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High-gain observer design for some semilinear
reaction-diffusion systems: a transformation-based

approach
Constantinos Kitsos, Gildas Besançon, and Christophe Prieur

Abstract—The design problem of a high-gain observer is
considered for some 2×2 and 3×3 semilinear reaction-diffusion
systems, with possibly distinct diffusivities, and considering
distributed measurement of part of the state. Due to limitations
imposed by the parabolic operator, for the design of such an
observer, an infinite-dimensional state transformation is first
applied to map the system into a more suitable set of partial
differential equations. The observer is then proposed including
output correction terms and also spatial derivatives of the output
of order depending on the number of distinct diffusivities. It
ensures arbitrarily fast state estimation in the sup-norm. The
result is illustrated with a simulated example of a Lotka-Volterra
system.

Index Terms—high-gain observers, Lotka-Volterra systems,
Lyapunov stability, semilinear parabolic systems.

I. INTRODUCTION

THE problem of high-gain observer design for nonlinear
finite-dimensional systems has been widely considered

in the literature (see [19] and references therein). Briefly, it
relies on a tuning coefficient (gain), to be chosen large enough
so as to ensure arbitrarily fast exponential convergence. In
[20], [21], this approach was extended to infinite-dimensional
systems, more precisely, hyperbolic systems of balance laws,
while utilizing distributed measurement of a part of the state.

Most techniques for the state estimation of linear dis-
tributed parameter systems (the so-called late-lumping ones,
see [30] for a survey on state estimation) rely on operator
and semigroup-theoretic approaches, Lyapunov-based analysis
and backstepping, see for instance [12], [13], [28], [14], [17].
The case of state estimation for nonlinear infinte-dimensional
systems, which is significantly more complicated, has been
addressed in [31], [4], [9], [24], [3], [27], [8] amongst others,
but mainly considering the full state vector on the boundaries
as measurement, and without the high gain features.

The present paper aims at providing a solution to a high-
gain observer design problem for some Lotka-Volterra-like
semilinear parabolic systems with 2 and 3 states written in
cascade form and considering measurement of the first state
only. In this framework with a reduced number of observations
being available, the solution to an observer problem is techni-
cally not obvious, as the system’s differential operator imposes
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some limitations. More precisely, the distinct diffusivities do
not allow the observer design to be directly feasible, as in
the finite-dimensional approach. This work extends a recently
introduced transformation-based methodology in [20] and [21]
for 2 × 2 quasilinear and 3 × 3 linear hyperbolic systems
to cases of 2 × 2 and 3 × 3 semilinear parabolic systems.
The class of systems that we study might describe biological
predator-prey models and other population and social dynam-
ics phenomena [7], [2]. Such systems have gained significant
interest with respect to controllability and one can refer to [26]
(see also [11]). For Lyapunov techniques on parabolic systems,
one can refer to [23]. Moreover, observer design for (finite-
dimensional) Lotka-Volterra systems has been addressed in
[5].

The main contribution here is a solution to this high-gain
observer design problem with reduced number of observations
(only the first state) in the presence of distinct diffusivities
of the parabolic operator, and considering also semilinear
dynamics. A fundamental idea of this paper is to first per-
form an appropriate infinite-dimensional and lower triangular
transformation to map the considered systems into new sets
of PDEs, where the parabolic operator is decomposed into a
new one with only one diffusivity and a mapping, including
spatial derivations of the measured state in its domain. This
methodology imposes stronger regularity of system’s solutions
and results in requiring, additionally to the output correction
terms, the injection of ouput’s spatial derivatives in the high-
gain observer dynamics. Notice that the somehow dual control-
lability problem for cascade systems with a reduced number
of control variables runs deep [10], [1], and stronger regularity
of the dynamics is imposed in the corresponding studies. The
convergence of the observer is then proven for the sup-norm.
Moreover, in the presence of the nonlinearities, we plug in
sufficiently smooth saturation functions in the nonlinearities
of the proposed observer, while system’s solutions remain
uniformly bounded with a priori known bounds.

The paper is organized as follows. The sufficient conditions
and a solution to the high-gain observer design problem are
presented in Section II, where Theorem 1 constitutes the main
result. The proof of Theorem 1, containing also the infinite-
dimensional transformation that we use to obtain a target sys-
tem for observer design, are presented in Section III. In Section
IV, we apply our methodology to a 2 × 2 diffusional Lotka-
Volterra system. Conclusions and perspectives are discussed
in Section V.

Notation: For a given w in Rn, |w| denotes its usual



Euclidean norm. For a given matrix A in Rn×n, A> denotes its
transpose, |A| := sup {|Aw| , |w| = 1} is its induced norm and
Sym(A) = A+A>

2 stands for its symmetric part. By eig(A)
we denote the minimum eigenvalue of a symmetric matrix
A. By In we denote the identity matrix of dimension n. For
a continuous (C0) mapping [l, L] 3 x 7→ u(x) ∈ Rn we
adopt the notation ‖u‖∞ := max{|u(x)| , x ∈ [l, L]} (with
‖u‖0 := ‖u‖∞). For a q - times continuously differentiable
(Cq) mapping [l, L] 3 x 7→ u(x) ∈ Rn we adopt the notation
‖u‖q :=

∑q
i=0 ‖∂ixu‖∞. For a differentiable mapping f , by

Df we denote its Jacobian.

II. PROBLEM STATEMENT AND MAIN RESULT

In this work, being motivated by applications to information
diffusion by multiple sources in social media [29], we consider
a system of two or three one-dimensional semilinear parabolic
equations with Neumann boundary conditions, written in the
following form:

ut = Duxx +A(u1)u+ f(u) in (0,+∞)× (l, L) (1a)

u(0, x) = u0(x), x ∈ [l, L] (1b)
ux(t, l) = 0, ux(t, L) = 0, t ∈ (0,+∞). (1c)

where L > l ≥ 0 define the space domain, and u =(
u1 · · · un

)>
is the 2 or 3-dimensional vector state

(namely n = 2 or n = 3),

D = diag (d1, . . . , dn) ; di > 0, i = 1, . . . , n,

A(u1) :=



(
0 a12u1

0 0

)
, if n = 2,0 a12 0

0 0 a23

0 0 0

 (=: A), if n = 3,

f(u) :=



 r1u1

(
1− u1

K1

)
r2u2

(
1− u2

K2

)
+ a21u2u1

 , if n = 2,
r1u1

(
1− u1

K1

)
r2u2

(
1− u2

K2

)
+ a21u2u1

r3u3

(
1− u3

K3

)
+ a31u3u1 + a32u3u2

 , if n = 3,

for some constants a21, a31, a32 and positive constants
a12, a23, ri,Ki. Note here that these two types of systems are
henceforth parametrized by n, thus, whenever we say n = 2
or n = 3, we refer to the above 2 × 2 or 3 × 3 system,
respectively. Assume, also, that initial conditions u0(·), with
u0(·) ≥ 0, belong to the Banach space X , where

X := Cq0([l, L];R)× C2
(
[l, L];Rn−1

)
; (2)

q0 := max(2, 2q − 2);

q := min {i : di = dj ,∀j = i, i+ 1, . . . , n}

and X is equipped with C2-norm when n = 2 and the norm

‖u‖X := ‖u1‖q0 + ‖(u2, u3)‖2,when n = 3.

From the above definition of q, note that q ∈ {1, 2, 3} (thus
q0 ∈ {2, 4}) and when diffusivities di are distinct, we get
q = n, while q = 1, when all diffusivities are equal.

We consider a distributed measurement of the first state,
written as follows:

y(t, x) = Cu(t, x), (3)

where C =
(
1 0

)
, if n = 2, or C =

(
1 0 0

)
, if n = 3.

Remark 1: The above-considered system for n = 2 is
a diffusional Lotka-Volterra system. We underline that for
the 3 × 3 system, we consider some simpler dynamics with
respect to A(·), being constant in this case, and, thus, not
satisfying the exact form of classical 3 × 3 Lotka-Volterra
systems in cascade form. An extension of the method we adopt
here to general diffusional Lotka-Volterra cascade systems
of n species is difficult due to the nonlinearities, and the
difficulty increases with the number of distinct diffusivities.
Notice that similar difficulties, which increase with the number
of transport speeds and the types of nonlinearities, appear
in the study of controllability for cascade hyperbolic systems
with reduced number of controls [1] and come from the
notion of algebraic solvability. For such problems, stronger
regularity of the solutions is imposed; in a similar way
stronger regularity conditions are assumed here as well, in
order to solve the problem of observer design with reduced
number of observations.

In [25] it is shown that systems of the form (1), with
the present regularity conditions, admit unique local solu-
tions in the classical sense defined therein (see Lemma 1.1)
and their regularity can be understood in the usual sense,
since the nonlinear source term A(u1)u + f(u) is regular
enough. Particularly, there exist T > 0 and a unique solution
u to (1) on [0, T ), with u ∈ C1 ([0, T )× [l, L];Rn) and
u(t, ·) ∈ C2 ([l, L];Rn) ,∀t ∈ [0, T ). Furthermore, “quasi-
positivity” (see [25]) of the nonlinearities implies that these
local solutions are non-negative for non-negative initial con-
ditions u0. Here, for observer design issues, we introduce an
assumption on global existence of nonegative solutions which
are also uniformly bounded, assuming additionally some extra
regularity. In addition, we assume that, for the case n = 2,
there exists a lower positive bound for system’s first state. The
latter presents an analogy to the observer design conditions for
finite-dimensional systems, see [16].

Assumption 1: System (1) with initial condition
u0 satisfying compatibility conditions for the
space X , admits a unique and uniformly bounded
solution u in Cmax(1,q0−2) ([0,+∞)× [l, L];R) ×
C1
(
[0,+∞)× [l, L];Rn−1

)
, with u(t, ·) ∈ X , for all

t ∈ [0,+∞). For n = 3, considering non-negative initial
condition u0, this solution remains non-negative. In the case
where n = 2, we have u0(·) > 0 and its corresponding
solution u1 satisfies inf(t,x)∈[0,+∞)×[l,L] u1(t, x) > 0.

Remark 2: It is not unusual to consider global solutions
for such systems, by showing that solutions might not blow up
on some maximal time interval of existence (see assertions in
[25]). Following Theorem 3.5 in [25], we can deduce that
a sufficient condition for global existence when n = 3 is
a21, a31, a32 ≤ 0. The stronger regularity that we impose on
the solutions can be seen as a consequence of the regularity
of the initial conditions and the nonlinear source. The method



to prove this by finding a priori estimates is standard, see for
instance [22, Chap. V] and [15, Chap. 8.3.2].

We are in a position to propose an indirect observer design,
as explained below, which deals with the problem of the pres-
ence of distinct diffusivities. Let us first consider a symmetric
and positive definite matrix P satisfying a Lyapunov equation
of the following form for (t, x) ∈ [0,+∞)× [l, L]:

Sym (PA(y(t, x)))− C>C ≤ −η
2
In, (4)

for some constant η > 0. Such an inequality is always feasible
for A(y) and C satisfying particular structures as the ones we
already assumed. More explicitly, for systems with two states
(n = 2), feasibility of such an inequality requires additionally
y = u1 to satisfy Assumption 1 (having upper and lower
bounds). The existence of such a P satisfying (4) for η > 0
is shown in [16]. When n = 3, such an inequality is feasible,
due to the observability of the pair A,C. Furthermore, let us
note that such a P is never diagonal. In a possible direct ob-
server design, its asymptotic convergence would be proven by
choosing P as a Lyapunov matrix, simultaneously commuting
with the diffusion matrix D. This commutation property would
allow the integration by parts in the Lyapunov analysis and can
be only satisfied when D is a scalar matrix, which is not the
general case here. For this reason, we propose a transformation
into a new system where the parabolic operator is decomposed
into a sum of a) a new differential operator, satisfying the
previously mentioned commutation, b) a differential operator
(and possibly nonlinear) including only the first measured
state in its domain and c) a bilinear mapping between a
function of the unmeasured state and a differential operator,
including only the first state in its domain. Moreover, this
transformation is assumed to preserve the triangular structure
of A and f . That kind of transformation is, therefore, infinite-
dimensional and lower triangular. More precisely, we show
the existence of a linear bounded injective transformation
T : (X , ‖ · ‖X ) → (X , ‖ · ‖X ), with bounded inverse, which
maps initial system into a target system v, as follows:

v = T u; (5)
v1 = u1.

Such a transformation exists for the considered systems, as
shown in the sequel, although existence of a transformation
(possibly nonlinear) for more general n × n Lotka-Volterra
systems with distinct diffusivities remains open (see Remark
1). The nature of this transformation indicates the need for
stronger regularity of system’s solutions as in Assumption
1 and this requirement is linked to the sufficient conditions
for controllability problems for cascade systems with reduced
number of controls [1] (see also Remark 1).

The target system (T) of PDEs, which is suitable for
observer design, satisfies the following equations in (0,+∞)×
(l, L):

(T)


vt(t, x) = dnvxx(t, x) +A(v1(t, x))v(t, x)
+f(v(t, x)) +M1[v1(t)](x) +M2[v1(t)](x)v(t, x)
vx(l) = Kv1(l), vx(L) = Kv1(L),
yv(t, x) = y(t, x) = Cv(t, x),

with initial condition v(0, x) = v0(x) = T u0(x), whereM1 :
Cq0([l, L];R) → C0 ([l, L];Rn) ,M2 : Cq0([l, L];R) →
Cmax(0,2q−4)([l, L];Rn×n),K : Cq0([l, L];R) → Rn are
nonlinear differential operators acting on v1, to be determined
in the sequel, depending on the choice of T , and yv is target
system’s output, which remains equal to original system’s
output y. The existence of such a transformation T is shown
in Section III below.

We are now in a position to propose a high–gain observer
for target system (T) satisfying the following equations in
(0,+∞)× (l, L):

v̂t(t, x) = dnv̂xx(t, x) +A(y(t, x))v̂(t, x)

+ ΘP−1C> (y(t, x)− Cv̂(t, x)) + (f ◦ sδ) (v̂(t, x))

+M1[y(t)](x) +M2[y(t)](x)v̂(t, x), (7a)
v̂x(l) = Ky(l), v̂x(L) = Ky(L), (7b)

with initial condition v̂0(x) := v̂(0, x) (for some function
v̂0 in X , satisfying compatibility conditions for this space).
Also, Θ := diag

{
θ, θ2, . . . , θn

}
, with θ > 1 being the

candidate high-gain constant of the observer, to be selected
sufficiently large and precisely determined in the sequel, and
P is symmetric and positive definite, satisfying (4) for some
η > 0. We also injected in the nonlinear dynamics a vector-
valued function Rn 3 v̂ 7→ sδ(v̂) = (sδ,1(v̂1), . . . , sδ,n(v̂n)) ,
parametrized by

δ := sup
t∈[0,+∞)

‖v(t, ·)‖X ,

which is a well-defined constant by Assumption 1, in con-
junction with (5) and boundedness of T . There is no need,
however, to inject this function in the appearing linear terms,
since they are already globally Lipschitz, although this is not
explicitly written here. Alternatively, one can avoid injecting
sδ(v̂1) in observer’s nonlinear dynamics, but use y instead,
and we adopt this simplification in the example of the last
section. We assume that sδ is of class C2 and satisfies the
following properties:

1) For every δ > 0 and w, ŵ in R, such that |w| ≤ δ, there
exists ωδ > 0, such that the following inequality is satisfied:

|sδ,i(ŵ)− w| ≤ ωδ|ŵ − w|, i = 1, . . . , n. (8a)

2) There exists mδ > 0, such that for every ŵ in R,

| d
j

dŵj
sδ,i(ŵ)| ≤ mδ, j = 0, 1, 2, i = 1, . . . , n. (8b)

We are now in a position to present our main result on the
convergence of the proposed high–gain observer.

Theorem 1: Consider system (1) with output (3) and
suppose that Assumption 1 holds. Then, there exists a linear
bounded injective operator T with bounded inverse, trans-
forming system (1) into system (T). Let also P be a symmetric
and positive definite matrix, satisfying (4) for some η > 0.
Then, for θ large enough, T −1v̂ provides an estimate for the
solution u to (1), where v̂ is the unique solution to observer
system (7). More precisely, for every κ > 0, there exists
θ0 ≥ 1, such that for every θ ≥ θ0, the following holds for all
t ≥ 0:

‖T −1v̂(t, ·)− u(t, ·)‖∞ ≤ ce−κt‖T −1v̂0(·)− u0(·)‖X , (9)



for some c > 0, polynomial in θ.

III. OBSERVER CONVERGENCE PROOF

In this section, we prove Theorem 1.
First, we show the existence of T of the form (5) mapping

(1)-(3) into target system (T). Let us choose

T :=


I2, n = 2, 1 0 0
b∂2
x 1 0

0 0 1

 , n = 3
;

where b := d3−d2
a12

, with T being obviously invertible. Then,
applying this transformation to the initial system, we obtain
system (T) with

M1[v1] :=



(
(d1 − d3)∂2

xv1

0

)
, n = 2,

(d1 − d3 − a12b)∂
2
xv1

[
b(d1 − d3)∂4

x + b(r1 − r2)∂2
x

]
v1−

−b
(
a21 + 2 r1

K1

)
u1∂

2
xv1−

−2b r1K1
(∂xv1)2 − b2 r2

K2
(∂2
xv1)2


0

 , n = 3,
,

M2[v1] :=


0, n = 2,0 0 0

0 2b r2K2
∂2
xv1 0

0 0 −ba32∂
2
xv1

 , n = 3,
,

K := 0, if n = 2,

K :=

 0
b∂2
x

0

 , if n = 3.

We note here some properties, that are invoked later in
the well-posedness of the observer and its convergence proof.
First, notice that by virtue of Assumption 1 on boundedness of
the system’s solutions in ‖ · ‖X , boundedness of mapping T ,
and the dynamics of target system (T), vt, vxx, and vtxx are
uniformly bounded in the sup-norm. Now, due to continuity
of the nonlinear operators M1,M2, we get

sup
‖y‖q0≤δ

|M1[y]| < +∞,

σδ := sup
‖y‖q0≤δ

|M2[y]|, σ′δ := sup
‖v‖X≤δ

|M2[Cvt]| < +∞.

(10)

Furthermore, in view of boundedness of solutions (Assumption
1), dynamics of v, and properties (8), for any δ > 0, there
exist constants Lδ, L′δ > 0, such that for every v, v̂ in X , with
‖v‖X ≤ δ, the following inequalities are satisfied for all x in
[l, L]:

|(f ◦ sδ)(v̂(x))− f(v(x))| ≤ Lδ|v̂(x)− v(x)|, (11a)
|D(f ◦ sδ)(v̂(x)) · v̂t(x)−Df(v(x)) · vt(x)|
≤ L′δ (|v̂(x)− v(x)|+ |v̂t(x)− vt(x)|) . (11b)

Now, to show well-posedness of the observer sys-
tem, we recall general existence results for systems
written in the form ż(t) = Az(t) + F (y(t), z(t)),
see for instance [6] (see also [18, Example 3.6, p.
75]). Here A is the parabolic operator with domain
D(A) =

{
z ∈ C2([l, L];Rn), z′(l) = Ky(l), z′(L) = Ky(L)

}

and F (y(t), z(t)) := A(y(t))z(t) + M2[y(t)]z(t) +
(f ◦ sδ) (z(t)) + ΘP−1C> (y(t)− Cz(t)) +M1[y(t)] is the
nonlinear source term of the observer, which is uniformly
Lipshitz continuous with respect to z when system’s output
y satisfies Assumption 1. Then, the existence of a unique
local solution z in C1 ([0, T1)× [l, L];Rn) with z(t) ∈
C2([l, L];Rn),∀t ∈ [0, T1) (for some T1 > 0) is guaran-
teed. Following the continuous differentiability of the non-
linear source, existence in space X for n = q = 3
can be deduced by considering the initial value problem
for ż1, which can be written as d

dt ż1(t) = A1ż1(t) +
G(t, y(t), ẏ(t), z(t), ż(t)); A1w := dnw

′′, with D(A1) ={
ż1 ∈ C2((l, L);R), ż′1(l) = CKẏ(l), ż′1(L)

= CKẏ(L)} and initial conditions ż1(0) satisfy compat-
ibility conditions of order 1. G is uniformly Lipschitz
with respect to ż, when y satisfies Assumption 1 and,
thus, system admits a unique solution ż1 on [0, T2) for
some T2 > 0, belonging to C1 ([0, T2)× [l, L];R) with
ż1(t) ∈ C2([l, L];R),∀t ∈ [0, T2). Concluding, observer
system admits a unique solution on [0, T ∗), with T ∗ :=
min(T1, T2), belonging to Cmax(1,q0−2) ([0, T ∗)× [l, L];R)×
C1
(
[0, T ∗)× [l, L];Rn−1

)
, with û(t, ·) ∈ X , for all t ∈

[0, T ∗).
Let us now proceed to the stability proof. We define a scaled

observer error ε := Θ−1 (v̂ − v), for which we derive the
following parabolic equations in (0,+∞)× (l, L):

εt(t, x) = dnεxx(t, x) + θ
(
A(y(t, x))− P−1C>C

)
ε(t, x)

+M2[y(t)](x)ε(t, x) + Θ−1 ((f ◦ sδ)(v̂(x))− f(u(x))) ,
(12a)

εx(l) = εx(L) = 0. (12b)

Furthermore, for systems with n = q = 3, by temporarily
assuming some extra regularity for v2, v̂2, v3, v̂3, which will be
dropped by density arguments, we get the following parabolic
equations for εt:

εtt(t, x) = dnεtxx(t, x) + θ
(
A− P−1C>C

)
εt(t, x)

+M2[yt(t)](x)ε(t, x) +M2[y(t)](x)εt(t, x)

+Θ−1 (D(f ◦ sδ)(v̂(x)) · v̂t(x)−Df(v(x)) · vt(x)) , (13a)
εtx(l) = εtx(L) = 0. (13b)

To prove the error’s exponential stability with respect to its
origin, we adopt a Lyapunov-based approach. Let us define a
Lyapunov functional Wp : X → R by

Wp[ε] :=

(∫ L

l

Gp[ε](x)dx

)1/p

;

Gp[ε](x) :=

(
q̄∑
i=0

∂itε
>(x)P∂itε(x)

)p
, (14)

with q̄ := (q−1)(q−2)
2 and p in N. Denoting Wp(t) :=

Wp[ε(t)], Gp(t) := Gp[ε(t)], t ∈ [0, T ∗], we calculate the



time-derivative Ẇp along the solutions ε, εt to (12), (13) as
follows:

Ẇp =
1

p
W 1−p
p

∫ L

l

pGp−1(x)
(
εt(x)>Pε(x)

+ε(x)>Pεt(x) + q̄εtt(x)>Pεt(x)

+q̄εt(x)>Pεtt(x)
)

dx.

After substituting (12), (13) and performing an integration by
parts, Ẇp can be written as follows:

Ẇp = W 1−p
p

(
1

p
T1,p + T2,p + T3,p

)
, (15)

where

T1,p := dpn [∂xGp]
L
l ,

T2,p := 2

∫ L

l

Gp−1

[
ε>PΘ−1 ((f ◦ sδ)(v̂)− f(u))

+q̄ε>t PΘ−1 (D(f ◦ sδ)(v̂)v̂t −Df(v)vt)

+ε>Sym (PM2[y]) ε+ q̄ε>t Sym (PM2[y]) εt

+
q̄

2
ε>t PM2[yt]ε+

q̄

2
ε>M2[yt]Pεt − ε>x Pεx

−q̄ε>txPεtx
]

dx,

T3,p := 2θ

∫ L

l

Gp−1

(
ε>
[
Sym (PA(y))− C>C

]
ε

+q̄ε>t
[
Sym (PA)− C>C

]
εt
)

dx.

By use of boundary conditions (12b), (13b) and also (4), (10),
and (11a), we get

T1,p = 0, T2,p ≤ σW p
p , T3,p ≤ −θ

η

|P |
W p
p ,

with σ := 2 |P |
eig(P ) (

√
n (Lδ + q̄L′δ) + σδ(q̄ + 1) + q̄σ′δ) . Now,

selecting high-gain θ > max
(

1, |P |η σ
)
, we get by (15) that

there exists a κ > 0, such that Ẇp(t) ≤ −2κWp(t), t ∈
[0, T ∗]. By comparison lemma, we get the following estimate

Wp(t) ≤ e−2κtWp(0), t ∈ [0, T ∗].

By this estimate, we deduce that solutions in X to the observer
system exist globally in time and, therefore, stability result
holds for all t ≥ 0. We invoke, next, the property

lim
p→∞

Wp =

q̄∑
i=0

‖∂itε>(·)P∂itε(·)‖∞,

holding for continuous ε, εt and also the following inequality
which is derived by error equations (12):

a1 (‖εxx‖∞ − ‖ε‖∞) ≤ ‖εt‖∞ ≤ a2(‖εxx‖∞ + ‖ε‖∞),

for some constants a1, a2 > 0 that we can easily calculate.
Following the above arguments, we can calculate a positive c̄
(polynomial in θ), for which the following inequality holds:

q̄∑
i=0

‖∂2i
x v̂(t, ·)− ∂2i

x v(t, ·)‖∞ ≤ c̄e−κt

×
q̄∑
i=0

‖∂2i
x v̂

0(·)− ∂2i
x v

0(·)‖∞, t ≥ 0.

Fig. 1. Time and space evolution of system’s output

Now, from continuous embedding of X in C2([l, L];Rn)
and boundedness of T , from the continuous embedding of
C2([l, L];Rn) in C0([l, L];Rn) and from boundedness of the
continuous extension of the inverse T −1 on C0([l, L];Rn), we
deduce stability inequality (9).

The proof of Theorem 1 is complete.

IV. SIMULATION

In this section we apply the proposed high–gain observer
design to a 2× 2 Lotka–Volterra system (1) as an illustration,
with l = 0, L = 10, diffusivities d1 = 2, d2 = 1 and a12 =
0.2, a21 = −0.2,K1 = 15,K2 = 0.1, r1 = 0.5, r2 = 0.01. We
choose initial conditions u0

1(x) = cos(πx/10) + 6, u0
1(x) =

−3 cos(πx/10)+9, such that Assumption 1 is satisfied with a
global bound for the solution, which can be known a priori, to
be δ = 20. The corresponding output is represented in Figure
1.

The proposed high-gain observer has the form (7). Exploit-
ing the a priori known bounds of system’s output, we choose

η = 0.5, P =

(
13.4 0.667
0.667 0.14

)
, for which (4) holds. We next

apply Theorem 1, with observer given by (7) and θ = 4. As
expected, the convergence of observer state to the unknown
state u is guaranteed.

In figures 2, 3 we see the observation errors for each of
the states u1, u2, after choosing arbitrary observer’s initial
conditions, satisfying also observer’s boundary conditions.

V. CONCLUSION

In this contribution, a high-gain observer for a class of
2 × 2 and 3 × 3 observable semilinear parabolic systems of
Lotka-Volterra type, with possibly distinct diffusivities, has
been presented, considering distributed measurement of part
of the state. This result constitutes an extension of the high-
gain observer design for finite-dimensional systems to a class
of nonlinear parabolic systems via an indirect approach and,
also, an extension of previous works towards this direction
for hyperbolic systems. To overcome a technical obstacle



Fig. 2. Time and space evolution of the first estimation error

Fig. 3. Time and space evolution of the second estimation error

imposed by the parabolic operator, system is assumed to have
stronger regularity and it is first mapped into a target system of
PDEs. An observer for this system is designed, utilizing output
correction terms and injection of output spatial derivatives.
The extension of this methodology to more complex infinite-
dimensional systems with more states and different couplings
will be subject for our future work.
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[3] G. Besançon, B. Pham, and D. Georges, Robust state estimation for
a class of convection-diffusion-reaction systems, IFAC Workshop on
Control of Systems Governed by partial Differential Equations, Paris,
France, 2013.

[4] H. Bounit and H. Hammouri, Observer design for distributed parameter
dissipative bilinear systems, Appl. Math. Comput. Sci., vol. 8, pp. 381-
–402, 1998.

[5] D. Bourat and M. Saif, Nonlinear observer normal forms for some
predator-prey models, IFAC Symposium on Nonlinear Control Systems,
Toulouse, France, pp. 682–687, 2013.
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[11] E. Crépeau and C. Prieur, Approximate controllability of a reaction-
diffusion system, Systems Control Lett., vol. 57(12), pp. 1048—1057,
2008.

[12] R. F. Curtain, Finite-dimensional compensator design for parabolic
distributed systems with point sensors and boundary input, IEEE Trans-
actions on Automatic Control, vol. 27, no. 1, pp. 98–104, 1982.

[13] M. Demetriou, Second order observers for second order distributed
parameter systems, Syst. Control Lett., vol. 51, pp. 225—234, 2004.
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