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sensaas: Shape-based Alignment by Registration of
Colored Point-based Surfaces
Dominique Douguet*[a] and Frédéric Payan*[b]

Abstract: sensaas is a tool developed for aligning and
comparing molecular shapes and sub-shapes. Alignment is
obtained by registration of 3D point-based representations
of the van der Waals surface. The method uses local
properties of the shape to identify the correspondence
relationships between two point clouds containing up to
several thousand colored (labeled) points. Our rigid-body
superimposition method follows a two-stage approach. An
initial alignment is obtained by matching pose-invariant
local 3D descriptors, called FPFH, of the input point clouds.
This stage provides a global superimposition of the
molecular surfaces, without any knowledge of their initial
pose in 3D space. This alignment is then refined by
optimizing the matching of colored points. In our study,

each point is colored according to its closest atom, which
itself belongs to a user defined physico-chemical class.
Finally, sensaas provides an alignment and evaluates the
molecular similarity by using Tversky coefficients. To assess
the efficiency of this approach, we tested its ability to
reproduce the superimposition of X-ray structures of the
benchmarking AstraZeneca (AZ) data set and, compared its
results with those generated by the two shape-alignment
approaches shaep and shafts. We also illustrated sub-
matching properties of our method with respect to few
substructures and bioisosteric fragments. The code is
available upon request from the authors (demo version at
https://chemoinfo.ipmc.cnrs.fr/SENSAAS).
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1 Introduction

3D shape is an important molecular feature in biological
activity.[1] Over years, a wide range of 3D shape similarity
methods have been developed to compare and quantify
the similarity between molecules. Molecular shape compar-
ison methods can be classified according to the representa-
tion used. Atomic-distance based methods are alignment-
free algorithms that describe the shape by using inter-
atomic distance distributions. An example is the Ultrafast
Shape Recognition (USR) tool developed by Ballester and
Richards, which encodes the information into a string
vector.[2] Atom-centered Gaussians based methods, including
the program ROCS, are probably the most widely used to
evaluate the maximum volume overlap between two
molecules.[3,4] A third popular class uses molecular fields to
describe, for example, the electrostatic or the hydrophobic
potential, calculated at points of a grid around the
molecule. In their review of 2018, Kumar and Zhang
summarized several variations and hybridizations of these
main classes.[5] For example, shaep is a tool that uses both
molecular fields and Gaussian functions representations to
estimate the molecular similarity[6] while shafts is an
algorithm that combines a pharmacophore matching
method and Gaussian functions.[7] Alternative classes of
shape similarity methods are surface-based approaches that
use various representations of the surface such as spherical
harmonics (parafit,[8] shems[9] and hpcc[10]) and their
extensions (3D Zernike descriptors[11]), probability distribu-

tion histograms as shape signature,[12] alpha shapes as
coarse representations of the surface[13,14] and point-based
surfaces. Point-based surface methods describe the molec-
ular surfaces with sets of 3D points, clustered to form
similar surface regions also called patches. Local surface
properties of the surface patches are then extracted to
represent the shape. Goldman and Wipke use quadratic
shape descriptors of a subset of points called critical points
to evaluate pairings between small sections of the
surfaces.[15] Cosgrove et al.,[16] Exner et al.,[17] Hofbauer
et al.,[18] Baum et al.[19–21] and Krotsky et al.[22] also developed
approaches that divide the molecular surface into a set of
patches enclosing an area of similar properties. Then, clique
detection algorithms are usually used to identify maximal
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common subgraphs and to perform a rigid-body super-
imposition between two sets of patches. Clique detection is
a combinatorial problem known to be NP-hard and, thus,
cliques are impracticable when one wants to work with a
large number of points. In the current work, we describe a
point-based surface method which aligns thousands of
colored points by using registration methods, initially
developed for matching dense 3D point clouds acquired by
3D sensors.

Representing a molecular surface by using a 3D point
cloud is not a new concept.[1,5,23–25] A point cloud has this
advantage of being an intuitive description, suited for
visualization and for building a mental model. For example,
this representation highlights which atoms contribute to
the surface and, thus, may interact with its surroundings. By
contrast, working with 3D graphs do not allow to distin-
guish atoms that are masked by others. Another feature of
point-based surfaces is the capacity to associate some extra
attributes to the points such as color labels according to
the nature of the underlying atoms. In their review, Kumar
and Zhang pointed out that surface-based shape similarity
methods are a particular class of shape similarity methods
that are still in infancy.[5,24] Indeed, although they underlined
some particular interesting features of surface-based meth-
ods such as comparing shape of ligands with that of
binding pockets, they indicated that their current concerns
are the slowness, an efficiency lower than Gaussian overlay-
based shape similarity methods and the inability to identify
local similarities. In our study, we show that a surface-based
shape similarity method can now run reasonably fast and is
able to identify global and local similarities.

3D point set registration, point set matching or geo-
metric registration refer to the same class of methods that
aim to align several sets (or clouds) by identifying nearest-
neighbor correspondences and minimizing the point-pair
distances.[26,27] The most popular approach is the ICP
(Iterative Closest Point) method which gave rise to numer-
ous variants. Point set registration is a fundamental
problem in many domains: pattern recognition, computer
vision or data reconstruction. Today, 3D registration
methods that use geometrical features such as curvature,
surface normals or higher order local descriptors are
extensively used.[28–30]

Registration is often considered as a hard optimization
problem because perfect point-to-point correspondences
rarely exist: the point clouds might partially overlap only, or
the underlying objects may have particular local geo-
metrical features. Nevertheless, we show in this paper that
3D point set registration can be particularly attractive to
align molecular shapes and sub-shapes. The resulting
approach is called sensaas, for sensitive surface as a

shape. The following sections detail the sensaas workflow
and show its ability to reproduce experimentally verified
superimpositions of dissimilar molecules of the benchmark-
ing AstraZeneca (AZ) data set.[31] Originally, this data set
was created for validating pharmacophore programs but it

also provides an appropriate benchmarking data set for
evaluating the general applicability of a molecular align-
ment method.[32] To assess the accuracy of alignments
provided by sensaas, we compared them with those
generated by the state of the art methods, shaep and
shafts. Finally, the submatching property of sensaas is
emphasized by aligning some molecules of different sizes
such as substructures and fragments.

2 Material and Methods

2.1 Sensaas Workflow

An overview of sensaas is illustrated in Figure 1. It can be
divided into four stages as follows. Let us consider two
molecules that we want to align:

Step 1. Generate a 3D point cloud of the molecular surface
for each molecule. Each point is described by its coor-
dinates in 3D space (geometry) and a color according to the
nature of the underlying atom (Figure 1b).

Step 2. Initialize the alignment. Point clouds are globally
superimposed by finding the best matching in terms of
geometry only (Figure 1c).

Step 3. Refine the initial alignment. The initial super-
imposition is locally refined by taking into account the
geometry but also the physico-chemical properties mapped
on the surface (pharmacophore features for example). This
is done by i) defining classes of properties; ii) coloring each
point according to its class (Figure 1d); iii) refining the initial
superimposition by finding the best matching between
these two colored point clouds (Figure 1e). This step results
into a transformation matrix to translate and rotate the
moving molecule.

Step 4. Calculate scores and display the superimposition.
Fitness scores are calculated using point clouds and the
final alignment of the 3D graphs is achieved by applying
the transformation matrix to the 3D graph of the moving
molecule (Figure 1f).

Each stage is described in detail in the next subsections.

a) Generation of 3D point clouds. Let us consider two
molecules M1 and M2 to align. The goal of this step is to
generate point-based 3D representations S1 and S2 of the
molecular surface of M1 and M2, respectively. S1 and S2 result
from the computation of the van der Waals (vdW) surface
of each molecule by using the program developed by
Eisenhaber et al.,[33] with van der Waals radii taken from A.
Bondi.[34] Finally, S1 and S2 consist in two sets of 3D points
uniformly distributed on the vdW surface. Each point is
depicted by its position in 3D space (x, y and z) and a label
indicating the type of its closest atom.
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b) Geometry-based alignment. Considering two point sets,
Source and Target, a rigid registration (or matching) consists
in finding a transformation matrix T describing how to
rotate and translate the Source in order to be superimposed
to the Target. In our context, we have no a priori
information about the initial pose of the point sets in 3D
space, and about the existence of overlapping areas
between the molecular surfaces. Therefore, we use a two-
stage procedure: i) perform a global registration to obtain
an initial “coarse” superimposition, and ii) refine the initial
alignment by a local registration. This local registration, that
would be inefficient without applying the global one, is
explained in the next section.

To match 3D point sets globally, it is generally accepted
that it is more efficient to match local 3D descriptors
computed on a limited number of points rather than to
match the points themselves. Local 3D descriptors provide
pose invariant local geometrical properties of the surface
inherent to a point cloud. In sensaas, we use Fast Point
Features Histograms (FPFH) proposed by Rusu et al.[35] Such
a histogram is defined by a 33-dimensional vector. In a
nutshell, according to the shape of a histogram, one can
know if the surface around a point looks like a plane, a
cavity, a hump… As reduced sets of points on which the
FPFH are calculated, we use simplified versions of S1 and S2,
called S*1 and S*2. S*1 and S*2 are simply obtained by
subdividing the bounding box of S1 and S2 into a set of
small cubes, named voxels hereinafter. All points in a voxel
are removed except the closest point to the centroid. This
process is also referred to as down-sampling the point
cloud. Figure 2 displays the reduced point clouds obtained
for different voxel sizes (VS) for the example molecule me-
indoxam.

A FPFH is computed for each point of the reduced point
clouds. It results in two finite sets of FPFH. Then, the
RANSAC algorithm is used to match them.[36] RANSAC is an
iterative model fitting framework widely used. At each
iteration, it consists in picking N points from the reduced
cloud S*1, and in identifying N corresponding points in the
cloud S*2, by querying their nearest neighbor in the FPFH
space. At this step, it is possible to compute the trans-
formation matrix T, to align S*1 and S*2. Before that, two
checks are carried out to make sure the suggested trans-
formation is meaningful in the 3D space.
i) The first test estimates the proximity of points by

applying T on the N points of S*1, and checking that the
distance between these points and their corresponding
points in S*2 is lower than a given threshold (VS*1.5).

ii) The second test checks that inter-distances (edge
lengths) between the N points of S*1 are close to the
inter-distances between the N corresponding points in
S*2. This is considered as satisfactory if each of them
does not differ by more than 10%.
If these two tests are successful, the matching at this

iteration is validated, the transformation matrix is applied to
S*1 and, a RMSE value (Root Mean Square Error) is
computed between it and S*2. The maximal number of
querying is 400000 but if tests are successful 1000 times,
the procedure stops, the alignment with the smallest RMSE
value is selected, and the associated transformation matrix
T is applied to the entire point cloud S1. As a result, we
obtain the point cloud S1

g globally aligned on the other one
(Figure 1c). From now on, this initial superimposition step is
called global.

Figure 1. Schematic representation of sensaas workflow for matching two molecules. a) Input molecules; b) Point-based representation of
the molecular surfaces; points are colored according to the nature of the closest atom; c) Global superimposition (geometry-aware only);
Point clouds are colored in blue and green for visualization purpose; d) Same global superimposition but colored according to the physico-
chemical classes; e) Local refinement (geometry- and color-aware); f) Final alignment of the corresponding 3D graphs.
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c) Local refinement based on geometry and physico-chemical
properties. In many cases, an alignment obtained with a
“global” approach is perfectible and can be improved by a
“local” alignment.

3D shape is an important feature in molecular recog-
nition but the distribution of physico-chemical properties in
space as it is represented by pharmacophore features is
determinant for the binding affinity of ligands. Such
characteristics can be conveniently used to improve the
alignment of molecules, by optimizing the matching of
properties along with the geometry. To reach this objective,
we chose to use an ICP variant for colored point clouds
developed by Park et al.[37] The interest of this approach is
to obtain a tighter alignment by matching both geometry
and color of points. This method is particularly appropriate
for our molecular surfaces as each point has a label that can
be seen as a coloration. We indicated in (a) that each input
point is described by its position in 3D space (x, y and z)
and its label indicating the type of its closest atom. We
categorize atom types into four classes that will be seen as
colors during this stage. Examples of colored clouds
resulting from this classification are visible in Figure 1d. In
our implementation, labels aim to recapitulate typical
pharmacophore features such as aromatic, lipophilic and
polar groups.[38,39]

– The first class includes non polar hydrogen (H) and
halogen atoms excepting fluorines (Cl, Br and I). Hydro-
gen and halogen atoms are molecule endings. They are
the most frequent atoms that contribute to the surface
geometry and coloration, and thus, highlight the apolar

surface area. Points belonging to this class are colored in
white in our study (Figure 1d).

– The second class includes polar atoms able to be
involved in hydrogen bonds such as N, O, S, H (if linked
to N or O) and F.[40] Points belonging to this class are
colored in red in our study (Figure 1d).

– The third class includes “skeleton elements” such as C, P
and B. Points belonging to this class are colored in green
in our study (Figure 1d). This class sometimes contributes
to the surface. For example, aromatic carbons may
contribute to the surface by exposing a typical pattern
formed by two parallel green patches as shown in
Figure 1d. On the contrary, a sp3 carbon does not
contribute significantly to the surface because hydrogen
atoms that are linked to it masked it.

– The fourth class includes all elements not listed in the
first three classes. This class is empty for most small
organic molecules in medicinal chemistry. Points belong-
ing to this class are colored in blue in our study.
Globally, ICP consists in i) selecting a set of points in the

clouds Source and Target; ii) matching the selected points in
Source with the “optimal” corresponding points in Target
(historically the “closest points”); iii) estimating the trans-
formation matrix T that gives the best alignment of Source
and Target, by minimizing iteratively a cost function E
depending on the corresponding points; iv) transforming
Source with T, and going back to ii) until reaching
convergence, or a maximum number of iterations.

The ICP variant for colored point clouds[37] employed in
sensaas uses a cost function E that takes both geometric
and color information for alignment: E (T)=δ Eg (T)+ (1� δ)

Figure 2. Effect of the voxel size (VS) on the number of points in the reduced point cloud for the molecule me-indoxam.
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Ec, where δ, set to 0.8, balances the influence of the two
terms. Eg is the objective function proposed in the point-to-
plane ICP variant.[29] The last matches the points by a
procedure called “normal shooting” from Source to Target
(i. e. projection in the normal direction), and then deter-
mines the matrix T that minimizes the RMSE between the
corresponding pairs. Ec is the term that weights the
alignment of points of same color. It measures the differ-
ence between the color of the Source points and the color
of their projection on the tangent plane to their corre-
sponding Target points. To summarize, the local registration
stage of sensaas consists in:
i) taking as input the two point clouds aligned by global

(S1
g and S2);

ii) matching the reduced point clouds S*1
g and S*2;

iii) applying this ICP variant and stopping when the
number of iterations reaches 100, or when the relative
RMSE between two iterations is lower than 1e–6.
As output, we obtain the final transformation matrix to

superimpose S1 to S2. From now on, this local registration
stage is called color.

2.2 Alignment Evaluation

To evaluate alignments, it is common to compute RMSE
values and fitness scores. A RMSE indicates how close the
points of two aligned clouds are paired whereas a fitness
indicates how many points are paired. Points are considered
paired if their distance is lower than a given threshold. In
our implementation, we set the threshold value to 0.3
because it is the average distance between two adjacent
points in our original point clouds. The fitness equals 1 if
the alignment is perfectly achieved for two identical 3D
molecular structures. Increasing this value would artificially
increase the fitness by pairing more distant points. Fitness
is also essential to calculate how many points with similar
colors finally match. We defined three different fitness
scores:

– gfit is the ratio between the number of points of the
transformed Source that match points of the Target, and its
total number of points:

gfit ¼
number � of � matching � points � in � Source
Total � number � of � points � in � Source (1)

– cfit is the sum of the fitness for each class, to specifically
evaluate the matching of the colored points (k=4 classes):

cfit ¼
Pk

i¼1 nb � matching � points � in � Source � for class � i
Pk

i¼1 number � of � points � in � class � i
(2)

– hfit is the sum of the fitness for each class except the first
class, to specifically evaluate the matching of polar and
aromatic points (classes 2, 3 and 4):

hfit ¼
Pk

i¼2 nb � matching � points � in � Source � for class � i
Pk

i¼2 number � of � points � in � class � i
(3)

Those scores are similar to a Tversky coefficient[41] tuned
to evaluate the embedding of one object into another one,
here the molecules Source and Target. This implies that
scores calculated with respect to Target may differ from
those calculated with Source. Moreover, the smallest point
cloud of the two will always obtain the highest fitness score
as more points are paired, proportionally. In the following,
“global gfit” relates to the (intermediary) fitness value
calculated after global and terms gfit, cfit or hfit means
that the whole registration algorithm (global + color) is
applied before calculating fitness values.

2.3 Choice of the Voxel Size (VS)

To be efficient in a context of molecular surfaces, we had to
tune the voxel size (VS) for global and color. All the
functions used in global and color are implemented with
functions of the open-source library Open3D0.7.0.[42] As
described in the workflow description, the VS influences the
number of points in the reduced point cloud. It is important
to select a value consistent with the density of the point
cloud. In our study, points are uniformly distributed on the
vdW surface and the distance between two adjacent points
is ~0.3 Å (NSC program (version 2.0) from Eisenhaber
et al.[33]). Table 1 shows the average percentage of remain-

ing points for various VSs. As expected, a VS�0.3 does not
significantly lower the number of points since more than

Table 1. Percentage of remaining points after reducing a point
cloud.

Voxel size Percentage of remaining points

0.1 99–100
0.2 95–96
0.3 67–70
0.4 43–46
0.5 29–31
0.6 21–22
0.7 16–17
0.8 12–13
0.9 10
1.0 8
1.1 7–8
1.2 5–6
3 0.9–1.1
7 0.3–0.6
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70% of initial points are kept. On the contrary, a VS�1
leads to the removal of more than 90% of initial points. If
too many points are removed, the matching fails. To select
an appropriate VS value, we analyzed pairwise alignments
for VS values ranging from 0.2 to 1.2 (i. e. from 95% to 5%
of remaining points) with an increment of 0.1.

In the following examples, we studied self-matchings of
molecules sorbate and Imatinib with rotated and translated
versions of themselves (named “sorbate-moved” and “Im-
atinib-moved”, respectively). In such experiments, the
perfect superimposition is expected, and gfit values must
equal 1. We also assessed the substructure matching of
Imatinib with a part of itself, Imatinib-part2 (Figure S1a and
S1b in the Supporting Information). Figure 3 displays
resulting alignments, and gfit scores plotted in function of
VS. First, initial alignments obtained with global are always
improved by color (for all runs and any VS): gfit is always
higher than global gfit (Figure 3a, b and c), and the final
RMSE is always lower than the intermediary RMSE obtained
by global. Second, results show that there is no single
value of VS for which the best solution could be found for
all cases. For example, when VS equals 0.2 or 0.3, perfect
superimpositions are observed for the sorbate case, but not
for Imatinib. In the substructure matching (Figure 3c),
global gfit and gfit scores vary from one test to another,
but good alignments and scores are obtained when VS is
0.4, 0.6, 0.7 or 0.8. In that case, VS values larger than 0.8
lead to more erratic results. In conclusion, VS strongly
influences the accuracy of the alignments, and a unique
and optimal value cannot be known a priori. Thus, as the
down-sampling is reproducible for a given point cloud and
for a given VS, we finally chose to successively execute
eleven alignments with VS ranging from 0.2 to 1.2 with an
increment of 0.1 and, to keep the best alignment. We
consider that an alignment is good if it has a good shape
overlap (high gfit) and a good superimposition of common
pharmacophoric features (high hfit). Thus, the alignment
with the largest sum of gfit and hfit values is considered as
the best one.

2.4 Computing Time

All experiments have been carried out on a Dell PowerEdge
R940 (Intel Xeon Gold 5220). sensaas is running using the
Debian version 5.3.15-1 of Linux. The processing time for
molecules used in present tests takes between 3 to
25 seconds per run (Figure 4). Computation times of
25 seconds occur when a molecule is aligned on a shifted
version of itself, for example in self-matching tests.
However, aligning a molecule on itself is a rare and specific
experiment, per se. In our study, we only used it as a
control. No optimization of the code was carried out so far
but an optimization of the point cloud preprocessing and
the use of Python threads over voxel size could bring a
substantial improvement in computation times.

2.5 Data Visualization

In this study, the Open3D function visualization.draw_geo-
metries and the software PyMOL (version 1.3) were used to
visualize alignments and generate illustrations.

2.6 sensaas Validation with Self- and Substructure
Matchings

Because of the stochastic nature of the registration
methods used in sensaas, we carried out an analysis of its
reproducibility. In studied examples, experiments were
repeated one hundred times, and resulting superimposi-
tions and fitness scores were examined. Figure S1 in the
Supporting Information displays the structures of mole-
cules: the previously analyzed sorbate/sorbate-moved and
Imatinib/Imatinib-moved pairs, and four substructures pairs
sorbate/sorbateC, Imatinib/Imatinib-part1, Imatinib/Imati-
nib-part2 and Imatinib/Imatinib-part3, whose resulting
alignments are also easy to validate.

2.7 Benchmarking AZ Data Set

Tests involving self- and substructure matchings are
prerequisites but are not broad enough to evaluate the
general applicability of a molecular alignment method. The
only experimental evidence of alignments between differ-
ent molecules is their co-crystallization with the same
protein. Therefore, the performance of sensaas was
assessed by comparing its alignments using the 121
experimental overlays of the AZ test set available at the
CCDC Center.[31] This data set contains 1465 co-crystallized
ligands extracted from the Protein Data Bank (PDB). The
authors annotated overlays according to shape, feature and
2D fingerprint similarities between ligands and, finally
classified overlays as either easy (22 cases), moderate
(73 cases), hard (18 cases) or unfeasible (8 cases) to
predict.[43] For each of the 121 proteins, sensaas was run
using each experimental ligand as the Target in turn. Then,
each resulting pose of other ligands (Source) was compared
to their experimental pose and scored with the heavy atom
root-mean-square deviation (RMSD). It is usually accepted
that a pose is correctly predicted if the RMSD is below 2 Å.
Results were then compared to those obtained with shaep

and shafts.

2.8 Fragment Alignments

As we aim at developing a method that performs well in
scaffold hopping and bioisostere replacement (i. e. replacing
one chemical group by another one with a different
chemotype),[44,45] we evaluated the sensaas ability to align
the bioisosteric fragments tetrazole and carboxylate.[46,47]
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Figure 3. gfit versus global gfit in function of VS. Three runs are plotted (blue, orange and mauve lines). The initial and final alignments are
displayed with their fitness scores, number of matching points and RMSE values. The Source 3D graph aligned with global only is colored in
magenta (at left). Target and aligned Source 3D structures are colored in green and cyan, respectively (at right). (a) Imatinib/Imatinib-moved
pair. (b) Sorbate/sorbate-moved pair. (c) Imatinib/Imatinib-part2 pair.
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Figure 4. Results of self- and substructure-matchings. Each run was performed 100 times with a random orientation for the Source each
time. a) Imatinib self-matching. b) sorbateC (Source) on sorbate (Target). c) Imatinib-part1 (Source) on Imatinib (Target). d) Imatinib-part2
(Source) on Imatinib (Target). e) Imatinib-part3 (Source) on Imatinib (Target). Corresponding superimposition(s) of 3D graphs, the percentage
of times, the mean CPU time and the scores gfit+hfit, gfit and hfit are indicated. Target 3D structures are colored in green and Source 3D
structures are colored in cyan. Hydrogen atoms are hidden in 3D graphs.
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Such submatching properties requires that sensaas must
not only align molecules of the same size successfully, but
also align substructures and bioisosteric fragments cor-
rectly, even if they are small. To this end, we selected the
drug Valsartan which contains both a carboxylic acid and a
tetrazole ring (Figure S1d–f). Results were compared to
those obtained with shaep and shafts.

3 Results and Discussion

3.1 sensaas Validation with Self- and Substructure
Matchings

Figure 4 shows results of pairwise alignments for self- and
substructure-matchings that are easy to validate. Because of
the stochastic nature of the registration methods, those
tests were repeated 100 times to identify possible alternate
alignments. For the self-matching of Imatinib, the perfect
alignment is always found (Figure 4a). Similarly, the sor-
bate/sorbateC alignment is a trivial test that sensaas

successfully achieves 100% of times (Figure 4b). Regarding
substructure matchings, the best, expected, alignment is
found most of the times and ranked first (Figure 4c, d and
e, alignments at left). Over the repeats, alternate alignments
are generated but their fitness scores are always lower
(Figure 4c, d and e, alignments at right). We then assessed
the ability of sensaas to generate the expected alignment
when a different conformation of the Source is used.
Figure S2a in the Supporting Information shows the best
alignment of such a conformer of the Source Imatinib-part3
that has a RMSD of 1.99 Å with the original substructure
conformation. This alignment shows the expected matching
of the aromatic and piperazine rings, but an inversion of
the amide function. This is caused by the conformer that
differs from the original Imatinib structure, precluding a
perfect matching. Therefore, moderate variations in con-
formation do not prevent the identification of the correct
alignment by sensaas. We further investigated the capacity
of sensaas to identify the best Imatinib-part3 conformer
from a library of 74 conformers generated with RDKit Open-
Source Cheminformatics Software (http://rdkit.org).[48] Fig-
ure S2b and S2c in the Supporting Information displays

score values for the 74 conformers and the first ranked
superimposition, respectively. Conformer number 36 is the
first ranked solution and is perfectly aligned with the
Imatinib structure. This result shows that aligning a library
of conformers with sensaas succeeds in identifying the
conformer allowing the best alignment.

3.2 Benchmarking AZ Data Set

As the only experimental evidence of alignments between
different molecules is their co-crystallization with the same
protein, we tested the ability of sensaas to reproduce the
superimposition of X-ray structures of the benchmarking AZ
data set. Then, to assess its performance, we compared
results with those generated with shaep[6] and shafts.[7] In
this experiment, sensaas was run ten times and the best
ranked solution, i. e. best gfit+hfit value, was retained.
shaep and shafts, being deterministic methods, were run
once with the default settings and with partial charges
calculated with cxcalc calculator.[49] Contrary to shaep and
shafts, sensaas does not require the calculation of partial
charges. Figure 5 shows the distribution of the lowest
RMSD obtained for the 1465 molecules. The three methods
produce comparable distributions with small differences
within each interval in favor of one method or the other.
The mean RMSD value, computed over the entire data set,
is also similar for the three methods, with a slight
advantage for sensaas with a value of 0.97 Å against 1.06 Å
for shaep and 1.09 Å for shafts (Table 2). When considering
a RMSD value�2.0 Å, the number of ligands that are
reproduced is still comparable: 1304 with sensaas (89 %),
1305 with shaep (89%) and 1278 with shafts (87%). This
indicates that it exists at least one ligand structure that
allows the correct alignment for nearly all of the ligands.
However, when considering only the first, most accurate,
RMSD interval [0–0.5], sensaas outperforms the other
methods with 941 molecules against 831 and 837 with
shaep and shafts, respectively. Table 2 details the number
of reproduced ligands and the mean RMSD value for each
category. As expected, the number of reproduced ligands
decreases according to the difficulty regardless of the
method. More than 93% of ligands are reproduced in the

Table 2. Number of reproduced ligands and mean RMSD values for each category for sensaas, shaep and shafts. Average computation
time per pairwise alignment is indicated. It takes into account the entire procedure including the calculation of partial charges by cxcalc
calculator[49] for programs shaep and shafts.

Reproduced ligands (RMSD�2.0 Å ) Mean RMSD
Category Number of ligands SENSAAS ShaEP SHAFTS SENSAAS ShaEP SHAFTS

easy 185 183 (98.9%) 178 (96.2%) 181 (97.8%) 0.37 0.5 0.46
moderate 991 927 (93.5%) 923 (93.1%) 922 (93%) 0.8 0.88 0.86
hard 190 148 (77.9%) 151 (79.4%) 144 (75.8%) 1.65 1.8 1.71
unfeasible 99 46 (46.4%) 53 (53.5%) 31 (31.3%) 2.69 2.58 3.47
Total= 1465 (100%) 1304 (89%) 1305 (89%) 1278 (87%) 0.97 1.06 1.09
average run time/pairwise alignment 5.7 s 0.51 s 0.46s
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easy and moderate categories, between 75 and 79% in the
hard category and between 31% and 53% in the unfeasible
category. Consistently, the mean RMSD value for each
category increases according to the difficulty. Of note,
sensaas generates more accurate results than shaep and
shafts in the easy, moderate and hard categories and
intermediate results in the unfeasible category. Figure S3 in
the Supporting Information details results for the 121 over-
lays. The average computation time of sensaas is in the
order of a few seconds (Table 2). It is longer than that of
shaep and shafts (by a factor of 10). sensaas is not fully
competitive in its current implementation with established
Gaussian-shape methods in speed. Regarding the surface-
based methods, the computation time of sensaas is
comparable to those published by Baum et al.,[20] which
were faster than other surface-based algorithms.

3.3 Fragment Alignments

In this work, we were particularly interested in the
bioisosterism between the tetrazole and the carboxylate
function (Figure S1d and e in the Supporting Information).
Indeed, although these two functional groups are structur-
ally different, several studies have demonstrated that they
may be interchangeable in a bioactive molecule.[46,47] Fig-
ure 6 shows pairwise alignments between a tetrazole or a
carboxylate fragment and the drug Valsartan (Figure S1f).

As Valsartan contains both tetrazole and carboxylate
functions in its structure, alignments with the two frag-
ments are particularly interesting to evaluate possible
alternate solutions. Our results show that the expected
alignment between the tetrazole fragment and the Valsar-
tan’s tetrazole group is ranked first (gfit+hfit=1.520) and
that two other superimpositions with lower scores are
generated: the alignment of the tetrazole fragment with
the carboxylate function (gfit+hfit=0.826) and with the
alkane chain of Valsartan (gfit+hfit=0.756) (fragment in
cyan, magenta and orange in Figure 6a, respectively).
Therefore, three solutions occur: the self-matching (ranked
first), the biosisoteric matching (ranked second), and a
geometric matching only with a hfit score close to 0 (ranked
third). Consistent results are obtained when the carboxylate
fragment is aligned on Valsartan. Indeed, the self-matching
is ranked first, the biosisoteric matching is ranked second,
and the geometric matching is ranked third with a hfit score
of 0 (fragment in cyan, magenta and orange in Figure 6b,
respectively).

The stochastic nature of sensaas makes it possible to
suggest some alternate superimpositions, contrary to
deterministic methods that provide only one alignment. As
a proof, Figure 6 also displays the alignments generated
with shaep and shafts. shaep correctly self-aligns the
carboxylate fragment on Valsartan but not the tetrazole
fragment whereas shafts correctly aligns the ring of the
tetrazole fragment (apart from the methyl carbon) but not

Figure 5. Distribution of the lowest RMSD obtained for each molecule of the AZ data set (1465 ligands). sensaas results are colored in blue,
shaep results are colored in beige and shafts results are colored in mauve. Inset: a large majority of molecules are successfully reproduced
with a RMSD�2.0 Å.
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the carboxylate fragment. Actually, these methods do not
generate bioisosteric matchings. Similar results were ob-
tained by sensaas when fragments were aligned on the
drug Adapalene (Figure S4 in the Supporting Information).
In this example, neither shaep nor shafts perfectly aligns
fragments on their counterparts. shafts displays a correct
alignment for the two oxygens of the carboxylate fragment
on Adapalene but not for the methyl carbon perpendicu-
larly oriented.

In summary, these experiments show that sensaas is
able to find the correct alignments but also to provide
realistic superimpositions by identifying local similarities.
Results also show that the algorithm appropriately ranks
alternate solutions. This submatching property allows us to

envisage more complete studies in the search for bioisos-
teric replacements.

3.4 Discussion

In our approach, a point cloud contains hundreds to
thousands colored points, depending on the down-sam-
pling stage. For a reduced point cloud, between 5 and 95%
of the points are kept when VS ranges from 0.2 to 1.2. This
ensures to retain a detailed description of the shape and of
the distribution of colors during the alignment. Up to now,
the number of input points was a limiting factor in point-
based surface alignment methods. Strategies were used to
reduce the number of points by dividing the surfaces into

Figure 6. Results of fragment alignments. a) 3D graph superimpositions of Valsartan and tetrazole. b) 3D graph superimpositions of
Valsartan and carboxylate. Fitness scores gfit, cfit and hfit are indicated for sensaas. Fitness scores Best_similarity, shape_similarity and ESP_
similarity are indicated for shaep. Fitness scores HybridScore, ShapeScore and FeatureScore are indicated for shafts. Target 3D structures are
colored in green and Source 3D structures are colored in cyan (best ranked alignment), in magenta (second ranked alignment) or in orange
(third ranked alignment).
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patches, and/or by excluding hydrogen atoms, or by using
a united atom model to decrease the number of atoms
contributing to the surface. While some of these methods
use shape descriptors only,[15,16] others associate shape and
physico-chemical properties to describe their patches,[17,18]

or use distinct point clouds for molecular shape and for
each physico-chemical property.[19] Our algorithm, in con-
trast, uses all atoms and dense point-based surfaces
calculated by the program NSC (600 dots per atomic
sphere).[33] The advantages of using dense point clouds are
that a property is not associated with a single point in the
space (the center of a patch for example), and that finer
variations of physico-chemical properties can be mapped
onto the surface. In the current setting, points are colored
according to the pharmacophore feature of their closest
atoms: polar, apolar, aromatic and other, but this could
easily evolve towards more complexity: additional classes
and colors, computed molecular properties such as the
partial charge, potential energy… Evaluating the impact of
such properties on alignments need to be investigated and
assessed.

The present results show that sensaas is able to identify
the correct alignment of similar structures (self- and
substructure matchings) and is able to rank them first. In
our approach, the final superimposition strongly relies on a
reasonable initial, geometric, alignment obtained with
global. This property is consistent with the importance of
the shape in molecular interactions and is supported by the
performance of methods that only use shape
similarities.[1,4,15,16] However, intermolecular interactions such
as electrostatic, hydrophobic or hydrogen bondings must
be also taken into account for stabilizing the recognition.
Thus, aligning shapes in concert with physico-chemical
features is expected to provide more accurate comparisons
between molecules. A strength of our approach is that the
initial alignment can be improved by matching both
geometric and color information, to get alignments that
global could not provide on its own. We also showed that
the combination of the scores gfit and hfit as final selection
criterion allows us to discriminate alternate alignments and,
specifically, to favor alignments with matching colored
features. The general applicability of our alignment method
was assessed by using the benchmarking AZ data set.
Results showed that sensaas provides accuracy perform-
ance equivalent to that of the reference methods shaep and
shafts, but also that it generates more accurate alignments
in the first precision interval (RMSD�0.5 Å).

The stochastic nature of point set registration is known.
In some usage cases, we would prefer a deterministic
approach to always produce the same result, but, we can
also take advantage of this stochastic property to suggest
several realistic solutions when searching for bioisosteres or
scaffold-hopping, for instance. The example of the align-
ment of the tetrazole fragment on the drug Valsartan shows
that the fragment can match itself but also the carboxylate
function as a bioisostere, which was intended.

As a result of this study, the applicability of sensaas is
in the field of lead optimization where scaffold hopping
and bioisosteric replacement properties of a method are
out of importance to identify promising compounds. In-
deed, the execution speed of sensaas in its current
implementation is prohibitive for virtual screening of large
chemical databases. However, even if sensaas is not yet
completely optimized and is not fully competitive with
established Gaussian-shape methods in speed, we think
that this approach provides a relevant contribution to
shape-based alignment methods.

4 Conclusions

Molecular similarity is a central concept in drug discovery. A
wide range of methods have been developed to describe
molecules and to assess similarity by using representations
such as the chemical graph in 2D or 3D, or the molecular
shape. In this study, we investigated the use of 3D point set
registration methods to identify similarities between col-
ored point-based molecular surfaces. The resulting work-
flow, sensaas, was evaluated and validated against several
examples, including the benchmarking AZ data set. It shows
potential for molecular similarity evaluation, scaffold hop-
ping and bioisosteric replacement. In particular, as it uses
open-source libraries and programs, it can be easily
deployed for other pairwise comparison of shapes such as
peptides, proteins, cavities (the negative image of the
protein surface), or to search for shape complementarity.

Supplementary Materials

Structure of tested molecules, alignment results of the drug
Imatinib with conformers of the substructure Imatinib-
part3, results of the benchmarking AZ data set and results
of fragment matching tests.

Abbreviations

sensaas sensitive Surface As A Shape
global Global registration
color Colored point cloud registration
VS voxel size
gfit geometric fitness
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