) and correct ones (dd), and results based on our full model.

Results

One notices that the reference result and the double diffusive result with reconstructed post-treatment are in very good agreement. This validates our low-Mach calculation without species interdiffusion. Comparison of specific contributions for the two doublediffusive cases, which are based on the same calculation, illustrates the difference in the definition of the Nusselt numbers. While the contributions to diffusion are the same, the advective contributions are totally different. Since the reconstructed definitions do not take into account the reference values, it is possible to obtain negative values on the cold wall as the two dimensionless fields take negative values there. The double-diffusive case with the correct definition does not lead to matching Nusselt numbers on each side of the cavity.

In contrast, our calculation with our full model accounting for species interdiffusion leads to equal Nusselt numbers on each side. Since the specific heat capacity difference is large (c p,v /c p,a = 4), interdiffusion heat fluxes make a major contribution to the total heat transfer (46.50% of the total heat flux on the hot wall and 41.10% on the cold wall).

In conclusion, we have shown that the energy conservation is not guaranteed in double diffusive model.

Calculations for air and steam mixture

We investigate the influence of species interdiffusion together with Soret and Dufour effect for air steam mixture representative of our problem. We now consider a square cavity, side length of which is 2 cm, with an initial pressure of 5 bar. The Rayleigh number for this case is Ra = 4.05 × 10 5 . We take Pr = 1.32 and Sc = 0.66. The temperature of the hot wall is T H = 120 • C and that of the cold wall is

T C = 80 • C.
Assuming the steam is saturated on both walls, we take Y v,H = 0.29 and Y v,C = 0.06. The initial state of the interior is set as the reference state.

Values of α d

The intensity of Soret and Dufour effects is a function of the thermal diffusion ratio α d , which depends on the composition of mixture, but is approximately independent to temperature and concentration of components [START_REF] Bird | Transport Phenomena[END_REF]. When α d = 0, all the terms due to Soret and Dufour effects do not contribute. We therefore use this value to set up a reference result without Soret and Dufour effects, which is denoted as case e1 in Table 1.

According to [START_REF] Monchick | Transport properties of polar gases[END_REF][START_REF] Mason | Higher approximations for the transport properties of binary gas mixtures. I. general formulas[END_REF], a realistic value α d = -0.0059 is found for the air-steam mixture and it is applied for the case e2. In [START_REF] Bird | Transport Phenomena[END_REF], we find that α d can reach 0.4 in a mixture of Ne -He or N 2 -H 2 . This value is applied for the case e3 in order to assess to a maximal influence of Soret and Dufour effects. Consequently, we consider the following values of α d in the calculations: 0 (e1), -0.0059 (e2), 0.4 (e3).

Results

First of all, according to comparison between the results of e1 and e2 (Table 1), the influence of Soret and Dufour effects remains slight with α d = -0.0059. The mass fluxes are mostly the same in the two cases and the Soret effect is negligible in the case e2. The heat fluxes are pratically not affected by the Dufour effect heat flux, which is negligible compared to the total heat flux. However, the Dufour effect shows a more important contribution to the total heat transfer (-0.31% / -0.42%) compared to that of Soret effect to the total mass transfer (-0.04% / -0.03%). In the case e3, Soret and Dufour effects are amplified. With their influence large difference in the case e1 is observed both in mass transfer and in heat transfer. Compared to e1, e3 shows that a positive α d may intensify the mass transfer and the evaporation-condensation rate. It is also necessary to point out that in e3 the Dufour effect contributes significantly to the total heat transfer. However the Soret effect do not contribute a lot to the mass transfer even with a rather large α d .

In Figure 1, (1c) and (1f) show the distribution of the temperature and the concentration fields in the cavity along the velocity streamlines. No visible difference is observed between cases e1 (1b and 1e) and e2 (1c and 1f), which agrees with the results in Table 1.

Figures 1d and1g show that the fluid is hotter and less rich in steam in the top portion while it is colder and richer in steam in the bottom portion. Moreover, the thermal boundary layers appear to be thicker on both vertical walls in Figure 1d, which is consistent with the reduced diffusion fluxes noted in Table 1. It is also observed that the velocity field is characterized by larger recirculation zones.

Conclusion

In this paper, we have presented a low Mach number model for the binary mixture of condensable and non-condensable gases with constant thermophysical properties. The model was applied to the case of a two-dimensional square cavity. A boundary condition treatment strategy based on the air partial velocity was implemented in the solver and was found to improve the robustness of the PISO algorithm.

Application of the model for different test cases showed that the contribution of interdiffusion to the Nusselt number was significant on both side walls of the cavity when ∆c p /c p,ref is not negligible. Consideration of species interdiffusion is therefore essential to guarantee the energy conservation in the domain. It will be interesting to study the influence of ∆c p /c p,ref on interdiffusion. Moreover, as species interdiffusion is not generally taken into account in study of turbulence, the inclusion of this phenomenon in the model and particularly in wall functions should be investigated.

The influence of Soret and Dufour effects was also examined. For a mixture of air and vapour, we established that these two effects are negligible. However, we found that Dufour effects may become important when the thermal diffusion ratio gets sufficiently large. This will bring us to reconsider the influence of Soret and Dufour effects if for example hydrogen or helium is involved. 

T H Y v,H T C Y v,C

  On the vertical walls, because air is incondensable, the air mass flux through the boundary is zero, i.e. U a,n = 0. This leads to U | wall,n = jv,n ρ(1-Yv) on these walls. When Soret effect is neglected, the mass flux is only constituted by Fick's law mass flux and the boundary condition becomes U | wall,n = -D (1-Yv) ∂Yv ∂n which is called Stefan's velocity.

  C and dimensionless parameter Y varying from -0.5 to +0.5: Y v = Y v,ref + ∆Y v Y . Similarly, we set T = T ref + ∆T T , where T is the dimensionless temperature varying from -0.5 to +0.5. The reference state defining ρ ref , r ref and c p,ref with subscript ref of the gas is taken at the initial pressure P th,ref and at T ref and Y v,ref . We define the following dimensionless numbers: Rayleigh number Ra = ρ ref c p,ref gL 3 (εt+εm) νk , Prandtl number Pr = ρ ref c p,ref ν/k, Schmidt number Sc = ν/D, Reynolds number Re = U ref L/ν, Froude number Fr = U ref / √ gL. Here we take U ref = gL(ε t + ε m ), thus Re = Ra/Pr. The non-Boussinesq factors are introduced: ε t = ∆T /T ref and ε m = ∆r/r ref , where ∆r = r H -r C .

Nu d due to

  diffusion, Nu I = Nu Id + Nu IS due to interdiffusion (where Nu Id is related to diffusive mass flux and Nu IS is related to Soret effect mass flux) and Nu D = Nu Dd + Nu DS due to Dufour effect (where Nu Dd related to mass flux and Nu DS related to Soret effect mass flux). Hence, one may find the expression of the dimensionless heat flux as following:
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 1 Figure 1: Illustrations of dimensionless fields T and Y with the streamlines of velocity field of the calculation results of e2 and e3.

Table 1 :

 1 × 10 6 5.63 × 10 6 5.63 × 10 6 5.63 × 10 6 4.05 × 10 5 4.05 × 10 5 4.05 × 10 5 Input data and numerical results of different dimensionless numbers

	case	s1-ref	s1-ddR	s1-dd	s1-full	e1	e2	e3
	Ra 5.63 Pr	0.71	0.71	0.71	0.71	1.32	1.32	1.32
	Sc	0.71	0.71	0.71	0.71	0.66	0.66	0.66
	Ma/g.mol -1	29	29	29	29	29	29	29
	Mv/g.mol -1	7.25	7.25	7.25	7.25	18	18	18
	γa	1.4	1.4	1.4	1.4	1.4	1.4	1.4
	γv	1.4	1.4	1.4	1.4	1.29	1.29	1.29
	T H /K	352	352	352	352	393.15	393.15	393.15
	T C /K	288	288	288	288	353.15	353.15	353.15
	Y v,H	0.074	0.074	0.074	0.074	0.29	0.29	0.29
	Y v,C	0	0	0	0	0.06	0.06	0.06
	α d	-	-	-	0	0	-0.0059	0.4
	model	ref.	ddR	dd	full	full	full	full
	P * th	1.255	1.257	1.257	1.261	0.9988	0.9989	0.9915
					hot wall			
	Sha	-	0.71	1.42	1.41	1.85	1.85	2.05
	Sh d	-	17.72	17.72	17.72	4.53	4.52	4.93
	Sh S	-	-	-	0.00	0.00	0.00	0.08
	Sh	18.40	18.43	19.13	19.13	6.38	6.36	7.06
	Nua	-	0.78	8.56	8.56	31.65	31.57	35.04
	Nu d	-	15.53	15.53	13.88	5.03	5.08	2.49
	Nu Id	-	-	-	19.46	18.05	18.01	19.66
	Nu IS	-	-	-	0.00	0.00	-0.01	0.32
	Nu Dd	-	-	-	0.00	0.00	-0.17	12.80
	Nu DS	-	-	-	0.00	0.00	0.00	0.21
	Nu	16.34	16.31	24.09	41.90	54.73	54.47	70.52
					cold wall			
	Sha	-	-0.71	0.00	0.00	0.39	0.39	0.43
	Sh d	-	19.12	19.12	19.12	5.99	5.97	6.58
	Sh S	-	-	-	0.00	0.00	0.00	0.05
	Sh	18.40	18.42	19.12	19.12	6.38	6.36	7.06
	Nua	-	-0.64	5.73	5.73	23.20	23.13	25.68
	Nu d	-	16.93	16.93	18.93	10.07	10.17	3.55
	Nu Id	-	-	-	17.20	21.45	21.40	23.59
	Nu IS	-	-	-	0.00	0.00	-0.01	0.16
	Nu Dd	-	-	-	0.00	0.00	-0.23	17.43
	Nu DS	-	-	-	0.00	0.00	0.00	0.12
	Nu	16.34	16.30	22.67	41.86	54.72	54.46	70.53