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ABSTRACT
Keyphrase extraction models are usually evaluated under differ-
ent, not directly comparable, experimental setups. As a result, it
remains unclear how well proposed models actually perform, and
how they compare to each other. In this work, we address this
issue by presenting a systematic large-scale analysis of state-of-
the-art keyphrase extraction models involving multiple benchmark
datasets from various sources and domains. Our main results reveal
that state-of-the-art models are in fact still challenged by simple
baselines on some datasets. We also present new insights about the
impact of using author- or reader-assigned keyphrases as a proxy
for gold standard, and give recommendations for strong baselines
and reliable benchmark datasets.

CCS CONCEPTS
• Information systems → Digital libraries and archives; In-
formation retrieval; • Computing methodologies → Infor-
mation extraction.
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1 INTRODUCTION
Keyphrases are single or multi-word lexical units that represent the
main concepts in a document [13]. They are particularly useful for
indexing, searching and browsing digital libraries [3, 20, 46, 50], and
have proven themselves as effective features in many downstream
natural language processing tasks [5, 23, 28]. Still, most documents
do not have assigned keyphrases, and manual annotation is sim-
ply not a feasible option [31]. There is therefore a great need for
automated methods to assign relevant keyphrases to documents.
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Automatic keyphrase extraction1 – that is, the task of extracting
keyphrases either from the content of the document or from a con-
trolled vocabulary – has received much attention from the research
community [1, 18, 26]. Thus, many keyphrase extraction models
were proposed over the last years, ranging from early statistics-
based models [47], to popular graph-based ranking models [35],
and recent neural models [34]. However, because of the great dis-
crepancies in experimental setups among past studies, it is very
difficult to compare and contrast the effectiveness of these models,
and even more so to assess the progress of the field as a whole.

More specifically, we observe striking differences in how models
are parameterized, evaluated and compared in previous work. To
name just a few examples, experiments are most often conducted
on different benchmark datasets, all of which differ in domain,
size, language or quality of the gold standard (that is, reference
keyphrases supplied by authors, readers or professional indexers).
This not only makes the reported results hard to contrast, but
also has a profound impact on trained model performance [15]. In
addition, and since there is no consensus as to which evaluation
metric is most reliable for keyphrase extraction [21, 24, 49], diverse
measures are commonly seen in the literature, thus preventing any
further direct comparisons. Moreover, the evaluation of missing
keyphrases – that is, gold keyphrases that do not occur in the
content of the document – is still an open question and there is
little agreement on whether they should be included or not [26].

We strongly believe that this lack of empirical rigor is a real
hindrance to progress on keyphrase extraction, and that a system-
atic comparison of existing models under the same conditions is
needed to fully understand how they actually perform. In this work,
we resolve this issue by conducting the first large-scale study on
automatic keyphrase extraction. More precisely, we present an
extensive comparative analysis of state-of-the-art keyphrase extrac-
tion models involving 9 benchmark datasets from various domains.
To ensure controlled, fair and reliable experiments, we embarked
upon the difficult process of re-implementing all of the models pre-
sented in this paper2 and pre-processing the datasets in a unified
and systematic way3.

Using these new large-scale experimental results, we seek to
better understand how well state-of-the-art models perform across
sources, domains and languages. We also go further than prior work
and investigate the following research questions:

(1) How much progress have we made on keyphrase extraction
since early models?

(2) What is the impact of using non-expert gold standards, that
is, author- or reader-assigned keyphrases, when training and
evaluating keyphrase extraction models?

1Also referred to as keyphrase generation or keyphrase annotation.
2https://github.com/boudinfl/pke
3https://github.com/boudinfl/ake-datasets
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(3) Which baselines and benchmark datasets should be included
in future work for a better understanding of the pros and
cons of a newly proposed model?

2 BENCHMARK DATASETS
Benchmark datasets for evaluating automatic keyphrase extraction
cover a wide range of sources ranging from scientific articles and
web pages to twitter and email messages. We collected 9 of the
most widely used datasets which we believe are representative of
the different sources and domains found in previous work. Detailed
statistics for each selected dataset are shown in Table 1. They are
grouped into three categories that are outlined below:

Scientific articles Among the selected datasets, three are com-
posed of full-text scientific publications: ACM [27] and Se-
mEval [26] about computer science, and PubMed [38] from
the medical domain. Not surprisingly, they contain only a
small number of documents due to copyright reasons. These
datasets provide author-assigned keyphrases which serve as
a reasonable, but far from perfect, proxy for expert annota-
tions. In the case of SemEval, student annotators were hired
to extend gold annotation labels.

Paper abstracts Scientific abstracts, often referred to as biblio-
graphic records, are arguably the most prevalent documents
for benchmarking keyphrase extraction. They are readily
available in great quantities and come with author-assigned
keyphrases that can be used as gold standard. We gathered
three datasets, all dealing with the computer science domain:
Inspec [22], WWW [9] and KP20k [34]. It is worth noting
that with more than half a million documents, KP20k is the
largest dataset to date and one of the few that is large enough
to train neural models.

News articles News texts are the last source of documents
present among the collected datasets. Similar to paper ab-
stracts, online news are available in large quantities and can
be easily mined from the internet. We selected the following
three datasets: DUC-2001 [43], 500N-KPCrowd [33] and KP-
Times [15]. The first two datasets provide reader-assigned
keyphrases, while KPTimes supplies indexer-assigned key-
phrases extracted from metadata and initially intended for
search engines. It is interesting to observe that only two
datasets in our study, namely Inspec and KPTimes, provide
gold keyphrases annotated by professional indexers.

Datasets containing scientific articles or abstracts rely primarily
on author-assigned keyphrases as gold standard. They therefore
exhibit similar properties for the average number of ground truth
keyphrases per document (≈ 5). On the other hand, articles are
on average significantly longer than abstracts (≈ 7500 words vs.
≈ 160 words respectively) and consequently reveal a much smaller
fraction of missing keyphrases (≈ 18% vs. ≈ 39% respectively).
Datasets with reader-assigned keyphrases exhibit the lowest num-
bers of missing keyphrases, which can be explained by the fact that
readers appear to produce gold-standard annotations in an extrac-
tive fashion [45]. We also confirmed this empirically by computing
the ratio of missing keyphrases in the author-assigned (24%) and
reader-assigned (17.5%) gold annotations of the SemEval dataset.

Dataset Ann. Train Test #words #kp %abs

PubMed [38] A - 1 320 5 323 5.4 16.9
ACM [27] A - 2 304 9 198 5.3 16.3

SemEval [26] A ∪ R 144 100 7 961 14.7 19.7

Scientific articles (avg.) 7 494 8.5 17.6

Inspec [22] I 1 000 500 135 9.8 22.4
WWW [9] A - 1 330 164 4.8 52.0
KP20k [34] A 530K 20K 176 5.3 42.6

Paper abstracts (avg.) 158 6.6 39.0

DUC-2001 [43] R - 308 847 8.1 3.7
KPCrowd [33] R 450 50 465 46.2 11.2
KPTimes [15] I 260K 10K 921 5.0 54.7

News articles (avg.) 744 19.8 23.2

Table 1: Statistics of the datasets. Gold annotation is sup-
plied by authors (A), readers (R) or professional indexers
(I ). The number of documents in the training and testing
splits are shown. The average number of keyphrases (#kp)
and words (#words) per document, and the ratio of missing
keyphrases (%abs) are computed on the test set.

In contrast, the opposite trend is observed for KPTimes that
comes with gold standards annotated by professional indexers and
that shows the highest percentage of missing keyphrases (54.7%).
This indicates the more abstractive nature of indexer-assigned
keyphrases. Put differently, it is known that non-expert annota-
tions are less constrained and may include seldom-used variants or
misspellings [39], whereas indexers strive to rely on a consistent
terminology and assign the same keyphrase to all documents for a
given topic, even when it does not occur in these documents.

To investigate this further, we looked at how many variants
of an index term, in this case “artificial neural network”, could be
found in the author-assigned keyphrases of KP20k. All in all, we
found dozens of variants for this term, including “neural network”,
“neural network (nns)”, “neural net”, “artificial neural net” or “nn”.
This apparent lack of annotation consistency intuitively has two
consequences: 1) it makes it harder for supervised approaches to
learn a good model, 2) it makes automatic evaluation much less
reliable as it is based on exact string matching.

It is important to stress that datasets containing scientific articles
may contain noisy texts. Indeed, most articles were automatically
converted from PDF format to plain text and thus are likely to con-
tain irrelevant pieces of text (e.g. muddled sentences, equations).
Previous work show that noisy inputs undermine the overall per-
formance of keyphrase extraction models [8]. In this study, we do
not insist on a perfect input and we are aware that reported results
may be improved with an increase in pre-processing effort.

3 MODELS
Roughly speaking, previous works on keyphrase extraction can be
divided into two groups depending on whether they adopt a super-
vised learning procedure or not. This section starts by introducing



the baselines we will use in our experiments, and then proceeds
to describe the state-of-the-art keyphrase extraction models we
re-implemented sorted into the aforementioned two groups.

3.1 Baselines
Having strong baselines to compare with is a prerequisite for con-
trasting the results of proposed models. In previous studies, various
baselines were considered, complicating the analysis and interpre-
tation of the reported results. Our stance here is to establish three
baselines, each associated with a particular feature that is com-
monly used in keyphrase extraction models. All baselines are also
unsupervised, allowing their use and performance analysis on any
of the benchmark datasets

Keyphrase position is a strong signal for both unsupervised and
supervised models, simply because texts are usually written so that
the most important ideas go first [32]. In single document summa-
rization for example, the lead baseline –that is, the first sentences
from the document–, while incredibly simple, is still a competitive
baseline [25]. Similar to the lead baseline, we propose the First-
Phrases baseline that extracts the first N keyphrase candidates
from a document. We are not aware of any previous work reporting
that baseline, yet, as we will see in §5, it achieves remarkably good
results.

Graph-based ranking models for keyphrase extraction are, per-
haps, the most popular models in the literature. Therefore, as a
second baseline, we use TextRank [35], which weights keyphrase
candidates using a random walk over a word-graph representation
of the document. In a nutshell, TextRank defines the importance of
a word in terms of how it relates to other words in the document,
and ranks candidates according to the words they contain.

The third baseline, TF×IDF [37], have been repeatedly used in
previous comparative studies [26, 34, inter alia]. In contrast with the
other two baselines that do no require any resources whatsoever
(beyond the document itself), TF×IDF makes use of the statistics
collected from unlabelled data to weight keyphrase candidates. As
such, it often gives better results, in some cases even on par with
state-of-the-art models [48].

3.2 Unsupervised models
Annotated data are not always available or easy to obtain, which
motivates the further development of unsupervised models for
keyphrase extraction. Besides, looking back at previous work, most
attempts to address this problem employ unsupervised approaches.
In this study, we selected three recent state-of-the-art models based
on their reported performance.

The first model we investigate is PositionRank [14], a graph-
basedmodel that incorporates two features (position and frequency)
into a biased PageRank algorithm. This model operates at the word
level, and assigns a score to each candidate using the sum of its
individual word scores. As such, it suffers from over-generation
errors4 [21], but still achieves good performance on short texts.

The second model we consider, MPRank [7], relies on a mul-
tipartite graph representation to enforce topical diversity while

4These errors occur when a model correctly outputs a keyphrase because it contains an
important word, but at the same time erroneously predicts other keyphrases because
they contain the same word.

ranking keyphrase candidates. It includes a mechanism to incorpo-
rate keyphrase selection preferences in order to introduce a bias
towards candidates occurring first in the document. Multipartit-
eRank was shown to consistently outperform other unsupervised
graph-based ranking models.

Both aforementioned models only exploit the document itself to
extract keyphrases. The third model we include, EmbedRank [4],
leverages sentence embeddings for ranking keyphrase candidates.
Candidates are weighted according to their cosine distance to the
document embedding, while diversity in the selected keyphrases is
promoted using Maximal Marginal Relevance (MMR) [17]. Despite
its simplicity, this model was shown to outperform other unsuper-
vised models on short texts (abstracts and news).

3.3 Supervised models
Supervised models can be further divided into two categories, de-
pending on whether they rely on a neural network or not.

Traditional supervised models treat the keyphrase extraction
problem as a binary classification task. Here, we include such a
model, namely Kea [47], in order to precisely quantify the per-
formance gap with recent neural-based models. KEA uses a Naive
Bayes classifier trained on a set of only two handcrafted features we
have elected as baseline features: the TF×IDF score of the candidate
and the normalized position of its first occurrence in the document.
Previous work has reported confusing and conflicting results5 for
Kea, raising questions about how it actually performs.

Neural models for keyphrase extraction rely on an encoder-
decoder architecture [11, 40] with an attention mechanism [2, 29].
Training these models require large amounts of annotated training
data, and is therefore only possible on the KP20k and KPTimes
datasets. The second supervised model we include in this study
is CopyRNN [34], an encoder-decoder model that incorporates a
copying mechanism [19] in order to be able to predict phrases that
rarely occur. When properly trained, this model was shown to be
very effective in extracting keyphrases from scientific abstracts.

The third supervised model we use, CorrRNN [10], extends
the aforementioned model by introducing correlation constraints.
It employs a coverage mechanism [42] that diversifies attention
distributions to increase topic coverage, and a review mechanism
to avoid generating duplicates. As such, it produces more diverse
and less redundant keyphrases.

Note that only neural models have the ability to generate missing
keyphrases, which in theory gives them a clear advantage over the
other models.

4 EXPERIMENTAL SETTINGS
In addition to the variation in the choice of benchmark datasets and
baselines, there are also major discrepancies in parameter settings
and evaluationmetrics between previous studies. For example, there
is no point in contrasting the results in [34], [14] and [41], three
papers about keyphrase extraction published in the same year at
ACL, since neither benchmark datasets, parameter settings nor
evaluation metrics are comparable. To address this problem, we use
the same pre-processing tools, parameter settings and evaluation
procedure across all our experiments.
5On SemEval, [34] report an F@10 score of 2.6 while [6] report a score of 19.3.



Scientific articles Paper abstracts News articles

PubMed ACM SemEval Inspec WWW KP20k DUC-2001 KPCrowd KPTimes
Model F@10 MAP F@10 MAP F@10 MAP F@10 MAP F@10 MAP F@10 MAP F@10 MAP F@10 MAP F@10 MAP

FirstPhrases 15.4 14.7 13.6 13.5 13.8 10.5 29.3 27.9 10.2 9.8 13.5 12.6 24.6 22.3 17.1 16.5 9.2 8.4
TextRank 1.8 1.8 2.5 2.4 3.5 2.3 35.8 31.4 8.4 5.6 10.2 7.4 21.5 19.4 7.1 9.5 2.7 2.5
TF×IDF 16.7 16.9 12.1 11.4 17.7 12.7 36.5 34.4 9.3 10.1 11.6 12.3 23.3 21.6 16.9 15.8 9.6 9.4

PositionRank 4.9 4.6 5.7 4.9 6.8 4.1 34.2 32.2 11.6† 8.4 14.1† 11.2 28.6† 28.0† 13.4 12.7 8.5 6.6
MPRank 15.8 15.0 11.6 11.0 14.3 10.6 30.5 29.0 10.8† 10.4 13.6† 13.3† 25.6 24.9† 18.2 17.0 11.2† 10.1†

EmbedRank 3.7 3.2 2.1 2.1 2.5 2.0 35.6 32.5 10.7† 7.7 12.4 10.0 29.5† 27.5† 12.4 12.4 4.0 3.3

Kea 18.6† 18.6† 14.2† 13.3 19.5† 14.7† 34.5 33.2 11.0† 10.9† 14.0† 13.8† 26.5† 24.5† 17.3 16.7 11.0† 10.8†

CopyRNN 24.2† 25.4† 24.4† 26.3† 20.3† 13.8 28.2 26.4 22.2† 24.9† 25.4† 28.7† 10.5 7.2 8.4 4.2 39.3† 50.9†

CorrRNN 20.8† 19.4† 21.1† 20.5† 19.4 10.9 27.9 23.6 19.9† 20.3† 21.8† 22.7 10.5 6.5 7.8 3.2 20.5† 20.3†

Table 2: Performance of keyphrase extraction models. † indicates significance over the baselines.

4.1 Parameter settings
We pre-process all the texts using the Stanford CoreNLP suite [30]
for tokenization, sentence splitting and part-of-speech (POS) tag-
ging. All non-neural models operate on a set of keyphrase candi-
dates, extracted from the input document. Selecting appropriate
candidates is particularly important since it determines the upper
bound on recall, and the amount of irrelevant candidates that mod-
els will have to deal with. For a fair and meaningful comparison, we
use the same candidate selection heuristic across models. We follow
the recommendation by Wang et al. [44] and select the sequences
of adjacent nouns with one or more preceding adjectives of length
up to five words. Candidates are further filtered by removing those
shorter than 3 characters or containing non-alphanumeric symbols.

We implemented the neural models in PyTorch [36] using Al-
lenNLP [16], and the non-neural models using the pke toolkit [6].
As neural models require large amounts of annotated data to be
trained, we trained our models on the KP20k dataset for both sci-
entific papers and abstracts, and on KPTimes for news texts. We
compute Document Frequency (DF) counts and learn Kea models on
training sets. For datasets without training splits, we apply a leave-
one-out cross-validation procedure on the test sets for calculating
DF counts and training models. We use the optimal parameters
suggested by the authors for each model, and leverage pre-trained
sentence embeddings6 for EmbedRank. We also found out that the
training set of KP20k contains a non-negligible number of doc-
uments from the test sets of other datasets. We removed those
documents prior to training.

4.2 Evaluation metrics
Although there is no consensus as to which metric is the most
reliable for keyphrase extraction, a popular evaluation strategy is
to compare the top k extracted keyphrases against the gold stan-
dard. We adopt this strategy and report the f-measure at the top
10 extracted keyphrases. In previous work, we often see differ-
ences in how gold standards are handled during evaluation. For
example, some studies evaluate their models on the present and
missing portions of the gold standard separately [10, 34, 48, inter
alia], whereas other work use the entire gold standard [7, 14, inter

6https://github.com/epfml/sent2vec

alia]. We chose the latter because recent models, in addition to
extracting keyphrases from the content of the document, are able
to generate missing keyphrases. Following common practice, gold
standard and output keyphrases are stemmed to reduce the number
of mismatches. One issue with the f-measure is that the ranks of
the correct keyphrases are not taken into account. To evaluate the
overall ranking performance of the models, we also report the Mean
Average Precision (MAP) scores of the ranked lists of keyphrases.
We use the Student’s paired t-test to assess statistical significance
at the 0.05 level.

4.3 Replicability of results
In Table 3, we compare the results of our re-implementations against
those reported in the original papers. We note that all models show
comparable results. We observe the largest differences with original
scores for CopyRNN (+2) and CorrRNN (−4.3) that can be easily
explained by minor differences in training parameters.

Model Dataset (metric) Orig. Ours

PositionRank WWW (F@8) 12.3 11.7
MPRank SemEval-2010 (F@10) 14.5 14.3
EmbedRank Inspec (F@10) 37.1 35.6
CopyRNN KP20k (F@10 on present) 26.2 28.2
CorrRNN ACM (F@10 on present) 27.8 23.5
Table 3: Original vs. re-implementation scores.

4.4 Learning curves
The performance of neural keyphrase extraction models relies heav-
ily on the availability of large amounts of labeled data. Yet, it is still
unclear how much data is needed to achieve optimal performance.
To provide insight into that question and investigate whether neural
models would benefit from more training data, we trained Copy-
RNN using growing amounts (33%, 66% and 100%)7 of training data
and show the corresponding learning curves in Figure 1. We see

7Respectively the first 175 696; 351 393 and 527 090 samples for KP20k and the first
86 641; 173 282 and 259 923 samples for KPTimes.
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that the model’s performance steadily improves as more training
data is added, suggesting that available datasets may not be large
enough. This is also suggested by recent work [48] where self-
training (combining synthetic and gold samples for training) was
shown to further improve performance. Moreover, adding more
training data leads to larger gains on KPTimes, whereas the perfor-
mance of CopyRNN rapidly reaches a plateau on KP20K. The lack
of annotation consistency in KP20k, that we highlighted in §2, may
be the reason for this finding as learning a good model would be
intuitively harder with non-uniformly labeled samples.
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Figure 1: Performance of CopyRNN with different sizes of
training data.

5 RESULTS
Results are presented in Table 2. First of all, we notice that no
model significantly outperforms the baselines on all datasets. This
is rather surprising, as one would expect that neural models would
be consistently better than a simple TF×IDF model for example.
Rather, we see that the TF×IDF baseline is very competitive on long
documents, while the FirstPhrases baseline performs remarkably
well, especially on news texts. Still, overall, CopyRNN achieves the
best performance with, in the case of KPTimes, MAP scores ex-
ceeding 50%. When we look at only unsupervised models, MPRank
achieves the best results across datasets. Also, it comes as no sur-
prise that Kea exhibits strong performance across datasets because
it combines two effective features, as demonstrated by the results
of the TF×IDF and FirstPhrases baselines. Conversely, despite the
addition of mechanisms for promoting diversity in the output, Cor-
rRNN is almost always outperformed by CopyRNN, suggesting that
the added correlation constraints are not effective at filtering out
spurious keyphrases.

In light of the above, we can now answer the following question:
“How much progress have we made since early models?”. It is clear
that neural-based models are the new state-of-the-art for keyphrase
extraction, achieving F@10 scores up to three times that of previous
models. That being said, CopyRNN, which is the best overall model,
fails to consistently outperform the baselines on all datasets. One
reason for that is the limited generalization ability of neural-based
models [10, 15, 34], which means that their performance degrades
on documents that differ from the ones encountered during training.
This is besides confirmed by the extremely low performance of these
models on DUC-2001 and KPCrowd. Much more work needs to be
done in tackling this issue if neural models are to substitute for

older supervised models. Perhaps most disappointing is the fact
that state-of-the-art unsupervised models are still challenged by
the TF×IDF baseline. Here, we suspect the reasons are twofold.
First, the models we have investigated do not use in-domain data
which may not only limit their performance, but also, as in the
case of EmbedRank that uses out-of-domain (Wikipedia) data, be
detrimental to their performance. Second, unlike neural generative
models, they are not able to produce keyphrases that do not occur in
the source document, further limiting their potential effectiveness.

As outlined in §2, gold standards provided by lay annotators,
such as authors and readers, exhibit strong inconsistency issues.
One might therefore wonder “What is the impact of non-expert an-
notations on training and evaluating keyphrase extraction models?”.
Intuitively, models evaluated against these annotations are likely to
receive lower scores because they make training more difficult (that
is, assigning different keyphrases to documents about the same
topic may confuse the model) while increasing the number of false
negatives during evaluation. This is exactly what we observe in
Table 2 where the best scores for Inspec and KPTimes, whose gold
standards are provided by professional indexers, are higher in mag-
nitude than those of the other datasets. Precisely quantifying how
much impact lay annotations have on performance is no easy task
as it implies a double-annotation process by both expert and non-
expert annotators. Luckily enough, a small sample of documents
from Inspec are also found in KP20k, allowing us to compare the
performance of keyphrases models between both annotation types.
Results are shown in Table 4. First, we see that overall performance
is nearly cut in half when evaluating against author-provided gold
standard, suggesting that reported scores in previous studies are
arguably underestimated. Second, neural models again do not show
their superiority against indexer-assigned keyphrases, which advo-
cates the need for more experiments on datasets that include expert
annotations.

F@10 MAP
Model I A I A

FirstPhrases 25.8 13.7 26.1 13.2
TextRank 33.4 12.2 29.6 9.3
TF×IDF 34.6 14.2 33.3 16.1

PositionRank 32.9 15.9 31.0 13.0
MPRank 26.4 13.8 27.6 13.6

EmbedRank 34.3 15.3 31.3 11.5

Kea 32.5 15.2 31.9 15.9
CopyRNN 33.7 28.9‡ 29.8 33.8‡

CorrRNN 28.6 25.3 24.2 28.2

Avg. 31.3 17.2 29.4 17.2
Table 4: Results on a subset of 55 documents from Inspec
for indexer (I ) and author (A) gold annotations. ‡ indicates
significance over every other model.

The third question we want to address in this study is “Which
baselines and benchmark datasets should be included in future work
for a better understanding of the pros and cons of a newly proposed
model?”. Having strong baselines to compare with is of utmost



Figure 2: Average number of keyphrases in common between model outputs.

importance, and our results give an indication of which model is
relevant. When properly trained, neural models drastically out-
perform all other models and represent the state-of-the-art. Since
CopyRNN achieve the best results, it should be included in future
work for comparison. In an unsupervised setting, or in a data-sparse
scenario where neural models can not be applied, the picture is less
clear. To help us understand which model is worth investigating,
we conducted an additional set of experiments aimed at comparing
the outputs from all models in a pairwise manner. The motivation
behind these experiments is that including multiple models that
behave similarly is of limited interest. Similarities between model
outputs, viewed in terms of the number of keyphrases in common,
are graphed as a heatmap in Figure 2. Overall, we observe different
patterns for each source of documents. The shorter the document
is, the more similar outputs are, which is mostly due to a smaller
search space (that is, a smaller number of keyphrase candidates). We
note that the three best unsupervised models, namely FirstPhrases,
MPRank and TF×IDF, generate very similar keyphrases (up to 42%
identical). Considering this, and given their reported performances
(Table 2), we argue that TF×IDF (or KEA if seed training data is
available) should be considered as strong unsupervised baseline in
subsequent work.

These recommendations of baselines also affect the choice of
which benchmark datasets one has to use. As neural models are
data-hungry, KP20k and KPTimes are the default options for paper
abstracts and news articles. For scientific articles, we recommend
using SemEval for two reasons: 1) it is widely used by existing stud-
ies; and 2) it provides a double-annotated gold standard (author-
and reader-assigned keyphrases) that alleviates annotation incon-
sistencies to some extent.

Our experiments highlight several issues in evaluating keyphrase
extraction models with existing benchmark datasets. Another way
of assessing the effectiveness of these models would be to explore
their impact on other tasks as an extrinsic evaluation. To the best
of our knowledge, there is no previously published research on
that matter despite many downstream tasks that already benefit
from keyphrase information such as article recommendation [12]
or browsing interfaces [20] in digital libraries. This points to an

interesting future direction that allows for a deeper understanding
of the limitations of current models.

6 CONCLUSION
This paper presents a large scale evaluation of keyphrase extraction
models conducted on multiple benchmark datasets from different
sources and domains. Results indicate that keyphrase extraction is
still an open research question, with state-of-the-art neural-based
models still challenged by simple baselines on some datasets. We
hope that this work will serve as a point of departure for more
rigorous analysis and evaluation of proposed keyphrase extraction
models. We provide all the code and data on a public repository8,
as well as a public leaderboard to facilitate the comparison between
models.
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