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The considerable effort of writing requirements is only worthwhile if the result meets two conclitions: the re

quirements reflect stakebolders' needs, and the implementation satisfies them. In usual approacbes, the use of 
clifferent notations for requirements (often natural Janguage) and implementations (a programming Janguage) 

makes both condjtions elusive. AutoReq, presented in this article, takes a different approacb to both the wTiting 
of requirements and their verification. App!ying the approach to a well-documented example, a Jancling gear 
system, al!owed for a mechanical proof of consistency and uncovered an error in a published discussion of the 

problem. 

1. Overview and main results

A key determinant of software quality is the quality of requirements. 

Inconsistent or incomplete understanding of the requirements can lead 

to catastrophic results. This article presents a tool-supported method, 
AutoReq, for producing verified requirements, with applications to 

control systems. It illustrates it on a standard case study, an airplane 

Landing Gear System (LGS). The goal is to obtain requirements of high 

quality: 

• Easy to write.

• Clear and explainable to domain experts.

• Amenable to change.

• Supporting traceability through close connections to later develop

ment steps, particularly implementation.

• Amenable to mechanical verification and validation.

As the last point indicates, AutoReq includes techniques for not only 

expressing requirements but also verifying their consistency. The LGS 

case study illustrated the effectiveness of such verification by un

covering a significant error in a previous description of this often-stu

died example (Section 6.5). 

AutoReq takes natural language requirements and environrnent as

sumptions as an input and converts them into a format having the above 

properties. The new format relies on a programrning language with 

contracts. This 'l'iewpoint brings one of the biggest advantages of 

AutoReq - it makes the requirements verifiable both against the under
lying assumptions and future candidate implementations, white main

taining their readability through natural language comments on the 

code. The present work takes the natural language statements from the 

LGS case study and translates them to seamless statements, readable and 

verifiable. The ASM treatrnent of the case study [6] provides the candi

date irnplementation - an executable ASM specification [21] of the 

system. This by no means irnplies applicability of AutoReq to ASMs only. 

The approach applies to any candidate irnplementation that follows the 
small step semantics of ASMs. More precisely, the implementation should 

run in an infini te loop polling the system environment's state and sending 

appropriate control signais. To the best of our knowledge, most control 

systems' irnplementations follow this approach. 
The method of expressing requirements does not introduce any new 

formalism but instead relies on a standard programming language, 

Eiffel, using mechanisms of Design by Contract (DbC) [ 40] to state 

semantic constraints. While DbC relies on Hoare logic [22], which at 

first sight does not cover temporal and timing properties essential to the 
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• Expressiveness: requirements benefit both from the expressive
power of declarative assertions and from that of imperative in-
structions.
• Ease of learning: anyone familiar with programming languages has
nothing new to learn.
• Continuity with the rest of the development cycle: design and im-
plementation may rely on the same formalism, avoiding the im-
pedance mismatches that arise from the use of different formalisms,
and facilitating change.
• Precision: formal specifications (contracts) cover the precise se-
mantics of the system and its environment.
• Existing tools, as available in modern IDEs, that support the re-
quirements process: a compiler for a typed language performs many
checks that are as useful for requirements as for code.

The present work, while not claiming to have fully reached these
ambitious goals, makes the following contributions:

• The outline of a general method for requirements engineering with
application to control systems.
• The use of a programming language as an effective mechanism for
requirements specification.
• A precisely defined concept of verifying requirements for control
systems (complementing the usual concept of verifying programs).
This idea originates from [47].
• A translation scheme from temporal and timing properties to sim-
pler Hoare logic properties (essentially, first-order predicates on
states) as traditionally used in Design by Contract.
• A simple way to combine environment and machine aspects (the two
components of requirements in the well-known Jackson-Zave ap-
proach).
• A direct mapping of these requirements concepts into well-known
verification concepts, assume and assert.
• The demonstration that it is possible to use an existing program
prover to verify requirements.

Section 2 discusses consequences of poor requirements. Section 3
presents LGS. Section 4 describes the methodology: how to specify and
verify requirements. Section 5 shows how to translate common re-
quirements patterns (originally expressed through temporal logic,
timing constraints or Abstract State Machines) into a form suitable for
AutoReq. Section 6 sketches the methods application to the case study,
including an analysis of the uncovered error. Section 7 discusses related
work, and Section 8 discusses limitations and future work.

2. The importance of verifying requirements

Control systems in aerospace, transportation, and other mission-
critical areas raise tough reliability demands. Ensuring reliability begins
with the quality of requirements: the best implementation is useless if
the requirements are inconsistent or do not reflect needs. Requirements
for software deserve as much scrutiny as other artifacts such as code,
designs, and tests.

The literature contains many examples of software disasters arising
from requirements problems of two kinds:

• In the requirements themselves: inconsistencies, incompleteness,
inadequate reflection of stakeholders’ needs.

• In their relationship to other tasks: design, implementation etc. may
wrongly understand, implement or update them.

Examples of the first kind include [32]:

• The year 2000, National Cancer Institute, Panama City: patients
undergoing radiation therapy get wrong doses because of a software
miscalculation.
• In 1996, Ariane 5 maiden flight fails from flight computer’s code
crash, out of an uncaught arithmetic exception, in code that was
reused from Ariane 4 but relied on assumptions that no longer hold
in the new technology.
• In 1990, a bug in software for AT&T’s #4ESS long-distance switches
crashes computers upon receipt of a specific message sent out by
neighbors when recovering from a crash.

Analysis of these examples suggests that the problem lies in part
from the use of different methods and of different notations for re-
quirements and other tasks such as implementation. This observation is
a basis for the seamless approach ([41,42,47,56], following ideas in
[52]), which this article applies by using a single notation throughout.

Examples of the second kind include [33]:

• London underground system: several cases [49] of passenger deaths
from doors opening or closing unexpectedly, without an alarm no-
tification being sent to the train driver.
• An aerospace project [23] where 49% of requirements errors were
due to incorrect facts about the problem world.
• An inadequate assumption about the environment of the flight
guidance system, which may have contributed to the crash of a
Boeing 757 in Cali [43]. Location information for the pilot to extend
the flap arrived late, causing the guidance software to send the plane
into a mountain.

These examples and others in the literature illustrate the importance
of verifying requirements. We will see that it is possible to apply to re-
quirements both the concept of verification, as commonly applied to code,
and modern proof-oriented verification tools devised initially for code.

3. The landing gear system

To illustrate AutoReq, this article will use, rather than examples of
the authors’ own making, the LGS [12], probably the most widely
discussed case study in recent control systems literature, e.g.
[6,7,11,16,31,36,53].

The Landing Gear System physically consists of the landing set, a
gear box that stores the gear in the retracted position, and a door at-
tached to the box (Fig. 1). A digital controller independently actuates
the door and the gear. The controller initiates either gear extension or
gear retraction depending on the current position of a handle in the

Fig. 1. Landing set (from Boniol et al. [12]).

specification of control systems, we show that it is, in fact, possible and
even simple to express such properties in the DbC framework.

The verification part relies on an existing tool, associated with the
programming language: AutoProof [55], a program proving framework,
wh ich can verify th e temporal and timing properties expressed in the 
DbC framework. Applying it to LGS automatically and unexpectedly
uncovered the error. Hoped-for advantages include:



R11bis: When the landing gear handle has been pushed down and
stays down, then eventually the gear will be seen extended and the
doors will be seen closed. We interpret this requirement in LTL as

handle down gear extended door closed( _ ( _ _ )) where □
stands for the always temporal operator, and stands for the even-
tually temporal operator.
R12bis: When the landing gear handle has been pulled up and stays
up, then eventually the gears will be seen retracted and the doors
will be seen closed. We interpret this requirement in LTL as

handle up gear up door closed( _ ( _ _ )).
R21: When the landing gear handle remains in the down position,
then retraction sequence is not observed. We interpret this re-
quirement in LTL as ¬handle down gear retracting( _ _ ) where
stands for the next temporal operator.
R22: When the landing gear handle remains in the up position, then
outgoing sequence is not observed. We interpret this requirement as

¬handle up gear extending( _ _ ).

We will work not directly from the original description of the LGS
but from one of the most interesting treatments of case study [6], which
uses the abstract state machine (ASM) approach and applies a process of
successive refinements:

1. Start with a ground model covering a subset of the requirements.
2. Model-check it.
3. Repeatedly extend (refine) it with more properties of the system,

proving the correctness of each refinement.

The AutoReq specification discussed in the next sections starts from
the ASM ground model. Some of its features are a consequence of this
choice:

• It only accounts for properties specified in the first of the successive
models in [6].
• As already noted, it only covers normal mode.
• Like the ASM model, it assumes that the only environment-controlled
machine-visible phenomenon is the pilot’s handle [27]. In the failure
mode, there might be others.
• It takes over from the ASM model such instructions as
gears ≔ RETRACTED which posit that the control system has a way
to send the gear directly to the retracted position. This assumption is
acceptable at the modeling level but not necessarily true in the ac-
tual LGS system.
• The ASM-to-Eiffel translation scheme (Section 5.4) ensures pre-
servation of the one-step semantics of ASM.

4. Requirements methodology

AutoReq builds on the ideas of seamless development [41,56],
multirequirements [42] and seamless requirements [47]. The new focus
is on requirements verification and reuse of previous requirements
through a routine call mechanism. We examine in turn how to specify
and reuse requirements and environment assumptions (Section 4.1),
and what it means to verify them (Section 4.2).

4.1. Specifying requirements

Specifications in AutoReq, often in practice translated from a
document in structured natural language, take the form of contracted
Eiffel routines with natural-language comments. These routines are
further consumed by:

• The verification tool. Since the routines coming out of the transla-
tion process are equipped with contracts, they may be formally
verified by a Hoare logic based prover.
• Possible implementers of the system. The combination of a pro-
gramming language and natural language helps developers, who
will use the same programming language for implementation, un-
derstand the requirements. The contracts state the semantics.

Previous publications [42,47] explain the reasons for choosing this
mixed notation: unity of software construction and verification, unity of
functional requirements and code, use of complementary notations
geared towards different stakeholders.

Additional properties are specific to control systems:

• Specification of temporal assumptions and requirements.
• Specification of timing assumptions and requirements.
• Reuse of assumptions and requirements in stating new ones.

The basic notation is Eiffel. All the examples have been processed by
the EiffelStudio IDE [1], compiled, and processed by the AutoProof
verification environment. The interest of compilation is not in the
generated code, since at this stage the Eiffel texts represent require-
ments only, but in the many consistency controls, such as type
checking, of a modern compiler.

The requirements can and do take advantage of object-oriented
mechanisms such as classes, inheritance and genericity.

There is sometimes an instinctive resistance to using a programming
language for requirements, out of the fear of losing the fundamental
difference between the goals of the two steps: programming languages
normally serve for implementation, while requirements should be de-
scriptive. The AutoReq approach, however, uses the programming
language not for implementation but for specification, restricting itself
to requirements patterns discussed next. The imperative nature of these
patterns does not detract from this goal; empirical evidence indeed
suggests [17] that operational reasoning works well not just for pro-
grammers but for other requirements stakeholders. An added benefit is
the availability of program verification tools, which the approach of
this article channels towards the goal of verifying requirements.

For this verification goal, there seems to be a mismatch between the
standard properties that program verification tools address and the
needs of control systems. Program verification generally relies on Hoare
logic properties as embodied in Eiffel’s Design by Contract: properties
of the program state (or, for postconditions, two states). The specifi-
cation of control systems generally relies on temporal and timing re-
quirements, involving properties of an arbitrary number of (future)
states of the system. A contribution of this work is to resolve the mis-
match, using the programming language to emulate temporal and
timing properties, through schemes described in Section 5.

4.2. Verifying requirements

Verification of AutoReq requirements relies on AutoProof [55], the
prover of contracted Eiffel programs. AutoProof is a Hoare logic [22]
based verifier that follows semantic collaboration [51] – a specification
and verification methodology adapting Hoare logic to specific needs of
object-oriented programming. The verification unit of AutoProof is
feature with contracts. AutoReq assumptions and requirements take the
form of such features, with natural language comments for better
readability, to enable their direct verification with AutoProof.

Contracts for verification with AutoProof may be modular – visible
to the feature’s callers, and non-modular – visible only in the feature’s
implementation. Modular contracts take the following forms:

• Precondition imposes obligations on the feature’s callers and benefits
the callees’ implementation.
• Postcondition guarantees benefits to the callers and imposes

cockpit. The task is to program the controller so that it sends the correct 
signals to the door’s and the gear’s actuators.

The discussion will restrict itself to the system’s normal mode (there
is also a failure mode). The defining properties are the following:



obligations on the callees’ implementation.

Non-modular contracts take the following forms, going back at least
as far as ESC-Java [15]:

• assume X end allows the verification to take advantage, at the given
program point, of property X, adding X to the set of properties that
the prover may use (assumption).
• assert X end requires the verification to establish X before going
beyond the program point, adding X to the set of properties that the
prover must prove (proof obligation).

Both precondition and assume contracts add information to verifying
the postcondition and assert contracts, but preconditions impose ver-
ification obligations on their own: they have to hold whenever the re-
spective features are called. AutoReq requirements take the form of
features with non-modular contracts because of their fundamental
connection with the core requirements engineering terminology, as
discussed further. From the purely technological perspective, AutoReq
depends on the ability of AutoProof to inline callees’ non-modular
contracts into the callers’ code.

As noted in the introduction, many software errors are requirements
errors. To avoid inconsistencies, AutoReq specifications include formal
properties which can be submitted to proof tools for verification.
Jackson & Zave’s seminal work ([27], also van Lamsweerde [33]), in-
troduced a fundamental division of these properties:

• Environment (or domain) assumptions characterize the context in
which the system must operate. The development team has no in-
fluence on them.
• Machine (or system) properties characterize what the system must
do. It is the job of the development team to work on them.

Although each of these two distinctions is well-known and widely
used in the corresponding sub-community of software engineering, re-
spectively requirements and formal verification, the existing literature
does not, to our knowledge, connect them. The present work, covering
both requirements and verification concepts, unifies them into a single
distinction:

• assume E end specifies an environment assumption E.
• assert E end specifies a machine property E.

Verifying requirements in AutoReq simply means proving that all
assert hold, being permitted to take assume for granted.

Notational convention: the above notations are for presentation.
The actual texts verified through the process reported in the next sec-
tions use the following standard Eiffel equivalents:

• For assert X end, the notation in the actual Eiffel texts is check X end
(check is a standard part of Eiffel’s Design by Contract mechanism).
• For assume X end, the Eiffel notation is check assume: X end. The
assume tag is a standard part of the notation for programs to be
verified by AutoProof. old e, in a routine body, denotes the value of
an expression e on routine entry.

The only difference with verifying programs comes from the ele-
ments that appear between these assertions: in program verification,
they may include any instructions; in requirements verification, we
only permit patterns discussed below Section 5.1. In addition, specifi-
cations include timing properties, using the translation into classic as-
sertions described in Sections 5.2 and 5.3.

Formal methods and notations are essential for one of the goals of
this work (precision/completeness, see Section 1), but non-technical
stakeholders sometimes find them cryptic at first sight, hampering other
goals such as readability and ease of use. The multirequirements

approach [42], which this article extends, addresses the problem by
using complementary views, kept consistent, in various notations:
formal (such as Eiffel or a specification language), graphical (such as
UML) and textual (such as English). In line with this general idea,
AutoReq specifications rely on systematic commenting conventions
(somewhat in the style of Knuth’s literate programming [30]). A typical
example from the specification in the next section is

The second line is formal; the comment in the first line puts it in
context. Such seemingly informal comments follow precise rules. For
non-expert users, and for the present discussion, it is enough to treat
them as natural-language explanations.

5. Structuring a control system specification

The mechanisms of the preceding section enable us to write the
requirements for control systems and verify them. Such specifications
will follow standard patterns:

• Overall structure of programs that model control systems
(Section 5.1).
• Translation rules for temporal properties (Section 5.2).
• Translation rules for timing properties (Section 5.3).
• Translation rules for ASM properties (Section 5.4).

These schemes and translation patterns are fundamental to the
methodology because they govern the use of the programming language.
While the methodology relies on a programming language for expressing
requirements, it does not use its full power, since some of its mechanisms
are only relevant for programs. Programming language texts expressing
requirements stick to the language subset relevant to this goal.

The translation schemes of Sections 5.2–5.4 guarantee that their
output will conform to these patterns. A goal for future work (Section 8)
is to formalize the input languages, timed temporal logic and ASM, and
turn the translation patterns into formal rules and automatic translation
tools.

Pending such formalization, we did not for now address the
soundness of the translation.

5.1. Representing control systems

A control system is typically (unlike most sequential programs) re-
peating and non-terminating. AutoReq correspondingly uses programs
of the form from until False loop main end. The task of the require-
ments is then to specify main.

The translation uses four patterns that look like Eiffel features with
non-modular (assume and assert) contracts. These patterns are not part
of AutoProof, but they serve as blueprints for features that AutoProof
can verify. P1 and P2 (Section 5.2) are time-independent (although
temporal in the sense of temporal logic). P3 and P4 (Section 5.3) take
timing into account. These cases suffice for the examples addressed
with AutoReq so far. Translation schemes are possible for more general
LTL/CTL/TPTL schemes if the need arises in the future.

The patterns use the Jackson-Zave distinction (Section 4.2) between
describing an environment assumption and prescribing an expected
system (machine) property. Specifically: P1 and P3 correspond to en-
vironment assumptions (respectively time-independent and timed); P2
and P4 correspond to system obligations (with the same distinction).
The Eiffel translations accordingly use assume for P1 and P3 and assert
for P2 and P4. When asked to verify an AutoReq requirement, AutoP-
roof tries to infer the assert statements by simulating an execution of the
requirement’s body to a state satisfying the assume statements. Fig. 2
maps the patterns according to the taxonomy of system properties used
in the present article.



5.2. Translating temporal properties

In the control systems world, the starting point for requirements is
often a description expressed in a temporal logic, usually LTL [50], CTL
[9], or a timed variant such as propositional temporal logic (TPTL [4]).
Even if not using a specific formalism, they often state temporal prop-
erties such as all future system states must satisfy a given condition or some
future state must satisfy a given condition. The LGS properties given in
Section 3 are an example.

• P1 (environment assumption)
Consider the system running in mode cs under assumption c. The
LTL formulation is □(c∧cs).
• P2 (system obligation)
The system running in mode cs should immediately meet property p.
The LTL formulation is cs p( ). This property constrains the
system to maintain response p whenever stimulus cs holds.

The translation scheme for P1 is:

where main_under_conditions_cs is of the form P1 or P3. The ru-
n_under_conditions routine should be used instead of the original main in
all requirements that talk about the system operating in mode c. This
pattern may be useful for encoding □c in properties of the form

c d( ).
The translation scheme for P2 is:

where main_under_conditions_cs is of the form P1 or P3.

5.3. Translating timing properties

Although not all approaches to requirements take time into account,
timing requirements, such as the response time must not exceed 1 second,
are essential to the proper specification and implementation of control
systems. AutoReq recognizes the following timing-related patterns:

• P3 (environment assumption)
Assume the system running in mode cs spends t time units to meet
property p. The TPTL formulation is

¬ = +x cs p y p y x t. (( ) . ( )). x. and y. record the current
time of corresponding states [4].
• P4 (system obligation)

The system running in mode cs should spend no more than t time
units to meet property p. In TPTL: +x cs y p y x t. ( . ( )).

The translation scheme for P3 is:

The technique for timing system obligations of the P4 form differs
from the others by using loops as the core mechanism:

where main_under_conditions_cs is of the form P1 or P3. The (duration –
old duration)> t exit timeout condition ensures termination of the loop,
and assertion (duration – old duration) ≤ t checks that the timeout
condition has not been reached.

The technique for handling the timing-related patterns relies on an
integer, non-decreasing auxiliary variable duration. It has the same role as x
and y in the TPTL formulations. The duration variable is part of the
AutoReq approach – not a predefined variable nor part of AutoProof. It
does not play a role in the actual execution of the system but caters to static
reasoning about the system’s timing properties. The from_not_p_to_p routine
updates the value of duration instead of using assume, which would lead to
a contradiction: the prover would detect that the variable was not, in fact,
updated, and would infer False from assuming the opposite.

5.4. Translating ASM properties

Abstract State Machines [13,14,21] are a commonly used specifi-
cation formalism for control systems, and the treatment of the LGS case
study in [6] served as a starting point for this article’s own treatment of
the example. The present work does not formally prove soundness of
the ASM-to-Eiffel translation. The decision to work with the ASM
treatment was motivated by the general ASM specifications’ execut-
ability: fundamentally, they are verifiable abstractions of infinitely
running control software. Such software may be implemented in a
general-purpose programming language, and the present article de-
monstrates that such a language may serve as a verifiable abstraction of
itself, in the presence of a program prover.

Below comes the ASM-to-Eiffel translation scheme. The translation
scheme omits the nondeterministic version of the ASM formalism. The

Fig. 2. The map of AutoReq translation patterns.



=f t t t( , .., ):j1 0 (1)

The semantics is: update the current content of location
= f a a( , ( , .., )),j1 where ai: {1..j} are values referenced by ti: {1..j}, with

the value referenced by t0.
The Eiffel representation for an ASM location is an attribute (field)

of the class; the representation for a location update is an attribute
assignment.

The ASM do-in-parallel operator applies several assignments in one
step. Eiffel offers no native support for do-in-parallel, but it can emulate
one sequentially without changing the behavior. The following example
gives intuition behind the translation idea:

=a b max a b b min a b b, : ( , ), ( , ) (2)

The instruction in Eq. (2), when run infinitely, reaches the fixpoint in
which a contains the greatest common divisor of a and b. The Eiffel
translation of this instruction is:

The generalization should be clear at this point: instead of updating
directly the locations, introduce and update intermediate local vari-
ables, and then assign them to the locations.

The translation of an ASM conditional (if t then R else Q) is an Eiffel
conditional instruction.

The ASM-to-Eiffel translation scheme scales out to the multiple
classes case. The translation overhead in this case consists of im-
plementing assigner procedures for the supplier classes’ attributes. The
assigner procedures will make it possible for the clients to update the
suppliers’ attributes while keeping them consistent. The LGS example is
simple enough to avoid the multiple classes case, which is why the
present work never applies this translation rule.

6. The landing gear system in AutoReq

Equipped with the AutoReq mechanisms as described, we can now
see the core elements of the AutoReq specification of the LGS example.
The entire example is available in a public GitHub repository [45].

6.1. Normal mode of execution

Execution runs in normal mode if all the parameter values are in the
expected ranges and meet the system invariant. Application of the ru-
n_under_condition_c pattern results in the following Eiffel model of
normal mode:

original work [21] presents “Nondeterministic Sequential Algebras” as an 
extension to the basic model. As Section 1 explains, the ASM formalism
serves as an implementation language example in th e present discus-
sion of AutoReq, with no intent of covering every aspect of ASMs.
Nondeterministic updates seem to be inappropriate for implementing
mission- and life-critical systems, such as the LGS, and control systems
in general. Every possible environment’s state sh ould be predictably
handled in such systems. The ASM treatment of the LGS, for example, 
does not use nondeterminism.

A basic ASM specification is a collection of rules taking one of three
forms [20]: assignment, do-in-parallel and conditional. An ASM as-
signment reads:



The first three assume express that attribute values fall into specific 
ranges. The last two express the LGS invariant. Ranges, the invariant 
and the definition of normal mode corne from the original. ru
n_in_normal_mode is a multiple application of  the run_wider_condition_c 

pattern (Section 5.2). It wraps around main to ma.ke additional as
sumptions before calling it. 

6.2. Timing properties 

The ASM treatment of the LGS case study ignores timing properties 
stated in the original description. For a practical system, timing is es
sential; an otherwise impeccable LGS that ta.kes two hours to perform 
extend landing gear would not be attractive. We rely on AutoReq's 
timing mechanisms of the AutoReq methodology (Section 5.3) and the 
from_not_p_to_p pattern (Section 5.3). Timing values, e.g. 8 units for door 
closing, are for illustration only. Each of the translations that follow are 
produced by applying the same pattern, which is why only the first 
translation is accompanied by a detailed explanation. 

• It takes 8 time units for the door to c!ose.Replacing p with door_st.atus 

= closed_position, and t with 8 in thefrom_not_p_to_p pattern yields: 

-- Assume it takes 8 time units to take the door 
from_open_to_closed -- position: 

do 
run_in_normal_mode 
if ( old door _status # closed_posi tion and 

door_status = closed_position) then 
duration := duration + 8 

end 

end 

• lt takes 12 time wtits for the door to open: 

--Assume it takes 12 time units to take the door 
from_closed_to_open -- position: 

do 
from_open_to_closed 
if ( old door _status # open_posi tion and 

door _status = open_posi don) then 
duration := duration + 12 

end 

end 

• lt takes 10 time wtits for the gear to retract:

--Assume it takes 10 time units to take the gear 
from_extended_to_retracted -- position: 

do 
from_closed_to_open 
if ( old gear _status # retracted_posi tion and 

gear _status = retracted_position) then 
duration := duration + 10 

end 
end 

• lt takes 5 time wiits for the gear to extend:

-- Assume it takes 5 time units to take the gear 
from_retracted_to_extended -- position: 

do 
from_extended_to_retracted 
if ( old gear _status f, extended_posi tion and 

gear _status = extended_posi tion) then 
duration := duration + 5

end 
end 

from_retrocted_to_extended will include all the previously stated as

sume instructions together with main. 

6.3. Base/ine requirements 

Section 3 introduced a set of core LGS requirements, Rubis to R22, 
which we now express in AutoReq. Rubis and R21 talle about the system 
running with the handle pushed down. Application of the ru
n_under_condition_c pattern (Section 5.2) with handle_status = down_

position for c results in the following routine to mode! the req uired 
mode of operation: 

-- Assume the system 
run_with_handle_down 

do 
assume handle_status = down_posi tion end 
from_retracted_to_extended 

end 

run_with_handle_down is an application of the run_wider_condition_c 

pattern (Section 5.2). It calls from_retracted_to_extended to include all 
assumptions so far. 

Now that the execution mode with the handle pushed down is for
mally defined, it is possible to express the requirements in terms of it. 
Property R21 requires the controller to prevent retraction immediately 
whenever the handle is pushed down. Application of the im
mediately_meet_property _p pattern (Section 5.2) with gear_status /= re

tracting_state for p yields, for R21 : 

-- Require the system to 
never_retract_with_handle_down 

do 
run_Yith_handle_dovn 
assert gear _status ;! retracting_state end 

-- known as R_{21} 
end 

Rubis requires the system eventually to extend the gear and close 
the door if the handle stays down. The absence of timing ma.kes it 
unsuitable for the specification of control systems: we need to specify 
an upper bound on the time the system may spend on gear extension. 
That bound is the sum of the maximal times for door closing, door 
opening and gear extension. Under earlier assumptions, this value is 25. 
Applying meeting_p_wider_persistent_conditions_cs (Section 6.2) with 
gear_status = extended_position anddoor_st.atus = closed_position for p, 

run_with_handle_down for main_under_conditions_cs and 25 for t turns 
Rubis into: 

Requirements R12bis and R22 talk about the system running with the 
handle pulled up. Application ofrun_wider_condition_c (Section 5.2) with 



-- Require that 
extension_duration 
-- never takes more than 25 time units: 

do 
from 

run_with_handle_down 
until 

(gear _status = extended_posi tion and door _status = closed_posi tion) or 
{duration - old duration) > 25 

loop 
run_with_handle_down 

end 
assert gear _status = extended_posi tion end 
assert door_status =closed_position end 
assert (duration - old duration) S 25 end 

known as R_{ll}bis 

handle_status = up_position for c yields: 
-- Require the system to 
never_extend_with_handle_up 

do -- Assume the system 
run_with_handle_up 

do 
assume 

handle_status = up_position 
end 
from_retracted_to_extended 

end 

The rest of the requirernents can rely on the specification of the 
execution mode with handle up, as we have now obtained. 

R22 requires the system to prevent immediate extension whenever 
the handle is pulled up. Application of immediately_meet_property_p 

(Section 5.2) with gear_status / = extending_state for p yields, for R22: 

-- Require that 
retraction_duration 
-- never takes more than 30 time units: 

do 
fr011 

run_with_handle_up 
until 

run_with_handle_up 
usert 

gear _status f. extending_state 
end 

-- known as R_{22} 
end 

R12bis requires the system eventually to retract the gear and close 
the door if the handle stays up. Like R11bis, it does not include timing. 
The upper bound for R12bis is the sum of the maximal tintes for door 
closing, door opening and gear extension, 30 from earlier assump
tions. Applying meeting_p_under_per.sistent_conditions_cs (Section 6.2) 
with gear_status = retracted_position and door_status = closed_position 

for p, with run_with_handle_up for main_under_conditions_cs and 30 fort 
yields: 

(gear _status = retracted_posi tien and door _status = closed_posi tien) or 
{duration - old duration) > 30 

loop 
run_with_handle_up 

end 
uaert 

gear _status = retracted_posi tion and 
door _status = closed_posi tien and 
(duration - old duration) S 30 

end 
end 

known as R_{12}bis 



6.4. Complementa,y reqUÏTements 

Rubis and R12bis talle about reaching a desired state under some 
conditions, but not about preserving it. For example, even if the gear 
becomes extended and the door closed with the handle down, this si
tuation must not change without the handle pulled up. The following 

application of immediately_meet_property_p (Section 5.2) with gear_status 

= extended_position and door_status = closed_position for p captures this 
property: 

-- Require the system to 

keep_gear_extended_door_closed_with_handle_down 
do 

run_with_handle_down_gear_extended_door_closed 

auert 
gear_status = extended_position and 
door_status = closed_position 

8114 
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under the assumption that the doors are already closed, the gear is 

extended, and the handle is down. Application of run_under_condition_c 

(Section 5.2) with gear_status = extended_position and door_status 

closed_position for c yields, for this assumption: 

-- Assume the system 
run_with_handle_down_gear_extended_door_closed 

do 
usume 

gear _status = extended_posi tion and 
door _status = closed_posi tion 

end 
run_with_handle_down 

end 

The state with the gear retracted, the door closed and the handle 

pulled up shouJd be stable without pushing the handle down. The fol
lowing application of immediately_meet_property_p (Section 5.2) with 
gear_status = retracted_position and door_status = closed_position for p 

yields: 

-- Require the system to 
keep_gear_retracted_door_closed_with_handle_up 

do 
run_with_handle_up_gear_retracted_door_closed 
assert 

gear _status = retracted_posi tion and 
door _status = closed_posi tion 

end 
end 

under the assumption that the doors are already closed, the gear is 

retracted, and the handle is up. Application of run_under_condition_c 

pattern (Section 5.2) with gear_status = retracted_position and door_st,atus 

= closed_position for c yields, for this assumption: 

-- Assume the system 
run_with_handle_up_gear_retracted_door_closed 

do 
usume 

gear _status = retracted_posi tion and 
door _status = closed_posi tion 

end 
run_with_handle_up 

end 

6.5. An error in the ground mode! 

Contracts do not just yield expressive power: they also make 

automatic verification possible in the AutoReq approach thanks to 

AutoProof. One of the principal potential benefits wouJd be to uncover 
errors in the requirements. 

Our work on the LGS example shows that this benefit is not just a 

theoretical possibility. Applying the AutoReq method and tools to the 
published ASM specification of the LGS system [6] uncovered an error. 

The verification process applied the following sequence of steps. 

Start from the ASM specification. The language in which the ASM 

specification is expressed contains syntactic sugar in addition to the 
standard ASM operators. The first step consisted of analyzing these 

additional constructs to understand how they shouJd translate to Eiffel. 

Translate it into Eiffel. This step consisted of manual translation of 
the specification and the requirements to Eiffel. One can find the ori
ginal ASM specification in an online archive [39], inside the Land

ingGearSystemGround.asm file. File ground_modeLe in the GitHub re
pository [ 45] con tains the result of the translation. 

Verify it with AutoProof. Note that AutoProof, by default, per
forms modular contract-based verification. AutoReq specification 

techniques rely on assume and assert rather than traditional contracts. 
These specification techniques require tuning AutoProof command-line 
options. The GitHub repository [ 45] with the Eiffel translation includes 

a readme file that says in detail how to launch AutoProof. 
Identify the error. When AutoProof reports a verification failure, it 

does not point at its root cause. The last step was devoted to identifying 

that cause. 
The error uncovered by this procedure is subtle and revealing: The 

specification does not meet the R1 ibis reqUÏTement, which st,ates that pushing 

the handle down should lead to the gear extended and the door closed. 

Normally, when the crew pushes the LGS handle down, the controller 
shouJd initiate the gear extension process. Regardless of the initial 
system's state, this process should end up correctly - so that in the end 
the gear is extended and the LGS latch is closed. 

There exists, however, a state from which the erroneous ASM spe

cification will not bring the system to the correct configuration. This 
state corresponds to a situation in which the gear has just been re

tracted, the door is closing, and the crew decides to cancel retraction by 

pushing the handle down. A correctly working system would cancel the 
retraction sequence and initiate gear extension. State 15 on Fig. 3 il

lustrates this situation: the start_opening outgoing action cancels the 

door closing process initiated by action start_closing back in state 7. The 
state machine proceeds with the gear extension procedure. The erro

neous ASM specification models a system that waits for the crew to pull 

the handle up again to let the system complete the gear retraction 
process. State 15 on Fig. 4 features only one outgoing transition: pulling 
the handle up again. Instead of canceling the door closing process 
(Fig. 3), the system starts waiting for the crew to pull the handle up. 

Imagine a situation in which the crew tries to retract the gear during 
take-off, and some physical obstacle prevents the latch from closing 
completely. In this case a possible solution might be to extend the gear 

back, and then try to retract it again. A real controller implemented 

around the erroneous specification wouJd make extension with the 
latch partially closed impossible. 

The published Eiffel translation of the specification does not have 

the error. To catch it with the AutoReq method one needs first to in
troduce the error back by commenting out two Unes in the open_door 

routine of the Eiffel translation: 

wben closing_state then 
door_status := opening_state 

and then submit routine extension_duration to the AutoProof tool; the 
verification will fail. The "README" file in the accompanying GitHub 
repository [45] provides detailed instructions on submitting AutoReq 

requirements to AutoProof. Intemally, AutoProof transforms the Eiffel 

routine to Boogie code and submits it to the Boogie executable [8]. The 
Boogie executable converts its input to first-order logic formulae and 



submits them to the Z3 SMT solver [44].
AutoProof detects the error in the following major steps:

Inline the unqualified calls inside of the extension_duration routine
to the level of attribute updates and assume statements.
Unroll the loop inside of extension_duration. How much to unroll is a
configurable setting; the default configuration suffices for the LGS
example.
Check the assert statements based on the outcome from the Inline
step.

The intent of applying AutoReq to this example was not to look for
errors but to try out the approach, illustrate it on a widely used pro-
blem, and compare it with other treatments of that problem. No error
had been reported and we did not expect to find one. To ascertain its
presence, we contacted one of the authors of the original article de-
scribing the ASM implementation. He confirmed the presence of the
error in the paper. (He also noted that the private repository used by his
colleagues and him had a correct specification.)

7. Related work

7.1. Similar studies

The ASM treatment of the LGS example comes from a collection
including other treatments [12], such as Event-B [31,36,53], Fiacre
[11] and Hybrid Event-B [7]. The original collection [12] discusses pros
and cons of these approaches, and the present article does not repeat
that discussion. AutoReq complements these approaches with the fol-
lowing:

• Language reuse: AutoReq captures temporal and timing properties
in a general purpose programming language. This will inevitably
save resources for software teams that want to apply formal
methods.
• Technology reuse: AutoReq relies on AutoProof, a Hoare logic based
program prover. The original use case of AutoProof was specifying
and verifying programs according to the principles of Design by
Contract. With AutoReq, software teams can use the tool throughout

Fig. 3. A correctly working LGS state machine. Pushing the handle down cancels the gear retraction process and initiates gear extension. The bottom-right box
contains the trace leading to state 15.

Fig. 4. The erroneous LGS state machine. Pushing the handle down fails to cancel the gear retraction process. It puts the system to waiting for the crew to pull the
handle up again. The bottom-right box contains the trace leading to state 15.



the whole software lifecycle, starting from the requirements phase.

• Specification reuse: AutoReq makes it possible to avoid copying-

and-pasting already stated assertions through the standard routine

call mechanism, familiar to any post-Assembly programmer.

• Implementation reuse: AutoReq does not require translating pro-

grams to models and back for further formal verification. If a change

in the program breaks an AutoReq requirement, the prover will

immediately notice this.

These advantages need stronger support in the form of successful

industrial applications of AutoReq. Such applications may also uncover

additional problems to solve. The application of AutoReq to the LGS

example discussed in the present article inherits the questionable as-

sumptions (Section 3) from the original work by Arcaini et al. Applying

AutoReq to an example with weaker assumptions would provide more

evidence of its benefits.

The applicability studies will follow the present article that focuses

on illustrating the approach alone. Combining the first description of

AutoReq with its applicability studies would bear the risk of making the

article difficult to read.

7.2. Existing formalisms

Reasoning about programs, imperative and concurrent, has been the

focus of computer science researchers for decades [28], and it traces

back as early as Turing’s work [29]. Different techniques have been

developed over time, and it soon became clear that, while post facto

verification can be successful for small programs, an effective ver-

ification strategy should support and be part of the software develop-

ment itself and be fully embedded in the process.

The AutoReq method follows this idea and relies on DbC verifica-

tion; however, one should understand that DbC is not well suited for

control systems as it is. The possibility of unexpected changes in the

values of environment-controlled variables introduces the gap between

DbC and control systems. Traditional DbC relies on invariant-based

reasoning, on the principle of invariant stability [51]: it should be

impossible for an operation to make an object inconsistent without

modifying the object. This principle does not work with control systems

because of the unpredictable environment-controlled variables. In other

words, any attempt to constrain an environment-controlled variable

through a contract will inevitably lead to the contract’s failure.

Control systems communicate asynchronously with the environment.

This introduces another gap with DbC, which is designed from the be-

ginning to deal with synchronous software. For non-life-critical systems

[27] one may sacrifice the asynchrony under additional assumptions

[48], but the Landing Gear System does not fall into this category.

An interesting technique for including environment properties is the

notion of monitor introduced by Zave [58]. A monitor is an executable

requirement that runs in a dedicated process and observes the system from

outside logging possible anomalies. A monitor continuously polls the state

of nondeterministic variables and checks if the system evolves accord-

ingly. This is, however, a run-time mechanism; in the present work, we

seek requirements techniques that lend themselves to static verification.

The general aspiration towards sound static verification resulted in

numerous modeling approaches that rely on a declarative logic. Alloy

[25] is one of these declarative modeling languages, based on first-

order logic, that are used to express complex behavior of software

systems. Alloy is a successor of Z [2] with its own formal syntax and

semantics, that adds automatic verification and tool support to Z spe-

cifications. A model created in Alloy can indeed be automatically

checked for correctness by using a dedicated tool: the Alloy Analyzer, a

SAT-based constraint solver that provides fully automatic simulation

and checking. Alloy is one of the tools used for requirements verification.

There are several examples of successful applications of the modeling

languages in different fields: from pedagogical to enterprise modeling

to transportation. A list documenting some of these applications can be

found in [26].

The declarative view simplifies static reasoning, but the system will

eventually have to physically operate. C. A. R. Hoare introduced an

imperative logic to statically reason about software way back in 1969.

This invention has been treated as a verification mechanism. We are

interested in requirements specification notations. The recent notion of

seamless requirements [47] proposes a use of generalized Hoare triples

called specification drivers [46] as a requirements notation.

The AutoReq method steps forward by applying the idea of seamless

requirements to the nondeterministic setting. It empowers the opera-

tional view of Pamela Zave on requirements with AutoProof – a Hoare

logic based prover of Eiffel programs with contracts that relies on the

Boogie technology [34]. In AutoReq a requirement is a routine enriched

with assume statements capturing environment assumptions and assert

statements that capture the obligations for AutoProof corresponding to

the assumptions. The resulting method respects environment-controlled

phenomena as monitors do but does not assume the requirements to

physically run. The AutoReq method will benefit the development

process even when there is no static prover like AutoProof: an opera-

tional requirement will become a subject to testing as a parameterized

unit test (PUT) [54]. The testing will consist in this case of running the

requirement in the simulated environment described in its assume

statements.

7.3. Timing properties

Modeling real-time computation and related requirements has been

a well-investigated matter for long [57]. Representation of real-time

requirements, expressed in general or specific form, is a challenging

task that has been attacked through several formalisms both in se-

quential and concurrent settings, and in a broad set of application do-

mains. The difficulty (or impossibility) to fully represent general real-

time requirements other than in natural language or making use of

excessively complicated formalisms (unsuitable for software devel-

opers), has been recognized.

In [38] the domain of real-time reconfiguration of systems is dis-

cussed, emphasizing the necessity of adequate formalisms. The problem

of modeling real time in the context of services orchestration in Busi-

ness Process, and in presence of abnormal behavior has been examined

in [37] and [18] by means, respectively, of process algebra and tem-

poral logic. Modeling protocols also requires real-time aspects to be

represented [10]. Event-B has also been used as a vector for real-time

extension [24] to handle control systems requirements.

In all these studies, the necessity emerged of focusing on specific

typology of requirements using ad-hoc formalisms and techniques and

making use of abstractions. The notion of real-time is often abstracted as

number of steps, a metric commonly used.

The AutoReq method works with the explicit notion of time distance

between events by stating operational assumptions on the environment;

it also supports the abstraction of time as number of steps through finite

loops with integer counters.

8. Conclusions and future work

The approach presented above is a comprehensive method for re-

quirements analysis based on ideas from modern object-oriented soft-

ware engineering and the application of a seamless software process

that relies on the notation of a programming language as a modeling

tool throughout the software process. The work also introduces the

notion of verifying requirements and shows how to use a program

prover to perform the verification. In addition, it connects fundamental

concepts, heretofore considered independent, from two different areas

of research: verification (assume/assert) and requirements (environment/

machine).

The work is subject to the following limitations, also suggesting

areas of improvement:



With these reservations, we believe that the article and the case

study demonstrate the benefits and contributions listed in the in-

troduction and point to a promising approach to producing and ver-

ifying effective requirements for control systems.
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• While the idea of seamless requirements has been widely applied, its
AutoReq development as described here needs more validation on
diverse examples in an industrial setting, with actual stakeholders
involved.

• The patterns given are not necessarily complete; here too experience
with more examples is necessary to determine if there is a need for
other patterns.
• The idea of using a programming language for requirements runs
counter to accepted ideas; while there are strong arguments sup-
porting it, and ample discussions in some of the OO literature, some
people may still hesitate to adopt it.
• More work is required to determine how applicable AutoReq would
be to a software process relying on technologies other than Eiffel and
AutoProof. In line with this goal, we applied AutoReq [19] to the
London Ambulance System case [3,35] and continue working on
other examples.
• As discussed in Section 5, parts of the process may benefit from more
automation. Such further tool support is currently under de-
velopment. 
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