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ABSTRACT

Germanium manganese compounds exhibit a variety of stable and metastable phases with different stoichiometries. These materials entail
interesting electronic, magnetic, and thermal properties both in their bulk form and as heterostructures. Here, we develop and validate a
transferable machine learning potential, based on the high-dimensional neural network formalism, to enable the study of MnxGey materials
over a wide range of compositions. We show that a neural network potential fitted on a minimal training set reproduces successfully the
structural and vibrational properties and the thermal conductivity of systems with different local chemical environments, and it can be used
to predict phononic effects in nanoscale heterostructures.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009550

I. INTRODUCTION

Machine learning potentials (MLPs) provide a versatile tool to
study complex materials with diverse local chemical environment
with accuracy comparable to that of the electronic structure calcula-
tions to which they are trained, which is usually density functional
theory (DFT).1 A few classes of MLPs can actually achieve such level
of accuracy and transferability across various states of matter: suc-
cessful examples are neural network potentials (NNPs),2–4 Gaussian
approximation potentials (GAPs) with smooth overlap of atomic
positions (SOAPs),5,6 moment tensor potentials,7 and spectral neigh-
bor analysis potentials.8 The flexible form and extensive number of
parameters of these potentials enable accurate simulations of ele-
mental and binary materials across their phase diagram, including

high-pressure phases,9 liquids10,11 and glasses,12,13 interfaces,14 and
nanostructures.15,16 Besides structural stability and total energy,
MLPs allow one to model response functions, such as vibrational
spectra,17 and transport coefficients, e.g., thermal conductivity.18–20

Whereas several works proved the efficacy of MLPs in dealing
with diverse chemical environments, so far their performance for
large variations of stoichiometry in solids has not been systemati-
cally tested. Here, we address the transferability of a NN potential
of a binary system over a wide range of compositions. For this
purpose, we consider MnxGey , which is an interesting material
with several stable and metastable polymorphs, and potential appli-
cations in electronics, spintronics, and thermoelectric energy
conversion.21–25 In particular, among the crystalline phases, MnGe
is a fascinating topological material, for which it was recently
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measured a large magneto-thermopower,26 but its thermal con-
ductivity is unknown. Ultimately, it would be desirable to attain a
reliable description of nanostructured Mn-doped germanium
materials. Experiments suggested that Mn5Ge3, Mn11Ge8, and
MnGe play an important role in the formation of Mn–Ge phases
precipitated in Ge. Mn5Ge3 and Mn11Ge8 are both stable under
standard pressure and temperature conditions and they exhibit
structural similarities.22,24

As we focus on the vibrational properties and heat transport
of these systems, our goal is to fit and test a NNP that reproduces
correctly the structure, the phonon dispersion relations, and the
thermal conductivity of the phases of MnxGey from pure Ge all the
way to Mn5Ge3, including the magnetic materials MnGe and
Mn11Ge8, so as to enable future studies of growth, structural trans-
formations and heat transport in nanostructured Mn-doped Ge
films. The training set for the NNP is obtained by accurate DFT
calculations of total energies and forces. We validate the accuracy
and transferability of the NNP by comparing the structural param-
eters, e.g., equilibrium density and lattice parameters, and the
elastic response to hydrostatic compression against those obtained
from the calculations of the equations of states of the different
MnxGey systems by DFT. Phonon dispersion relations are validated

against those computed by DFT and the lattice thermal conductiv-
ity is compared to that obtained by first-principles anharmonic
lattice dynamics and the Boltzmann transport equation.27 We
prove that NNPs enable the calculation of thermal conductivity at
room temperature by equilibrium molecular dynamics (EMD) and
the Green–Kubo approach.28,29

II. SYSTEMS AND METHODS

A. MnxGey compounds

The properties of the stable phases of MnxGey compounds
as a function of their composition are thoroughly described by
Arras et al.22,24 The phase diagram is comprised of 16 known
phases with composition between pure Ge and pure Mn. Six of
them are stable at ambient conditions, while the others are either
stabilized by either temperature or pressure and are metastable at
ambient temperature and pressure. In the interval of stoichiometric
composition of interest to our research, i.e., from Ge to Mn5Ge3,
only Mn11Ge8 is stable at ambient conditions, while MnGe4,
MnGe, and Mn3Ge5 are stable at high pressures. In this work, we
consider the three stable phases, bulk Ge, Mn11Ge8, and
Mn5Ge3(η), and metastable MnGe (Fig. 1). Ge, MnGe, and

FIG. 1. Bulk structures: Ge (a), Mn5Ge3 (b), MnGe (c), and Mn11Ge8 (d).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 244901 (2020); doi: 10.1063/5.0009550 127, 244901-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


Mn5Ge3(η) have small unit cells consisting of 2, 8, and 16 atoms,
while Mn11Ge8 forms a lower-symmetry structure with 76 atoms
per cell. We then decided to focus on the first three structures to
train and validate the NNP and eventually to test the transferabil-
ity to Mn11Ge8 which was excluded from the training set. Since
the NNP used here is constructed as a sum of environment-
dependent atomic energies, we expect it to successfully describe
also this latter system, because the local chemical bonding envi-
ronment is quite similar to that of Mn5Ge3(η).

Except for bulk Ge, the MnxGey phases considered exhibit
magnetic ordering at low temperature. Mn5Ge3 is ferromagnetic
(FM), as consistently shown both by experiments and DFT calcu-
lations.24,30,31 The magnetic ordering of MnGe is debated, as early
experiments singled it out as antiferromagnetic, while more
recent calculations, including the present work, suggest that ferro-
magnetic ordering is slightly more stable, by about 0:4 eV per unit
cell.24 More recent neutron scattering experiments suggest a chiral
magnetic ordering that is beyond the scope of this work to
explore further.32 Mn11Ge8 is an anti-ferromagnet at low tempera-
ture, which then converts into a ferromagnet above the Néel tem-
perature of 150 K and eventually becomes paramagnetic above the
Curie temperature of 274 K.33 Our unrestricted spin-polarized cal-
culations confirm the antiferromagnetic ordering of Mn11Ge8 at
zero temperature.

B. First-principles calculations

We use DFT both to fit and to validate our NN potential. DFT
calculations, including structural relaxations of unit cells as well as
MD runs and single point calculations of structures along MD tra-
jectories, are performed within the generalized gradient approxima-
tion (GGA) by Perdew, Burke, and Ernzerhof (PBE),34 as
implemented in the plane wave code Quantum-Espresso.35 The
plane waves basis set is cut off at 55 Ry and the integration on the
first Brillouin zone is carried out on uniform Monkhorst–Pack
meshes of k-points36 chosen so as to ensure that the total energy is
converged within 0:005 eV/atom for each system. The electronic
occupation is smeared according to the Marzari–Vanderbilt scheme
with a broadening of 0.05 eV, so as to achieve more efficient conver-
gence of metallic systems.37 The core electrons are described with
the projector augmented wave (PAW) method.38 The PAW pseudo-
potential for Mn was generated using the ATOMPAW code.39 We
applied an augmentation radius of 1 Å to define the region where
the ultrasoft pseudopotential is effective. Mn pseudopotentials are
set to treat semi-core electrons explicitly, which is essential to

provide the correct level degeneracy for the Mn atom in vacuum.24

Some MnxGey compounds exhibit magnetic behavior, as they are
either ferromagnetic, anti-ferromagnetic, or non-collinear (chiral);
thus, to account for magnetic ordering, we perform unrestricted
spin-polarized calculations.

Ab initio phonon dispersion relations are calculated using
either density functional perturbation theory (DFPT)40 or the
frozen phonon approach, in which the force constants are com-
puted by finite differences over atoms displacements in a suffi-
ciently large supercell. Given the short-range nature of the forces in
the systems considered, both methods provide results with compa-
rable accuracy, as we verified for bulk Ge. While DFPT is more
general, it becomes more computationally expensive for crystals
with large number of atoms in the unit cell. Hence, for Mn5Ge3
and Mn11Ge8, we employ the frozen phonons approach with dis-
placements of the atoms of 0.01 Å.

Thermal conductivity is calculated using phono3py,27 which
implements the solution to the linearized Boltzmann transport equa-
tions (BTE) in the relaxation time approximation. Second and third
order interatomic force constants (IFCs) are computed by DFT
using the PAW method as implemented in the VASP code.41–46 To
obtain forces, total energies are converged with an accuracy better
than 10�8 eV in supercells whose size is given in Table I.

The BTE is then solved in the relaxation time approximation,
which allows one to express the lattice thermal conductivity as

κ ¼ 1
VNq

X
i,q

ci(q)vi(q)� vi(q)τ i(q): (1)

vi(q) are the phonon group velocities obtained as @ωi(q)
@q and ci(q) is

the phonon heat capacity, i.e., ci(q) ¼ �hωi(q)
@n(ω, T)

@T with n being
the Bose–Einstein distribution function. ωi(q) and vi(q) can be
obtained from the harmonic force constants alone, but to compute
τ i(q), the third order anharmonic force constants are required.27

C. Neural network potential: Details and training

We employ the Behler–Parrinello NNP scheme2,47,48 to gener-
ate a transferable linear-scaling MLP for germanium and Ge–Mn
systems. This general neural network scheme consists of a set of
symmetry functions49 that feed the atomic coordinates to a number
of hidden layers, which provide an analytical expression of the
energy. Forces are obtained as the analytical negative gradient of
the energy function. For our systems, we chose a relatively simple

TABLE I. Database of structures used to train and test the neural network potential. While we generated an extensive database of structures, we tried to find a minimal training
set, so as to avoid over-fitting problems and reduce the number of correlated structures.

Species Cell Supercell (atoms) Structures Training set

Ge fcc 2 × 2 × 2 (64) 2 522 1 340
Mn5Ge3 hex. 1 × 1 × 2 (32) 2 396 731
MnGe sc 2 × 2 × 2 (64) 1 973 640
Ge/Mn5Ge3 hex. 1 × 1 × 1 (44) 4 794 650

Total 11 685 3 361
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architecture using the code RuNNer.48,50 It consists of two hidden
layers, each containing 20 nodes. For each node, a hyperbolic
tangent is used as non-linear “activation function,” while the iden-
tity f (x) ¼ x is used as activation function for the output layer.
48 atom-centered symmetry functions represent chemical environ-
ment of each atom up to a cutoff rc ¼ 6:35 Å. A cutoff function is
defined so that the potential goes to zero with continuous first and
second derivatives at rc.

49 The NNP constructed in this way is
short-range, hence the linear scaling. As it neglects long-range, it
may not be suitable to treat strongly ionic systems, but this is not
the case for Mn–Ge. A similar approach was employed to fit a
NNP for GeTe,51 showing excellent performance in describing the
structure of its liquid and amorphous phases and the crystallization
mechanism,15,52 as well as the structure and vibrational properties
of nanowires.53 Whereas in principle, it would be possible to use
larger NN, with more layers or more nodes per layer, that would
mean adding even more parameters to fit, thus making it very diffi-
cult to achieve accuracy with a limited training set.

Fitting a reliable NNP requires a comprehensive training data-
base. As we are addressing a range of stoichiometry from pure Ge to
Mn5Ge3, besides these two compositions, we include in the database
also crystalline MnGe as a system with intermediate stoichiometry.

Furthermore, to extend the applicability to nanostructured materi-
als, e.g., superlattices Ge/MnxGey and Mn5Ge3 nanoinclusions in
bulk Ge, we add to the training set a superlattice that features
Ge[111]/Mn5Ge3[001] interfaces. This superlattice consists of a
thin Ge [111] slab (�7 Å) and an even thinner Mn5Ge3 slab ori-
ented in the [001] direction. These two surfaces form a clean
interface with good lattice matching (�6%), which was observed
in epitaxial growth experiments.54–56 The resulting interfacial
structures contain 44 atoms in its unit cell [structure (a) in Fig. 2,
while the larger models represented in panels (b) and (c) are used
for calculations only]. These structures feature low-energy and
low-strain interfaces between Ge and Mn5Ge3: the features of
these interfaces favor phase separation of Mn–Ge solid solutions
leading to the formation of nanostructured films.30

To generate a sufficient number of training structures, we per-
formed Born–Oppenheimer Molecular Dynamics (BOMD) simula-
tions of supercells containing about 100 atoms obtained replicating
the crystalline structures. BOMD simulations in the constant volume
canonical (NVT) ensemble are performed for systems at various
densities and temperatures between 300 and 700 K. We stress that it
is important to use systems at different densities to train the NNP on
larger variations of bond lengths and angles. In particular, we

FIG. 2. Ge[111]/Mn5Ge3[001] heterostructures with varying thicknesses of the Ge layer, namely, 7 Å (a), 18 Å (b), and 28 Å (c) (black boxes correspond to the respective
unit cells).
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perform MD simulations for systems with lattice parameters up
to +4% of the equilibrium lattice constants. In these simulations,
the electronic structure is computed at the Γ-point only, and
Newton’s equations of motion are integrated with a time step of
4 fs. This setup is sufficient to sample the configurational space
of the system. From the BOMD trajectories, we extract statisti-
cally uncorrelated frames—approximately one every 100 fs of MD
trajectory, with a randomized time lag—, for which we perform
well-converged electronic structure calculations, as described in
Sec. II B. These calculations provide accurate total energies and
forces that are both used to train the NNP. Since we consider
very different models, with different numbers of atoms of the
two types, total energies would not be comparable across the
training set. For this reason, we fit the NNP on atomization ener-
gies, which have a well-defined physical meaning and are consis-
tent for different systems. Further training configurations are
produced while testing the NNP in MD runs, when configura-
tions occur that are out of the interpolation range of the NNP, so
as to add cyclical self-consistence to the training procedure.

Since for each frame the number of force components, corre-
sponding to the number of degrees of freedom of the system, over-
whelms the single total energy entry, only a randomly chosen
fraction of the force components is used to fit the NNP. The best
fit is obtained a fraction of the forces corresponding to approxi-
mately 3 times the number of total energies. The parameter optimi-
zation is carried out using an adaptive Kalman filter.57 With this
optimization algorithm, the NN parameters are updated upon the
presentation of each individual energy or force component, so that
a global loss function, which would combine errors from the ener-
gies and the forces, is not required. To obtain a balanced statistical
weight of the input data, we define an error threshold on energies
and forces, and we update the NN parameters only when the error
exceeds the threshold. In this way, the optimization process selects
and gives more weight to the configurations that are less accurately
represented. The error threshold itself is not fixed but specified
with respect to the current root mean square error (RMSE) such
that the threshold decreases along with the improvement of the fit.
To avoid overfitting, we implemented an iterative search of struc-
tures that are not well represented, that is, those for which different
NNs trained to the same dataset predict very different energies and
forces. This search is carried out iteratively while improving the
potential until convergence is reached. In addition, we continuously
apply the early stopping method, i.e., not all available training
points are used for optimizing the NN parameters, but a part of the
dataset is kept as an independent test or validation set to assess the
quality of predictions for new structures.50

Details of the training set used to generate the NNP are
given in Table I. This setup leads to a root mean square error
(RMSE) of 2:2 meV/atom on the energies of the training set and
2:5 meV/atom for the test set, and it gives a RMSE of 0:085 eV/Å
and 0:089 eV/Å for the forces on the training and test sets, respec-
tively. Energies per atom obtained with the NNP against the DFT
reference are shown in Fig. 3(a) for both the training and the test
set. Figure 3(b) shows that the error on the forces is nearly equiva-
lent for all systems: although slightly larger deviations from the
DFT reference occur for Mn5Ge3, the RMSE on the forces is actu-
ally similar for the four structures considered. The parameters of

the NNP are available as data files in the supplementary material.
These are plain ASCII files, in a format readable to the code
RuNNer, and consist of a commented input file for RuNNer, the
weights of the nodes of the NN layers, and the scaling factors for
normalizing the range of the symmetry functions.

Former works adopted very large databases of structures for
the NNP Training,51,58–60 for example, the NNP for GeTe,51 which
has the same symmetry functions and similar network structure as
ours, was fitted for more than 30 000 structures. Here, however, we
try to find a minimal database with about one-tenth of the struc-
tures. Whereas on one side, we have a range of compositions, on
the other side, we can focus for the moment on crystalline struc-
tures and superlattices, thus limiting the need for transferability to
an extremely broad range of chemical environments. Therefore, we
started the refinement process with MD simulations with a prelim-
inary NN potential based on only several hundreds of structures
per Mn–Ge phase. Problematic structures from these MD runs
were picked and added to the training set in order to systematically
improve the NNP.

D. Thermal conductivity from molecular dynamics
simulations

The fitted NNP is exploited to perform MD simulations and
to compute the lattice thermal conductivity from the fluctuation of
the heat current at equilibrium using the Green–Kubo expression
for transport coefficients,

καβ ¼ V
kBT2

ð1
0
hJα(0)Jβ(t)idt, (2)

where καβ (αβ ¼ x, y, z) is the αβth component of the thermal con-
ductivity tensor, V is the volume of the simulation cell, kB is the
Boltzmann constant, T is temperature, and Jα is the αth component
of the heat current vector.

The heat current consists of the sum of a kinetic and a poten-
tial energy term,

J ¼ Jkin þ J pot ¼
X
i

Eivi þ
X
i

ri
dEi
dt

: (3)

The NNP is a short-range analytical function of the coordinates of
the system, and the use of atom centered symmetry functions is
chosen so that the total energy of the system is expressed as the sum
of atomic contributions: Etot ¼

P
i Ei. This observation is sufficient

for us to deal with the kinetic term, which usually provides a negli-
gible contribution to the total thermal conductivity of solids.
Furthermore, the symmetry functions amount to pair [f (rij)] and
three-body functions [f (rij, rik, r jk)], where rij indicates the vector
connecting two atoms within the chosen cutoff rc.

1 These features
of the NNP allow us to define a pairwise force Fij between two
atoms i and j, which includes all the three-body contributions. This
pairwise force is defined so as to satisfy two conditions: the total
force on atom i is given by Fi ¼

P
j=i Fij and Newton’s third law

holds, i.e., Fij ¼ �F ji. These conditions allow us to define a pairwise
atomic stress tensor σ i ¼ � 1

2

P
j=i rij � Fij, which, in turn, can be
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FIG. 3. Energies (a) and forces (b) computed by the neural network potential against the DFT reference. In panel (a), energies are shown for the training (left) and test
sets (right). In panel (b), forces are shown for the test set only and are given for each separate system. Both energies and forces are in atomic units, Hartree, and Hartree/
Bohr, respectively.
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used to calculate the heat current as

J pot ¼
X
i

σ i � vi: (4)

The details on how to consistently derive the two-body force and
the heat current expression for multi-body potentials are provided
in Ref. 61.

The MD simulations were conducted with a modified version
of DLPOLY v2.1962 interfaced with RuNNer, which comprises the
calculation of the heat current from the decomposition of the
many-body NNP in local energy density.18,61 The same approach
and software was employed to characterize thermal transport
in phase change material GeTe.18,19 We considered domain sizes
up to 6� 6� 6 cubic conventional cells for Ge and MnGe and
5� 5� 6 unit cells for solid Mn5Ge3. Periodic boundary condi-
tions were applied in x, y, and z directions. The Verlet algorithm
is used to integrate the equations of motion with 1 fs time step. In
all simulations, the atomic systems were first equilibrated in a
NPT (constant: number of atoms, pressure, and temperature)
ensemble for 1 ns before being switched to a NVE (constant:
number of atoms, volume, and energy) ensemble for another 1 ns.
Berendsen barostat and thermostat63,64 were used to control the
pressure and the temperature of the systems during equilibration
runs. Then, the following 10 ns simulation in NVE ensemble was
taken for data production. The flux fluctuations are computed
each 1 fs and the integral is sampled over 1000 values. The corre-
lation time upper limit of our calculations was chosen to be 50 ps.
Each simulation was run for 20 times with independent initial
velocity distributions. It is an inherent assumption in this study
that 20 independent simulations provide a representative sample
for the relevant statistical analysis. Finally, we reported the
average of the 20 independent MD runs as the predicted thermal
conductivity and the standard error as its uncertainty.

III. RESULTS AND DISCUSSION

A. Structural parameters and equation of state

We first verified that the fitted NNP reproduces the structural
and vibrational properties computed by DFT of the systems used to
build the training set. In Table II, we compare the lattice parame-
ters and the bulk moduli (B0 of Ge, MnGe, and Mn5Ge3 obtained
by computing the equations of state by NNP, DFT, and experi-
ments. Equilibrium lattice parameters and B0 are obtained by
fitting the equation of state (EOS) to a Murnaghan function65

(see Fig. 4). DFT results are in good agreement with experiments
confirming that the adopted computational framework is reason-
able to model these complex materials.22 The agreement between
DFT and NNP lattice parameters is excellent to 0.01 Å for the
lattice parameters. In addition, NNP also provides bulk moduli in
good agreement with DFT, differing at most by 6% for Mn5Ge3,
thus suggesting that the NNP reproduces well elastic deformations,
which are intrinsically connected to acoustic phonons.

B. Phonons

Producing reliable phonon dispersion relations is the first
essential step for an empirical potential to predict the lattice
thermal conductivity of a material. We computed the phonon dis-
persion relations of bulk Ge, Mn5Ge3, and MnGe along a high
symmetry path in the first Brillouin zone. The interatomic force
constants to construct the dynamical matrix were calculated using
the finite differences supercell approach, as discussed in Sec. II B.
This approach is justified by the short-range nature of the forces in
the systems considered; however, we were careful to verify the con-
vergence of the DFT dispersion relations as a function of the size of
the supercell used. As the NNP is short-range by construction, the
calculation of the phonon dispersion relations does not suffer from
size convergence issues, as long as the supercell is twice as large as
the interaction cutoff radius of the NNP. NNP and DFT phonon
dispersion relations, shown in Figs. 4(b), 4(d), and 4(f ), are in very
good agreement, especially for what concerns the acoustic branches,
which provide the main contribution to heat transport. Minor dis-
crepancies occur at higher frequency for the optical branches.

Finally, we verified that the phonons computed by NNP and
DFT agree also for the Ge[111]/Mn5Ge3[001] superlattice used in
the fitting procedure. The dispersion relations for frequencies
below 5.5 THz across the superlattice planes are shown in Fig. 5.
Agreement between DFT and NN calculation remains satisfactory,
although the longitudinal acoustic (LA) mode is slightly softened
with the NNP with respect to DFT.

C. Transferability of the NN potential

Neural networks are in general a powerful approach to inter-
polate complex datasets but they are not reliable when it comes to
extrapolation. However, NNPs may turn out transferable to phases
that were not included in the training set, provided that such
phases share a similar local chemical environment as the ones used
for training.9 In this section, we test the transferability of our
MnxGey NNP to the Mn11Ge8 phase and to Ge/Mn5Ge3 hetero-
structures with different superlattice spacings [Figs. 2(b) and 2(c)].

1. Mn11Ge8

It is not part of the training set of the generated NNP, but
since it entails structural similarities to Mn5Ge3, it is reasonable to
expect that the NNP would perform well in reproducing its struc-
tural and vibrational properties. We evaluate the Murnaghan EOS
for Mn11Ge8 [see Fig. 6(a)] and find it in good agreement with ab
initio and experimental results: the deviation in volume is only
approximately 2% compared to experiment66 and less than 1:5%
compared to former ab initio calculations.24 The error in the bulk

TABLE II. Lattice parameters and bulk moduli of Mn–Ge bulk materials evaluated
with the NN potential and with ab initio DFT calculations.

Species a (Å) and c/a B0 (GPa)

NN DFT Expt. NN DFT Expt.
Ge 5.75 5.76 5.66 62.3 60.1 76.8
MnGe 4.75 4.74 4.80 113.2 114.2 …
Mn5Ge3 7.15 7.14 7.18 104.2 111.0 110

0.697 0.697 0.703
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modulus is much larger but acceptable. The bulk modulus obtained
with NNP is 142 GPa to be compared with 105 GPa computed by
DFT. Although the NNP reproduces the structure of Mn11Ge8 with
significantly less accuracy than for the phases included in the train-
ing set, the overall agreement with DFT is fairly good.

We further use the NNP to compute the phonon dispersion
relation using a 1� 2� 1 supercell, consisting of 152 atoms. The
NNP dynamical matrix is computed by finite differences: although
the supercell is fairly large, the same approach can be used to

compute the phonons at the DFT level. The comparison between
NNP and DFT phonon dispersion relations in the Γ� X and Γ�
Z directions is shown in Fig. 6(b), zooming into the frequencies
below 2.5 THz for the sake of clarity. The transverse acoustic (TA)
phonon modes evaluated with the NN potential have slightly lower
frequencies and lower group velocity (i.e., the slope of the disper-
sion curve) than the corresponding modes from DFT, whereas the
LA mode is reproduced very well by the NNP, especially at the
center zone. In turn, the low-frequency optical modes exhibit a

FIG. 4. Murnaghan fit of the equation of state and phonon dispersion relations of Ge [(a) and (b)], Mn5Ge3 [(c) and (d)], and MnGe [(e) and (f )]: comparison of results
from ab initio (orange solid line) and the neural network potential (black dashed line).
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significant shift to lower frequencies, which affects the dispersion
of LA toward the edge of the Brillouin zone.

a. Ge/Mn5Ge3 superlattices. NNP transferability has also been
tested for the Ge/Mn5Ge3 superlattices by varying the spacing
between Mn5Ge3 layers. The interface modeled from the Ge[111]
and the Mn5Ge3[001] surface exhibits a thin Ge layer (only approx-
imately 7Å) and its hexagonal unit cell contains as few as 44 atoms
(with only five layers of Ge atoms in between two Mn–Ge phases).
However, in the present research project we aim at a description of
Mn–Ge structural features like nano-columns or -clusters in a sur-
rounding Ge matrix, i.e., much larger amount of Ge compared to
Mn–Ge phase. Therefore, we stepwise increased the Ge layer in the
interfacial structure of Ge[111]/Mn5Ge3[001] reaching Ge layers of
approximately 18Å and 28Å thickness, respectively (see Fig. 2).
These heterostructures (comprising 62 and 80 atoms in the respec-
tive unit cell) were not part of the training set of the NNP. Yet, we
expect NNP to provide a reliable representation of these systems,
since the structure of the interfaces does not change with an
increase of the Ge layer thickness.

In Fig. 7, we show the phonon dispersion relations of all three
interfacial structures, computed using NNP: the top panel provides a
close-up look into the low-frequency in-plane modes for the three
structures, which have the same in-plane cell parameters. The slope
of the TA modes depends on the thickness of the Ge layer in a non-
monotonic way, with the system with the thickest Ge layer entailing
the steepest TA slopes and the highest frequencies at zone boundary.
The LA mode near the Gamma point is much less affected by the
Ge layer, indicating that the systems have the same longitudinal
speed of sound. The cross-plane cells have different lattice parame-
ters; thus, it makes no sense to compare the cross-plane [001] disper-
sion relations on the same graph: we show the low-frequency
phonon dispersion relations in the three separate bottom panels in
Fig. 7. For the system with the thinnest Ge layer (7 Å), the dispersion
curves in the [001] direction exhibit a gap at 1 THz, which shifts at
lower frequency and widens in the system with 18 Å Ge layer. The
gap vanishes when the Ge layer is 28 Å. Calculations of heterostruc-
tures with even larger lattice parameter are made accessible by the
use of NNPs at a frugal computational cost. These findings indicate
that NNPs can also be used to efficiently design phononic structures,
such as superlattices, including the non-trivial chemical features of
the interfaces within these heterostructures.

D. Molecular dynamics and thermal conductivity

In this section, we present the results of the thermal conduc-
tivity for the three MnxGey crystals used to fit the NNP, as
obtained by equilibrium MD and the Green–Kubo approach. MD
runs on supercells of Ge, Mn5Ge3, and MnGe with several hun-
dreds of atoms showed a stable behavior at 300 K. Ge as well as
MnGe supercell also showed stable MD runs over several ps also at
elevated temperatures (500/700 K). We only observed rare instabili-
ties for Mn5Ge3 at 700 K, indicating that further high-temperature
structures should be added to the NN training set, if simulations
under these conditions become necessary. These simulations scale
linearly with the number of atoms (N) in the simulation cell, as
opposed to DFT that scales like N2 log (N); thus, NNP can be used

FIG. 5. Phonon dispersion relation of the interface Ge[111]/Mn5Ge3[001]: com-
parison of results achieved with ab initio DFT and the NN potential calculations.

FIG. 6. Equation of state (total energy of the unit cell vs cell volume) (top
panel) and phonon dispersion relation (bottom panel) of Mn11Ge8: comparison
of results from ab initio and the NN potential.
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to compute the thermal conductivity by MD, testing size conver-
gence, and performing a sufficiently large number of runs to
achieve a good statistical accuracy.

Figure 8 displays the normalized heat current autocorrelation
function (HCACF) for one example run, the running integrals and
their average over 20 statistically independent runs for Ge (supercell
5� 5� 5, 1000 atoms), Mn5Ge3 (5� 5� 6 supercell, 2400 atoms),
and MnGe (6� 6� 6 supercell, 1728 atoms). All the HCACF
[Figs. 8(a)–8(c)] decay rapidly to zero, thus making the evaluation
of the integral in Eq. (2) relatively straightforward, with a small
uncertainty on the final estimate of the thermal conductivity upon
averaging. We note that the HCACFs of Mn5Ge3 and MnGe
exhibit large fluctuations in the short time scale. These fluctuations,
which are absent for pure Ge, are a signature of the mass difference
between the elements in binary compounds, as it was formerly seen
for the doped clathrate Sr6Ge46.

67 Figures 8(d)–8(f) show the average

of the integrals of the HCACF calculated for 20 independent MD
simulations. For the sake of clarity, only the integrated thermal con-
ductivity in the z direction for each independent case was overlaid on
the corresponding average values with the final predicted thermal
conductivity and their standard error reported in each panel. For Ge
and MnGe, the calculations recover the expected isotropic value of κ
within a small error. As Mn5Ge3 has a hexagonal unit cell the
in-plane thermal conductivity (κxy) is different from that along the c
axis of the crystal (κz). The predicted κ of Ge, Mn5Ge3, and MnGe,
with supercell sizes of 5� 5� 5, 5� 5� 6 and 6� 6� 6 u.c.,
are, respectively 58:9+ 1:30, 3:3+ 0:15(xy)/4:1+ 0:16(z), and
3:0+ 0:13Wm�1 K�1. The standard error for all structures in
each direction is less than 5%, which is small enough to be
acceptable. Besides, the lattice thermal conductivity of Mn5Ge3 in
z direction (4.1 Wm�1 K�1) is larger than that in the xy direction
(3.3 Wm�1 K�1), which can be related to the anisotropy of the

FIG. 7. In-plane (a) and cross-plane [(b)–(d)] phonon dispersion relation of three Ge[111]/Mn5Ge3[001] interfaces with of the Ge layer thickness of 7, 18, and 28 Å,
computed using the neural network potential.
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hexagonal structure with space group [P63/mcm]. However, the
thermal conductivity anisotropy remains moderate, as it could be
expected while considering phonon dispersions along xy and z
directions, which do not exhibit significant differences in terms
of acoustic group velocities and frequency range [see Fig. 4(b)].

As thermal conductivity calculations by MD are particularly
sensitive to size effects,68,69 we have performed size convergence
tests for each system considered. The results obtained using super-
cells with increasing size are summarized in Fig. 9. For the isotropic
Ge and MnGe, the data are averaged in the three directions and κ
is the result of 20 statistically independent runs with the corre-
sponding standard error Δκ. For the hexagonal structure of
Mn5Ge3, we treat κxy and κz independently and report both values.
The values of the thermal conductivity of MnGe and Mn5Ge3 do
not exhibit significant variations with size, indicating that size con-
vergence is achieved for simulation cells of the order of 1000 atoms.
For crystalline Ge, we observe light variations of thermal conductiv-
ity as a function of the system size; nevertheless, such variations
remain do not exceed 5% of the value obtained with the largest
supercell considered (6� 6� 6), and the difference between the
calculation with a 5� 5� 5 and with a 6� 6� 6 is well within the
statistical error bars. The converged value of κ is 54Wm�1 K�1, in
very good agreement with experimental estimates of approximately
60Wm�1 K�1 for bulk Ge at room temperature.70,71 Besides, it is
seen that by using the fitted NN potential to describe the interac-
tion between atoms in MnxGe1�x systems, the domain size has no
major impact. The lattice thermal conductivities of the solid Ge,

FIG. 8. Normalized heat current auto-correlation function (HCACF) of single MD runs for Ge (panel a), Mn5Ge3 (b), and MnGe (c). (d)–( f ) Running integrals used to esti-
mate the thermal conductivity obtained by averaging over 20 independent simulations for the same three compounds. The light-gray curves represent the thermal conduc-
tivities in the z direction for each of the 20 independent simulations and the superimposed thick curves represent the corresponding average values. The obtained average
thermal conductivities κ in each direction and the corresponding standard errors Δκ are also indicated in each panel along with the key details of the simulations. Since
Mn5Ge3 is anisotropic in panel (e), the x/y value of the thermal conductivity is represented in red.

FIG. 9. Variation of the EMD-predicted thermal conductivity of solid Ge,
Mn5Ge3, and MnGe at 300 K with the simulation domain size (N0). For Ge and
MnGe, N ¼ N0, and for Mn5Ge3 N ¼ N0 � 1. Each bar shows the results of 20
independent simulations with standard error overlaid on the top. The red/purple
dashed horizontal line shows the thermal conductivity of solid Ge/MnGe in ferro-
magnetic (FM) state from DFT calculations with PBE exchange correlation
functional.
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Mn5Ge3, and MnGe, with largest sizes of 6� 6� 6, 5� 5� 6 and
6� 6� 6 u.c. reached in our calculations, are 54:4+ 1:5, 3:3+
0:08=4:0+ 0:13 (xy/z), and 3:1+ 0:09Wm�1 K�1, respectively.
As both MnGe and Mn5Ge3 are metallic compounds (see spin den-
sities of states in SI), their thermal conductivity would encompass
the phononic contribution, computed in this work, and an elec-
tronic contribution (κel). The latter can be estimated through
the Wiedmann–Franz law from electrical resistivity measurements:
ρ � 140 μΩ cm for MnGe72 and ρ � 500 μΩ cm for Mn5Ge3.

73

Assuming the ideal value for the Lorenz number, the correspond-
ing κel are 5.2 for MnGe and 1.5Wm�1 K�1 for Mn5Ge3, which
are of the same order as the phononic contribution.

In order to validate the calculations carried out with the
NNP, the lattice thermal conductivity of Ge and MnGe com-
puted with the EMD method is compared to that from DFT cal-
culations. These results are summarized in Table III. For
germanium, we obtain κNNþEMD ¼ 54:4+ 1:5Wm�1 K�1 and
κPBEþDFT ¼ 49:0Wm�1 K�1. Both values are close to those
reported in previous works (approximately 60Wm�1 K�1),74–76

which nevertheless use the local density approximation (LDA)
for the exchange correlation functional. The lattice thermal con-
ductivity of ferromagnetic MnGe from DFT-BTE calculations is
6.0 Wm�1 K�1, which is almost twice as much as the value of
3:1+ 0:09Wm�1 K�1 from NN potential and EMD method.
This discrepancy may probably arise from the fact that MD simula-
tions include all order of anharmonicity, while our DFT-BTE calcula-
tions truncate the expansion of the potential to the third order, thus
including only three-phonon scattering processes. In fact, recent
works pointed out the importance of four-phonon scattering, espe-
cially in strongly anharmonic systems,77 which leads to substantial
discrepancies between MD and BTE calculations.78 We stress that
such large discrepancies do not necessarily stem from the complexity
of the system or from the use of DFT. In fact, even with simple
Lennard–Jones potentials BTE and MD results start to substantially
diverge at relatively low temperature, where one would naively expect
anharmonic lattice dynamics to be still a good approximation.79

Given the capability of NNP to accurately reproduce the phonon dis-
persion relations and the equation of state of MnGe, and the inclu-
sion of all orders of phonon–phonon scattering in MD, we tend to
consider the lower value of κ obtained by EMD the best prediction
for the yet unmeasured thermal conductivity of MnGe.

IV. CONCLUSIONS

In summary, we have shown that a NNP, trained over a rela-
tively small set of crystalline configurations, provides a satisfactory

description of the structural and vibrational properties of MnxGey
compounds over a broad range of chemical compositions. The NNP
is also able to predict reasonably well the equation of state and the
phonon dispersion relations of a crystalline phase, Mn11Ge8, which
was not used for training, and it enables the calculation of the
phonon dispersion relations of Ge/Mn5Ge3 heterostructures. In spite
of numerical discrepancies between the thermal conductivity, the
MnxGey compounds computed by DFT-based anharmonic and with
the NNP, our work provides the proof of principles that the NNP
can be used to reliably compute the thermal conductivity of complex
systems by MD across a variety of compositions and chemical envi-
ronments. This is especially important because linear-scaling MD
simulations allow one to take into account phonon scattering at all
orders, which is crucial to achieve accurate predictions of κ for
complex systems with strong anharmonicity. This study may be
considered as a proof of principles of the transferability of NNPs
to compute the thermal conductivity of complex materials over
different compositions. This approach may be improved in several
ways, for example, by exploring NNPs with different structures or
using different symmetry functions.6,8,80 Further efforts may be
exerted to improve the construction of the training database by
exploring more efficiently the configurational space, so as to
reduce redundancies and overfitting.81

SUPPLEMENTARY MATERIAL

The supplementary material includes the spin density of states
for MnGe and Mn5Ge3 ferromagnetic compounds, and the param-
eter files of the neural network potential in the format interpreted
by the RuNNer code.
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