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Mean Field Games with monotonous interactions through the law of states and controls of the agents

We consider a class of Mean Field Games in which the agents may interact through the statistical distribution of their states and controls. It is supposed that the Hamiltonian behaves like a power of its arguments as they tend to infinity, with an exponent larger than one. A monotonicity assumption is also made. Existence and uniqueness are proved using a priori estimates which stem from the monotonicity assumptions and Leray-Schauder theorem. Applications of the results are given.

-Introduction

The theory of Mean Field Games (MFG for short) aims at studying deterministic or stochastic differential games (Nash equilibria) as the number of agents tends to infinity. It has been introduced in the independent works of J.M. Lasry and P.L. Lions [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF], and of M.Y. Huang, P.E. Caines and R.Malhamé [START_REF] Huang | Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ǫ-Nash equilibria[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]. The agents are supposed to be rational (given a cost to be minimized, they always choose the optimal strategies), and indistinguishable. Furthermore, the agents interact via some empirical averages of quantities which depend on the state variable.

The most common Mean Field Game systems, in which the agents may interact only through their states can often be summarized by a system of two coupled partial differential equations which is named the MFG system. On the one hand, the optimal value of a generic agent at some time t and state x is denoted by u(t, x) and is defined as the lowest cost that a representative agent can achieve from time t to T if it is at state x at time t. The value function satisfies a Hamilton-Jacobi-Bellman equation posed backward in time with a terminal condition involving a terminal cost. On the other hand, there is a Fokker-Planck-Kolmogorov equation describing the evolution of the statistical distribution m of the state variable; this equation is a forward in time parabolic equation, and the initial distribution at time t = 0 is given. Here we take a finite horizon time T > 0, and we only consider second-order nondegenerate MFG systems. In this case, the MFG system is often written as:

(1.1)

           -∂ t u(t, x) -ν∆u(t, x) + H(t, x, ∇ x u(t, x)) = f (t, x, m(t)) in (0, T ) × R d , ∂ t m(t, x) -ν∆m(t, x) -div(H p (t, x, ∇ x u(t, x))m) = 0 in (0, T ) × R d , u(T, x) = g(x, m(T )) in R d , m(0, x) = m 0 (x) in R d .
We refer the reader to [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] for some theoretical results on the convergence of the N -agent Nash equilibrium to the solutions of the MFG system. For a thorough study of the well-posedness of the MFG system, see the videos of P.L. Lions' lecture at the Collège de France, and the lecture notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF].

In this paper we are considering a class of Mean Field Games in which agents may interact through their states and controls. To underline this, we choose to use the terminology Mean Field Games of Controls (MFGCs); this terminology was introduced in [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF].

Since the agents are assumed to be indistinguishable, a representative agent may be described by her state, which is a random process with value in R d denoted by (X t ) t∈[0,T ] and satisfying the following stochastic differential equation, (1.2)

dX t = b (t, X t , α t , µ α (t)) dt + √ 2νdW t ,
where X 0 is a random process whose law is denoted by m 0 , (W t ) t∈[0,T ] is a Brownian motion on R d independefn with X 0 , and α t is the control chosen by the agent at time t. The diffusion coefficient ν is assumed to be uncontrolled, constant and positive. The drift b naturally depends on the control, and may also depend on the time, the state, and on the mean field interactions of all agents through µ α the joint distribution of states and controls. At the equilibrium µ α should be the law of the state and the control of the representative agent, i.e. µ α (t) = L (X t , α t ), for t ∈ [0, T ]. The aim of an agent is to minimize the functional given by,

(1.3) E T 0 L (t, X t , α t , µ α (t)) + f (t, X t , m(t)) dt + g (X T , m(T )) ,
where m(t) is the distribution of agents at time t, which should satisfy m(t) = L (X t ) at the equilibrium. The coupling function f and the terminal cost g depend on m in a nonlocal manner.

From L the Lagrangian and b the drift, we define H the Hamiltonian by, Under some assumptions on b and L that will be introduced later, there exists a unique α which achieves the supremum in the latter equality and it also satisfies, b (t, x, α, µ α ) = -H p (t, x, p, µ α ) .

In an attempt to keep this paper easy to read, we introduce µ b as the joint law of states and drifts defined by (1.5) µ b (t) = (x, α) → (x, b (t, x, α, µ α (t))) #µ α (t).

We believe that the fixed point relation satisfied by µ α at equilibrium is more clear if we distinguish µ b from µ α . We assume that b is invertible with respect to α in such a way that its inverse map can be expressed in term of µ b instead of µ α , see Assumption B1 below. This allows us to define α -∂ t u(t, x) -ν∆u(t, x) + H (t, x, ∇ x u(t, x), µ α (t)) = f (t, x, m(t)) in (0, T ) × R d , ∂ t m(t, x) -ν∆m(t, x) -div (H p (t, x, ∇ x u(t, x), µ α (t)) m) = 0 in (0,

* : [0, T ] × R d × R d × P R d × R d → R d
T ) × R d , µ α (t) = x, b → x, α * t, x, b, µ b (t) #µ b (t) in [0, T ], µ b (t) = I d , -H p (t, •, ∇ x u(t, •), µ α (t)) #m(t) in [0, T ], u(T, x) = g(x, m(T )) in R d , m(0, x) = m 0 (x) in R d .
The structural assumption under which we prove existence and uniqueness of the solution to (1.6) is that L satisfies the following inequality,

R d ×R d L t, x, α, µ 1 -L t, x, α, µ 2 d µ 1 -µ 2 (x, α) ≥ 0.
for any t ∈ [0, T ], µ 1 , µ 2 ∈ P R d × R d . This is the Lasry-Lions monotonicity assumption extended to MFGC that will be referred to as A3. This assumption is particularly adapted to applications in economics or finance. This work follows naturally the analysis in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] in which a MFGC system in the d-dimensional torus and with b = α is considered. In [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF], the monotonicity assumption is replaced by another structural assumption, namely that the optimal control -H p is a contraction with respect to the second marginal of µ (when the other arguments and the first marginal are fixed) and that it is bounded by a quantity that depends linearly on the second marginal of µ with a coefficient smaller than 1.

Related works

Monotonicity assumptions for MFGC like A3 have already been discussed in [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF][START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF][START_REF] Gomes | Extended mean field games[END_REF]. In [START_REF] Gomes | Extended mean field games[END_REF], the authors proved uniqueness of the solution to (1.6) with b = α and ν = 0 when it exists. In [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF] Section 4.6, existence and uniqueness are proved in the quadratic case with a uniformly convex Lagrangian and under an additional linear growth assumption on H x . In [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF], the existence of weak solutions to a MFGC system with a possibly degenerate diffusion operator is proved assuming that the inequalities satisfied by H, its derivatives or the optimal control (here defined in B1 as α * ), are uniform with respect to the joint law of states and controls µ α .

A particular application of MFGC satisfying A3, namely the Bertrand and Cournot competition for exhaustible ressource described in paragraph 3.1, has been broadly investigated in the literature. Let us mention a non exhaustive list of such works: [START_REF] Frédéric | Schauder Estimates for a Class of Potential Mean Field Games of Controls[END_REF][START_REF] Chan | Bertrand and Cournot mean field games[END_REF][START_REF] Graber | Existence and uniqueness of solutions for Bertrand and Cournot mean field games[END_REF][START_REF] Guéant | Mean field games and applications[END_REF][START_REF] Jameson | On Mean Field Games models for exhaustible commodities trade[END_REF]. Its mean field version has been introduced in [START_REF] Guéant | Mean field games and applications[END_REF], and obtained from the N -agent game in [START_REF] Chan | Bertrand and Cournot mean field games[END_REF] in the case of a linear supply-demand function. A generalization to the multi-dimensional case is discussed in [START_REF] Frédéric | Schauder Estimates for a Class of Potential Mean Field Games of Controls[END_REF], and an extension to negatively correlated ressources is addressed in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF].

A class of MFGC in which the Lagrangian depends separately on α and µ, has been investigated in [START_REF] Carmona | A probabilistic weak formulation of mean field games and applications[END_REF] and [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF]. In this case, A3 is naturally satisfied since the left-hand side of the inequality is identically equal to 0. An existence result is proved in [START_REF] Carmona | A probabilistic weak formulation of mean field games and applications[END_REF] under the additional assumption that the set of admissible controls is compact. The existence of solution is also proved in [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF] Theorem 4.65 when the dependency of L upon µ is uniformly bounded with respect to µ.

The non-monotone case has been studied in [START_REF] Diogo | On the existence of classical solutions for stationary extended mean field games[END_REF][START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF]. In [START_REF] Diogo | On the existence of classical solutions for stationary extended mean field games[END_REF], an existence result is proved in the stationnary setting and under the assumption that the dependence of H on µ is small. In [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF], the existence of solutions to the MFGC system in the d-dimensional torus and with b = α is discussed under similar growth assumptions as here. By and large, existence of solutions to a MFGC system posed on the d-dimensional torus and with b = α was proved in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] in any of the following cases:

• short time horizon,

• small enough parameters,

• weak dependency of H upon µ,

• weak dependency of H x upon µ, and uniqueness is proved only for a short time horizon. Indeed without a monotonicity assumption, it is unlikely that uniqueness holds in general, numerical examples of non-uniqueness of solutions to discrete approximations of (1.6) with b = α and in a bounded domain are showed in [START_REF] Achdou | Mean field games of controls: Finite difference approximations[END_REF].

Organization of the paper

In Section 2, the notations and the assumptions are described, the case when the control is equal to the drift is discussed. The main results of the paper, namely the existence and uniqueness of solution to (1.6), are stated in paragraph 2.3. We give some insights on our strategy for proving the main results in paragraph 2.3. Two applications of the MFGC system (1.6) are presented in Section 3. Section 4 is devoted to solving the fixed point relation in the joint law of state and control in the particular case when the drift is equal to the control. Section 5 consists in giving a priori estimates for a MFGC system posed on the d-dimensional torus. In Section 6, we prove existence and uniqueness of the solution to (1.6) and of an intermediate MFGC system.

-Assumptions

Notations

The spaces of probability measures are equipped with the weak* topology. We denote by P 2 R d the subset of P R d of probability measures with finite second moments, and P ∞ R d × R d the subset of measures µ in P R d × R d with a second marginal compactly supported. For µ ∈ P ∞ R d × R d and q ∈ [1, ∞), we define the quantities Λ q (µ) and Λ ∞ (µ) by, (2.1)

Λ q (µ) = R d ×R d |α| q dµ (x, α) 1 q , Λ ∞ (µ) = sup {|α| , (x, α) ∈ supp µ} .
For R > 0, we denote by 

P ∞,R R d × R d the subset of measures µ in P ∞ R d × R d such that Λ ∞ (µ) ≤ R.
P m R d × R d the set of such measures. For µ ∈ P m R d × R d , we set α µ to be the unique element of L ∞ (m) such that µ = (I d , α µ ) #m.
Here, Λ q (µ) and Λ ∞ (µ) defined in (2.1) are given by (2.2)

Λ q ′ (µ) = α µ L q ′ (m) , Λ ∞ (µ) = α µ L ∞ (m) . Let C 0 [0, T ] × R d ; R n be the set of bounded continuous functions from [0, T ]×R d to R n , for n a positive integer. We define C 0,1 [0, T ] × R d ; R as the set of the functions v ∈ C 0 [0, T ] × R d ; R
differentiable at any point with respect to the state variable, and whose its gradient

∇ x v is in C 0 [0, T ] × R d ; R d the set of continuous functions from [0, T ] × R d to R d .
We shall have the use of the parabolic spaces of Hölder continuous functions

C β 2 ,β ([0, T ] × R d ; R n ) defined for any β ∈ (0, 1) and n ≥ 1 by, C β 2 ,β [0, T ] × R d ; R n =    v ∈ C 0 ([0, T ] × R d ; R n ), ∃C > 0 s.t. ∀(t 1 , x 1 ), (t 2 , x 2 ) ∈ [0, T ] × R d , |v(t 1 , x 1 ) -v(t 2 , x 2 )| ≤ C |x 1 -x 2 | 2 + |t 1 -t 2 | β 2    .
This is a Banach space equipped with the norm,

v C β 2 ,β = v ∞ + sup (t 1 ,x 1 ) =(t 2 ,x 2 ) |v(t 1 , x 1 ) -v(t 2 , x 2 )| (|x 1 -x 2 | 2 + |t 1 -t 2 |) β 2
.

Then we introduce the Banach space

C 1+β 2 ,1+β ([0, T ] × R d ; R) for β ∈ (0, 1) as the set of the functions v ∈ C 0,1 ([0, T ] × R d ; R) such that ∇ x v ∈ C β 2 ,β [0, T ] × R d ; R n
and which admits a finite norm defined by,

v C 1+β 2 ,1+β = v ∞ + ∇ x v C β 2 ,β + sup (t 1 ,x) =(t 2 ,x)∈[0,T ]×R d |v(t 1 , x) -v(t 2 , x)| |t 1 -t 2 | 1+β 2 .
When the drift b is equal to the control α, (1.6) can be simplified in the following system, (

(2.3e)

-∂ t u(t, x) -ν∆u(t, x) + H (t, x, ∇ x u(t, x), µ(t)) = f (t, x, m(t)) in (0, T ) × R d , ∂ t m(t, x) -ν∆m(t, x) -div (H p (t, x, ∇ x u(t, x), µ(t)) m) = 0 in (0, T ) × R d , µ(t) = I d , -H p (t, •, ∇ x u(t, •), µ(t)) #m(t) in [0, T ], u(T, x) = g(x, m(T )) in R d , m(0, x) = m 0 (x) in R d .
Here, making a distinction between µ α and µ b is pointless since they coincide. Therefore, we simply use the notation µ. For the system (2.3), the Hamiltonian is defined as the Legendre transform of L, 

(2.4) H (t, x, p, µ) = sup α∈R d -p • α -L (t, x, α, µ) . Definition 2.1. We say that (u, m, µ α , µ b ) is a solution to (1.6) if • u ∈ C 0,1 [0, T ] × R d ; R

Hypothesis

The monotonicity assumption made in this paper concerns the Lagrangian. For this reason and the fact that sometimes it may be hard to obtain an explicit form of the Hamiltonian (like in the example of paragraph 3.2 below), all the assumptions will be formulated in term of the Lagrangian and never in term of the Hamiltonian. In particular, working with the Lagrangian gives more flexibility in the arguments of the proofs. The constants entering the assumptions are C 0 a positive constant, q ∈ (1, ∞) an exponent, q ′ = q q-1 its conjugate exponent, and β 0 ∈ (0, 1) a Hölder exponent.

A1 L : [0, T ] × R d × R d × P R d × R d → R is differentiable with respect to (x, α); L and its derivatives are continuous on [0, T ] × R d × R d × P ∞,R R d × R d for any R > 0; we recall that P ∞,R R d × R d is
endowed with the weak* topology on measures; we use the notation L x , L α and L (x,α) for respectively the first-order derivatives of L with respect to x, α and (x, α) .

A2

The maximum in (1.4) is achieved at a unique α ∈ R d .

A3 L satisfies the following monotonicity condition,

R d ×R d L t, x, α, µ 1 -L t, x, α, µ 2 d µ 1 -µ 2 (x, α) ≥ 0. for any t ∈ [0, T ], µ 1 , µ 2 ∈ P R d × R d . A4 L(t, x, α, µ) ≥ C -1 0 |α| q ′ -C 0 1 + Λ q ′ (µ) q ′ , where Λ q ′ is defined in (2.1), A5 |L(t, x, α, µ)| ≤ C 0 1 + |α| q ′ + Λ q ′ (µ) q ′ , and |L x (t, x, α, µ)| ≤ C 0 1 + |α| q ′ + Λ q ′ (µ) q ′ , A6 R d |x| 2 dm 0 (x) ≤ C 0 , m 0 C β 0 ≤ C 0 , f (t, •, m) C 1 ≤ C 0 , g(•, m) C 2+β 0 ≤ C 0 , for any t ∈ [0, T ] and m ∈ P R d .
Assumption A3 can be interpreted as a natural extension of the Lasry-Lions monotonicity condition to MFGC. Roughly speaking, the Lasry-Lions monotonicity condition in the case of MFG without interaction through controls, translates the fact that the agents have aversion for crowed regions of the state space. In the case of MFGC, the monotonicity condition implies that the agents favor moving in a direction opposite to the mainstream. Such an assumption is adapted to models of agents trading goods or financial assets. Indeed in most of the models coming from economics or finance, a buyer may prefer to buy when no one else is buying, and conversely a seller may prefer to sell when no one else is selling.

Assumptions A4 and A5 imply that at least asymptotically when α tends to infinity, L behaves like a power of α of exponent q ′ . Under the monotonicity assumption A3, uniqueness is in general easier to obtain than existence. For uniqueness, we assume that f and g are also monotonous, this is the purpose of the following assumption.

U For m 1 , m 2 ∈ P R d , and t ∈ [0, T ], assume that,

R d f t, x, m 1 -f t, x, m 2 d m 1 -m 2 (x) ≥ 0, R d g x, m 1 -g x, m 2 d m 1 -m 2 (x) ≥ 0.
In fact, assuming that f satisfies the inequality in U, implies that we can take f = 0 up to replacing L by L + f and H by H -f . However, since U is not assumed for proving the existence of solutions, we have chosen to write this assumption explicitly, and keeping f = 0 is not pointless.

Let us now make assumptions on the drift function b, which concern the system (1.6), B1 There exists a function α

* : [0, T ] × R d × R d × P R d × R d → R d such that for any t, x, b, µ α ∈ [0, T ] × R d × R d × P R d × R d , b = b t, x, α * t, x, b, µ b , µ α ,
where µ b is defined by µ b = (x, α) → (x, b (t, x, α, µ α )) #µ α . Moreover α * is differentiable with respect to x and b; α * and its derivatives are continuous on

[0, T ] × R d × R d × P ∞,R R d × R d for any R > 0.
B2 b and α * satisfy

|b (t, x, α, µ α )| ≤ C 0 1 + |α| q 0 + Λ q ′ (µ α ) q 0 , α * t, x, b, µ b q 0 + α * x t, x, b, µ b q 0 ≤ C 0 1 + | b| + 1 q 0 =0 Λ q ′ q 0 (µ b ) ,
for some exponent q 0 such that 0 ≤ q 0 ≤ q ′ .

Roughly speaking B1 means that b is invertible with respect to α in such a way that its inverse map can be expressed in term of µ b instead of µ α . Conversely, if B1 holds, then for any

(t, x, α, µ b ) ∈ [0, T ] × R d × R d × P R d × R d , α = α * (t, x, b (t, x, α, µ α ) , µ b ) .
where µ α is defined by

µ α = x, b → x, α * t, x, b, µ b #µ b .
The inequalities in B2 means that |b| behaves asymptotically like a power of α with exponent q 0 , when |α| is large.

To our knowledge, such a general assumption on the class of drift functions has not been made in the MFGC literature.

Main results

The two main results in this work are Theorems 2.2 and 2.3 below, which respectively state the existence and uniqueness of the solution to (1.6).

Theorem 2.2. Under assumptions A1-A3, U and B1 there is at most one solution to (1.6).

Uniqueness results for MFGC systems with a monotonicity assumption have been proved in [START_REF] Gomes | Extended mean field games[END_REF] and [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF]. In [START_REF] Gomes | Extended mean field games[END_REF], uniqueness is proved when the diffusion coefficient is equal to 0 and the drift is equal to the control, i.e. ν = 0 and b = α. In [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF] Section 4.6, the authors stated uniqueness in the quadratic case. Theorem 2.2 is new in the sense that it yields uniqueness for a large new class of Lagrangians and drift functions. Indeed, beside the monotonicity assumption A3 and U, we only assume that L satisfies A1 and A2, and that the drift b is invertible in the sense of B1.

Theorem 2.3. Under assumptions A1-A6 and B1-B2, there exists a solution to (1.6).

The existence of solutions of the MFGC system is in general much more demanding than for MFG systems without interactions through the controls. Under monotonicity assumptions similar to A3, existence has been proved in [START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF] Section 4.6, for quadratic and uniform convex Lagrangians with a growth condition on the derivatives of the Hamiltonian. In [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF], the existence of weak solutions of the monotonous MFGC system is discussed with a possibly degenerate diffusion operator, under assumptions which are uniform with respect to the joint law of states and controls.

Here, we prove existence of solutions of the monotonous MFGC system for a large class of Lagrangians and the drifts. Namely, we assume that the Lagrangians and drifts behave asymptotically like a power of α; we allow them to have a growth in the law of the controls of at most the same order as the order of dependency upon α.

Before starting the discussion on existence of solutions to the MFGC systems (1.6) and (2.3), we introduce a new MFGC system set in the torus, so that the solutions should have more compactness properties. We define T d a = R d / aZ d the d-dimensional torus of radius a > 0. Namely, we consider:

(2.5a) (2.5b) (2.5c) (2.5d) (2.5e) -∂ t u(t, x) -ν∆u(t, x) + H (t, x, ∇ x u(t, x), µ(t)) = f (t, x, m(t)) in (0, T ) × T d a , ∂ t m(t, x) -ν∆m(t, x) -div (H p (t, x, ∇ x u(t, x), µ(t)) m) = 0 in (0, T ) × T d a , µ(t) = I d , -H p (t, •, ∇ x u(t, •), µ(t)) #m(t) in [0, T ], u(T, x) = g(x, m(T )) in T d a , m(0, x) = m 0 (x) in T d a .
All the assumptions in paragraph 2.2 are stated in

R d . When considering that L : [0, T ] × T d a × R d × P T d a × R d → R (like in (2.5
)) satisfies one of those assumptions, we shall simply replace R d by T d a as the state set in the chosen assumption. The fixed point satisfied by the joint law of states and controls, namely (1.6c)-(1.6d), (2.3c) or (2.5c), may be a difficult issue for MFGC systems. Here, using mainly the monotonicity assumption A3 and the compactness of the state space of (2.5), we prove in Section 4 the following lemma which states well-posedness for the fixed point (2.5c), and ensures continuity with respect to time.

Lemma 2.4. Assume A1-A5. Let p ∈ C 0 [0, T ] × T d a ; R d and m ∈ C 0 [0, T ]; P T d a be such that t → p(t,
•) is continuous with respect to the topology of the local uniform convergence and m(t) admits a finite second moment uniformly bounded with respect to t ∈ [0, T ]. For any t ∈ [0, T ], there exists a unique µ(t

) ∈ P T d a × R d such that µ(t) = (I d , -H p (t, •, p(t, •), µ(t))) #m(t).
Moreover, the map t → µ(t) is continuous where P T d a × R d is equipped with the weak* topology.

The next step in our strategy for proving existence is to look for a priori estimates for the solutions of the MFGC systems and obtain compactness results to use a fixed point theorem. In section 5, we prove the a priori estimates stated in the following lemma for solutions to (2.5).

Lemma 2.5. Assume A1-A6. If (u, m, µ) is a solution to (2.5), then u ∞ , ∇ x u ∞ and sup t∈[0,T ] Λ ∞ (µ(t)) are uniformly bounded by a constant independent of a.
Let us mention that the a priori estimates of Lemma 2.5 rely on the monotonicity assumption on L and a Bernstein method introduced in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF]. To our knowledge, these are the first results in the literature of MFGC which use the monotonicity assumption for getting a priori estimates. They are the key ingredients of the proof of the existence of solutions to (2.5) in the following theorem, proved in paragraph 6.1.

Theorem 2.6. Under assumptions A1-A6, there exists a solution to system (2.5).

Therefore, for any a > 0 we can construct a solution to (2.5) which satisfies uniform estimates with respect to a. This allows us to construct a compact sequence of approximating solutions to (2.3). Passing to the limit for a subsequence allows us to generalize the conclusion of Theorem 2.6 to system (2.3). This leads to the following theorem proved in paragraph 6.2.

Theorem 2.7. Under assumptions A1-A6, there exists a solution to (2.3).

Uniqueness relies on the monotonicity assumptions A3 and U, the following theorem is proved in paragraph 6.3.

Theorem 2.8. Under assumptions A1-A3 and U, there is at most one solution to (2.3) or (2.5).

The idea to pass from (2.3) to (1.6), is to change the optimization problem in α into a new optimization problem expressed in term of b. In paragraph 6.4, we prove the equivalence between the solutions of these two optimization problems. A first existence results for (1.6) is stated in Corollary 6.3 which uses this equivalence. Theorem 2.3 is a consequence of Corollary 6.3 with more tractable assumptions. Let us mention that for proving Theorem 2.3, the structure of the Lagrangian should be invariant when passing from one optimization problem to the other. In particular, one may figure out that the assumptions on the Lagrangian behaving asymptotically like a power of α are preserved under our assumptions on the drift function b.

Finally, Theorem 2.2 is a consequence of Theorem 2.8 and the above-mentionned equivalence between the two optimization problems. Remark 2.9.

i) If the Lagrangian admits the following form,

L (t, x, α, µ) = L 0 (t, x, α) + L 1 (t, µ) ,
we say that the Lagrangian is separated. Then A3 is automatically satisfied since the lefthand side of the inequality is identically equal to 0. In this case, the assumptions on L are satisfied if L 0 behaves asymptotically like a power of α of exponenent q ′ , and

L 1 at most involves Λ q 0 (µ) q ′ .
Here, we do not provide an explicit application in which the Lagrangian is separated, however this is a general hypothesis in the MFGC literature. Therefore, our framework in the present paper can be seen as an extension of the case when L is separated.

ii) All our assumptions are uniform with respect to the state variable x. In particular, we restrain from considering more general functions f and g since this topic has been investigated in the literature devoted to MFG systems without interaction through controls; we believe that the same tools can be applied to the present case, and that our results may be extended so.

iii) We did not address the case without diffusion, i.e. ν = 0. However, all the a priori estimates of Sections 4 and 5 are uniform with respect to ν. Here, the diffusion is used to easily obtain compactness results which are central for proving our existence results since the proofs rely on a fixed point theorem and approximating sequences of solutions. Using weaker topological spaces and tools from the literature devoted to weak solutions of systems of MFGs without interaction through controls, we believe that we can extend our results to weak solutions to MFGC systems without diffusion or with possibly degenerate diffusion operators. We plan to address this question in forthcoming works.

General outline

The present work aims at proving Theorems 2.2 and 2.3. We list below the main steps of our analysis to make it easier for the reader to understand the structure of the proofs. 

I

Contribution

An important novelty in the present work comes from the assumptions we are considering. On the one hand, we consider a general class of monotonous Lagrangians which behave asymptotically like a power of α with any exponent in (1, ∞) (while most of the results in the literature only address the quadratic case with uniformly convex Lagrangian); they may depend on moments of µ α at most of the same order as the above-mentioned exponent of L in α; we do not require them to depend separately on (x, α) and µ α . On the other hand, the drift functions are also general since we allow them to behave like power functions and to be not separated too. See the assumptions in paragraph 2.2 for more details. Moreover, most contributions focus on MFG systems stated on T d for simplicity. Here, we introduce a method to extend an existence result for a MFGC system stated on the torus to its counterpart on the whole Euclidean space. In particular, this method holds for MFG system without interaction through controls and the proof becomes easier. See paragraph 6.2. We also introduce a method to extend the well-posedness of MFGC (or MFG) systems to general drift functions, see paragraph 6.4. We would like to insist on the fact that our techniques are designed in order to preserve the structure of the Lagrangian when passing from one setting to another. Here, namely it preserves the monotonicity assumption A3. Furthermore, these methods apply to the conclusions of [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] and consequently generalize them.

Properties of the Lagrangian and the Hamiltonian in (2.3) and (2.5)

Here, we write the results and the proofs for the Lagrangian and Hamiltonian involved in system (2.3). However, none of the arguments below is specific to the domain R d , therefore the conclusions hold and the proofs can be repeated for the Lagrangian and Hamiltonian involved in (2.5).

We start by proving that under the assumptions of paragraph 2.2, when b = α, L is strictly convex.

Lemma 2.10. If L is coercive and differentiable with respect to α, and b = α, assuming that L is strictly convex is equivalent to A2.

Proof. If L is stricly convex and coercive, it is straightforward to check A2.

Conversely, we take

(t, x, µ) ∈ [0, T ] × R d × P R d × R d . We set ℓ(α) = L (t, x, α, µ).
It is sufficient to prove that ℓ is strictly convex.

First step: proving that ℓ is convex.

We define ℓ * * as the biconjugate of ℓ, ℓ * * is in particular the Legendre transform of H (t, x, •, µ). The map ℓ * * is convex and continuous since ℓ is coercive, and it satisfies ℓ * * ≤ ℓ. In what follows, we will prove that ℓ * * = ℓ.

We assume by contradiction that ℓ * * = ℓ: there exists α 0 ∈ R d such that ℓ * * α 0 < ℓ α 0 . We recall that ℓ and ℓ * * admit the same convex envelope, therefore by Carathéorthéodory's theorem, there exists α i 1≤i≤d+1 ∈ R d d+1 and λ i 1≤i≤d+1 ∈ (R + ) d+1 such that

α 0 = d+1 i=1 λ i α i , ℓ * * α 0 = d+1 i=1
λ i ℓ α i , and

d+1 i=1 λ i = 1.
Using the inequality ℓ * * ≤ ℓ, we obtain that

ℓ * * (α) = d+1 i=1 λ i ℓ α i ≥ d+1 i=1 λ i ℓ * * α i .
This inequality is in fact an equality since ℓ * * is convex, which implies that ℓ * * α i = ℓ α i for any i ∈ {1, 2, . . . , d + 1}. Take p ∈ ∂ℓ * * α 0 , where ∂ℓ * * α 0 is the subdifferential of ℓ * * at α 0 . For i ∈ {1, . . . , d + 1}, this implies

ℓ α i = ℓ * * α i ≥ ℓ * * α 0 + p • α i -α 0 .
Multiplying the latter inequality by λ i and taking the sum over i, yield that it is in fact an equality. Then, it is straightforward to check that p ∈ ∂ℓ * * α i for any i; this implies that p = ∇ α ℓ α i , since ℓ * * α i = ℓ α i and ℓ is differentiable with respect to α. The maximum in the definition of H(t, x, -p, µ) is achieved at any α i , this is a contracdition with A2. Therefore ℓ = ℓ * * and ℓ is convex.

Second step: ℓ is striclty convex. By definition of the subdifferential of a convex function, α ∈ R d achieves the maximum in the definition of H (t, x, -∇ α ℓ (α) , µ). Using the fact that this maximum is unique by A2, we obtain the strict convexity of ℓ, and the one of L with respect to α.

In paragraph 2.2, we assume that L behaves at infinity as a power of α of exponent q ′ . Because of the conjugacy relation between L and H, it implies that H behaves at infinity like a power of p of exponent q.

Lemma 2.11. Under assumptions A1, A2, A4 and A5, the map H, defined in 2.4, is differentiable with respect to x and p, H and its derivatives are continuous on

[0, T ] × R d × R d × P ∞,R R d × R d for any R > 0.
Moreover there exists C 0 > 0 a constant which only depends on C 0 and q such that

|H p (t, x, p, µ)| ≤ C 0 1 + |p| q-1 + Λ q ′ (µ) , (2.6) |H (t, x, p, µ)| ≤ C 0 1 + |p| q + Λ q ′ (µ) q ′ , (2.7) p • H p (t, x, p, µ) -H (t, x, p, µ) ≥ C -1 0 |p| q -C 0 1 + Λ q ′ (µ) q ′ , (2.8) |H x (t, x, p, µ)| ≤ C 0 1 + |p| q + Λ q ′ (µ) q ′ , (2.9) for any (t, x) ∈ [0, T ] × R d , p ∈ R d and µ ∈ P R d × R d .
Up to replacing C 0 with max(C 0 , C 0 ), we can assume that the inequalities in Lemma 2.11 are satisfied with C 0 instead of C 0 .

Let us notice that it is possible and not more difficult to extend the results stated in Lemma 2.11 to the Hamiltonian used in (1.6) and defined in (1.4), however we will not have any use of such results in the present paper.

Proof. First step: differentiability of H in p, and continuity of H and H p .

For (t, x, µ) ∈ [0, T ]×R d ×P R d × R d , the map α → L (t, x, α, µ
) is stricly convex by Lemma 2.10 and coercive by A4; Theorem 26.6 in [START_REF] Rockafellar | Convex analysis[END_REF] implies that H is differentiable with respect to p, the map α → -L α (t, x, α, µ) is invertible; its iverse map is p → -H p (t, x, p, µ) by [START_REF] Rockafellar | Convex analysis[END_REF] Theorem 26.5. Theorem 26.6 in [START_REF] Rockafellar | Convex analysis[END_REF] also implies that the maximum in 2.4 is achieved by a unique control given by -H p (t, x, p, µ). In the next step, we prove 2.6 which implies that H p maps the bounded subsets of

[0, T ] × R d × R d × P ∞,R R d × R d for R > 0 into relatively compact subspaces of R d ; we recall that L α is continuous on [0, T ] × R d × R d × P ∞,R R d × R d ;
therefore H p is likewise continuous on the same space. We recall that H satisfies

H(t, x, p, µ) = p • H p (t, x, p, µ) -L (t, x, -H p (t, x, p, µ) , µ) ,
therefore H is also continuous on the same spaces.

Second step: proving the first three inequalities of the Lemma. Using the growth assumptions on L, we first prove (2.6). On the one hand we have that

H (t, x, p, µ) ≥ -L (t, x, 0, µ) ≥ -C 0 1 + Λ q ′ (µ) q ′ ,
by A4 and the condition of optimality in (2.4). On the other hand, A5, the fact that -H p (t, x, p, µ) satisfies the optimality condition in (2.4), and the Young inequality y •z ≤ |y| q q + |z| q ′ q ′ for y, z ∈ R d , yield that,

H (t, x, p, µ) = p • H p (t, x, p, µ) -L (t, x, -H p (t, x, p, µ) , µ) ≤ 1 q ′ C 0 |H p (t, x, p, µ)| q ′ + C q q ′ 0 q |p| q -C -1 0 |H p (t, x, p, µ)| q ′ + C 0 1 + Λ q ′ (µ) q ′ ≤ - 1 qC 0 |H p (t, x, p, µ)| q ′ + C q q ′ 0 q |p| q + C 0 1 + Λ q ′ (µ) q ′ .
Therefore, using the latter two chains of inequalities, and the fact that q q ′ = q -1, we obtain that, (2.10)

1 qC 0 |H p (t, x, p, µ)| q ′ ≤ C q-1 0 q |p| q + 2C 0 1 + Λ q ′ (µ) q ′ .
This and the inequality |y + z|

1 q ′ ≤ |y| 1 q ′ + |z| 1 q ′ for y, z ∈ R, imply that |H p (t, x, p, µ)| ≤ C q-1 0 |p| q-1 + 2qC 2 0 1 q ′ 1 + Λ q ′ (µ) .
From A5 and (2.10), we obtain that,

|H (t, x, p, µ)| = |p • H p (t, x, p, µ) -L (t, x, -H p (t, x, p, µ) , µ)| ≤ |p| q q + |H p (t, x, p, µ)| q ′ q ′ + C 0 1 + |H p (t, x, p, µ)| q ′ + Λ q ′ (µ) q ′ ≤ 1 q + C q 0 q ′ |p| q + C 0 1 + 2qC 0 1 q ′ + C 0 1 + Λ q ′ (µ) q ′ .
We still have to prove (2.8). Let ε be a positive constant depending only on C 0 such that ε -C 0 ε q ′ ≥ ε 2 , by the optimality condition in (2.4) used with α = -ε|p| q-2 p, we have, H (t, x, p, µ) ≥ ε|p| q -L t, x, -ε|p| q-2 p, µ

≥ ε|p| q -C 0 1 + ε q ′ |p| (q-1)q ′ + Λ q ′ (µ) q ′ ≥ ε 2 |p| q -C 0 1 + Λ q ′ (µ) q ′ .
Then from A5,

H (t, x, p, µ) = p • H p (t, x, p, µ) -L (t, x, -H p (t, x, p, µ) , µ) ≤ ε 4 |p| q + 4qε -1 q ′ q q ′ |H p (t, x, p, µ)| q ′ + C 0 1 + |H p (t, x, p, µ)| q ′ + Λ q ′ (µ) q ′ .
Combining the latter two chains of inequalities, there exists C a positive constant depending only on C 0 such that

|H p (t, x, p, µ)| q ′ ≥ C -1 |p| q -C 1 + Λ q ′ (µ) q ′ .
This and A4 yield that

p • H p (t, x, p, µ) -H (t, x, p, µ) = L (t, x, -H p (t, x, p, µ) , µ) ≥ C -1 0 |H p (t, x, p, µ)| q ′ -C 0 1 + Λ q ′ (µ) q ′ ≥ (C 0 C) -1 |p| q -C 0 + C -1 0 C 1 + Λ q ′ (µ) q ′ .
Third step: the smothness properties and the last inequality. From (2.6), -H p (t, x, p, µ) is locally uniformly bounded, therefore we can reduce the set of admissible controls α in (2.4) from R d to a compact subset of R d . Within this framework, the envelop theorem states that H is differentiable in x and its derivatives are defined by,

H x (t, x, p, µ) = -L x (t, x, -H p (t, x, p, µ) , µ) .
The continuity property of H x relies on the ones of L x and H p . Moreover, from A5 and (2.10), we obtain

|H x (t, x, p, µ)| ≤ C q+1 0 |p| q + C 0 1 + 2qC 2 0 1 + Λ q ′ (µ) q ′ .
This concludes the proof.

-Applications

Exhaustible ressource model

This model is often referred to as Bertrand and Cournot competition model for exhaustible ressources, introduced in the independent works of Cournot [START_REF] Cournot | Recherches sur les principes mathématiques de la théorie des richesses[END_REF] and Bertrand [START_REF] Bertrand | Théorie mathématiques de la richesse sociale[END_REF]; its mean field game version in dimension one was introduced in [START_REF] Guéant | Mean field games and applications[END_REF] and numerically analyzed in [START_REF] Chan | Bertrand and Cournot mean field games[END_REF]; for theoretical results see [START_REF] Frédéric | Schauder Estimates for a Class of Potential Mean Field Games of Controls[END_REF][START_REF] Graber | Existence and uniqueness of solutions for Bertrand and Cournot mean field games[END_REF][START_REF] Jameson | On Mean Field Games models for exhaustible commodities trade[END_REF][START_REF] Jameson | Variational mean field games for market competition[END_REF]. We consider a continuum of producers selling exhaustible ressources. The production of a representative agent at time t ∈ [0, T ] is denoted by q t ≥ 0; the agents differ in their production capacity X t ∈ R (the state variable), that satifies,

dX t = -q t dt + √ 2νdW t ,
where ν > 0 and W is a d-dimentional Brownian motion. Each producer is selling a different ressource and has her own consumers. However, the ressources are substitutable and any consumer may change her mind and buy from a competitor depending on the degree of competition in the game (which stands for ε in the linear demand case below for instance). Therefore the selling price per unit of ressource that a producer can make when she sales q units of ressource, depends naturally on q and on the quantity produced by the other agents. The price satisfies a supply-demand relationship, and is given by P (q, q), where q is the accumulated demand which depends on the overall distribution of productions of the agents. A producer tries to maximize her profit, or equivalently to minimize the following quantity,

E T 0 -P (q t , q t ) • q t dt + g (X T ) ,
where g is a terminal cost which often penalizes the producers who have non-zero production capacity at the end of the game. In the Cournot competition, see [START_REF] Cournot | Recherches sur les principes mathématiques de la théorie des richesses[END_REF], the producers are controling their production q. Like in the formulation of the MFG arising in such a problem in [START_REF] Chan | Bertrand and Cournot mean field games[END_REF], here we consider the Bertrand's formulation [START_REF] Bertrand | Théorie mathématiques de la richesse sociale[END_REF], where an agent directly controls her selling price α = P (q, q). Then after inverting the latter equality, the production can be viewed as a function of the price and the mean field. Mathematically this corresponds to writing q = Q (α, α).

In [START_REF] Chan | Bertrand and Cournot mean field games[END_REF], the authors considered a linear demand system depending on q lin = R q(x)dm(x), and a price satisfying α = P lin (q, q lin ) = 1 -q -εq lin . In this case, L lin the running cost, and H lin its Legendre transform are defined by

L lin (α, µ) = α 2 + ε 1 + ε αα - 1 1 + ε α, H lin (p, µ) = 1 4 p + ε 1 + ε α - 1 1 + ε 2 ,
where α, p ∈ R, µ ∈ P (R × R) and α is defined by α = R×R αdµ(y, α). Therefore the system of MFGC has the following form, (3.1)

                           -∂ t u -ν∆u + 1 4 ∇ x u + ε 1 + ε α - 1 1 + ε 2 = 0, ∂ t m -ν∆m -div 1 2 ∇ x u + ε 1 + ε α - 1 1 + ε m = 0, α(t) = - R d 1 2 ∇ x u + ε 1 + ε α(t) - 1 1 + ε dm(t, x), u(T, x) = g(x), m(0, x) = m 0 (x), for (t, x) ∈ [0, T ] × R.
Roughly speaking, ε = 0 corresponds to a monopolist who does not suffer from competition, and she plays as if she was alone in the game. Conversely, ε = ∞ stands for all the producers selling the same ressource and the consumers not having any a priori preference. Let us consider the following generalization of the latter system to the d-dimensional case with a more general Hamiltonian and interaction through controls,

(3.2)                    -∂ t u -ν∆u + H t, x, ∇ x u + ϕ(x) T P (t) = f (t, x, m(t)), ∂ t m -ν∆m -div H p t, x, ∇ x u + ϕ(x) T P (t) m = 0, P (t) = Ψ t, - R d ϕ(x)H p t, x, ∇ x u + ϕ(x) T P (t) dm(t, x) , u(T, x) = g(x, m(T )), m(0, x) = m 0 (x),
where ϕ : R d → R d×d and Ψ : R d → R d×d are given functions. The counterpart of the latter system posed on T d has been introduced in [START_REF] Frédéric | Schauder Estimates for a Class of Potential Mean Field Games of Controls[END_REF]. Theorem 2.2 and 2.3 provide the existence and the uniqueness respectively of the solution of this MFGC system. Proposition 3.1. Assume A1, A2, U. If the function Ψ is continuous, Ψ(t, •) is monotone, locally Lipschitz continuous, and admits at most a power-like growth of exponent q ′ -1 with a coefficient uniform in t ∈ [0, T ], there exists at most one solution to (3.2). Proposition 3.2. Assume A1, A2, A4-A6, and that Ψ satisfies the same assumptions as in Proposition 3.1. There exists a solution to (3.2).

Proof. Take the drift function as b = α. We define the Lagrangian ℓ by

ℓ (t, x, α, µ) = L (t, x, α) + ϕ(x)α • P (t, µ) + f (t, x, m),
where L is the Legendre transform of the map H in (3.2), and P (t, µ) is defined by

P (t, µ) = Ψ t, R d ×R d ϕ(x)αdµ(x, α) , for (t, x, α, m, µ) ∈ [0, T ] × R d × R d × P R d × P R d × R d such
that m is the first marginal of µ. We take h as the Legendre transform of ℓ with respect to α.

If Ψ satisfies the assumptions in 3.1, any of the assumptions A1, A2, A4, or A5 is preserved by replacing L by ℓ. Moreover, a straightforward calculation yields that

R d ×R d ℓ t, x, α, µ 1 -ℓ t, x, α, µ 2 d µ 1 -µ 2 (x, α) = P t, µ 1 -P t, µ 2 • R d ×R d ϕ(x)αd µ 1 -µ 2 (x, α), for t ∈ [0, T ] and µ 1 , µ 2 ∈ P R d × R d .
This and the monotonicity of Ψ implies that ℓ satisfies A3. Therefore, Propositions 3.1 and 3.2 are direct consequences of Theorems 2.2 and 2.3 respectively.

In [START_REF] Frédéric | Schauder Estimates for a Class of Potential Mean Field Games of Controls[END_REF], similar existence and uniqueness results for the counterpart of (3.2) posed on T d are given in the quadratic setting, with a uniformly convex Lagrangian and Ψ being the gradient of a convex map. Here, we generalize their results to a wider class of Lagrangians and functions Ψ.

For an extension of this model to the case when Ψ is non-monotone, see [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF].

A model of crowd motion

This model of crowd motion has been introduced in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] in the non-monotone setting. It has been numerically studied in [START_REF] Achdou | Mean field games of controls: Finite difference approximations[END_REF] in the quadratic non-monotone case. For µ ∈ P R d × R d we define V (µ) the average drift by,

V (µ) = 1 Z(µ) R d ×R d αk(x)dµ(x, α),
where Z(µ) is a normalization constant defined by Z(µ) = R d ×R d k(x) q 1 dµ(x, α)

1 q 1 , for some constant q 1 ∈ [q, ∞] where q is defined below. To be consistent with the notations used in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF], k : R d → R + is a non-negative kernel. By convention, if Z (µ) = 0, we take V (µ) = 0.

The state of a representative agent is given by her position X t ∈ R d which she controls through her velocity α via the following stochastic differential equation,

dX t = α t dt + √ 2νdW t .
Her objective is to minimize the cost functional given by,

E T 0 θ 2 |α t + λV (µ(t))| 2 + 1 -θ a ′ |α t | a ′ + f (t, X t , m(t))dt + g(X T , m(T )) ,
where λ ≥ 0 and 0 ≤ θ ≤ 1 are two constants standing for the intensity of the preference of an individual to have an opposite control as the stream one, and a ′ > 1 is an exponent. In this model we define the Lagrangian L by,

L (x, α, µ) = θ 2 |α + λV (µ)| 2 + 1 -θ a ′ |α| a ′ ,
and the Hamiltonian H as its Legendre transform. The map H does not admit an explicit form for every choice of the parameters a ′ . We take q ′ = max (2, a ′ ), and q = q ′ q ′ -1 its conjugate exponent.

Here, since the control is equal to the drift, the MFGC system is of the form of (2.3). Therefore, the following proposition is a consequence of Theorems 2.2 and 2.3. Proposition 3.3. Under assumption A6, there exists a solution to the above MFGC system of crowd motion.

Under assumption U, this solution is unique.

The proof is straightforward, it consists in checking that L satisfies A1-A5.

For existence results of the MFGC system of this model with λ < 0, see [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF]. 

-

: [0, T ] × T d a × R d × P T d a × R d → R.
All the assumptions in paragraph 2.2 are stated in R d , but, when considering that L satisfies one of those assumptions, we shall simply replace R d by T d a as the state set in the chosen assumption (note that we keep R d as the set of admissible controls). The initial distribution m 0 is now in P T d a . The Hamiltonian H is still defined as the Legendre transform of L, i.e. it satisfies (2.4).

Leray-Schauder Theorem for solving the fixed point in µ

We start by stating a priori estimates for solutions of the fixed point in µ (2.5c), involving Λ q ′ (µ) and Λ ∞ (µ) defined in (2.1).

Lemma 4.1. Assume that L satisfies A1-A5 For any t ∈ [0, T ], m ∈ P T d a and p ∈ C 0 T d a ; R d , if there exists µ ∈ P T d a × R d such that (4.1) µ = (I d , -H p (t, •, p(•), µ)) #m, then it satisfies Λ q ′ (µ) q ′ ≤ 4C 2 0 + (q ′ ) q-1 (2C 0 ) q q p q L q (m) , (4.2) Λ ∞ (µ) ≤ C 0 1 + p ∞ + Λ q ′ (µ) . (4.3)
Proof. We use A3 with m ⊗ δ 0 and µ satisfying (4.1), (4.4)

T d a ×R d (L (t, x, α, µ) -L (t, x, α, m ⊗ δ 0 )) dµ(x, α)+ T d a (L (t, x, 0, m ⊗ δ 0 ) -L (t, x, 0, µ)) dm(x) ≥ 0.
From A5, we obtain (4.5)

T d a L (t, x, 0, m ⊗ δ 0 ) dm(x) ≤ C 0 .
The latter two inequalities, A4 and the convexity of L (stated in Lemma 2.10) yield

C -1 0 T d a ×R d |α| q ′ dµ(x, α) -C 0 ≤ C 0 + T d a (L (t, x, α µ (x), µ) -L (t, x, 0, µ)) dm(x) ≤ C 0 + T d a ×R d α • L α (t, x, α, µ) dµ(x, α),
where α µ is defined in paragraph 2.1. We recall that p(x) = -L α (t, x, α µ (x), µ). Using the inequality yz ≤ y q ′ c q ′ q ′ + c q z q q which holds for any y, z, c > 0, we obtain

1 C 0 T d a ×R d |α| q ′ dµ(x, α) ≤ 2C 0 + (2C 0 q ′ ) q q ′ q T d a |p(x)| q dm(x) + 1 2C 0 T d a ×R d |α| q ′ dµ(x, α).
This and q q ′ + 1 = q imply (4.2). This and 2.6 implies 4.3, we recall that we assume C 0 = C 0 . Here, we shall use Leray-Schauder fixed point theorem as stated in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Theorem 11.6. In the following proof, we will take advantage of the flexibily offered when making all assumptions on the Lagrangian, instead of the Hamiltonian. We will introduce a sequence of new Lagrangians. The associated Hamiltonians may not admit explicit form; therefore it would be difficult to check assumptions on them. Here on the one hand, checking the assumptions on the new Lagrangians is straightforward. On the other hand, we obtain the same conclusions on the new Hamiltonian as stated in Lemma 2.11.

Proof. Take (t, p, m) satisfying the same assumptions as (t, p, m) in Lemma 4.3. In order to use the Leray-Schauder fixed point theorem later, we introduce the following family of Lagrangians indexed by λ ∈ [0, 1],

(4.6) L p,λ (x, α, µ) = λL (t, x, α, µ) + (1 -λ) |α| q ′ q ′ -α • p(x) , for (x, α, µ) ∈ T d a × R d × P T d a × R d .
We denote by H p,λ the Legendre transform of L p,λ . For λ = 0 it satisfies (4.7)

H p,0 (x, p, µ) = 1 q |p -p(x)| q .
From Young inequality, we obtain that

|α • p(x)| ≤ |α| q ′ 2q ′ + 2 q-1 q p ∞ .
Therefore, up to changing C 0 into max 1 2q ′ , 2 q-1 q p ∞ , C 0 , we may assume that L p,λ satisfies A1-A5, with the same constant C 0 for any λ ∈

[0, 1]. The map (λ, x, p, µ) → -H p,λ p (x, p, µ) is continuous on [0, 1] × T d a × R d × P ∞,R T d a × R d
, for any R > 0, by the same arguments as in the proof of Lemma 2.11.

For

α ∈ C 0 T d a ; R d , we set µ = (I d , α) #m ∈ P T d a × R d and α(x) = -H p,λ p (x, p(x), µ), for x ∈ T d a . We define the map Ψ, from [0, 1] × C 0 T d a ; R d to C 0 T d a ; R d , by Ψ (λ, α) = α. If α is a fixed point of Ψ(1,
•), then µ defined as above satisfies the fixed point in Lemma 4.3. Conversely, if µ satisfies the fixed point in Lemma 4.3, then α µ (defined in paragraph 2.1) is a fixed point of Ψ(1, •).

The map Ψ is continuous by the continuity of (λ, x, p, µ) → -H p,λ p (x, p, µ). For R > 0,

the set A R , defined by A R = [0, 1] × T d a × B R d (0, R) × P ∞,R T d a × R d , is compact. By Heine theorem, the map (λ, x, p, µ) → -H p,λ p (x, p, µ) is uniformly continuous on A R .
Here, note that we use the fact that P ∞,R T d a × R d is a metric space since the weak* topology coincides with the topology induced by the 1-Wassertein distance on P ∞,R T d a × R d . Heine theorem also implies that p is uniformly continuous. Therefore, Ψ is a compact mapping from

[0, 1] × C 0 T d a ; R d to C 0 T d a ; R d , i.e. it maps bounded subsets of [0, 1] × C 0 T d a ; R d into relatively compact subsets of C 0 T d a ;
R d : this comes from the latter observation and Arzelà-Ascoli theorem. Take α a fixed point of Ψ(λ, •), for λ ∈ [0, 1], Lemma 4.1 implies that α ∞ is bounded by a constant C which does not depend on λ.

Moreover, it is straightforward to check that Ψ(0, •) = 0. Leray-Schauder Theorem 4.2 implies that there exists a fixed point of the map α → Ψ (1, α), which concludes the existence part of the proof.

The proof of uniqueness relies on A3 and the strict convexity of L, see [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF] Lemma 5.2 for the detailed proof.

The continuity of the fixed point in time

The fixed point result stated in Lemma 4.3 yields the existence of a map (t, p, m) → µ. The continuity of this map is addressed in the following lemma:

Lemma 4.4. Assume A1-A5. Let (t n , m n , p n ) n∈N be a sequence in [0, T ]×P T d a ×C 0 T d a ; R d . Assume that • t n → n→∞ t ∈ [0, T ], • (p n ) n∈N is uniformly convergent to p ∈ C 0 T d a ; R d ,
• (m n ) n∈N tends to m in the weak* topology.

We define µ n and µ as the unique solutions of the fixed point relation of Lemma 4.3 respectively associated to (t n , m n , p n ) and (t, m, p), for n ∈ N. Then the sequence (µ n ) n∈N tends to µ in P T d a × R d equipped with the weak* topology.

Proof. The sequence (p n ) n∈N it is uniformly bounded in the norm • ∞ . Therefore (µ n ) n∈N is uniformly compactly supported by Lemma 4.1. Thus we can extract a subsequence µ ϕ(n) n∈N convergent to some limit µ ∈ P R d × R d in the weak* toplogy on measures. We recall that α µ is defined in paragraph 2.1. Here, since µ ϕ(n) and µ are fixed points like in Lemma 4.3, they satisfy:

α µ ϕ(n) (x) = -H p t ϕ(n) , x, p ϕ(n) (x), µ ϕ(n) , α µ (x) = -H p (t, x, p(x), µ) , for x ∈ T d
a and n ∈ N. From the continuity of H p stated in Lemma 2.11, α ϕ(n) n∈N tends uniformly to the function α : x → -H p (t, x, p, µ). Then I d , α ϕ(n) #m n n∈N tends to (I d , α) #m in the weak* topology. Hence µ satisfies the same fixed point relation as µ; by uniqueness we deduce that µ = µ. This implies that all the convergent subsequences of (µ n ) n∈N have the same limit µ, thus the whole sequence converges to µ. Lemma 4.3 states that for all time the fixed point (2.5c) has a unique solution. Then Lemma 4.4 yields the continuity of the map defined by the fixed point under suitable assumptions. Therefore, the conclusion of step I.c and the Lemma 2.4 are straightforward consequences of these two lemmas.

Remark 4.5. All the conclusions of this section hold when we relax Assumption A3, assuming that the inequality holds only when µ 1 and µ 2 have the same first marginal. Some applications of MFGC do not satisfy A3, but satisfy the above-mentioned relaxed monotonicity assumption. This is the case of the MFG version of the Almgren and Chriss' model for price impact and high-frenquency trading, discussed in [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF][START_REF] Carmona | Probabilistic theory of mean field games with applications. I[END_REF][START_REF] Carmona | A probabilistic weak formulation of mean field games and applications[END_REF][START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF].

However, the a priori estimates in the next section do not hold under this relaxed monotonicity assumption. We refer to [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] for estimates which do not rely on A3 FP1 and FP2 in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] are unnecessary if L satisfies the relaxed monotonicity assumption).

-A priori estimates for the solutions to (2.5)

In order to use the Leray-Schauder fixed point theorem later, we introduce the following family of Lagrangians indexed by θ ∈ (0, 1],

(5.1) L θ (t, x, α, µ) = θL t, x, θ -1 α, Θ(µ) ,
where the map Θ :

P T d a × R d → P T d a × R d is defined by Θ(µ) = I d ⊗ θ -1 I d #µ.
Then the Hamiltonian defined as the Legendre transform of L θ is given by (5.2)

H θ (t, x, p, µ) = θH (t, x, p, Θ(µ)) .

The definition of the Hamiltonian can naturally be extended to θ = 0 by H 0 = 0, the associated Lagrangian is L 0 = 0 if α = 0 and L 0 = ∞ otherwise. We introduce the following system of MFGC, (

(5.3e)

-∂ t u(t, x) -ν∆u(t, x) + H θ (t, x, ∇ x u(t, x), µ(t)) = θf (t, x, m(t)) in (0, T ) × T d a , ∂ t m(t, x) -ν∆m(t, x) -div H θ p (t, x, ∇ x u(t, x), µ(t)) m = 0 in (0, T ) × T d a , µ(t) = I d , -H θ p (t, •, ∇ x u(t, •), µ(t)) #m(t) in [0, T ], u(T, x) = θg(x, m(T )) in T d a , m(0, x) = m 0 (x)
in T d a . When θ = 1, the latter system coincides with (2.5). When θ = 0, (5.3) consists in a situation in which the state of a representative agent satisfies a non-controlled stochastic differential equation. Alternatively it can be interpreted as a game in which the agents pay an infinite price as soon as they try to use a control different than 0. In particular the case θ = 0 is specific and easier than the case when θ > 0. Therefore, in the rest of this section, we only consider θ ∈ (0, 1].

Let us mention that assumptions A1-A3 are preserved when replacing L and H by L θ and H θ respectively. Moreover the inequalities from A4, A5, become respectively

L θ (t, x, α, µ) ≥ C -1 0 θ 1-q ′ |α| q ′ -C 0 θ -C 0 θ 1-q ′ Λ q ′ (µ) q ′ , (5.4) L θ (t, x, α, µ) ≤ C 0 θ + C 0 θ 1-q ′ |α| q ′ + Λ q ′ (µ) q ′ , (5.5) since Λ q ′ (Θ(µ)) = θ -1 Λ q ′ (
µ). Furthermore, the conclusions of Lemma 2.11 hold and the inequalities become respectively

H θ p (t, x, p, µ) ≤ C 0 θ 1 + |p| q-1 + C 0 Λ q ′ (µ) , (5.6) H θ (t, x, p, µ) ≤ C 0 θ (1 + |p| q ) + C 0 θ 1-q ′ Λ q ′ (µ) q ′ , (5.7) p • H θ p (t, x, p, µ) -H θ (t, x, p, µ) ≥ C -1 0 θ|p| q -C 0 θ -C 0 θ 1-q ′ Λ q ′ (µ) q ′ , (5.8) H θ x (t, x, p, µ) ≤ C 0 θ (1 + |p| q ) + C 0 θ 1-q ′ Λ q ′ (µ) q ′ . (5.9)
We recall that without loss of generality, we assumed C 0 = C 0 where C 0 is defined in Lemma 2.11.

Instead of proving Lemma 2.5 and step II.a, we address the more general following lemma which provides a priori estimates not only for solutions to (2.5) but also for solutions to (5.3). This will help to use the Leray-Schauder theorem in the next section.

Lemma 5.1. Under assumptions A1-A6, there exists a positive constant C which only depends on the constants in the assumptions and not on a or θ, such that the solution to (5.3) satisfies:

u ∞ ≤ Cθ, ∇ x u ∞ ≤ Cθ 1 2 and sup t∈[0,T ] Λ ∞ (µ(t)) ≤ Cθ.
Proof. First step: controlling

T 0 Λ q ′ (µ(t)) q ′ dt Let us take (X, α) defined by      α t = α µ(t) (t, X t ) = -H θ p (t, X t , ∇ x u(t, X t ), µ(t)) , dX t = α t dt + √ 2νdB t , X 0 = ξ ∼ m 0 ,
where (B t ) t∈[0,T ] is a Brownian motion independent of ξ.

The function u is the value function of an optimization problem, i.e. the lowest cost that a representative agent can achieve from time t to T if X t = x, when the probability measures m and µ are fixed, i.e. (5.10)

α |s∈[t,T ] = argmin α ′ E T t L θ s, X α ′ s , α ′ s , µ(s) + θf s, X α ′ s , m(s) ds + θg X α ′ T , m(T ) ,
where for a control α ′ , we define and(B ′ t ) t∈[0,T ] is a Brownian motion independent of ξ ′ . Let us recall that for any t ∈ [0, T ], m(t) is the law of X t , and µ(t) is the law of (X t , α t ). We introduce X the stochastic process defined by

dX α ′ t = α ′ t dt + √ 2νdB ′ t , X α ′ 0 = ξ ′ ∼ m 0 ,
d X t = √ 2νdB t , X 0 = ξ ∼ m 0 .
We set m(t) = L( X t ) and µ(t) = L( X t ) ⊗ δ 0 for t ∈ [0, T ]. For the strategy consisting in taking α ′ = 0, (5.10) yields the inequality:

T 0 T d a ×R d L θ (t, x, α, µ(t)) dµ(t, x, α)dt+ T 0 T d a θf (t, x, m(t)) dm(t, x)dt+ T d a θg (x, m(T )) dm(T, x) ≤ T 0 T d a ×R d L θ (t, x, α, µ(t)) d µ(t, x, α)dt+ T 0 T d a θf (t, x, m(t)) d m(t, x)dt+ T d a θg (x, m(T )) d m(T, x).
This and A6 imply that, (

T 0 T d a ×R d L θ (t, x, α, µ(t)) dµ(t, x, α)dt ≤ T 0 T d a ×R d L θ (t, x, α, µ(t)) d µ(t, x, α)dt+2C 0 θ (1 + T ) . 5.11) 
Assumption A3 with (µ(t), µ(t)) yields (5.12)

T d a ×R d L θ (t, x, α, µ(t)) d µ(t, x, α) + T d a ×R d L θ (t, x, α, µ(t)) dµ(t, x, α) ≤ T d a ×R d L θ (t, x, α, µ(t)) dµ(t, x, α) + T d a ×R d L θ (t, x, α, µ(t)) d µ(t, x, α).
Moreover, from A5 we obtain that, (

T d a ×R d L θ (t, x, α, µ(t)) µ(t, d(x, α)) = T d a θL (t, x, 0, µ(t)) m(t, dx) ≤ C 0 θ. 5.13) 
Therefore from (A4), (5.11), (5.12) and (5.13), we obtain,

T 0 T d a C -1 0 θ 1-q ′ |α| q ′ -C 0 θ dµ(t, x, α)dt ≤ T 0 T d a ×R d L θ (t, x, α, µ(t)) dµ(t, x, α)dt ≤ C 0 θ(2 + 3T ).
This implies (

T 0 Λ q ′ (µ(t)) q ′ dt ≤ 2C 2 0 θ q ′ (1 + 2T ). 5.14) 
Second step: the uniform estimate on u ∞ Let us rewrite (5.3a) in the following way,

-∂ t u ν∆u + 1 0
H θ p (t, x, s∇ x u, µ(t))ds • ∇ x u = H θ (t, x, 0, µ(t)) + θf (t, x, m(t)), for (t, x) ∈ (0, T ) × T d a . The maximum principle for second-order parabolic equation, A6, and (2.7) yield that

u ∞ ≤ C 0 θ(1 + 2T ) + C 0 θ 1-q ′ T 0 Λ q ′ (µ(t)) q ′ dt,
which implies that u is uniformly bounded using the conclusion of the previous step.

Third step: the uniform estimate on ∇ x u ∞ . The proof of this step relies on the same Bernstein-like method introduced in [20] Lemma 6.5. We refer to the proof of the latter results for more details in the derivation of the equations below.

Let

us introduce ρ ∈ C ∞ -a 2 , a 2 
d a nonnegative mollifier such that ρ(x) = 0 if |x| ≥ a 4 and [-a 2 , a
2 ) d ρ(x)dx = 1. For any 0 < δ < 1 and t ∈ [0, T ], we introduce ρ δ = δ -d ρ • δ and u δ (t) = ρ δ ⋆ u(t) with ⋆ being the convolution operator with respect to the state variable.

Possibly after modifying the constant C appearing in the first step, we can assume that u ∞ + (1 + C 0 ) θ 1-q ′ T 0 Λ q ′ (µ(s)) q ′ ds ≤ C using the first two steps in such a way that C depends only on the constants in the assumptions, and not on θ. Then we introduce ϕ : [-C, C] → R * + and w δ defined by (5.15)

ϕ(v) = exp (exp (-v)) , w δ (t, x) = ϕ u δ (T -t, x) + (1 + C 0 ) θ 1-q ′ T T -t Λ q ′ (µ(s)) q ′ ds ∇ x u δ 2 (T -t, x), for (t, x) ∈ [0, T ] × T d a , v ∈ B R d (0, C).
In particular ϕ ′ < 0, and ϕ, 1/ϕ, -ϕ ′ and -1/ϕ ′ are uniformly bounded. We refer to the proof of Lemma 6.5 in [START_REF] Kobeissi | On Classical Solutions to the Mean Field Game System of Controls[END_REF] for the derivation of the following partial differential equation satisfied by w δ , (5.16)

∂ t w δ -ν∆w δ + ∇ x w δ • H θ p x, ∇ x u δ , µ -2ν ϕ ′ ϕ ∇ x w δ • ∇ x u δ + 2νϕ D 2 x,x u δ 2 = ϕ ′ ϕ w δ ∇ x u δ • H θ p x, ∇ x u δ , µ -H θ x, ∇ x u δ , µ + (1 + C 0 ) θ 1-q ′ Λ q ′ (µ) q ′ -ν ϕ ′′ ϕ -2 (ϕ ′ ) 2 ϕ 3 w δ 2 -2ϕ∇ x u δ • H θ x x, ∇ x u δ , µ + 2θϕ∇ x u δ • f δ x (x, m) + R δ (t, x)
in which H θ , f , f δ , u, u δ and µ are taken at time T -t and w δ at time t, and where f δ and R δ , are defined by,

f δ (x, m) =ρ δ ⋆ (f (•, m)) (x), R δ (t, x) = -ϕ ′ ∇ x u δ 2 ρ δ ⋆ H θ (•, ∇ x u, µ) (x) -H θ x, ∇ x u δ , µ -2ϕ∇ x u δ • ρ δ ⋆ H θ x (•, ∇ x u(•), µ) (x) -H θ x x, ∇ x u δ , µ , + 2ϕ∇ x u δ • D 2 x,x u δ H θ p x, ∇ x u δ , µ -ρ δ ⋆ D 2 x,x uH θ p (•, ∇ x u, µ) .
From (5.8), we obtain that

∇ x u δ •H θ p x, ∇ x u δ , µ -H θ x, ∇ x u δ , µ +(1 + C 0 ) θ 1-q ′ Λ q ′ (µ) q ′ ≥ C -1 0 θ ∇ x u δ q +θ 1-q ′ Λ q ′ (µ) q ′ -C 0 θ.
Therefore, using A6, (5.16), (5.9), the facts that ϕ ′ < 0, that ϕ ′′ ϕ -2 (ϕ ′ ) 2 ≥ 0, that ϕ, ϕ -1 , ϕ ′ , (ϕ ′ ) -1 are bounded, and the latter inequality, we get (5.17

) ∂ t w δ -ν∆w δ + ∇ x w δ • H θ p x, ∇ x u δ , µ -2ν ϕ ′ ϕ ∇ x w δ • ∇ x u δ ≤ -C -1 θ w δ q 2 + θ 1-q ′ Λ q ′ (µ) q ′ w δ + C w δ 1 2 θ + θ w δ 1 2 + θ w δ q 2 + θ 1-q ′ Λ q ′ (µ) q ′ + R δ ∞ ,
up to updating C. We notice that the terms with the highest exponents in w δ and Λ q ′ (µ) q ′ in the right-hand side of the latter inequality is non-positive. Let us use Young inequalities and obtain

w δ 1 2 Λ q ′ (µ) q ′ ≤ εw δ Λ q ′ (µ) q ′ + 1 4ε Λ q ′ (µ) q ′ , w δ q ≤ ε w δ 1+ q 2 + q + 2 -2 q q + 2 ε(q + 2) 2 q - 2 q+2-2 q
, for any q < 1 + q 2 and ε > 0. Using systematically these two inequalities in (5.17) and taking ε small enough we finally obtain,

∂ t w δ -ν∆w δ + ∇ x w δ • H θ p x, ∇ x u δ , µ -2ν ϕ ′ ϕ ∇ x w δ • ∇ x u δ ≤ C ε θ + θ 1-q ′ Λ q ′ (µ) q ′ + R δ ∞ ,
where C ε is a constant which depends on ε and the constants in the assumtions. From A6, the initial condition of w δ is bounded. Therefore the maximum principle for second-order parabolic equations implies that (5.18)

w δ ∞ ≤ C ε θ + θT + θ 1-q ′ T 0 Λ q ′ (µ(t)) q ′ dt + T R δ ∞ .
Let us point out that ∇ x u is the solution of the following backward d-dimensional parabolic equation,

-∂ t ∇ x u -ν∆∇ x u + D 2 x,x uH p (x, ∇ x u, µ) = ∇ x f (x, m) -H x (x, ∇ x u, µ) ,
which has bounded coefficients and right-hand side, and a terminal condition in C 1+β 0 T d a . Theorem 6.48 in [START_REF] Gary | Second order parabolic differential equations[END_REF] states that ∇ x u and D 2

x,x u are continuous. This and the continuity of H θ and H θ x stated in Lemma 2.11 imply that R δ is uniformly convergent to 0 when δ tends to 0. We conclude this step of the proof by passing to the limit in (5.18) as δ tends to 0, using the estimate on T 0 Λ q ′ (µ(t)) q ′ dt computed in the first step. We obtain that ∇ x u is uniformly bounded by a constant which depends on the constants in the assumptions, and depends linearly on θ 1 2 . Fourth step: obtaining uniform estimates on Λ q ′ (µ) and Λ ∞ (µ). Repeating the calculation in the proof of Lemma 4.1 with L satisfying (5.4) and (5.5), we obtain:

(5. [START_REF] Jameson | On Mean Field Games models for exhaustible commodities trade[END_REF])

Λ q ′ (µ(t)) q ′ ≤ 4C 2 0 θ q ′ + (q ′ ) q-1 (2C 0 ) q q θ q ′ ∇ x u(t) q L q (m(t)) .
This and the third step of this proof yield that sup t∈[0,T ] Λ q ′ (µ(t)) ≤ Cθ for some C depending only on the constants of the assumptions. We conclude that sup t∈[0,T ] Λ ∞ (µ(t)) satisfies a similar inequality using (5.6).

-Existence and Uniqueness Results

Paragraph 6.1 is devoted to proving the existence of solutions to (2.5), which is step II.b. In paragraph 6.2, we propose a method to extend the existence result to system (2.3) which is stated on R d ; this concludes step III.a. This method relies on compactness results using the uniform estimates of ∇ x u that we obtained in Lemma 5.1. In paragraph 6.3, we prove step III.b, namely the uniqueness of the solution to (2.3) and (2.5). Then the main results of the paper and step IV are addressed in paragraph 6.4. We introduce a one-to-one correspondance between solutions to (1.6) and (2.3), which allows us to obtain directly the existence and the uniqueness of the solution to (1.6) from the ones to (2.3).

6.1 Proof of Theorem 2.6: existence of solutions to (2.5)

We will use the a priori estimates stated in Section 5 and the latter fixed point theorem, in order to achieve step II.b and prove the existence of solutions to (2.5).

Proof of Theorem 2.6. We would like to use the Leray-Schauder theorem 4.2 on a map which takes a flow of measures ( m t ) t∈[0,T ] ∈ P T d a [0,T ] as an argument. However, P T d a is not a Banach space. A way to go through this difficulty is to compose the latter map with a continuous map from a convenient Banach space to the set of such flows of measures. Here, we consider the map introduced in

[3], namely ρ : C 0 [0, T ] × T d a ; R → C 0 [0, T ] × T d a ; R defined by ρ( m)(t, x) = m + (t, x) -a -d m + (t, y)dy max 1, m + (t, y) dy + a -d ,
where m + (t, x) = max (0, m(t, x)). We will also have the use of m 0 defined as the unique weak solution of (6.1) ∂ t m 0 -ν∆ m 0 = 0 on (0, T ) × T d a , and m 0 (0, •) = m 0 .

We are now ready to construct the map Ψ on which we will use the Leray-Schauder theorem 4.2. Take θ ∈

[0, 1], u ∈ C 0,1 [0, T ] × T d a ; R and m ∈ C 0 [0, T ] × T d a ; R . We define m = ρ m + m 0 and (µ, α) ∈ C 0 [0, T ]; P T d a × R d × C 0 [0, T ] × T d a ; R d by, α(t, x) = -H θ p (t, x, ∇ x u(t, x), µ(t)) µ(t) = (I d , α(t, •)) #m(t).
This definition comes from the conclusions of Lemma 2.4 when θ > 0. For θ = 0, it simply consists in taking α = 0 and µ(t) = m(t) ⊗ δ 0 . Here we can repeat the calculation and obtain inequality (5.19). This and (5.6) implies that α ∞ is bounded by Cθ for some constant C > 0 which depends on ∇ x u ∞ and is independent of θ and a.

Then we define m the solution in the sense of distributions of

∂ t m -ν∆m + div (αm) = 0,
supplemented with the initial condition m(0, •) = m 0 , with m 0 being β 0 -Hölder continuous. Theorem 2.1 section V.2 in [START_REF] Ladyzenskaja | Linear and quasilinear equations of parabolic type[END_REF] states that m is uniformly bounded by a constant which depends on m 0 ∞ and α ∞ . Theorem 6.29 in [START_REF] Gary | Second order parabolic differential equations[END_REF] yields that m ∈ C β 2 ,β [0, T ] × T d a for β ∈ (0, β 0 ), and that its associated norm can be estimated from above by a constant which depends on ∇ x u ∞ , β, a and the constants in the assumptions. The same arguments applied to m 0 defined in (6.1) imply that m 0 is in

C β 2 ,β [0, T ] × T d
a and its associated norm is bounded. Then we take µ(t) = (I d , α(t, •)) #m(t) for any t ∈ [0, T ], and u ∈ C 0,1 [0, T ] × T d a ; R the unique solution in the sense of distributions of the following heat equation with bounded right-hand side,

-∂ t u -ν∆u = -H θ (t, x, ∇ x u, µ(t)) + θf (x, m(t)), supplemented with the terminal condition u(T, •) = θg (•, m(T )) which is in C 1+β 0 T d a .
Classical results (see for example Theorem 6.48 in [START_REF] Gary | Second order parabolic differential equations[END_REF]) state that u is in C 1 2 + β 2 ,1+β and its associated norm is bounded by a constant which depends on ∇ x u ∞ , β, a and the constants in the assumptions.

We can now construct the map Ψ :

(θ, u, m) → u, m -m 0 , from C 0,1 [0, T ] × T d a ; R × C 0 [0, T ] × T d a ; R d into itself.
This map is continuous and compact, it satisfies Ψ (0, u, m) = 0 for any (u, m). In particular, the fact that α ∞ ≤ Cθ in the previous paragraph, implies that m tends to m 0 and u tends to 0 as θ tends to 0. This gives the continuity of Ψ at θ = 0. Moreover the fixed points of Ψ(θ) are exactly the solutions to (5.3), which are uniformly bounded by Lemma (5.1). Therefore, by the Leray-Schauder fixed point theorem 4.2, there exists a solution to (2.5).

Proof of Theorem 2.7: passing from the torus to R d

The purpose of this paragraph is to extend the existence result to the system (2.3) and achieve step III.a.

Proof of Theorem 2.7. First step: constructing a sequence of approximate solutions.

For a > 0 we define m 0,a = π a #m 0 , where π a : R d → T d a is the quotient map. Let χ a : T 1 a → R be the canonical injection from the one-dimensional torus of radius a to R, which image isa 2 , a 2 . Take ψ ∈ C 2 (R; R) periodic with a period equal to 1 and such that, (6.2)

ψ(x) = x, if |x| ≤ 1 4 , ψ(x) ≤ |x| , for any x ∈ - 1 2 , 1 2 , We define ψ a : T d a → R d by ψ a (x) i = a ψ a -1 χ a (x i ) for i = 1, . . . , d, this is a C 2 function. Since ψ • a has a period of a, the function ψ a • π a : R d → R d satisfies (6.3) ψ a • π a (x) i = a ψ x i a ,
for i = 1, . . . , d and x ∈ R d , and is a C 2 function. We are ready to construct periodic approximations of L, f and g defined by,

L a (t, x, α, µ) = L (t, ψ a (x), α, (ψ a ⊗ I d ) #µ) , f a (t, x, m) = f (t, ψ a (x), ψ a #m) , g a (x, m) = g (ψ a (x), ψ a #m) , for (t, x) ∈ [0, T ] × T d a , α ∈ R d , µ ∈ P T d a × R d
. Let H a be the periodic Hamiltonian associated with L a by the Legendre transform:

H a (t, x, p, µ) = H (t, ψ a (x), p, (ψ a ⊗ I d ) #µ) .
Let us point out that the fact that L, H, f and g satisfy A1-A6, implies that L a , H a , f a and g a satisfy these assumptions too with C 0 ψ ′ ∞ instead of C 0 . So we can define ( u a , m a , µ a ) a solution to (2.5) with H a , f a , g a and m 0,a instead of H, f , g and m 0 . We define

u a ∈ C 0 [0, T ] × R d ; R , m a ∈ C 0 [0, T ]; P R d and µ a ∈ C 0 [0, T ]; P R d × R d respectively by u a (t, x) = u a (t, π a (x)) , m a (t) = ψ a # m a (t), and µ a (t) = (ψ a ⊗ I d ) # µ a (t), for (t, x) ∈ [0, T ] × R d .
Second step: Proving that m a is compact.

We are going to use the Arzelà-Ascoli Theorem on C 0 [0, T ]; P R d , W 1 (P R d is endowed with the 1-Wassertein distance). First we prove that for any t ∈ [0, T ], the sequence (m a (t)) a>1 is compact with the 1-Wassertein distance, by proving that R d |x| 2 dm a (t, x) is uniformly bounded in a. At time t = 0, we have

R d |x| 2 dm a (0, x) = T d a |ψ a (x)| 2 d m a,0 (x) = R d |ψ a • π a (x)| 2 dm 0 (x) ≤ R d
|x| 2 dm 0 (x) ≤ C 0 , using (6.2), (6.3) and A6. Let us differentiate R d |x| 2 dm a (t, x) with respect to time, perform some integrations by part and obtain that

d dt R d |x| 2 dm a (t, x) = d dt T d a |ψ a (x)| 2 d m a (t, x) = T d a |ψ a (x)| 2 ν∆ m a (t, x) -div α µ a (t) (x) m a (t, x) dx = 2 T d a d i=1 ν ψ ′′ χ a (x i ) a ψ χ a (x i ) a + ν ψ ′ χ a (x i ) a 2 +ψ a (x) ψ ′ χ a (x i ) a α µ a (t),i (x) d m a (t, x) ≤ 2νd ψ ′′ ∞ ψ ∞ + 2νd ψ ′ 2 ∞ + ψ ′ 2 ∞ α µ a (t) 2 ∞ + T d a |ψ a (x)| 2 d m a (t, x) ≤ 2νd ψ ′′ ∞ ψ ∞ + 2νd ψ ′ 2 ∞ + ψ ′ 2 ∞ α µ a (t) 2 ∞ + R d |x| 2 dm a (t, x).
We recall that (t, x) → α µ a (t) (x) is uniformly bounded with respect to t and a by Lemma 5.1. Therefore, the latter two inequalities and a comparison principle for ordinary differential equation imply that R d |x| 2 dm a (t, x) is uniformly bounded with respect to a and t.

We define X a a random process on R d by 

dX a t = α µ a (t) π a X a t dt + √ 2νdB t , and L X a 0 = m 0 , where B is a Brownian motion on R d independent of X a 0 . For t, s ∈ [0, T ], we have that, E X a t -X a s ≤ E X a t -X a s 2 1 2 ≤ E t s √ 2νdW r
α µ a (r) ∞ .
We define X a t = π a X a t ∈ T d a and X a t = ψ a X a t ∈ R d , for t ∈ [0, T ]. One may check that the law of X a t satisfies the same Fokker-Planck equation in the sense of distributions as m a (t) by testing it with C ∞ (0, T ) × T d test functions. Therefore, the law of X a t is m a (t) and the law of X a t is m a (t). By definition of the 1-Wassertein distance, we obtain W 1 (m a (t), m a (s)

) ≤ E [|X a t -X a s |] ≤ E ψ a • π a X a t -ψ a • π a X a s ≤ ψ ′ ∞ E X a t -X a s ≤ ψ ′ ∞ √ 2νd|t -s| 1 2 + |t -s| sup r∈[0,T ] α µ a (r) ∞ ,
where we used (6.3) and the mean value theorem to pass from the second to the third line in the latter chain of inequalities. Therefore by the Arzelà-Ascoli theorem, (m a ) a>0 is relatively compact in C 0 [0, T ]; P R d , W 1 .

Third Step: passing to the limit for a subsequence.

We recall that u a and ∇ x u a are uniformly bounded with respect to a, so are u a and ∇ x u a . Moreover u a satisfies the following PDE, -∂ t u a -ν∆u a + H (t, ψ a • π a (x), ∇ x u(t, x), µ a (t)) = f (t, ψ a • π a (x), m a (t)) , for (t, x) ∈ (0, T )×B R d (0, a), we recall that ψ a •π a (x) = x if |x| ≤ a 4 . For a 0 > 0, we choose a such that a > 4 (a 0 + 1), this implies that u a satisfies a backward heat equation on B R d (0, a 0 + 1) with a bounded right-hand side, a bounded terminal condition, and bounded boundary conditions. Classical results on the heat equation (see for example Theorem 6.48 in [START_REF] Gary | Second order parabolic differential equations[END_REF]) state that u a is in C µ an (t) converges to a fixed point of (2.3c) when n tends to infinity; indeed we notice that µ an (t) = (ψ an ⊗ I d ) # µ an (t) = (ψ an ⊗ I d ) # I d , -H an p (t, •, ∇ x u an (t, π an • ψ an (•)) , µ an (t)) # m an = (ψ an , -H p (t, ψ an (•), ∇ x u an (t, ψ an (•)) , µ an (t))) # m an = (I d , -H p (t, •, ∇ x u an (t, •) , µ an (t))) #m an .

In particular, α µ an (t) = α µ an (t) •ψ an so α µ an (t) L ∞ (m) is not larger than α µ an (t) L ∞ ( m) since the support of m an is contained in the image of the support of m an by ψ an . We proved in the previous step that (m a (t)) a≥1 is compact in P R d , W 1 , and so is (µ an (t)) n≥1 in P R d × R d , W 1 , since they are the pushforward measures of (m an (t)) n≥1 by I d , α µ an (t) . Let µ(t) ∈ P R d × R d be the limit of a convergent subsequence of (µ an (t)) n≥1 . Passing to the limit in the weak* topology in the latter chain of equalities implies that µ(t) = (I d , -H p (t, •, ∇ x u (t, •) , µ(t))) #m(t).

Moreover, the uniqueness of the fixed point 2.3c holds here, see [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF] Lemma 5.2 for the proof. We obtained that there exists a unique fixed point satisfying 2.3c, and that it is the limit of any convergent subsequence of (µ an (t)). This implies that the whole sequence (µ an (t)) n≥1 tends to µ(t) in P R d × R d , W 1 .

Let us point out that m an satisfies ∂ t m an -ν∆m an -div (H p (t, x, ∇ x u an , µ an ) m an ) = 0 in the sense of distributions on (0, T ) × B 0, an 4 , by the definitions of ψ a and ψ. Furthermore, at time t = 0 we know that m an (0) = (ψ an • π an ) #m 0 . We recall that ψ an • π an (x) = x for x ∈ B R d 0, an 4 . This implies that m an (0) tends to m 0 in the weak* topology of P R d . Finally we obtain that (u, m, µ) is a solution to (2.3), by passing to the limit as n tends to infinity in the equations satisfied by (u an , m an , µ an ). Remark 6.1. In the above proof, we obtain that there exists a unique fixed point satisfying 2.3c. We have thereby extended the conclusions of Lemma 4.3 to system 2.3. Similarly, one may extend the conclusions of Lemma 2.4 to system (2.3).

6.3 Proof of Theorem 2.8: uniqueness of the solutions to (2.3) and (2.5)

Step III.b, namely the uniqueness of the solution to (2.3), is obtained from the monotonicity assumptions A3 and U, and the same arguments as in the case of MFG without interaction through controls.

Proof of Theorem 2.8. Here, we write the proof for the system (2.3). However, none of the arguments below is specific to the domain R d , therefore this proof can be repeated for (2.5).

We suppose that (u 1 , m 1 , µ 1 ) and (u 2 , m 2 , µ 2 ) are two solutions to (2.3). Now standard arguments (see [START_REF] Lasry | Mean field games[END_REF]) lead to (6.4)

0 = T 0 R d ∇ x (u 1 -u 2 )
• H p t, x, ∇ x u 1 , µ 1 -H t, x, ∇ x u 1 , µ 1 + H t, x, ∇ x u 2 , µ 2 dm 1 (t, x)

+ T 0 R d ∇ x (u 2 -u 1 )
• H p t, x, ∇ x u 2 , µ 2 -H t, x, ∇ x u 2 , µ 2 + H t, x, ∇ x u 1 , µ 1 dm 2 (t, x) Recall that (6.5) L t, x, α µ i , µ i = ∇ x u i • H p t, x, ∇ x u i , µ i -H t, x, ∇ x u i , µ i ,

+ T 0 R d f (t, x, m 1 (t)) -f (t,
∇ x u i = -L α t, x, α µ i , µ i ,
The proof is straightforward and only consists in checking on the one hand, that (1.6a) and (1.6b) are respectively equivalent to (2.3a) and (2.3b) with H b instead of H; on the other hand, that (1.6c) and (1.6d) are equivalent to (2.3c) with H b , where we take µ b = µ and µ α defined by (1.6c).

The following existence theorem is a direct consequence of Lemma 6.2, and Theorem 2.7.

Corollary 6.3. If L b satisfies A1-A6, and b satisfies B1, there exists a solution to (1.6). Theorem 2.3, i.e. the existence part of step IV, is a consequence of the latter existence result in which the assumptions on L b are stated on L instead, which makes them more tractable. However, we have to make the additional B2.

If L and b satisfy the assumptions of Theorem 2.3, it is straightforward to check that L b satisfies A1-A5. Therefore, Theorem 2.3 is a consequence of Corollary 6.3. Finally, Theorem 2.2 and the uniqueness part of step IV are direct consequences of Theorem 2.8 and Lemma 6.2.

(1. 4 )

 4 H (t, x, p, µ α ) = sup α∈R d -p • b (t, x, α, µ α ) -L (t, x, α, µ α ) , for (t, x) ∈ [0, T ] × R d , p ∈ R d and µ α ∈ P R d × R d , where P R d × R d is the set of probability measures on R d × R d .

  such that b = b t, x, α * t, x, b, µ b , µ α for any (t, x) ∈ [0, T ] × R d , b ∈ R d and µ α , µ b ∈ P R d × R d satisfying (1.5). Conversely, for any α ∈ R d we have α = α * (t, x, b (t, x, α, µ α ) , µ b ) , since b (t, x, •, µ α ) is injective.This implies that the equality (1.5) can be inverted to express µ α in term of µ b and we obtain (1.6c) below. Within this framework, the usual MFG system (1.1) is replaced by the following Mean Field Game of Controls (MFGC for short) system,

  The probability measures µ α and µ b involved in (1.6), have a particular form, since they are the images of a measure m on R d by (I d , α) and (I d , b) respectively, where α and b are bounded measurable functions from R d to R d ; in particular they are supported on the graph of α and b respectively. For m ∈ P R d , we call

Theorem 4 . 2 (

 42 Leray-Schauder fixed point theorem). Let B be a Banach space and let Ψ be a compact mapping from [0, 1] × B into B such that Ψ(0, x) = 0 for all x ∈ B. Suppose that exists a constant C such thatx B ≤ C, for all (θ, x) ∈ [0, 1] × B satisfying x = Ψ(θ, x). Then the mapping Ψ(1, •) of B into itself has a fixed point.From Lemma 4.1 and Theorem 4.2, we obtain the following existence result for a fixed point (2.5c). Lemma 4.3. Assume A1-A5. For t ∈ [0, T ], m ∈ P T d a and p ∈ C 0 T d a ; R d , there exists a unique µ ∈ P T d a × R d such that µ = (I d , -H p (t, •, p(•), µ)) #m. Moreover, µ satisfies the inequality stated in Lemma 4.1.

1 2

 1 + |t -s| sup r∈[0,T ]

1 2 + β 2 ,

 22 1+β ([0, T ] × B R d (0, a 0 ) ; R) and that its associated norm is bounded by a constant which depends on the constants in the assumptions and a 0 , but not on a. Thereforeu a |B R d (0,a 0 ) a>1 is a compact sequence in C 0,1 ([0, T ] × B R d (0, a 0 ) ; R) for any a 0 > 0.Then by a diagonal extraction method, there exists a n an increasing sequence tending to +∞ in R + such thatm an → m in C 0 [0, T ], P R d , W 1 , u an → u locally in C 0,1 , for some (u, m) ∈ C 0,1 [0, T ] × R d ; R ×C 0 [0, T ]; P R d , W 1 .Let us prove that for t ∈ [0, T ],

  x, m 2 (t)) d(m 1 (t, x) -m 2 (t, x))dt + R d g(x, m 1 (T )) -g(x, m 2 (T )) d(m 1 (T, x) -m 2 (T, x)).

  We solve the fixed point (2.5c) in µ, which proves Lemma 2.4, in three steps: II We prove the existence of a solution to (2.5), stated in Theorem 2.6, in two steps: II.a we obtain a priori estimates for solutions to (2.5) (Lemmas 2.5 and 5.1); II.b in paragraph 6.1, we use Leray-Schauder fixed point theorem (Theorem 4.2) and the estimates of step II.a to conclude.

	III We prove existence and uniqueness of the solution to (2.3) (Theorems 2.7 and 2.8):
	III.a the proof of Theorem 2.7 is given in paragraph 6.2;
	III.b the proof of Theorem 2.8 is given in paragraph 6.3;
	IV The proof of existence and uniqueness of the solution to (1.6) (Theorems 2.2 and 2.3) is
	given in paragraph 6.4.

I.a in Lemma 4.1 we state a priori estimates for a solution of (2.5c); I.b using the Leray-Schauder fixed point theorm (Theorem 4.2), we solve the fixed point (2.5c) at any time t ∈ [0, T ], in Lemma 4.3;

I.c we prove that the fixed point µ(t) defined at any t ∈ [0, T ] in step I.b, is continuous with respect to time (Lemma 4.4); this implies lemma 2.4.

  The fixed point (2.5c) and the proof ofLemma 2.4 

	This section is devoted to step I. In paragraph 4.1, we state a priori estimates on a fixed point
	of (2.

5c) (Lemma 4.1); then we we use these estimates and Leray-Schauder fixed point theorem (Theorem 4.2) and obtain the existence of a fixed point (2.5c) at any time t ∈ [0, T ] (Lemma 4.3). We address the continuity with respect to time of the fixed point, i.e. step I.c, in Lemma 4.4.

In this section and the next one, we work on T d a = R d / aZ d T d a the d-dimensional torus of radius a > 0. Here we take L
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because L is the Legendre tranform of H. From U, (6.4) and (6.5), we obtain that, (6.6)

The function L is strictly convex in α by Lemma 2.10, which implies that, (6.7)

and (6.7) turn to identities if and only if α µ 1 = α µ 2 . The latter inequalities and (6.6) yield

Assumption A3 turns the latter inequality into an equality. This, the case of equality in (6.7) and the continuity of α µ 1 and α µ 2 yield that α µ 1 = α µ 2 . This implies that m 1 = m 2 by the uniqueness of the solution to (2.3b), (2.3e). Therefore, we obtain µ 1 = µ 2 , and then u 1 = u 2 by the uniqueness of the solution to (2.3a),2.3d.

6.4 Theorems 2.2 and 2.3: existence and uniqueness of the solution to (1.6)

So far, no distinction has been made between µ b and µ α , because they coincide for (2.3) and (2.5). Now they may differ since the drift function and the control may be different. In this case µ b defined by µ b (t) = (x, α) → (x, b (t, x, α, µ α (t))) #µ α (t) is naturally the joint law of the states and the drifts. The idea here to pass from (2.3) to (1.6), is to assume that b is invertible with respect to α, which changes the optimization problem in α into a new optimization problem expressed in term of b. This consists in changing the Lagrangian from L (t, x, α, µ α ) into

The Hamiltonian H b defined as the Legendre transform of L b is given by (6.8)

Conversely, we can obtain L and H from L b and H b with the following relations,

Now we can state the following lemma which allows us to pass from (2.3)