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Based on the Hodgkin-Huxley and Hindmarsh-Rose models, this paper proposes a geometric
phenomenological model of bursting neuron in its simplest form, describing the dynamic motion
on a mug-shaped branched manifold, which is a cylinder tied to a ribbon. Rigorous mathematical
analysis is performed on the nature of the bursting neuron solutions: the number of spikes in a
burst, the periodicity or chaoticity of the bursts, etc. The model is then generalized to obtain
mixing burst of any number of spikes. Finally, an example is presented to verify the theoretical
results.
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1. Introduction
In the human brain, which is believed to be the most complex of all biological systems, there are more
that 100 billion of biological neurons. Each neuron is connected to many others (up to 10,000) via synapses
in intricate patterns [Stiles & Jernigan, 2010]. Neuronal signals consist of short electrical pulses, which
can be observed by placing a fine electrode close to the soma or axon of a neuron. These neurons may
present spiking and bursting activities. Since all spikes of a given neuron look alike, the form of the action
potential does not carry much information. Rather, it is the number and the timing of spikes that matter.
However, because spiking-bursting activities result from higher-dimensional nonlinear dynamics of various
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Figure 1. Solution of the Hindmarsh-Rose equation on the (y, z) plane for a = 1, b = 3, c = −3, d = 5, s = 4, I = 5, x1 = −1.03.
Initial values x0 = 0, y0 = 2.22, z0 = 1 and different values of ε: 1a, ε = 0.0013, 1b, ε = 0.0165, 1c, ε = 0.04, 1d, ε = 0.05.

ionic currents flowing through the membrane channels, it is very difficult to model exactly all the biochemical
reactions that are interacting in a single neuron.

Since the pioneering works of Hodgkin and Huxley [Hodgkin & Huxley, 1952] (the H-H model), which
studied the squid giant axon, several channel-based models composing of several nonlinear equations have
been designed to capture the physiological processes in the membrane (see [Shilnikov & Rulkov, 2003;
Shilnikov & Kolomiets, 2008] for a survey). Contrarily, phenomenological models try only to replicate the
characteristic features of the bursting behavior without direct relating to what happens in the neuron from
a biological perspective. Among them, the most known is the Hindmarsh-Rose model [Corson, 2009] (the
H-R model). In their first paper dated 1982, Hindmarsh and Rose introduced a model of two ordinary
differential equations (ODE), which comes from a modification of the Fitzhugh-Nagumo system derived
from a two-equation reduction of the H-H model of four ODE [Hindmarsh & Rose, 1982]. Two years later
in [Hindmarsh & Rose, 1984], they expanded their simple 2-D into a more sophisticated 3-D model, which
demonstrates almost all types of robust activities in the H-H model: ẋ(t) = y(t)− ax3(t) + bx2(t) + I − z(t),

ẏ(t) = c− dx2(t)− y(t),
ż(t) = ε(s(x(t)− x1)− z(t)).

(1)

In this model, the voltage across the neuron’s membrane is represented by the variable x, meanwhile the
other two variables y and z describe some ionic currents’ kinetics. Because the parameter ε is small, system
(1) is called a slow-fast system. Both H-H and H-R models have been thoroughly and extensively studied
using dynamic systems theory and tools. However, due to the innermost nonlinearities, system (1) is not
easy for strictly mathematical proofs of solution properties. Moreover, small change in one of the seven
parameters, a, b, c, d, I, ε, x1, can lead to very different solutions (see Fig. 1).

Aside from the H-R model, the FitzHugh-Nagumo (FHN) system, modeled by a two-dimensional non-
linear differential equation, when used with fractional derivative (Fractional FitzHugh-Nagumo FFHN),
exhibits Mixed-Mode Oscillations (MMO) similar to the burst of spikes of the H-H model [Abdelouahab et
al., 2019].

In what follows, we introduce a geometric phenomenological model of bursting neuron, which has some
similarities with the H-R model. This model, which defines motion on a mug-shaped branched manifold,
is presented in its simplest form where the branched manifold is simply a cylinder tied to a ribbon. This
model belongs to a family of geometrical models for which the cylinder can be replaced by a cone or
a paraboloid and the single ribbon can be duplicated. This geometrical mug-shaped model allows some
rigorous mathematical analysis on the nature of its solutions: the number of spikes in a burst, the periodicity
or chaoticity of the bursts, etc.

Next, in Sec. 2, the simplest geometric mug-shaped model on a branched manifold is defined. This
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Figure 2. Solution of the Hindmarsh-Rose equation on the (x, z), (y, z), (x, y) planes for a = 1, b = 3, c = −3, d = 5, s = 4, I =
5, x1 = −1.03, ε = 0.002. Initial values x0 = 0, y0 = 2.22, z0 = 1.

Figure 3. Solution of the Hindmarsh-Rose equation on the (x, t), coordinates for a = 1, b = 3, c = −3, d = 5, s = 4, I =
5, x1 = −1.03, ε = 0.002. Initial values x0 = 0, y0 = 2.22, z0 = 1.

simplest model generates only bursting orbits, which mix burst of n and n+ 1 spikes. In Sec. 3, properties
of periodic and quasiperiodic orbits are studied, and rigorous proofs of their existence are given. In Sec. 4,
a more complex case of the model is studied, which generates chaotic bursting orbits with burst of n and
n+1 spikes. In Sec. 5, the model is generalized to obtain mixing burst of any number of spikes. An example
with bursts of 4 to 8 spikes is discussed. Finally, in Sec. 6, a brief conclusion is drawn.

2. Geometrical model of neuron on a mug-shaped branched manifold: simplest
case

In this section, a new model of neuron defined on manifold is introduced, inspired the shape of solutions
of the H-R model. Fig. 2 shows a solution of the Hindmarsh-Rose equation on the (x, z), (y, z), and (x, y)
planes. Figure 3 displays the x signal versus time, highlighting the spiking-bursting phenomenon.

Then, a mug-shaped branched manifold is introduced, consisting of a cylinder of finite length connected
to a ribbon defined using a sheaf of rectangular part on the plane (Fig. 4). The geometrical model is defined
by curves circling upward around this cylinder, and jumping back to its basis through the ribbon, when
they cross a threshold on the upper part of the cylinder (Fig. 5).

Formally, the dynamics on the mug-shaped manifold is composed of two folds: the dynamics on the
cylinder, and the dynamics on the ribbon.
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Figure 4. Ribbon and cylinder view in perspective in coordinate (O, x, y, z) . (a) side view, (b) projection on the plane (x, y),
(c) projection on the plane (y, z), (d) top view

2.1. Dynamics on the cylinder
Let S of R3 be the cylindrical region defined by x2 + y2 = 1 and −s− 1 6 z ≤ s+ 1, where s ∈ R+ is the
half length of the cylinder.

We first define precisely what we call spike, burst and bursting trajectories (or bursting orbit, or bursting
solution) of the geometrical model.

2.1.1. Spike, burst and bursting orbits
As shown in Fig. 3, a spike in the H-R model (1) is the projection of a complete revolution of the sig-
nal around the z axis, on the (x, t) coordinates. In the same manner, a spike in the geometrical model
corresponds to the part of the trajectory turning around the cylinder.

A burst occurs when neuron activity alternates between a quiescent state and repetitive spiking as
shown in Fig. 6 [Izhikevich, 2007]. In the proposed geometrical model, a burst is a piece of the trajectory
starting from the lower part of the cylinder, circling many times around it, leaving the cylinder as soon as
it can escape from it to the top part of the ribbon, and ending at the boundary between the low part of
the ribbon and the cylinder.

A bursting orbit B(z0) is a continuous trajectory encompassing an infinite sequence of bursts B(z0) =
{B0(z0), B1(z0), ..., Bm(z0), ...} defined by its initial point (−1, 0, z0) at the initial time t0, z0 = z(t0).

It can be periodic, pseudo-periodic or chaotic.
Now, assume that for the burst Bm(z0)

, the trajectory starts to turn around the cylinder at the time
τ cm(z0)

and the point (−1, 0, z(τ cm(z0)
)), with −s− 1 ≤ z(τ cm(z0)

) < −s, and leaves the cylinder S at the time
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Figure 5. Geometrical representation of dynamics of a neuron on the cylinder S

Figure 6. Bursting trajectory with three bursts [Izhikevich, 2007].

τ rm(z0)
and the point (1, 0, z(τ rm(z0)

)), with s ≤ z(τ rm(z0)
) < s+ 1, to traverse on the ribbon.

The point (−1, 0, z(τ cm(z0)
)) for m > 1 is defined as the end of the trajectory of Bm−1(z0)

, which in turn
is defined by Bm−2(z0)

and recursively by Bm−3(z0)
, ..., B2(z0)

, B1(z0)
and by τ c0(z0) = t0 for B0(z0)

.
For simplicity, in the case where no ambiguity can occur, denote τ rm(z0)

(resp. τ cm(z0)
) by τ rm, (resp. τ cm ) and

Bm(z0)
by Bm.

The duration of this burst is equal to τ cm+1 − τ cm i.e.

t ∈ TBm = [τ cm, τ
c
m+1[ = TBcylm ∪ TBribm = [τ cm, τ

r
m[ ∪ [τ rm, τ

c
m+1[.
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The number of spikes within a burst is the total number of turns that the bursting orbit did around
the cylinder S.

2.1.2. Intervals of injection and reinjection
Here, consider a trajectory which arrives from the ribbon and begins to turn around the cylinder.

Definition 2.1. Interval of reinjection
Let Ics = [−s− 1,−s[ be an interval of the z-axis, and Īcs = {−1} × {0} × Ics be the interval that contains
all possible initial points of trajectories of the geometrical model, leaving the ribbon to turn around the
cylinder. This interval is called the interval of reinjection.

Definition 2.2. Interval of injection
Let Irs = [s, s+ 1[ be an interval of the z-axis, and Īrs = {−1} × {0} × Irs be the interval that contains all
possible final points of trajectories of the geometrical model, leaving the cylinder to move to the ribbon.
This interval is called the interval of injection.

For simplicity, in the rest of this article, we identify the point (−1, 0, z) ∈ {−1} × {0} × [−s − 1,−s[
as the point z ∈ [−s − 1,−s[ of the z-axis and the point (−1, 0, z) ∈ {−1} × {0} × [s, s + 1[ as the point
z ∈ [s, s+ 1[ of the z-axis, see Fig. 5. Consequently, we identify the interval Īcs (resp. Īrs ) with the interval
Ics (resp. Irs ).

2.1.3. Equation of trajectories on the cylinder
In order to define, in a simplified manner, the equations of the motion belonging to the cylinder, in every
burst Bm, use the local time θ:

∀ t ∈ TBcylm , θ = t− τ cm. (2)

For θ ∈ [0, τ rm − τ cm[, equations of motion are given by the following differential equations: ẍ(θ) = −4π2x(θ),
ÿ(θ) = −4π2y(θ),
ż(θ) = 1.

(3)

Then, in the case where the spikes are regularly spaced, at each burst Bm the solution on the cylinder is
given by x(θ) = cos(2πθ + π),

y(θ) = sin(2πθ + π),
z(θ) = θ + zcm.

(4)

The initial condition of the solution in Bm verifies zcm ∈ Ics . During the burst, this solution is turning
around the cylinder, as long as z(θ) < s, until x(θ) 6= −1.

When z(θ) > s and x(θ) = −1, the trajectory leaves the cylinder and traverses on the ribbon.

2.1.4. The half-Poincaré map on the cylinder
In this article, consider only the case where spikes are regularly spaced versus time at the same burst. This
is due to the third equation of (3), ż(θ) = 1. However, it is easy to relax this constraint, allowing more
flexibility to the behavior of the spike, by modifying slightly this equation as ż(θ) = f(θ), with for example
f(θ) = θ + 1

2 .

At any burst, the trajectory starting from interval Īcs must eventually exit from S through Īrs . Since
the interval Īcs (resp. Īrs ) is identified with the interval Ics (resp. Irs ), one can define a map Ψ1 : Ics −→ Irs
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following trajectories that start from Ics until they first meet Irs : Ψ1(zcm) = z(τ rm) = zrm. For all zcm ∈ Ics ,
there is θ∗ = k, k ∈ N, such that Ψ1(zcm) = k + zcm, for which one has

s ≤ k + zcm < s+ 1,

because x(θ∗) = −1 and y(θ∗) = 0. By writing 2s as 2s = [2s] + α, 0 ≤ α < 1, one has

[2s] + (−zcm − s+ α) ≤ k < [2s] + (−zcm − s+ α) + 1.

From the fact that

{
1 ≤ (−zcm − s+ α) < 2 for zcm ∈ [−s− 1,−s− 1 + α[,
0 < (−zcm − s+ α) ≤ 1 for zcm ∈ [−s− 1 + α,−s[,

it follows that

k =

{
[2s] + 2 for zcm ∈ [−s− 1,−s− 1 + α[,
[2s] + 1 for zcm ∈ [−s− 1 + α,−s[.

Therefore, one has Ψ1 : Ics −→ Irs defined by

Ψ1(z) =

{
z + [2s] + 2 for z ∈ [−s− 1,−s− 1 + α[,
z + [2s] + 1 for z ∈ [−s− 1 + α,−s[. (5)

(See example with s = 2.2, shown in Fig. 7).

Figure 7. The graph of the map Ψ1 for s = 2.2

At a burst, as will be seen in Section 3, this map can define patterns of [2s] + 1 and [2s] + 2 spikes.

This half-Poincaré map is coupled with a second half-Poincaré map on the ribbon linking the interval
of injection to the interval of reinjection.

2.2. Dynamics on the ribbon
When x = −1 and z ≥ s, the orbits leave the cylinder S towards the plane (x, z) to form the phase of
quiescence and then return to the cylinder.

Here, assume that the duration between bursts (interbursts or interspikes), representing the phase of
quiescence, is the same for all bursts and is equal to 2T .

TBribm = [τ rm, τ
c
m+1[ = [τ rm, τ

r
m + 2T [. (6)
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2.2.1. Ribbon defined by a sheaf of rectangular part of plane
On the ribbon, just like on the cylinder, define in every burst Bm the local time

θ : ∀ t ∈ TBribm , θ = t− τ rm ∈ [0, 2T [. (7)

Also, assume that the projection on the z-axis of every trajectory on the ribbon has the same length
2s+1, and has a parabolic shape. Due to the Poincaré-Bendixon theorem, which implies that on a plane no
trajectory of a dynamical system can cross another trajectory, the ribbon cannot belong to a single plane.
In order to avoid such inappropriate crossing, define each identical parabola-shaped trajectory on a separate
half-plane Hm, formed by the angle µ̂m between Hm and the half-plane H =

{
X ≥ 0, (Y, Z) ∈ R2

}
, for

which both systems of coordinates (O, x, y, z) and
(
Õ,X, Y, Z

)
are defined by

X = x+ 1,
Y = y,
Z = z,

(8)

and Õ = (−1, 0, 0) in the system (O, x, y, z), together with the family of systems of coordinates(
Õ, X̃m, Ỹm, Z̃m

)
defined by

X̃m

Ỹm
Z̃m

 =

 cos(µ̂m) sin(µ̂m) 0
−sin(µ̂m) cos(µ̂m) 0

0 0 1

XY
Z

 , (9)

(Fig. 8) each of which helps to define the half-plane Hm (Fig. 9), as follows:

x

y

−3.5 −2.5 −1.5 1.5 2.5 3.5

−2.5

−1.5

1.5

2.5

0 X

Y

X̌m

Y̌m

Ǒ
•• µ̌m

Figure 8. Systems of coordinates used to define the half-plane Hm

Hm =
{
X̃m ≥ 0, Ỹm = 0, Z̃m ∈ R

}
. (10)



June 4, 2020 19:18 GBLC_Geometrical_model_R1

Geometrical model of spiking and bursting neuron 9

On each half-plane Hm, the parabolic trajectory is parametrized by θ as{
X̃m (θ) = β0θ

2 + γ0θ + δ0,

Z̃m (θ) = β1θ + γ1,
(11)

and verifies Z̃m(0) = zrm, Z̃m(2T ) = zrm − (2s+ 1) for the z-coordinate, and


X̃m (0) = 0,

X̃m (T ) = M,

X̃m (2T ) = 0,

(12)

for the x-coordinate (Fig. 9), whereM is a constant defining the maximal amplitude of the parabola. Under
those conditions, it is straightforward to obtain

β0 = −M
T 2
, γ0 =

2M

T
, δ0 = 0 and β1 =

−(2s+ 1)

2T
, γ1 = zrm, (13)

{
X̃m (θ) = Mθ

T

(
2− θ

T

)
,

Z̃m (θ) = −(2s+1)
2T θ + zrm.

(14)

Of course, the angle µ̂m must be bounded, for all the values of m. One can choose for example µ̂m =
π
8 (zrm − s) + 15π

16 , which satisfies 15π
16 < µ̂m < 17π

16 . The ribbon plotted in (Fig. 9) is defined with this value
of µ̂m, and T = 1, s = 2, M = 2.

Figure 9. The dynamics of a neuron on the cylinder giving spiking and on the projection on H1 giving the first period of
quiescence, where the family {Hm}m=0,∞ is a sheaf of plane.
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2.2.2. The half-Poincaré map on the ribbon
This second half-Poincaré map is defined, following the solution that starts from the reinjection interval
until it reaches the injection interval.

Let zrm ∈ Irs . Considering z(s) = (−2s − 1 + zrm) ∈ Ics , set zcm+1 = (−2s − 1 + zrm). Then, define the
map Ψ2 : Irs −→ Ics by Ψ2(zrm) = z(τ cm+1) = zcm+1, and

Ψ2(z) = z − (2s+ 1). (15)

2.2.3. Poincaré return map for a neuron
The composition of both half-Poincaré maps Ψ1 and Ψ2 defines a Poincaré map Φ = Ψ2 ◦ Ψ1 on the
reinjection interval. The map Ψ1 is defined on Ics and takes values in Irs , and Ψ2 takes values in Ics . Now,
one has Φs : Ics −→ Ics , where Φs = Ψ2 ◦Ψ1 is given by

Φs(z) =

z − 2s+ [2s] + 1 for z ∈ [−s− 1,−s− 1 + α[,

z − 2s+ [2s] for z ∈ [−s− 1 + α,−s[.

By the change of coordinates, ζ = z + s + 1,Φ(ζ) = Φs(z) + s + 1, the map Φs is isomorphic to the map
Φ : [0, 1[→ [0, 1[, which is defined by

Φ(ζ) =

 ζ + 1− α for ζ ∈ I0,

ζ − α for ζ ∈ I1,
(16)

with α = 2s− [2s], I0 = [0, α[, and I1 = [α, 1[.
Let ζ0 ∈ [0, 1[, and set ζ0 = Φ0(ζ0) and ζm = Φm(ζ0) ∈ [0, 1[, for m ≥ 1. The point Φm(ζ0) − (s + 1)

denotes the position where the bursting orbit begins to turn around the cylinder to form the burst Bm(z0)

with z0 = Φ0(ζ0)− (s+ 1).
It is equivalent to consider the bursting orbit B(z0) = {B0(z0), B1(z0), ..., Bm(z0), ...} or the bursting

orbit of the Poincaré map Φ(ζ0) =
{

Φ0(ζ0),Φ1(ζ0), ...,Φm(ζ0), ...
}
.

From equation (5), it can be seen that the number of spikes within the burst Bm is ([2s] + 2) if Φm(ζ0)
belongs to I0 and ([2s] + 1) if Φm(ζ0) belongs to I1.

An example of the distribution of spikes and quiescence regimes at a burst is illustrated by Fig. 10.

3. Periodic and quasi-periodic bursting orbits
In this section, the focus is on the number of spikes of each burst of a periodic bursting orbit.

Depending on the rationality or irrationality of the parameter α, the shape of the burst in such an
orbit is quite different. There exist only periodic orbits for rational α, instead for irrational α, the model
can have quasiperiodic orbits.

3.1. Condition of existence of periodic bursting orbit
Proposition 1. If α is a rational number, α = p

q , with p, q ∈ N∗, 0 < p < q and pgcd(p, q) = 1,
then for any initial value ζ0 ∈ [0, 1[, the bursting orbit Φ(ζ0) is periodic of period q (i.e. Φq(ζ0) = ζ0);
moreover, q is the smallest possible period.

Proof. For any initial condition ζ ∈ [0, 1[, rewrite the map Φ as

Φ(ζ) = ζ + γ mod 1 (17)
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Zr
1

∆1

∆0

Figure 10. Plot of a bursting for α = 1
2

where γ = 1− α. Then, Φq(ζ) = ζ + q(1− p
q ) = ζ + (q − p), (mod 1), hence Φq(ζ) = ζ. �

If q is not the smallest period, there exists a smallest period q̃ with q̃ < q and q = nq̃+ r, where r < q̃.
Then, ζ = Φq(ζ) = Φnq̃+r(ζ) = Φr(Φnq̃)(ζ) = Φr(ζ), which is impossible.

Remark 3.1. This is equivalent to that the corresponding orbit B(z0) is periodic with q bursts belonging to
the period.

Remark 3.2. It is important to point out the difference between the period of the bursting orbit Φ(ζ0) of
the Poincaré map, which is an integer, and the period of the bursting orbit of the geometrical HR model,
which is a duration Ts. In fact, even if q bursts are belonging to the period of the bursting orbit B(z0),
their periods can be different, depending on the value of α = p

q . It will be proved bellow in Theorem 1 that
Ts = (2Tq + p([2s] + 2) + (q − p)([2s] + 1)).

Remark 3.3. Two cylinders of nearly equal lengths can generate bursting orbits with a very different periods.
As an example, for s1 = 1 + 3

5 , the period is 5 while for s2 = 1 + 3001
5000 the period is 5000.

3.2. Distribution of spikes and bursts in a periodic bursting orbit

3.2.1. Number of spikes and bursts
Theorem 1. For α = p

q , a periodic bursting orbit with q bursts has p bursts of ([2s] + 2) spikes and (q− p)
bursts of ([2s] + 1) spikes.

Therefore, the period of such orbit is equal to Ts = (2Tq + p([2s] + 2) + (q − p)([2s] + 1)).
In order to prove this theorem, define a partition of the interval I and prepare a lemma.

First, define 4j = [ jq ,
j+1
q [⊂ I = [0, 1[, 0 ≤ j ≤ q − 1. Thus, one can write I0 =

⋃p−1
j=04j and

I1 =
⋃q−1
j=p4j . The intervals 4j form a partition of I and

Φ(4j) =

4j+(q−p) when 4j ⊂ I0 (j ≤ p− 1),

4j−p when 4j ⊂ I1 (j ≥ p).
(18)

Lemma 1.

• For m1 6= m2, 0 ≤ mi ≤ q − 1, i = 1, 2,

Φm1(4j) ∩ Φm2(4j) = ∅ for all j, 0 ≤ j ≤ q − 1. (19)
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• For j1 6= j2, 0 ≤ j1, j2 ≤ q − 1,

Φm(4j1) ∩ Φm(4j2) = ∅ for all m. (20)

Proof. [Proof of Lemma 1]
Suppose there existm1 ≤ q−1 andm2 ≤ q−1,m1 < m2 such that Φm1(4j)∩Φm2(4j) 6= ∅. Then, there

exists 4l ⊂
⋃q−1
j=04j such that Φm1(4j) = 4l and Φm2(4j) = Φ(m2−m1)(Φm1(4j)) = Φ(m2−m1)(4l) = 4l.

Thus, each point ζ ∈ 4l is periodic with period (m2−m1) < q. This contradicts the fact that Φq(ζ) = ζ
for any ζ ∈ [0, 1].

For the second case, it will be checked that if j1 6= j2, then Φ(4j1) ∩ Φ(4j2) = ∅.
Indeed, for j1 6= j2, if 4j1 and 4j2 belong to I0 then Φ(4ji) = 4ji + (q − p) for i = 1, 2 and

j1 + (q − p) 6= j2 + (q − p).
One also has Φ(4ji) = 4ji − p, i = 1, 2 and j1 − p 6= j2 − p if 4j1 and 4j2 belong to I1 and so

Φ(4j1) ∩ Φ(4j2) = ∅.
In the case where4j1 ⊂ I0 and4j2 ⊂ I1, one has Φ(4j1) = 4j1+(q−p) and Φ(4j2) = 4j2−p. Suppose

that Φ(4j1)∩Φ(4j2) 6= ∅. From (21), this implies that Φ(4j1) = Φ(4j2), that is 4j1 + (q− p) = 4j2 − p,
which is impossible since j2 ≤ q − 1.

The case of 4j1 ⊂ I1 and 4j2 ⊂ I0 is the same as this last one.
Therefore, for all m, Φm(4j1) ∩ Φm(4j2) = ∅ if j1 6= j2. �

Remark 3.4. Lemma 1 implies that

• For each 4j ⊂
⋃q−1
i=0 4i, (Φ0(4j),Φ

1(4j), ...,Φ
q−1(4j)) are disjoint sets, so

q−1⋃
m=0

Φm(4j) =

q−1⋃
j=0

4j = [0, 1[.

• Let ζ0 ∈ 4j . Then, (ζ0,Φ
1(ζ0), ...,Φq−1(ζ0)) ∈ (4j ,Φ

1(4j), ...,Φ
q−1(4j)), i.e. for ζ0 ∈ 4j , Φm(ζ0) ∈

Φm(4j), for 0 ≤ m ≤ q − 1. Thus,

q−1⋃
m=0

Φm(4j) =

 p⋃
j=0

4j

⋃ q−1⋃
j=p+1

4j

 = I0

⋃
I1.

Therefore, there are p iterations on I0 and (q − p) iterations on I1.

Lemma 1 and remarks 3.4 complete the proof of Theorem 1.
Hence, the lenght Ts of this period is established.

3.2.2. Equivalent bursting orbits
Definition 3.1. Two periodic bursting orbits are called equivalent if their trajectories have the same period
Ts and differ from each other by only a translation.

In terms of bursting orbit of a Poincaré map, two orbits are said to be equivalent if they have the same
period q, with α = p

q , and differ from each other up to a phase shift. It means that one could put the initial
condition anywhere on the intervall [0, 1[ and obtain equivalent orbits.

Now, define a matrix A = (amj)0≤m,j≤q−1, where amj is the index of the interval 4amj , i.e. Φm(4j) =
4amj . The elements of the column j are indices of the intervals (4j , 0 ≤ j < q) and the elements of the
row are the numbers of the iterations of the orbits. It follows from Lemma 1 that

(1) If am1j = am2j , then m1 = m2.
(2) If amj1 = amj2 , then j1 = j2.
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Lemma 2. For n < q, one has

Φn(4j) =


4j+n(q−p) if 4j+m(q−p) ⊂ I0,m = 0, ..., n− 1,

4j+(n−l)(q−p)−lp, (l = 1, ..., n− 1) if 4amj ⊂ Ik, k = 0 or 1,

4j−np if 4j−mp ⊂ I1,m = 0, ..., n− 1.

where 4amj is of the form 4j+m1(q−p)−m2p and m1 = 0, ..., n− 1,m2 = 0, ..., n− 1.

One can easily prove this lemma by induction and show that Φn(4j) = 4j+(n−l)(q−p)−lp holds for
l = 0, ..., n, and n < q.

Next, it will show how the distribution of bursts takes place along a bursting orbit.

The following proposition proves that Φm(4i) and Φm(4j), for i 6= j, do not bounce in the same way
around I0 and I1, and gives the repartion of the bursts in an orbit.

Proposition 2. For each i < q and for each j < q, with i 6= j, there is n, n < q, such that Φn(4i) lies
in I0 and Φn(4j) lies in I1, or Φn(4i) lies in I1 and Φn(4j) lies in I0. Furthermore, there are exactly q
bursting orbits (ζ0,Φ

1(ζ0), ...,Φq−1(ζ0)), ζ0 ∈ 4j, which are equivalent to each other.

Proof. In the case where 4i and 4j do not belong to the same interval I0 or I1, that is, i < p and j ≥ p,
take n = 0.

In the case where 4i and 4j belong to the same interval, say I0, suppose Φm(4i) = 4ami and
Φm(4j) = 4amj lie in the same interval I0. Then, from lemma 2, one has (amj − ami) = (j − i) for m < q.

It follows that Φm(4i) and Φm(4j) can only visit (p− (j − i)) times the interval I0. This contradicts
the fact that Φm(4i) = 4ami visits p times the interval I0 for m < q.

One can show in the same manner that there is n such that Φn(4i) ∈ I1 and Φn(4j) ∈ I0. �

Remark 3.5. In the above, it has been proved that there is n0 such that Φn0(4i) ∈ I0 and Φn0(4j) ∈ I1.
In this case, there should be an n1 such that Φn1(4i) ∈ I1 and Φn1(4j) ∈ I0. If not, then Φm(4i) and
Φm(4j) are in the same interval, I0 or I1, with m 6= n0. Suppose they are in I0. Then, for m 6= n0, each of
Φm(4i) and Φm(4j) visits p times the interval I0. Since Φn0(4i) is in I0, Φm(4i) visits (p+ 1) times the
interval I0 for all m < q. This contradicts the fact that Φm(4i) visits p times the interval I0 for m < q.

The number of indices ni is an even number.

3.2.3. Repartition of spikes and bursts in a periodic bursting orbit
Let r be the residual of euclidian division of (q− p) by p if (q− p) > p, or the residual of euclidian division
of p by (q − p) if (q − p) < p. Then, the repartition of the bursts in a bursting orbit is performed in the
following way:

Theorem 2.

• If (q−p) > p, i.e. |I1| > |I0|, then the (q−p) bursts of ([2s] + 1) spikes are distributed in p sets of repetitive
bursts of ([2s] + 1) spikes, separated by bursts of ([2s] + 2) spikes. In these p sets, there are (p− r) sets of
n = [ q−pp ] repetitive bursts of ([2s] + 1) spikes and r sets of (n+ 1) repetitive bursts of ([2s] + 1) spikes.

• If (q − p) < p, then the p bursts are distributed in (q − p) sets of repetitive bursts of ([2s] + 2) spikes,
separated by bursts of ([2s] + 1) spikes. In these (q−p) sets, there are (q−p− r) sets of n = [ p

q−p ] repetitive
bursts of ([2s] + 2) spikes and r sets of (n+ 1) repetitive bursts of ([2s] + 2) spikes.

• If (q−p) = p, i.e. q = 2p and α = 1/2, then the periodic bursting orbits are of the form: ([2s]+1) ([2s]+2),
which can be repeated periodically.



June 4, 2020 19:18 GBLC_Geometrical_model_R1

14 M. Gheouali et al.

Proof. For α = p/q, a bursting orbit has p bursts of ([2s] + 2) spikes and (q− p) bursts of ([2s] + 1) spikes.
If (q− p) > p, then from euclidian division one can write (q− p) = p[ q−pp ] + r = (p− r)n+ r(n+ 1), where
n = [ q−pp ]. So, the (q − p) bursts of ([2s] + 1) spikes are distributed in (p− r) sets of n bursts and r sets of
(n+ 1) bursts.

In addition, for any i, since p < (q− p), if Φi(4j) ∈ I0, then Φi+1(4j) = 4j+(q−p) ∈ I1. Thereby, each
time when the trajectory passes through the I0 interval, it leaves this interval at the next iteration, thus
generating a single burst of ([2s] + 2) spikes. The same reasoning applies if (q − p) < p.

In the case of (q − p) = p, one has

Φ(4j) =

4j+p when 4j ⊂ I0 (j ≤ p− 1),

4j−p when 4j ⊂ I1 (j ≥ p).
(21)

So, if 4j ∈ I0 then Φ(4j) = 4j+p ∈ I1 and Φ2(4j) = 4j ∈ I0.
In the same way, if 4j ∈ I1 then Φ(4j) = 4j−p ∈ I0 and Φ2(4j) = 4j ∈ I1. Therefore, the bursting

orbits are of the form: ([2s] + 1) ([2s] + 2), or equivalently, ([2s] + 2) ([2s] + 1). �

Fig. 11 depicts a periodic bursting trajectory computed for s = 1.3 and α = 3
5 with periodic pattern of

the form (44343). In this case, (q − p) < p, n = 1 and r = 1. So, as can be observed in Fig. 11, there are
a set of (n+ 1) = 2 bursts of 4 spikes and a set of n = 1 burst of 4 spikes, each of which is separated by a
burst of 3 spikes.

Figure 11. Bursting trajectory with (44343) pattern for α = 3
5 and s = 1.3

.

The next two theorems give the form of the bursting according to whether p − r > r, p − r < r or
p− r = r, with a specific case of p− r = 1.

Theorem 3.

(1) For ζ0 ∈ 4q−1, if p− r > r, the periodic bursting is distibuted in the following way:

U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
n(0)

U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
n(1)

... U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
n(i)

(22)

where U = [2s] + 1, W = [2s] + 2, p− r = n(0)r+ r(0), p− (r− r(0)) = n(1)r+ r(1), p− (r− r(1)) =
n(2)r + r(2),..., p− (r − r(i− 1)) = n(i)r + r(i), with n(0) + n(1) + ...+ n(i) = p− r if r(i) = 0.
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(2) For ζ0 ∈ 4q−1, if p− r < r, the periodic bursting is distributed in the following way:

U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
n(0)+1

U...U︸ ︷︷ ︸
n

W U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
n(1)+1

U...U︸ ︷︷ ︸
n

W ... U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
n(i)+1

U...U︸ ︷︷ ︸
n

W

(23)

where r − 1 = n(0)(p − r) + r(0), r − (p − r) + r(0) = n(1)(p − r) + r(1),..., r − (p − r) + r(i − 1) =
n(i)(p− r) + r(i) and (n(0) + 1) + ...+ (n(i− 1) + 1) = r if r(i) = 0 for i 6= 0.

Proof. First, perform a bursting for an initial condition ζ0 ∈ 4q−1. For the other initial conditions, from
Proposition 2, the other periodic bursting are equivalent to this one.

Then, recall that for any i, since p < (q − p), if Φi(4j) ∈ I0, then Φi+1(4j) = 4j+(q−p) ∈ I1.

(1) If p− r > r i.e. p > 2r, then for ζ0 ∈ 4q−1 one has

Φ(n+1)(4q−1) = 4r−1 =
[r − 1

q
,
r

q

[
⊂
[r − 1

q
,
p− r
q

[
⊂ I0, (24)

Φ(n+1)+1(4q−1) = 4np+2r−1 =
[np+ 2r − 1

q
,
np+ 2r

q

[
⊂
[p
q
,
(n+ 1)p

q

[
⊂ I1 (25)

since np+ 2r < np+ p. (26)

Let p− r = n(0)r + r(0). Then,

Φ[(n+1)+1]+n(0)n+n(0)(4q−1) = 4np+2r−1+n(0)r = 4(n+1)p+r−r(0)−1 = 4q−1−r(0) (r > r(0)). (27)

Putting ñ = [(n+ 1) + 1] + n(0)n+ n(0), one obtains

Φñ(4q−1) = 4q−1−r(0). (28)

Thus, the first part of the bursting is given by

U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
n(0)

For the next iterations, one has

Φñ+(n+1)(4q−1) = 4r−r(0)−1 ⊂ I0,

and

Φñ+(n+1)+1(4q−1) = 4np+2r−r(0)−1 = 4(n+1)p+r−1−(p−(r−r(0))) = 4(n+1)p+r−1−n(1)r−r(1), (29)

where p− (r − r(0)) = n(1)r + r(1). So,

Φñ+(n+1)+1+n(1)n+n(1)(4q−1) = 4(n+1)p+r−r(1)−1. (30)

Let m̃ = ñ+ (n+ 1) + 1 + n(1)n+ n(1). Then,

Φm̃(4q−1) = 4q−1−r(1). (31)

Therefore, the next part of the bursting is

U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
n(1)

.

Now, from (40), one can repeat the process as for (28) to obtain the complete periodic bursting.
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(2) If p− r < r i.e. p < 2r, then for ζ0 ∈ 4q−1, one has

Φ(n+1)(4q−1) = 4r−1 =
[r − 1

q
,
r

q

[
⊂
[r − 1

q
,
p− r
q

[
⊂ I0, (32)

Φ(n+1)+1(4q−1) = 4np+2r−1 ⊂
[(n+ 1)p

q
,
(n+ 1)p+ r

q

[
⊂ I1, (33)

since np+ 2r − 1 > np+ p− 1.

So,

Φ(n(0)+1)(n+1)+n(0)+1(4q−1) = 4np+r−1−n(0)(p−r)+r. (34)

Let r − 1 = n(0)(p− r) + r(0) with r(0) < r. Then,

Φ(n(0)+1)(n+1)+n(0)+1(4q−1) = 4np+r+r(0) ⊂
[p
q
,
(n+ 1)p

q

[
since r(0) < r, (35)

and

Φñ(4q−1) = 4np+r+r(0), (36)

for ñ = (n(0) + 1)(n+ 1) + n(0) + 1. The first part of the periodic bursting is then given by

U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
n(0)+1

. (37)

For the next, one has

Φñ+n+1(4q−1) = 4(n+1)p+r−(p−r)+r(0) = 4(n+1)p+n(1)(p−r)+r(1), (38)

where n(1) and r(1) are defined by r − (p− r) + r(0) = n(1)(p− r) + r(1). Then,

Φñ+n+1+(n(1)+1)(n+1)+n(1)+1(4q−1) = 4(n+1)p−(p−r)+r(1) = 4np+r+r(1). (39)

Putting m̃ = ñ+ n+ 1 + (n(1) + 1)(n+ 1) + n(1) + 1, one obtains

Φm̃(4q−1) = 4np+r+r(1). (40)

So, the next part of the bursting is

U...U︸ ︷︷ ︸
n

W U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
n(1)+1

(41)

Then, from (40), one can repeat the precedent process to give the complete periodic bursting.

�

As an example, consider the following two cases:

(1) For p = 7, q = 17, there are 7 busts of 4 spikes and q − p = 10 bursts of 3 spikes, n = 1, r = 3,
p− r = 4 > r, r(0) = 1, n(0) = n(1) = 1, r(1) = 2, n(2) = 2 and r(2) = 0. Thus, the periodic bursting
is given by (33434334343343434) (see Fig. 12).

(2) For p = 5, q = 13, there are 5 bursts of 4 spikes and q − p = 8 bursts of 3 spikes, n = 1, r = 3,
p − r = 2 < r, n(0) = 1, r(0) = 0, n(1) = 0, r(1) = 1, n(2) = 0 and r(2) = 0. The bursting orbit has
the pattern (3343343433434) (see Fig. 13).

Remark 3.6. For the case of p− r = r, i.e. p = 2r, q = (n+ 1)p+ r = (2n+ 3)r and pgcd(p, q) = r 6= 1 for
r 6= 1. If r = 1, then the case of p− r = r is included in the general case of p = r + 1.
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Figure 12. Bursting trajectory with (33434334343343434) pattern for α = 7/17 and p− r > r

.
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Figure 13. Bursting trajectory with (3343343433434) pattern for α = 5/13 and p− r < r

.
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Figure 14. Bursting trajectory with (333333343333334) pattern for α = 2/15 and p = r + 1

.

Theorem 4. For ζ0 ∈ 4q−1, if p = r + 1, then the periodic bursting is distributed in the following way:

U...U︸ ︷︷ ︸
n+1

W U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
r

U...U︸ ︷︷ ︸
n

W U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
(p−r)

(42)

Proof. For ζ0 ∈ 4q−1, one has

Φ(n+1)(4q−1) = 4r−1 ⊂ I0, (43)

and

Φr(n+1)+r(4q−1) = 4(n+1)p+r−1−r(p−r) = 4(n+1)p−1 = 4np+r ⊂ I1. (44)

Thus, the first part of the bursting is
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U...U︸ ︷︷ ︸
n+1

W... U...U︸ ︷︷ ︸
n+1

W

︸ ︷︷ ︸
r

(45)

Next, let ñ = r(n+ 1) + r. Then,

Φñ+n(p−r)+(p−r)(4q−1) = 4(n+1)p+r−1 = 4q−1. (46)

So, the p− r remaining bursts are distributed in the following way:

U...U︸ ︷︷ ︸
n

W... U...U︸ ︷︷ ︸
n

W︸ ︷︷ ︸
p−r

(47)

�

Consider an example for this case. For p = 2, q = 15, there are 2 busts of 4 spikes and q−p = 13 bursts
of 3 spikes, n = 6, r = 1, p− r = 1. Thus, the periodic bursting is (333333343333334) (see Fig. 14).

3.3. Quasi-periodic bursting orbits
When α is an irrational number, since the application of Φ is the translation ζ → ζ + α (mod 1), each
orbit is everywhere dense. Each point in [0, 1[ has an infinite orbit and at each iteration a new point reaches
on the interval [0, 1[ so giving rise to a "uniform distribution" on the interval, in the sens that these points
are landing, in an ordered manner, in I0 = [0, α[ or I1 = [α, 1[, depending on whether they belong to either
of the two intervals. No point is ever revisited in finite time, thus each orbit consists of a quasi periodic
bursting.

Let I be an interval ∈ [0, 1[ and F (x, n) = #
{

1 ≤ k ≤ n/Φk(x) ∈ I
}
, where "#" denotes the number

of elements in a set. Then, from Weyl’s Theorem [H. Weyl, 1916] below, for n large enough, the average
number of points lying in the interval I is equal to the length of this interval. Hence, for each x in [0, 1[, the
iterations Φn(x) are uniformly distributed (mod 1), that is, the proportion of points lying in the intervals
I0 and I1 is respectively α and 1− α.

Theorem 5. (Weyl 1916) Let I be an interval of the form [c, d], with 0 ≤ c < d ≤ 1. Then, one has
limn→+∞

F (x,n)
n = c− d

Fig. 15 and Fig. 16 show respectively the iterates of the map Φ with the irrational number α = 1
π and

α = 1√
2
. The red circle represents the burst of ([2s]+1) spikes and the blue one the burst of ([2s]+2) spikes.

The number n below or above each circle represents the n-th burst.
It can be observed that, when the number of iterations increases, the distance between two bursts

decreases and the bursts become closer and closer to each other (see for instance bursts 2 and 24 in Fig. 15
and bursts 7 and 48 in Fig. 16).

When the number of iteration increases, the burst of ([2s]+1) spikes will fill up all the interval I1 and
the one of ([2s]+2) spikes will fill up all the interval I0.

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1α 12 345 678

91011 12131415 161718 192021 222324 252627 282930

31 323334 353637 383940

Figure 15. Irrational bursting trajectory for α = 1/π

.
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t
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Figure 16. Irrational bursting trajectory for α = 1/
√

2

.

4. Chaotic bursting oscillations
Dynamics on the ribbon is a key to shape the nature of solutions. Comparing Fig. 1 and Fig. 2, it is obvious
that, on the ribbon, solutions are spreading in different ways before reaching the cylinder.

Now, consider the dynamics different from those defined in Sec. 2, which allows the onset of chaotic
bursting oscillations. These chaotic bursting orbits display mixing of bursts with U and W spikes.

4.1. Chaotic dynamics on the ribbon
Keeping the same notation of Sec. 2, on each half-plane Hm, the parabolic trajectory parametrized by θ is
given by 

X̃m (θ) = Mθ
T (2− θ) ,

Z̃m (θ) = − (2s+1)
2T θ − 2zrm + 3s+ 1 for zrm ∈ [s, s+ 1

2 [,

Z̃m (θ) = − (2s+1)
2T θ + 2zrm − s− 1 for zrm ∈ [s+ 1

2 , s+ 1[.

(48)

4.2. Poincaré return map
The half-Poincaré map Ψ2 on the ribbon is the symmetric tent map. Then, the map Φ = Ψ2 ◦Ψ1 is given
by

If α ≤ 1
2 ,

Φ(ζ) =


−2ζ + 2α if ζ ∈ [0, α[,
2ζ − 2α if ζ ∈ [α, α+ 1

2 [,
−2ζ + 2α+ 2 if ζ ∈ [α+ 1

2 , 1[.
(49)

(see Fig. 17).

If α ≥ 1
2 ,

Φ(ζ) =

2ζ + 2(1− α) if ζ ∈ [0, α− 1
2 [,

−2ζ + 2α if ζ ∈ [α− 1
2 , α[,

2ζ − 2α if ζ ∈ [α, 1[.
(50)

(see Fig. 20).
This proves that Φ has a horseshoe on the interval I.
Let J be a closed interval of I. Suppose that there are two disjoint closed intervals, K0 ⊂ J ∩ I0

and K1 ⊂ J ∩ I1, and the restriction of Φ to each Ki, i.e., Φ|Ki, is monotonic and continuous, such that
Φ(Kj) ⊃ ∪1

i=0Ki, j = 0, 1.
Let

Σ = {(t0, t1, t2, · · · ), tj = 0 or tj = 1},
Λ = {ζ ∈ I : Φn(ζ) ∈ I ∀n ≥ 0},

and the shift map σ : Σ→ Σ defined by σ(t0t1t2 · · · ) = (t1t2t3 · · · ).
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Recall ([Devaney, 2003]) that there exists a compact invariant set Λ ⊂ J , such that Φ|Λ is semi-
conjugate to the shift map σ on Σ via a continuous and onto map h : Σ −→ Λ, where

Λ = ∩∞i=0Φ−i(K1 ∪K0) = ∪(t0t1t3··· )∈Σ ∩∞i=0 Φ−i(Kti). (51)

One has

Φn ◦ h = h ◦ σn.

So, h converts σ−orbits to Φ−orbits. Therefore, Φ−orbits are in one−to−one correspondence with
σ−orbits. In particular, if t is a periodic point for σ, then h(t) is a periodic point for Φ with the same
period. If there is an eventually periodic point for σ, then h gives an analogous point for Φ. Indeed, h
converts the dynamical behavior observed for σ. Thus, the dynamics of σ on Σ and Φ on Λ are essentially
the same.

For any ζ0 ∈ Λ, there is t0 = (t0(0)t0(1)t0(2) · · · ) ∈ Σ such that Φn−1(ζ0) ∈ Kt0(n−1) ⊂ It0(n−1). The
point (Φn(ζ0)− (2s+ 1)) denotes the point where the bursting orbit begins to turn around the cylinder to
form the burst Bn. The number of spikes within the burst Bn is

t0(n− 1)(2[s] + 1) + (1− t0(n− 1))([2s] + 2)),

that is, the number of spikes within the burst Bn is ([2s] + 2) if Φn−1(ζ0) lies in K0 (t0(n − 1) = 0) and
([2s] + 1) if Φn−1(ζ0) lies in K1(t0(n− 1) = 1).

The map σ has countably infinitely many of periodic orbits consisting of the orbits of all periods, and
for any n > 0, σ has (2n − 2) periodic points of period n.

Let ti = (ti(0)ti(1) · · · ti(n − 1)ti(0)ti(1) · · · ti(n − 1) · · · ) be a periodic point of period n for σ. Then,
there is ζ0 ∈ Λ such that h(ti) = ζ0 is a periodic point of period n for Φ with Φm(ζ0) ∈ Kti(m) for any
m < n and Φn(ζ0) = ζ0 ∈ Kti(0). There is a bursting orbit of period

Ti = ai([2s] + 2) + bi([2s] + 1) +

n−1∑
j=0

βi,j ,

with ai + bi = n, where ai = ]{j ≤ n − 1, ti(j) = 0} is the number of bursts of ([2s] + 2) spikes and
bi = ]{j ≤ n − 1, ti(j) = 1} is the number of bursts of ([2s] + 1) spikes, and βi,j denotes the time it takes
for the solution to form the period of quiescence j < n− 1 and then return to the cylinder.

Therefore, for each period n of σ, there are (2n − 2) types of periodic bursting of periods Ti, 1 ≤ i ≤
(2n − 2), with all possible distributions of numbers of spikes ([2s] + 2) and ([2s] + 1) per bursts.

Proposition 3. For α < 1
2 , Φ has horseshoes on the intervals [0, 2α] and [2α, 1]. In the interval [0, 2α], there

are K0 = [0, α] ∈ I0 and [α, 2α] ∈ I1 and Φ([0, 2α]) = [0, 2α], and in the interval [2α, 1], Φ([2α, 1]) = [2α, 1].

In the case of α > 1
2 , for α = 0.75, Φ2 has a horseshoe on the interval [0, 0.5] with Φ2([0, 0.5]) ⊂

[0, 0.5] ⊂ I0 and a horseshoe on the interval [0.5, 1] with Φ2([0.5, 1]) ⊂ [0.5, 1].

Remark 4.1. For α < 1
2 , for initial conditions in the interval [0, 2α], there are burstings with a mix of (2[s]+1)

and ([2s] + 2) bursts (see Fig. 18). For initial conditions in the interval [2α, 1] ⊂ I1, there is bursting with
only (2[s] + 1) bursts (see Fig. 19).

For α = 0.75, Φ2([0, 0.5]) ⊂ I0, so there is bursting with only ([2s] + 2) bursts (see Fig. 21) and in the
interval [0.5, 1], there is bursting with a mix of (2[s]+1) and ([2s]+2) bursts (see Fig. 22).

Proof. For α < 1
2 (see Fig. 17 for α = 1.8), one has Φ(2α) = 2α, so Φ([0, 2α]) = [0, 2α] and Φ([2α, 1]) =

[2α, 1]. For α = 0.75, 2− 2α = 0.5, one has Φ2(0) = 0.5 and Φ2(0.5) = 0.5. �
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Figure 17. Graph of the Poincaré map Φ for α < 1
2 .

5. Geometrical mug-shaped model: The general case
In previous sections, the simplest case of the geometrical mug-shaped model has been thoroughly studied.
In this simplest case, bursting oscillations are mixing of bursts of U and W spikes. However, it is possible
to model bursting oscillations which mix bursts of any number of spikes. In this section, an example of the
extension of the simplest case model is given to demonstrate this possibility. In this example, oscillations
mix bursts of 4 to 8 spikes.

The main idea to extend the simplest model is to split the interval of injection into several intervals,
while leaving the interval of reinjection unchanged.

5.1. Split interval of injection
To explain the extended geometrical model using an example (Fig. 23), let s = 1.4 and the interval of
injection be a union of four subintervals:

Irs = [2.1, 2.4[∪[2.4, 2.5[∪[3.8, 4.1[∪[5.5, 5.8[.
When a trajectory on the cylinder reaches for x = −1 the subinterval [1.4, 2.1[, it cannot escape to the

ribbon and must continue to turn around the cylinder, except when it reaches the first subinterval [2.1, 2.4[.
The trajectory which continues on the cylinder can eventually escape through the window of the second
subinterval [2.4, 2.5[ or the next one [3.8, 4.1[ or [5.5, 5.8[.

The interval of reinjection has the same definition as for the simplest model case:
Ics = [−2.4,−1.4[.
Keeping the same notation of Sec. 2, on each half-plane Hm, the parabolic trajectory is always

parametrized by θ following Eq. (14).


X̃m (θ) = Mθ

T (2− θ) ,
Z̃m (θ) = −3.8

2T θ + zrm for zrm ∈ [2.1, 2.4[,

Z̃m (θ) = −4.8
2T θ + zrm for zrm ∈ [2.4, 2.5[,

Z̃m (θ) = −5.8
2T θ + zrm for zrm ∈ [3.8, 4.1[,

Z̃m (θ) = −7.8
2T θ + zrm for zrm ∈ [5.5, 5.8[.

(52)
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Figure 18. Graphical iterations for the map Φ when α < 1
2 and for initial condition ζ0 = 0.1

Figure 19. Graphical iterations for the map Φ when α < 1
2 and for initial condition ζ0 = 0.6

Therefore, the half-Poincaré map Ψ2 is defined as
Ψ2(z) = z − (2s+ 1) for zrm ∈ [2.1, 2.4[,
Ψ2(z) = z − (2s+ 2) for zrm ∈ [2.4, 2.5[,
Ψ2(z) = z − (2s+ 3) for zrm ∈ [3.8, 4.1[,
Ψ2(z) = z − (2s+ 5) for zrm ∈ [5.5, 5.8[.

(53)

Figure 23 displays a first periodic orbit with initial point z = −2.1.
This orbit intersects the border of the cylinder x = {−1} for the following values of z: −2.1→ −1.1→

−0.1 → 0.9 → 1.9 → 2.9 → 3.9 and escapes from the cylinder to the ribbon from the subinterval [3.8, 4.1[
after 6 spikes.

After that, the orbit is back on the cylinder at the point z = −1.9 and intersects again the border
of the cylinder x = {−1} for the following values of z: −1.9 → −0.9 → 0.1 → 1.1 → 2.1 escaping
to the ribbon after 4 spikes from the subinterval [2.1, 2.4[, and so on, being again on the cylinder for
z = −1.7 → −0.7 → 0.3 → 1.3 → 2.3 escaping again from the subinterval [2.1, 2.4[, after 4 spikes to the
ribbon and then on the cylinder for z = −1.5 → −0.5 → 0.5 → 1.5 → 2.5 → 3.5 → 4.5 → 5.5 escaping
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Figure 20. Graph of the Poincaré map Φ for α > 1
2 .

again from the subinterval [5.5, 5.8[ after 7 spikes, being one more time on the cylinder for z = −2.3 →
−1.3→ −0.3→ 0.7→ 1.7→ 2.7→ 3.7→ 4.7→ 5.7 escaping one more time from the subinterval [5.5, 5.8[
after 8 spikes and returning to the initial value z = −2.1. For this periodic orbit, the bursts are successively
containing 6, 4, 4, 7 and 8 spikes.

5.2. Coexisting periodic solutions
More interestingly in this example, two periodic solutions with different patterns can coexist. The second
periodic orbit starts with the initial point z = −1.6, and has the following pattern:
−1.6→ −0.6→ 0.4→ 1.4→ 2.4 exit [2.4, 2.5[ after 4 spikes,
−2.4→ −1.4→ −0.4→ 0.6→ 1.6→ 2.6→ 3.6→ 4.6→ 5.6 exit [5.5, 5.8[ after 8 spikes,
−2.2→ −1.2→ −0.2→ 0.8→ 1.8→ 2.8→ 3.8 exit [3.8, 4.1[ after 6 spikes,
−2→ −1→ 0→ 1→ 2→ 3→ 4 exit [3.8, 4.1[ after 6 spikes,
−1.8→ −0.8→ 0.2→ 1.2→ 2.2 exit [2.1, 2.4[ after 4 spikes and back to the initial value z = −1.6.
The bursts are composed of 4, 8, 6, 6, 4 spikes.
The above two examples of coexisting periodic bursting orbits, exhibiting different patterns, show the

extraordinary versatility of this generalized model.
Depending on the shape of the injection interval, more coexisting bursting orbits, either periodic of

quasiperiodic, could coexist.

6. Conclusion
In this paper, a simplest bursting neuron model is introduced, based on the Hodgkin-Huxley and Hindmarsh-
Rose models, with a geometric mug-shaped branched manifold, which can mix burst of n and n+ 1 spikes.
The model can generate complex dynamic patterns, including periodic and quasiperiodic orbits. Rigorous
analytic proofs of their existence are given, and their complex dynamics are discussed with clear graphical
demonstrations. Furthermore, a more complex case of the model, which can generate chaotic bursting orbits
with n and n + 1 spikes, is established and discussed. The model is generalized to obtain mixing burst of
any number of spikes. Finally, an example with bursts of 4 to 8 spikes is demonstrated. The advantage of
the new model is its simplicity in form with complex dynamics, presenting most neuron burst patterns for
complete analysis.
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Figure 21. Graphical iterations for the map Φ2 when α = 0.75 and for initial condition ζ0 = 0.001

Figure 22. Graphical iterations for the map Φ2 when α = 0.75 and for initial condition ζ0 = 0.772
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