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Abstract. A mechanistic model describing the anaerobic mineralization of
chlorophenol in a three-step food-web is investigated. The model is a six-

dimensional system of ordinary differential equations. In our study, the phenol
and the hydrogen inflowing concentrations are taken into account as well as the

maintenance terms. The case of a large class of growth kinetics is considered,

instead of specific kinetics. We show that the system can have up to eight types
of steady states and we analytically determine the necessary and sufficient

conditions for their existence according to the operating parameters. In the

particular case without maintenance, the local stability conditions of all steady
states are determined. The bifurcation diagram shows the behavior of the

process by varying the concentration of influent chlorophenol as the bifurcating

parameter. It shows that the system exhibits a bi-stability where the positive
steady state can lose stability undergoing a supercritical Hopf bifurcation with

the emergence of a stable limit cycle.

1. Introduction. The chemostat model is widely used in microbiology and ecology
as a mathematical representation of the continuous culture of micro-organisms, that
is, the growth of micro-organisms in ecosystems that are continuously fed with
nutrients [19, 21, 30]. Several textbooks on the mathematical analysis of this model
with one and more species are available [17, 28]. The chemostat model predicts
that coexistence of two or more microbial populations competing for a single non-
reproducing nutrient is not possible. Only the species with the lowest ‘break-even’
concentration survives. This result, known as the Competitive Exclusion Principle
(CEP), has a long history in the literature of bio-mathematics and the reader may
consult [23] and the references therein.

Although the theoretical prediction of the CEP has been corroborated by the
experiences of Hansen and Hubell [16], the biodiversity found in nature as well as
in biological reactors seems to contradict the CEP. This has led to a great deal of
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mathematical research aimed at extending the chemostat model to better match
theory and observations. Among the mechanisms that promote the coexistence of
species, we can cite : the crowding effects (see [1, 8] and the references therein),
the role of density-dependent growth functions (see [15] and the references therein),
more complex food webs (see [2, 20, 33] and the reference therein), the presence of
inhibitors that affects the strongest competitor (see [3, 9, 10, 32], and the references
therein), the commensalistic relationship where a second species (the commensal)
needs the first one (the host) to grow while the host species is not affected by the
growth of the commensal one (see [5, 6, 11, 18, 27] and the references therein),
the syntrophic relationship where two microbial species depend on each other for
survival (see [7, 12, 14, 24, 25, 34] and the reference therein).

Some of these models were constructed to have a better understanding of anaero-
bic digestion (AD), which is an important process used in the treatment of wastew-
ater and waste, including a large number of species that coexist in a very complex
relationship. The full anaerobic digestion model (ADM1) developed in [4] includes
32 state variables and a large number of parameters. Therefore, the qualitative
analysis and the control of this model are very difficult because of its complexity
and its dependence on many operational variables. The so-called AM2 model devel-
oped in [6] represents a two-tiered food-web and provides satisfactory prediction of
the AD process by using the parameter identification theory and experimental data.
In [14], a three-tiered food-web model including enzymatic degradation of a sub-
strate and commensalistic relationship is considered. In [31], the authors consider
a three-tiered food-web with three microbial species (chlorophenol and phenol de-
graders and hydrogenotrophic methanogen) that encapsulates the essence of the AD
process. The corresponding model represents an extension of the model describing
the interactions between propionate degraders and hydrogenotrophic methanogens
in a two-tiered feeding chain [34].

The aim of our paper is to consider the three-tiered microbial ‘food-web’, devel-
oped in [31] which is written as follows:

Ẋch = (Ychf0 (Sch, SH2)−D − kdec,ch)Xch

Ẋph = (Yphf1 (Sph, SH2
)−D − kdec,ph)Xph

ẊH2
= (YH2

f2 (SH2
)−D − kdec,H2

)XH2

Ṡch = D
(
Sin

ch − Sch

)
− f0 (Sch, SH2)Xch

Ṡph = D
(
Sin

ph − Sph

)
+ 224

208 (1− Ych) f0 (Sch, SH2)Xch − f1 (Sph, SH2)Xph

ṠH2 = D
(
Sin

H2
−SH2

)
− 16

208f0 (Sch, SH2)Xch+ 32
224 (1−Yph)f1 (Sph, SH2)Xph

−f2(SH2)XH2 ,

(1)

where Xch, Xph and XH2
denote, respectively, the chlorophenol, phenol and hydro-

gen degrader concentrations; f0, f1 and f2 are the corresponding growth rates; Sch,
Sph and SH2 are the chlorophenol, phenol and hydrogen substrates concentrations;
Sin

ch, S
in
ph and Sin

H2
are the substrate concentrations in the feed bottle; kdec,ch, kdec,ph

and kdec,H2 represent the decay rates; D is the dilution rate of the chemostat; Ych,
Yph and YH2 are the yield coefficients.

The choice of the application of chlorophenol-mineralising food-web in [31] is
due to the availability of experimental data but the study of model (1) applies to
any other similar microbial food chain. Indeed, the parameter values related to
hydrogen are deduced from that of ADM1 [4]. For chlorophenol and phenol, they
were chosen based on a combination of literature data (see [31] and the references
therein). Recently, a rigorous mathematical analysis of this model (1) was done in
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[26] with general growth rates but only the chlorophenol inflowing concentration
has been taken into account. Using the linear change of variables given by (7) and
(8), model (1) can be written as follows:

ẋ0 = (µ0(s0, s2)−D − a0)x0

ẋ1 = (µ1(s1, s2)−D − a1)x1

ẋ2 = (µ2(s2)−D − a2)x2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2

(2)

where si, i = 0, 1, 2 are the three substrates; xi are the three microbial species; µi
are the specific growth rates given by (9); ai are the mortality rates; sin

i are the
concentrations of the three substrates in the feed device. All the yield coefficients
in (1) are normalized to one except of ω.

In [26], system (2) can have at most three types of steady states when sin
0 > 0

and sin
1 = sin

2 = 0: the washout steady state, a coexistence steady state of three
species and a steady steady state where only the hydrogen degrader is extinct. The
local stability analysis is achieved when the maintenance is excluded from system
(2) where this six-dimensional model is reduced to a three-dimensional one. A
numerical evidence shows that, when maintenance is included, the positive steady
state can destabilize through a supercritical Hopf bifurcation with the appearance
of a stable periodic orbit [26]. In [29], when maintenance is excluded, the emergence
of a supercritical Hopf bifurcation was analytically determined. In [13], the three-
tiered model of [31] was studied by neglecting the part of hydrogen produced by
the phenol degrader and the mortality rates.

When in addition to sin
0 > 0, the phenol and hydrogen inflowing concentrations

are taken into account (sin
1 > 0 and sin

2 > 0), it was proven in [31] that system
(1) can have up to eight steady states, a fact that was confirmed in [13] and [29]
when a larger class of growth functions is considered, but the maintenance terms
are neglected. In [31] most of the results on the existence and stability of steady
states of model (1) were obtained only numerically.

In this paper, we generalize [31] by allowing a larger class of growth functions and
by giving rigorous proofs for the results on the existence of steady states obtained
in [31] for system (1). For this class of growth function, we generalize [13, 29] by al-
lowing maintenance terms and we generalize [26] by allowing phenol and hydrogen
inflowing concentrations. More precisely, our main objective is to determine the
existence of steady states of model (2) in the general case including maintenance
and the inflow of the three substrates. Moreover, we analyze the asymptotic be-
havior of the system without maintenance and we apply our theoretical results to
the three-tiered microbial model (1). Actually, the results on the stability of steady
state in [31] were obtained when maintenance terms are included. In a forthcom-
ing publication [22], we study theoretically this case, where system (2) cannot be
reduced to a three-dimensional one.

The paper is organized as follows. The next section presents general assumptions
for the growth rates and the mathematical analysis of the existence of steady states
of model (2) with respect to the operating parameters. In Section 3, the asymp-
totic behavior analysis of (2) was done in the particular case without maintenance.
Considering specific growth rates, numerical simulations are presented in Section 4
as an application of our theoretical results to model (1). Finally, conclusions are
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drawn in Section 5. The proofs of all the propositions and theorems are reported
in Appendix A. The parameter values and some auxiliary functions are presented
in Tables in Appendix B.

2. Assumptions and steady states. Considering model (2), we make the fol-
lowing general assumptions on the growth functions which are continuously differ-
entiable (C1).
(H1) For all s0 > 0 and s2 > 0, 0 < µ0 (s0, s2) < +∞, µ0 (0, s2) = 0, µ0 (s0, 0) = 0.

No growth can occur for species x0 without substrates s0 and s2.
(H2) For all s1 > 0 and s2 > 0, 0 < µ1 (s1, s2) < +∞, µ1 (0, s2) = 0.

No growth can occur for species x1 without substrate s1.
(H3) For all s2 > 0, 0 < µ2 (s2) < +∞, µ2(0) = 0.

No growth can occur for species x2 without substrate s2.

(H4) For all s0 > 0 and s2 > 0, ∂µ0

∂s0
(s0, s2) > 0, ∂µ0

∂s2
(s0, s2) > 0.

The growth rate of species x0 increases with substrates s0 and s2.

(H5) For all s1 > 0 and s2 > 0, ∂µ1

∂s1
(s1, s2) > 0, ∂µ1

∂s2
(s1, s2) < 0.

The growth rate of species x1 increases with the substrate s1 but is inhibited
by the production of s2.

(H6) For all s2 > 0, µ′2(s2) > 0.
The growth rate of species x2 increases with substrate s2.

(H7) The function s2 7→ µ0(+∞, s2) is monotonically increasing and the function
s2 7→ µ1(+∞, s2) is monotonically decreasing.
The maximum growth rate of the species x0 and x1 increases and decreases,
respectively, with the concentration of substrate s2.

First, we show that the solutions of model (2) are nonnegative and bounded, which
is a prerequisite for any reasonable model of the chemostat.

Proposition 1. For any nonnegative initial conditions, all solutions of system (2)
remain nonnegative and are bounded for all t > 0. Moreover, the set

Ω =
{

(x0, x1, x2, s0, s1, s2)∈R6
+ :ωx0 + x1 + x2 + 2s0 + 2s1 + s2 6 2sin

0 + 2sin
1 + sin

2

}
is positively invariant and a global attractor for (2).

A steady state exists (or is said to be ‘meaningful’) if and only if all its compo-
nents are nonnegative. This predicts eight possible steady states, labeled below as
in [31]:

• SS1 (x0 = 0, x1 = 0, x2 = 0): the washout of all three microbial populations.
• SS2 (x0 = 0, x1 = 0, x2 > 0): only the hydrogen degraders are maintained.
• SS3 (x0 > 0, x1 = 0, x2 = 0): only the chlorophenol degraders are maintained.
• SS4 (x0 > 0, x1 > 0, x2 = 0): only the hydrogen degraders are washed out.
• SS5 (x0 > 0, x1 = 0, x2 > 0): only the phenol degraders are washed out.
• SS6 (x0 > 0, x1 > 0, x2 > 0): all three microbial populations are present.
• SS7 (x0 = 0, x1 > 0, x2 = 0): only the phenol degraders are present.
• SS8 (x0 = 0, x1 > 0, x2 > 0): only the chlorophenol degraders are washed out.

To determine these steady states, we need to define some auxiliary functions that
are listed in Table 1. The existence and definition domains of these functions are
all relatively straightforward and can be found as in [26]. Following [26], we add a
hypothesis on the function Ψ which then assures that there are at most two steady
states of the form SS4.
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(H8) When ω < 1, the function Ψ has a unique minimum s2 = s2(D) on the interval(
s0

2, s
1
2

)
, such that ∂Ψ

∂s2
(s2, D) < 0 on

(
s0

2, s2

)
and ∂Ψ

∂s2
(s2, D) > 0 on

(
s2, s

1
2

)
.

As we will show in Section 4, this hypothesis (H8) is fulfilled with the specific growth
rates (9). Now, we can state our main result.

Table 1. Notations, intervals and auxiliary functions.

Definition
si = Mi(y, s2)
i = 0, 1

Let s2 > 0. si = Mi(y, s2) is the unique solution of
µi(si, s2) = y, for all 0 6 y < µi(+∞, s2)

s2 = M2(y)
s2 = M2(y) is the unique solution of
µ2(s2) = y, for all 0 6 y < µ2(+∞)

s2 = M3(s0, z)
Let s0 > 0. s2 = M3(s0, z) is the unique solution of
µ0(s0, s2) = z, for all 0 6 z < µ0(s0,+∞)

si2 = si2(D)

i = 0, 1

si2 = si2(D) is the unique solution of µi (+∞, s2) = D + ai, for all
D + a0<µ0(+∞,+∞), µ1(+∞,+∞)<D + a1 < µ1(+∞, 0), resp.

I1, I2 I1 =
{
D > 0 : s0

2 < s1
2

}
, I2 =

{
D ∈ I1 : s0

2 < M2(D + a2) < s1
2

}
Ψ(s2, D)

Ψ (s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2,
for all D ∈ I1 and s0

2 < s2 < s1
2

φ1(D) φ1(D) = inf
s02<s2<s

1
2

Ψ(s2, D), for all D ∈ I1

φ2(D) φ2(D) = Ψ (M2(D + a2), D), for all D ∈ I2
φ3(D) φ3(D) = ∂Ψ

∂s2
(M2(D + a2), D), for all D ∈ I2

J0, J1 J0 =
(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
, J1 =

(
0, sin

1

)
ψ0(s0) ψ0(s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
, for all s0 > max

(
0, sin

0 − sin
2 /ω

)
ψ1(s1) ψ1(s1) = µ1

(
s1, s

in
2 + sin

1 − s1

)
, for all s1 ∈

[
0, sin

1 + sin
2

]
ϕi(D)
i = 0, 1

ϕi(D) = Mi (D + ai,M2(D + a2)), resp., for all,
D ∈

{
D > 0 : s0

2 < M2(D + a2)
}

, D ∈
{
D > 0 : M2(D + a2) < s1

2

}
Theorem 1. Assume that Hypotheses (H1) to (H6) hold. The steady states SS1,
SS2,. . ., SS8, of (2) are given in Table 2. Assume also that Hypothesis (H7) holds.
The necessary and sufficient conditions of existence of the steady states are given
in Table 3. When they exist, all steady states (except SS4) are unique.

• If ω > 1, when it exists, SS4 is unique.
• If ω < 1, assuming also that (H8) holds, the system has generically two steady

states of the form SS4.

Remark 1. If ω < 1, equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2 has two solutions

s∗12 and s∗22 if and only if (1 − ω)sin
0 + sin

1 + sin
2 > φ1(D), so that ∂Ψ

∂s2

(
s∗12 , D

)
< 0

and ∂Ψ
∂s2

(
s∗22 , D

)
> 0 (see Fig. 1). We denote by SS41 and SS42 the steady states

of type SS4 corresponding to s∗12 and s∗22 , respectively. These steady states coalesce
when (1− ω)sin

0 + sin
1 + sin

2 = φ1(D).

In the particular cases, where sin
1 = 0 or sin

2 = 0, some of the steady states
described in Theorem 1 do not exist and the existence conditions of the existing
steady states can be simplified. More precisely, we have the following result.

Proposition 2. If sin
1 = 0 then, SS7 and SS8 do not exist. If sin

2 = 0, SS2, SS3
and SS5 do not exist. If sin

1 = sin
2 = 0, we have:
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Table 2. Steady states of (2). All functions are defined in Table 1.

s0, s1, s2 and x0, x1, x2 components

SS1 s0 = sin
0 , s1 = sin

1 , s2 = sin
2 and x0 = 0, x1 = 0, x2 = 0

SS2 s0 = sin
0 , s1 = sin

1 , s2 = M2(D + a2) and x0 = 0, x1 = 0, x2 = D
D+a2

(
sin

2 − s2

)
SS3

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω

(
sin

0 − s0

)
, where s0 is a solution of

ψ0(s0) = D + a0 and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = 0

SS4

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2), where s2 is a solution of

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = 0

SS5
s0 = ϕ0(D), s1 = sin

1 + sin
0 − s0, s2 = M2(D + a2)

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
SS6

s0 = ϕ0(D), s1 = ϕ1(D), s2 = M2(D + a2) and x0 = D
D+a0

(
sin

0 − s0

)
,

x1 = D
D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = D

D+a2

(
(1− ω)(sin

0 − s0) + sin
1 − s1 + sin

2 − s2

)
SS7

s0 = sin
0 and s2 = sin

2 + sin
1 − s1, where s1 is a solution of ψ1(s1) = D + a1

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = 0

SS8
s0 = sin

0 , s1 = ϕ1(D), s2 = M2(D + a2)

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
Table 3. Existence conditions of steady states of (2). All func-
tions are given in Table 1.

Existence conditions

SS1 Always exists

SS2 µ2

(
sin

2

)
> D + a2

SS3 µ0

(
sin

0 , s
in
2

)
> D + a0

SS4

(1− ω)sin
0 + sin

1 + sin
2 > φ1(D), sin

0 > M0(D + a0, s2),

sin
0 + sin

1 > M0(D + a0, s2) +M1(D + a1, s2)

with s2 solution of equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

SS5 sin
0 > ϕ0(D), sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

SS6 (1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

SS7 µ1

(
sin

1 , s
in
2

)
> D + a1

SS8 sin
1 > ϕ1(D), sin

1 + sin
2 > ϕ1(D) +M2(D + a2)

• The steady states SS2, SS3, SS5, SS7 and SS8 do not exist.
• If ω > 1, SS4 and SS6 do not exist. If ω < 1, SS4 and SS6 exist, respectively,

if and only if

(1− ω)sin
0 > φ1(D) and (1− ω)sin

0 > φ2(D). (3)

Remark 2. Assume that sin
1 = sin

2 = 0. Then, only the steady states SS1, SS4
and SS6 can exist. The existence conditions (3) of SS4 and SS6, respectively, are
equivalent to the following conditions given in Lemmas 3 and 4 of [26]:

sin
0 > F1(D) := φ1(D)

1−ω and sin
0 > F2(D) := φ2(D)

1−ω .

Hence, we recover the results of [26] where the study is restricted to the case sin
1 =

sin
2 = 0. Notice that, in [26], the steady states SS1, SS4 and SS6 were labeled SS1,

SS2 and SS3, respectively.

3. Study of the model without maintenance. In this section, we determine
the existence and stability conditions of steady states of model (2) in the particular
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case without maintenance. To this end, we define the function φ4 by

φ4

(
D, sin

0 , s
in
1 , s

in
2

)
= (EIx0x2 + EGφ3(D)x0x1)(Ix2 + (G+H)x1

+(E + ωF )x0) + (Ix2 + (G+H)x1 + ωFx0)GIx1x2,
(4)

where

E= ∂µ0

∂s0
(s0, s2), F = ∂µ0

∂s2
(s0, s2), G= ∂µ1

∂s1
(s1, s2), H=−∂µ1

∂s2
(s1, s2), I=µ′2(s2) (5)

and the functions E, F , G, H and I, are evaluated at the components of SS6 given
in Table 2 with a0 = a1 = a2 = 0.

Theorem 2. Assume that Hypotheses (H1) to (H8) hold. Without maintenance,
the steady states and their existence conditions of (2) are given in Tables 2 and 3
by putting a0 = a1 = a2 = 0. In addition, the necessary and sufficient conditions of
local stability of the steady states are given in Table 4.

Table 4. Maintenance free case: the stability conditions of steady
states of (2). All functions are given in Table 1 with a0 = a1 =
a2 = 0, while φ4 is defined by (4).

Stability conditions

SS1 µ0

(
sin

0 , s
in
2

)
< D, µ1

(
sin

1 , s
in
2

)
< D, µ2

(
sin

2

)
< D

SS2 sin
0 < ϕ0(D), sin

1 < ϕ1(D)

SS3
µ1

(
sin

1 + sin
0 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D, sin

2 − ωsin
0 < M2(D)− ωϕ0(D),

with s0 solution of equation ψ0(s0) = D

SS4
(1− ω)sin

0 + sin
1 + sin

2 < φ2(D), ∂Ψ
∂s2

(s2, D) > 0, φ3(D) > 0,

with s2 solution of equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

SS5 sin
0 + sin

1 < ϕ0(D) + ϕ1(D)

SS6 φ3(D) > 0, or φ3(D) < 0 and φ4

(
D, sin

0 , s
in
1 , s

in
2

)
> 0

SS7 sin
1 + sin

2 < M3

(
sin

0 , D
)

+M1

(
D,M3

(
sin

0 , D
))

, sin
1 + sin

2 < M2(D) + ϕ1(D)

SS8 sin
0 < ϕ0(D)

Remark 3. If ω > 1, when SS4 exists, its stability condition ∂Ψ
∂s2

(s2, D) > 0 is

always satisfied (see Lemma 3). If ω < 1, when SS41 exists, it is unstable (see
Remark 1). When SS42 exists, its stability condition ∂Ψ

∂s2
(s2, D) > 0 is always

satisfied.

4. Application to a chlorophenol-mineralising three-tiered microbial ‘food
web’. The aim of this section is to illustrate the theoretical results of this paper in
the case of the chlorophenol-mineralising three-tiered microbial model (1) consid-
ered in [31] where the specific growth rates take the form:

f0 (Sch, SH2
) =

km,chSch

KS,ch+Sch

SH2

KS,H2,c+SH2
,

f1 (Sph, SH2) =
km,phSph

KS,ph+Sph

1
1+SH2

/KI,H2
, f2 (SH2) =

km,H2SH2

KS,H2
+SH2

.
(6)

The biological parameter values are provided in Table 10. They were previously
used in [26, 31]. Following [26], model (1) can be rescaled to obtain model (2) using
the following change of variables:

x0 = Y
Y0
Xch, x1 = Y4

Y1
Xph, x2 = 1

Y2
XH2

, s0 = Y Sch, s1 = Y4Sph, s2 = SH2
, (7)

where Y = Y3Y4. The inflowing concentrations are given by:

sin
0 = Y Sin

ch, sin
1 = Y4S

in
ph, sin

2 = Sin
H2
, (8)
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the decay rates are a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2 (with units d−1), the
yield coefficients are

Y0 = Ych, Y1 = Yph, Y2 = YH2 , Y3 = 224
208

(1− Y0), Y4 = 32
224

(1− Y1),

with ω = 16
208Y . When the yield coefficients are those given in Table 10, we have

ω ' 0.53. The growth functions take the form:

µ0(s0, s2) = m0s0
K0+s0

s2
L0+s2

, µ1(s1, s2) = m1s1
K1+s1

1
1+s2/KI

, µ2(s2) = m2s2
K2+s2

, (9)

where

m0 = Y0km,ch, K0 = Y KS,ch, L0 = KS,H2,c, m1 = Y1km,ph,

K1 = Y4KS,ph, KI = KI,H2
, m2 = Y2km,H2

, K2 = KS,H2
.

For the specific growth functions (9), various functions defined in Table 1 are listed
in Table 11. From the expression of Ψ in Table 11, a straightforward calculation
shows that, for all s2 ∈

(
s0

2, s
1
2

)
,

∂2ψ
∂s22

(s2, D) = (1−ω)2K0(D+a0)
m0−D−a0

L0+s02

(s2−s02)
3 +

2K1(KI+s12)

(s12−s2)
3 ,

which is positive since ω < 1 and m0 > D + a0. Thus, the function s2 7→ Ψ(s2, D)
is convex and fulfills (H8) (see Figure 1). Furthermore, model (1) is of the form (2)
where the growth functions (9) satisfy Hypotheses (H1) to (H8). Consequently, the
results of our paper apply to model (1).

s2s02 s12s∗12 s∗22

φ1(D)

Ψ(s2, D)

(1 − ω)sin0 + sin1 + sin2

s2

Figure 1. Curve of the function Ψ(., D), where s∗12 and s∗22 are
the solutions of equation Ψ(s2, D) = (1− ω)sin

0 + sin
1 + sin

2 .

Using the steady states in Table 2 and the auxiliary functions given in Table 11
in the case of specific growth functions (9), a straightforward computation shows
that all components of the steady states of model (2) are the same as those in
[31] where another rescaling model and change of variables are used. However, the
existence conditions in Table 3 of SS3, SS4 and SS7 were not established in [31]
(see Appendix C.3, C.4 and C.7) where they were checked only numerically, by
considering the roots of polynomials of degree 2 or 3 (see formulas (C.3), (C.11)
and (C.49)), respectively. All other existence conditions were established in [31].
Hence, our analytical study of model (2) permits to give rigorous proofs for (1).

In what follows, we consider the input concentrations Sin
ph = 0 and Sin

H2
= 2.67×

10−5, corresponding to Fig. 3(a) in [31] when D = 0.01 and kdec,ch = kdec,ph =
kdec,H2

= 0. As a consequence of Theorem 2, we obtain the following result which
determines the existence and the stability of the steady states of (1) with respect
to the input concentration Sin

ch.
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Proposition 3. Assume that the biological parameters in (1) are given as in Table
10. Assume that Sin

ph = 0, Sin
H2

= 2.67×10−5, D = 0.01 and kdec,ch = kdec,ph =
kdec,H2

= 0. Let σi, i = 1, . . . , 6 be the bifurcation values defined in Table 5. The
existence and stability of steady states of (1), with respect to the input concentration
Sin

ch is given in Table 6. The nature of the bifurcations when Sin
ch crosses the values

σi, i = 1, . . . , 6 is given in Table 7.

Table 5. Definitions of the critical values of σi, i = 1, . . . , 6.

Definition Value

σ1 = M0

(
D,Sin

H2

)
/Y 0.001017

σ2 = (φ1(D)− Sin
H2

)/((1− ω)Y ) 0.009159
σ3 = ϕ0(D)/Y 0.010846
σ4 = (Sin

H2
−M2(D) + ωϕ0(D))/(ωY ) 0.011191

σ5 = (φ2(D)− Sin
H2

)/((1− ω)Y ) 0.016575
σ6 is the solution of equation φ4(Sin

ch) = 0 0.029877

Table 6. Existence and stability of steady states, with respect to
Sin

ch. The letter S (resp. U) means that the corresponding steady
state is stable (resp. unstable). No letter means that the steady
state does not exist.

Interval of Sin
ch SS1 SS2 SS3 SS41 SS42 SS5 SS6

(0, σ1) U S
(σ1, σ2) U S U
(σ2, σ3) U S U U U
(σ3, σ4) U U U U U S
(σ4, σ5) U U S U U
(σ5, σ6) U U S U U U
(σ6,+∞) U U S U U S

Table 7. Nature of the bifurcations corresponding to the critical
values of σi, i = 1, . . . , 6, defined in Table 5. There exists also
a critical value σ∗ ' 0.029638 corresponding to the value of Sin

ch

where the stable limit cycle disappears when Sin
ch is decreasing.

Type of the bifurcation
σ1 Transcritical bifurcation of SS1 and SS3
σ2 Saddle-node bifurcation of SS41 and SS42

σ3 Transcritical bifurcation of SS2 and SS5
σ4 Transcritical bifurcation of SS3 and SS5
σ5 Transcritical bifurcation of SS41 and SS6
σ∗ Disappearance of the stable limit cycle
σ6 Supercritical Hopf bifurcation

Figs. 2 and 3 depict the bifurcation diagram of system (1) where Xch is rep-
resented as a function of the bifurcation parameter Sin

ch. Figs. 2(b) and 3 show
magnifications of the bifurcation diagram showing the transcritical bifurcations oc-
curring at σ1, σ3, σ4 and σ5, the saddle-node bifurcation occurring at σ2, the Hopf
bifurcation occurring at σ6, and the disappearance of the cycle occurring at σ∗. In
Fig. 2(b), the steady states SS1 and SS2 cannot be distinguished since they have
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0.0005

0.0007

0.0009

0 0.010.002 0.004 0.006 0.008 0.012 0.014

0e00

2e−06

4e−06

6e−06

1e−06

3e−06

5e−06

7e−06(a)Xch

SS1 SS2 SS3

SS42
SS6

SS41

σ1 ���σ2 σ3��� σ4AAK AAKσ5 ���σ∗AAKσ6Sin
ch

(b)Xch

SS1 SS2

SS3 SS5

σ1 σ3σ4Sin
ch

Figure 2. (a) Projection of the ω-limit set in variable Xch as a
function of Sin

ch ∈ [0, 0.05] (b) A magnification of the transcritical
bifurcations occurring at σ1, σ3 and σ4 when Sin

ch ∈ [0, 0.015].

0.020.010.006 0.008 0.012 0.014 0.016 0.018

0e00

2e−04

1e−04

3e−04

5e−05

1.5e−04

2.5e−04

3.5e−04

0.030.0294 0.0296 0.0298 0.03020.0295 0.0297 0.0299 0.0301

0e00

2e−04

4e−04

6e−04

1e−04

3e−04

5e−04

5e−05

1.5e−04

2.5e−04

3.5e−04

4.5e−04

5.5e−04

(a)Xch

SS42

SS41

SS6

SS1 SS2 SS3

σ2
σ3��� AAKσ4

σ5
Sin
ch

(b)Xch
SS42

SS41

SS6

SS1 SS2 SS3

σ∗ σ6Sin
ch

Figure 3. (a) Magnification of saddle-node bifurcation at Sin
ch =

σ2 and the transcritical bifurcation at Sin
ch = σ5 when Sin

ch ∈
[0.006, 0.02]. (b) Magnification of the appearance and disappear-
ance of stable limit cycles when Sin

ch ∈ [0.0294, 0.0302].

Table 8. Colors used in Figs. 2 and 3. The solid (resp. dashed)
lines are used for stable (resp. unstable) steady states.

SS1 SS2 SS3 SS41 SS42 SS5 SS6
Red Blue Purple Dark Green Magenta Green Cyan

both a zero Xch-component. Since for Sin
ch < σ3, SS2 is stable and SS1 is unstable,

the Xch = 0 axis is plotted in blue, which is the color for SS2 in Table 8.
Numerical simulations have shown that there exists a critical value σ∗ ∈ (σ5, σ6),

which corresponds to the value of Sin
ch, where the stable limit cycle that appears

for Sin
ch = σ6 through a supercritical Hopf bifurcation, disappears when Sin

ch is de-
creasing. In [29], a numerical study of the bifurcation diagram with respect to the
parameter D is given in the case without maintenance and sin

1 = sin
2 = 0. Fig. 6 in

[29] shows that the disappearance of the stable limit cycle occurs through a saddle-
node bifurcation with another unstable limit cycle. We conjecture that in our case
also the stable limit cycle disappears by a confluence with an unstable limit cycle
at Sin

ch = σ∗.
When Sin

ch ∈ (σ∗, σ6), the system exhibits a bi-stability with convergence either to
SS3 or to a stable limit cycle according to the initial condition. Fig. 4 illustrates the
three-dimensional space where the trajectories in yellow and blue converge toward
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Figure 4. Case Sin
ch = 0.029639 ∈ (σ∗, σ6): bi-stability of the limit

cycle (in red) and SS3.

0 20 00010 000 30 0005 000 15 000 25 000

0e00

2e−04

4e−04

1e−04

3e−04

5e−04

5e−05

1.5e−04

2.5e−04

3.5e−04

4.5e−04

0 20 00010 000 30 0005 000 15 000 25 000

0e00

2e−04

4e−04

1e−04

3e−04

5e−04

5e−05

1.5e−04

2.5e−04

3.5e−04

4.5e−04

5.5e−04

0 10 0002 000 4 000 6 000 8 0001 000 3 000 5 000 7 000 9 000

0e00

2e−04

4e−04

1e−04

3e−04

5e−04

5e−05

1.5e−04

2.5e−04

3.5e−04

4.5e−04

5.5e−04(a)Xch

t (days)

(b)Xch
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Figure 5. Case Sin
ch = 0.029639 ∈ (σ∗, σ6): trajectories of Xch

corresponding to those in Fig. 4 showing the sustained oscillations
in yellow (a) and blue (b) or the convergence to SS3 in green (c).

the stable limit cycle in red, while the green trajectory converges toward the steady
state SS3. Fig. 5 illustrates the time courses of the yellow and blue trajectories in
Fig. 4 proving that the oscillations are maintained with a positive periodic solution.
Concerning the green trajectory, the period and the amplitude of oscillations are
slightly increased until their destruction over time so that the solution converges to
SS3. Finally, when Sin

ch > σ6, the system exhibits also a bi-stability which becomes
between SS3 and SS6.

5. Conclusion. In this work, we have extended model (1) of a chlorophenol-
mineralising three-tiered microbial ‘food web’ presented in [31], by considering the
model (2) with general growth functions. Our first aim was the theoretical analysis
of (2) by providing the existence conditions of all steady states with respect to the
operating parameters. Our study considers the effects of the phenol and hydrogen
input concentrations, which were neglected in the analytical analysis given in [26],
together with the effects of maintenance terms, which were neglected in the theo-
retical analysis given in [13, 29]. System (2) can have up to eight types of steady
states: the washout steady state which always exists, a coexistence steady state of
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all degrader populations and six other steady states corresponding to the extinction
of one or two degrader populations. Each type of steady state is unique except that
of the exclusion only of the hydrogen degraders (SS4) where there are at most two
steady states of this type.

In [31], results on the existence of some steady states of model (1) were obtained
only numerically without knowing their exact number. Our analytical results on
the existence of the steady states of (2) give rigorous proofs for (1).

Our second achievement was to determine theoretically the asymptotic behavior
of system (2) in the particular case without maintenance and to analyze numerically
the bifurcation diagram by varying the chlorophenol input concentration when sin

1 =
0. It shows that the system exhibits a bi-stability where the coexistence steady state
can destabilize undergoing a supercritical Hopf bifurcation with the occurrence of
a stable periodic solution. These interest phenomena have been already depicted
in [26], in the particular case sin

0 > 0, sin
1 = sin

2 = 0. The possibility of the Hopf
bifurcation of the positive steady state is analytically proved in [29], in the case
without maintenance. The destabilization of the positive steady state was not
detected by the numerical analysis of the operating diagram in [31].

Our works under investigation will focus on the analysis of the stability of steady
states of (2) including maintenance and on the operating diagrams which were
obtained numerically in [31]. In fact, the operating diagram is very useful for the
biologist as discussed in [3, 9, 10] because it allows to predict qualitatively the
different asymptotic behaviors of the process according to their control parameters.

Appendix A. Proofs.

Proof of Proposition 1. Since the vector field defined by (2) is C1, the uniqueness
of solution to initial value problems holds. From (2), for i = 0, 1, 2,

xi(τ) = 0, for any τ > 0 ⇒ ẋi(τ) = 0.

If xi(0) = 0, then xi(t) = 0 for all t since the boundary face where xi ≡ 0 is invariant
in the vector field C1 by system (2). If xi(0) > 0, then xi(t) > 0 for all t since
xi ≡ 0 cannot be reached in finite time by trajectories such that xi(0) > 0 by the
uniqueness of solutions. On the other hand, one has

s0(τ) = 0, for any τ > 0 ⇒ ṡ0(τ) = Dsin
0

s1(τ) = 0, for any τ > 0 ⇒ ṡ1(τ) = Dsin
1 + µ0(s0(τ), s2(τ))x0(τ)

s2(τ) = 0, for any τ > 0 ⇒ ṡ2(τ) = Dsin
2 + µ1(s1(τ), 0)x1(τ).

Similarly to case xi, if ṡi(τ) = 0, then si(t) > 0 for all t. In addition, if ṡi(τ) > 0,
then si(t) > 0 for all t. Indeed, for example, consider the case of s0 where D and
sin

0 are positive with s0(0) > 0. Assume that it exists τ > 0 such that s0(τ) = 0
and s0(t) > 0 for all t ∈ (0, τ). It follows that ṡ0(τ) 6 0, which is the desired
contradiction with ṡ0(τ) = Dsin

0 > 0.
Further, by considering z = ωx0 + x1 + x2 + 2s0 + 2s1 + s2, we obtain from (2)

ż = D
(
2sin

0 + 2sin
1 + sin

2 − z
)
− ωa0x0 − a1x1 − a2x2 6 D

(
2sin

0 + 2sin
1 + sin

2 − z
)
.

Using Gronwall’s lemma, we have

z(t) 6 2sin
0 + 2sin

1 + sin
2 +

(
z(0)−

(
2sin

0 + 2sin
1 + sin

2

))
e−Dt, for all t > 0. (10)

Consequently,

z(t) 6 max
(
z(0), 2sin

0 + 2sin
1 + sin

2

)
, for all t > 0. (11)
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Thus, the solutions of (2) are positively bounded and are defined for all t > 0. From
(11), it can be deduced that the set Ω is positively invariant and from (10), it is a
global attractor for (2).

To determine the number of SS3, SS4 and SS7-type steady states and the condi-
tions of their existence, we need the following result.

Lemma 3. The equation ψi (s0) = y, i = 0, 1, has a solution in the interval Ji
defined in Table 1 if and only if µi

(
sin
i , s

in
2

)
> y. The mapping ψi is monotonically

increasing and thus, if it exists, this solution is unique. The equation Ψ(s2, D) = sin

has a solution if and only if sin > φ1(D).

• When ω > 1, the mapping s2 7→ Ψ(s2, D) is monotonically increasing, and
thus, if it exists, this solution is unique. Moreover, if ω > 1, φ1(D) = −∞
and if ω = 1, φ1(D) = Ψ

(
s0

2(D), D
)
> 0.

• When ω < 1, there exist two solutions which are equal when sin = φ1(D).
Moreover, φ1(D) > 0.

Proof. Recall that J0 =
(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
. If sin

2 − ωsin
0 > 0, one has

ψ0 (0) = µ0

(
0, sin

2 − ωsin
0

)
= 0 and if sin

2 − ωsin
0 6 0, then ψ0

(
sin

0 − sin
2 /ω

)
=

µ0

(
sin

0 − sin
2 /ω, 0

)
= 0. Thus, ψ0

(
max

(
0, sin

0 − sin
2 /ω

))
= 0. On the other hand,

ψ0

(
sin

0

)
= µ0

(
sin

0 , s
in
2

)
. Therefore, there exists a solution s0 ∈ J0 satisfying ψ0(s0) =

y if and only if µ0

(
sin

0 , s
in
2

)
> y. Since ψ0 is monotonically increasing, if it exists,

this solution is unique. Indeed, we have
dψ0

ds0
(s0) = ∂µ0

∂s0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
+ ω ∂µ0

∂s2

(
s0, s

in
2 − ω

(
sin

0 − s0

))
,

which is positive thanks to (H4). Now, recall that J1 =
(
0, sin

1

)
. We have ψ1(0) =

µ1

(
0, sin

1 + sin
2

)
= 0 and ψ1

(
sin

1

)
= µ1

(
sin

1 , s
in
2

)
. Therefore, there exists a solution

s1 ∈ J1 satisfying ψ1(s1) = y if and only if µ1

(
sin

1 , s
in
2

)
> y. Since ψ1 is monotoni-

cally increasing, if it exists, this solution is unique. Indeed, we have
dψ1

ds1
(s1) = ∂µ1

∂s1

(
s1, s

in
2 + sin

1 − s1

)
− ∂µ1

∂s2

(
s1, s

in
2 + sin

1 − s1

)
,

which is positive thanks to (H5). Let us consider now the existence of solution of
the equation Ψ(s2, D) = sin. From the definitions of s0

2 and s1
2 given in Table 1,

we have M0

(
D + a0, s

0
2

)
= +∞ and M1

(
D + a1, s

1
2

)
= +∞. From the definition

of Ψ(s2, D) given in Table 1, we have

for all ω > 0, lim
s2→s12

Ψ(s2, D) = +∞, for ω = 1, Ψ(s0
2, D) = φ1(D),

for all ω > 1, lim
s2→s02

Ψ(s2, D) = −∞, for all ω < 1, lim
s2→s02

Ψ(s2, D) = +∞.

Moreover, we have for all s2 ∈
(
s0

2, s
1
2

)
and D ∈ I1,

∂Ψ
∂s2

(s2, D) = (1− ω)∂M0

∂s2
(D + a0, s2) + ∂M1

∂s2
(D + a1, s2) + 1. (12)

Let s2 > 0. Under (H4) and (H5), we have

∂M0

∂s2
(y, s2) = −∂µ0

∂s2
(s0, s2)

[
∂µ0

∂s0
(s0, s2)

]−1

< 0, for all y ∈ (0, µ0(+∞, s2)),

∂M1

∂s2
(y, s2) = −∂µ1

∂s2
(s1, s2)

[
∂µ1

∂s1
(s1, s2)

]−1

> 0, for all y ∈ (0, µ1(+∞, s2)).

(13)

For ω > 1, we deduce that the function s2 7→ Ψ(s2, D) is monotonically increasing
by using (12). If ω = 1, then Ψ

(
s0

2, D
)
> 0. When ω < 1, the remaining assertions

follow immediately by using assumption (H8).
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Proof of Theorem 1. The steady states are obtained by setting the right-hand
sides of equations in (2) equal to zero:

[µ0 (s0, s2)−D − a0]x0 = 0 (14)

[µ1 (s1, s2)−D − a1]x1 = 0 (15)

[µ2 (s2)−D − a2]x2 = 0 (16)

D
(
sin

0 − s0

)
− µ0 (s0, s2)x0 = 0 (17)

D
(
sin

1 − s1

)
+ µ0 (s0, s2)x0 − µ1 (s1, s2)x1 = 0 (18)

D
(
sin

2 − s2

)
+ µ1 (s1, s2)x1 − ωµ0 (s0, s2)x0 − µ2 (s2)x2 = 0. (19)

Using (17)+(14), (18)-(14)+(15) and (19)+ ω(14)-(15)+(16), one obtains the set of
equations D

(
sin

0 − s0

)
− (D + a0)x0 = 0

D
(
sin

1 − s1

)
+ (D + a0)x0 − (D + a1)x1 = 0

D
(
sin

2 − s2

)
− ω (D + a0)x0 + (D + a1)x1 − (D + a2)x2 = 0.

(20)

We can solve (20) and obtain x0, x1 and x2 with respect to s0, s1 and s2:

x0 = D
D+a0

(
sin

0 − s0

)
, (21)

x1 = D
D+a1

(
sin

0 − s0 + sin
1 − s1

)
, (22)

x2 = D
D+a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
. (23)

We can also solve (20) and obtain s0, s1 and s2 with respect to x0, x1 and x2:

s0 = sin
0 − D+a0

D x0, (24)

s1 = sin
1 + D+a0

D x0 − D+a1
D x1, (25)

s2 = sin
2 − ωD+a0

D x0 + D+a1
D x1 − D+a2

D x2. (26)

• For the steady state SS1, x0 = x1 = x2 = 0. Hence, (24), (25) and (26) result in
s0 = sin

0 , s1 = sin
1 and s2 = sin

2 . Thus, SS1 always exists.
• For SS2, x0 = x1 = 0 and x2 > 0. Hence, (24) and (25) result in s0 = sin

0 and
s1 = sin

1 . Therefore, (23) results in

x2 = D
D+a2

(
sin

2 − s2

)
.

Since x2 > 0, (16) results in µ2(s2) = D + a2. Using definition of M2 in Table 1,
we have

s2 = M2(D + a2).

SS2 exists if and only if x2 > 0, that is to say sin
2 > M2(D + a2), which is

equivalent to µ2

(
sin

2

)
> D + a2, thanks to (H6).

• For SS3, x1 = x2 = 0 and x0 > 0. Hence, (21) results in

x0 = D
D+a0

(
sin

0 − s0

)
.

Using this expression together with x1 = x2 = 0 in (25) and (26) result in

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω(sin

0 − s0). (27)

Since x0 > 0, (14) results in

µ0(s0, s2) = D + a0. (28)

Replacing s2 by its expression (27) with respect to s0 in (28) results in

ψ0(s0) = D + a0, (29)



A THREE-TIERED MODEL 15

where ψ0 is the function defined in Table 1. SS3 exists if and only if equation
(29) has a positive solution and the s1, s2 and x0-components are positive. This
condition is equivalent to say that 0 < s0 < sin

0 and s0 > sin
0 − sin

2 /ω. Therefore,
(29) must have a solution in the interval J0. Using Lemma 3, (29) has a solution
in the interval J0 if and only if µ0

(
sin

0 , s
in
2

)
> D+ a0. If it exists, this solution is

unique.
• For SS4, x0 > 0, x1 > 0 and x2 = 0. Hence, (21) and (22) result in

x0 = D
D+a0

(
sin

0 − s0

)
and x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
. (30)

Since x0 > 0 and x1 > 0, (14) and (15) result in µ0(s0, s2) = D + a0 and
µ1(s1, s2) = D + a1. Using definitions of M0 and M1 in Table 1, we obtain

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2). (31)

Using (30) together with x2 = 0 in (26), we have

s2 = sin
2 − ω

(
sin

0 − s0

)
+ sin

0 − s0 + sin
1 − s1. (32)

Replacing s0 and s1 by their expressions (31) with respect to s2 in (32), it follows
that, s2 is a solution of equation

Ψ (s2, D) = (1− ω)sin
0 + sin

1 + sin
2 , (33)

where Ψ is the function defined in Table 1. According to Lemma 3, SS4 exists if
and only if (1−ω)sin

0 +sin
1 +sin

2 > φ1(D), and the solution s2 of (33) is such that the
x0 and x1-components are positive which is equivalent to sin

0 > M0 (D + a0, s2)
and sin

0 + sin
1 > M0 (D + a0, s2) + M1 (D + a1, s2). The existence of a unique

or two steady states of the form SS4 according to ω follows immediately from
Lemma 3.
• For SS5, x0 > 0, x2 > 0 and x1 = 0. Using (21) together with x1 = 0 in (25)

results in

s1 = sin
1 + sin

0 − s0.

Using (21) and this expression in (23) results in

x0 = D
D+a0

(
sin

0 − s0

)
and x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
.

Since x0 > 0 and x2 > 0, (14) and (16) result in µ0(s0, s2) = D + a0 and
µ2(s2) = D + a2. Using definitions of M0, M2 and ϕ0 in Table 1, it follows that

s2 = M2(D + a2) and s0 = ϕ0(D).

SS5 exists if and only if its components x0, x2 and s1 are positive. This condition
is equivalent to sin

0 > ϕ0(D) and sin
2 − ωsin

0 > M2(D + a2)− ωϕ0(D).
• For SS6, x0 > 0, x1 > 0 and x2 > 0. Then, as a consequence of (14), (15) and

(16), we obtain:

µ0(s0, s2) = D + a0, µ1(s1, s2) = D + a1, µ2(s2) = D + a2.

Using definitions of M0, M1, M2, ϕ0 and ϕ1 in Table 1, it follows that s2, s0 and
s1 are given by:

s2 = M2(D + a2), s0 = ϕ0(D), s1 = ϕ1(D),

(21), (22) and (23) give the x-components of SS6 in Table 2. SS6 exists if and
only if its x-components are positive, that is, sin

0 > s0, sin
1 + sin

0 > s0 + s1 and
(1−ω)sin

0 + sin
1 + sin

2 > (1−ω)s0 + s1 + s2. Using the s-components of SS6, these
conditions are the same as those in Table 3.
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• For SS7, x0 = x2 = 0 and x1 > 0. Hence, (24) results in s0 = sin
0 . From (22), we

have

x1 = D
D+a1

(
sin

1 − s1

)
.

Using this expression together with x0 = x2 = 0 in (26) results in

s2 = sin
2 + sin

1 − s1. (34)

Since x1 > 0, then, as a consequence of (15), we obtain:

µ1(s1, s2) = D + a1.

Replacing s2 by its expression (34) with respect to s1 results in

ψ1(s1) = D + a1, (35)

where ψ1 is defined in Table 1. SS7 exists if and only if equation (35) has a
positive solution and the s2 and x1-components of SS7 are positive. This last
condition is equivalent to 0 < s1 < sin

1 , that is, (35) must have a solution in the
interval J1. Using Lemma 3, there exists a solution s1 ∈ J1, satisfying (35), if
and only if µ1

(
sin

1 , s
in
2

)
> D + a1. If it exists, this solution is unique.

• For SS8, x0 = 0, x1 > 0 and x2 > 0. Hence, (24) results in s0 = sin
0 . Using this

expression in (22) and (23) results in

x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
.

Since x1 > 0 and x2 > 0, as a consequence of (15) and (16), we have µ1(s1, s2) =
D+ a1 and µ2(s2) = D+ a2. Using definitions of M1, M2 and ϕ1(D) in Table 1,
it follows that s2 and s1 are given by:

s2 = M2(D + a2), s1 = ϕ1(D).

SS8 exists if and only if its components x1 and x2 are positive, that is, sin
1 > s1

and sin
1 + sin

2 > s1 + s2. Using the s-components of SS8, these conditions are the
same as those in Table 3.

Proof of Proposition 2. If sin
1 = 0, then µ1

(
sin

1 , s
in
2

)
= 0, so that the condi-

tions µ1

(
sin

1 , s
in
2

)
> D + a1 and sin

1 > ϕ1(D) of existence of SS7 and SS8, respec-

tively, cannot be satisfied. Therefore, SS7 and SS8 do not exist. If sin
2 = 0, then

µ2

(
sin

2

)
= 0 and µ0

(
sin

0 , s
in
2

)
= 0, so that the existence conditions µ2

(
sin

2

)
> D+a2,

µ0

(
sin

0 , s
in
2

)
> D + a0 of SS2 and SS3 cannot be satisfied, respectively. Moreover,

the second existence condition of SS5 implies that

sin
0 < ϕ0(D)− M2(D+a2)

ω < ϕ0(D),

which is in contradiction with the first existence condition of SS5. Therefore, SS2,
SS3 and SS5 do not exist.

Assume that sin
1 = sin

2 = 0. If ω = 1, the first existence condition of SS4 in
Table 3 is written 0 > φ1(D). This condition cannot be satisfied, since φ1(D) =
Ψ
(
s0

2, D
)
> 0 from Lemma 3. Thus, SS4 does not exist if ω = 1. When ω > 1, we

have s2 is solution of equation

(1− ω)
(
sin

0 − s0

)
= s1 + s2.

Since s1 > 0 and s2 > 0, then we have necessarily

(1− ω)
(
sin

0 − s0

)
> 0,
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so that sin
0 − s0 < 0, which contradicts the positivity of the x0-component of SS4 in

Table 2. Thus, SS4 does not exist if ω > 1. When sin
1 = sin

2 = 0, the s2-component
of SS4 becomes the solution of equation

sin
0 = M0 (D + a0, s2) + M1(D+a1,s2)+s2

(1−ω) .

If 0 < ω < 1, then

sin
0 > M0 (D + a0, s2) +M1 (D + a1, s2) > M0 (D + a0, s2) ,

thus, the second and the third existence conditions of SS4 in Table 3 are satisfied
when ω < 1. Therefore, SS4 exists if and only if (1− ω)sin

0 > φ1(D).
Regarding the steady state SS6 in the particular case sin

1 = sin
2 = 0, the first

existence condition in Table 3 becomes

(1− ω)sin
0 > φ2(D), (36)

which is equivalent to

(1− ω)
(
sin

0 − ϕ0(D)
)
> ϕ1(D) +M2(D + a2).

When ω > 1, this last inequality cannot hold, since sin
0 > ϕ0(D), so that SS6 does

not exist. If ω < 1, condition (36) implies that

(1− ω)sin
0 > (1− ω)ϕ0(D) + (1− ω)ϕ1(D),

that is,

sin
0 > ϕ0(D) + ϕ1(D) > ϕ0(D),

which are the second and the third existence conditions of SS6 in Table 3. Thus,
(36) is the only existence condition of SS6.

Proof of Theorem 2. In the particular case without maintenance, the steady
states and their existence conditions are easily obtained from Tables 2 and 3 by
putting ai = 0, i = 0, 1, 2. To analyze the local stability, we use the change of
variables:

z0 = x0 + s0, z1 = x1 + s1 − x0, z2 = ωx0 − x1 + x2 + s2, (37)

such that model (2) takes the form

ẋ0 = −Dx0 + µ0 (z0 − x0, z2 − ωx0 + x1 − x2)x0

ẋ1 = −Dx1 + µ1 (z1 + x0 − x1, z2 − ωx0 + x1 − x2)x1

ẋ2 = −Dx2 + µ2 (z2 − ωx0 + x1 − x2)x2

ż0 = D
(
sin

0 − z0

)
ż1 = D

(
sin

1 − z1

)
ż2 = D

(
sin

2 − z2

)
.

(38)

The steady states SS1, SS2,. . ., SS8 of (38) now take the form
(
x0, x1, x2, s

in
0 , s

in
1 , s

in
2

)
where the x0-components of each steady state are given by those in Table 2 with
ai = 0. The Jacobian matrix of (38) has an upper block triangular form:

J =

[
J1 J2

0 J3

]
, where J2 =

Ex0 0 Fx0

0 Gx1 −Hx1

0 0 Ix2

 ,
J1 =

µ0 −D − (E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 µ1 −D − (G+H)x1 Hx1

−ωIx2 Ix2 µ2 −D − Ix2

 , (39)



18 NOUAOURA AND FEKIH-SALEM AND ABDELLATIF AND SARI

and J3 is the 3×3 diagonal matrix whose diagonal elements are all −D. Conse-
quently, three eigenvalues of J are given by −D and the three other eigenvalues are
given by those of the 3×3 upper-left matrix J1. Thus, the stability of the steady
state is determined by the sign of the real parts of the eigenvalues of J1. Note that,
the functions E, F , G, H and I defined by (5) are evaluated at the steady state.
We have used the opposite sign of the partial derivative H = −∂µ1/∂s2, such that
all constants involved in the computation become positive.

• For SS1, the characteristic polynomial of J1 is P1(λ) = (λ− λ1)(λ− λ2)(λ− λ3),
where

λ1 = µ0

(
sin

0 , s
in
2

)
−D, λ2 = µ1

(
sin

1 , s
in
2

)
−D, λ3 = µ2

(
sin

2

)
−D.

Therefore, SS1 is stable if and only if λ1 < 0, λ2 < 0 and λ3 < 0, that is, the
stability conditions of SS1 in Table 4 hold.
• For SS2, the characteristic polynomial of J1 is P2(λ) = (λ− λ1)(λ− λ2)(λ− λ3),

where

λ1 = µ0

(
sin

0 ,M2(D)
)
−D, λ2 = µ1

(
sin

1 ,M2(D)
)
−D, λ3 = −Ix2.

As λ3 < 0, SS2 is stable if and only if λ1 < 0 and λ2 < 0. Since M0 and M1

are increasing, these conditions are equivalent to the stability conditions of SS2
in Table 4.
• For SS3, the characteristic polynomial of J1 is P3(λ) = (λ− λ1)(λ− λ2)(λ− λ3),

where

λ1 = µ1

(
sin

1 + sin
0 − s0, s

in
2 − ω

(
sin

0 − s0

))
−D, λ2 = µ2

(
sin

2 −ω
(
sin

0 −s0

))
−D,

and λ3 = −(E + ωF )x0, where s0 is the solution in the interval J0 of equation
ψ0(s0) = D. As λ3 < 0, SS3 is stable if and only if λ1 < 0 and λ2 < 0. The
condition λ1 < 0 is the first stability condition of SS3 in Table 4. Since M2 is
increasing, the condition λ2 < 0 is equivalent to

sin
2 − ω

(
sin

0 − s0

)
< M2(D) ⇐⇒ s0 <

(
M2(D)− sin

2

)
/ω + sin

0 . (40)

As the function ψ0 is increasing and ψ0(s0) = D, (40) is equivalent to

D < µ0

((
M2(D)− sin

2

)
/ω + sin

0 ,M2(D)
)
.

Since M0 is increasing, this condition is equivalent to the second stability condi-
tion of SS3 in Table 4.

• For SS4, the characteristic polynomial of J1 is P4(λ) = (λ− λ1)(λ2 + c1λ+ c2),
where

λ1 = µ2(s2)−D, c1 = (E+ωF )x0 +(G+H)x1, c2 = (E(G+H)+(ω−1)FG)x0x1,

and s2 is defined by (33). We always have c1 > 0. Using (5) and (13), we obtain

∂M0

∂s2
(D, s2) = −FE and ∂M1

∂s2
(D, s2) = H

G .

Using (12), it follows that

∂Ψ
∂s2

(s2, D) = F
E (ω − 1) + H

G + 1 = E(G+H)+(ω−1)FG
EG . (41)

Since E and G are positive, condition c2 > 0 is equivalent to ∂Ψ
∂s2

(s2, D) > 0. As
µ2 is increasing, SS4 is stable if and only if

s2 < M2(D) and ∂Ψ
∂s2

(s2, D) > 0,

which is equivalent to

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D), φ3(D) > 0 and ∂Ψ

∂s2
(s2, D) > 0. (42)
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Indeed, when ω > 1, the mapping s2 7→ Ψ(s2, D) is increasing for all s2 ∈ (s0
2, s

1
2)

(see Lemma 3). Hence, the condition s2 < M2(D) is equivalent to

(1− ω)sin
0 + sin

1 + sin
2 = Ψ(s2, D) < Ψ(M2(D), D) = φ2(D). (43)

In addition, s2 < M2(D) implies that φ3(D) > 0. Now, when ω < 1, from Lemma
3 and using Hypothesis (H8), equation (33) has at most two solutions s∗12 < s∗22 ,
such that ∂Ψ

∂s2

(
s∗12 , D

)
< 0 and ∂Ψ

∂s2

(
s∗22 , D

)
> 0 (see Fig. 1). Moreover, the

mapping s2 7→ Ψ(s2, D) is increasing for all s2 ∈
(
s2, s

1
2

)
. Thus, the condition

s∗22 < M2(D) implies the first and the second conditions of (42). Inversely, if the
first condition of (42) or equivalently (43) holds, then

s∗22 < M2(D) or s0
2 < M2(D) < s∗12 .

This last condition is in contradiction with the second condition of (42).
• For SS5, the characteristic polynomial of J1 is P5(λ) = (λ− λ1)(λ2 + c1λ+ c2),

where

λ1 = µ1

(
sin

0 + sin
1 −M0(D,M2(D)),M2(D)

)
−D, c1 = (E + ωF )x0 + Ix2,

and c2 = EIx0x2. As c1 > 0 and c2 > 0, SS5 is stable if and only if λ1 < 0. Since
M1 is increasing, this stability condition of SS5 is equivalent to that in Table 4.
• For SS6, the characteristic polynomial of J1 is P6(λ) = λ3 + c1λ

2 + c2λ + c3,
where

c1 = Ix2 + (G+H)x1 + (E + ωF )x0, c3 = EGIx0x1x2

c2 = (E(G+H) + (ω − 1)FG)x0x1 + EIx0x2 +GIx1x2.

From (41), one has E(G + H) + (ω − 1)FG = EGφ3(D). Since c1 and c3 are
positive, according to the Routh–Hurwitz criterion, SS6 is stable if and only if

φ4

(
D, sin

0 , s
in
1 , s

in
2

)
:= c1c2 − c3 > 0, (44)

where the function φ4 can be written as its expression (4). If φ3(D) > 0, then
condition (44) holds so that SS6 is stable.
• For SS7, the characteristic polynomial of J1 is P7(λ) = (λ− λ1)(λ− λ2)(λ− λ3),

where

λ1 = µ0

(
sin

0 , s
in
2 + sin

1 − s1

)
−D,λ2 = µ2

(
sin

2 + sin
1 − s1

)
−D,λ3 = −(G+H)x1,

where s1 is the solution in the interval J1 of equation ψ1(s1) = D. Since λ3 < 0,
SS7 is stable if and only if λ1 < 0 and λ2 < 0. Since the functions M2 and M3

are increasing, the conditions λ1 < 0 and λ2 < 0 are equivalent to

s1 > sin
2 + sin

1 −M3

(
sin

0 , D
)
, s1 > sin

2 + sin
1 −M2(D). (45)

Since the function ψ1 is increasing and ψ1(s1) = D, (45) is equivalent to

µ1

(
sin

2 + sin
1 −M3

(
sin

0 , D
)
,M3

(
sin

0 , D
))
< D, µ1

(
sin

2 + sin
1 −M2(D),M2(D)

)
< D.

Since M1 is increasing, these stability conditions of SS7 are equivalent to those
in Table 4.

• For SS8, the characteristic polynomial of J1 is P8(λ) = (λ− λ1)(λ2 + c1λ+ c2),
where

λ1 = µ0

(
sin

0 ,M2(D)
)
−D, c1 = (G+H)x1 + Ix2, c2 = GIx1x2.

As c1 and c2 are positive, SS8 is stable if and only if λ1 < 0. Since M0 is
increasing, this stability condition of SS8 is equivalent to that in Table 4.
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Proof of Proposition 3. Using the change of variables (8) and from Tables 3 and
4, the necessary and sufficient conditions of existence and stability of steady states
of (1) are summarized in Table 9 when Sin

ph = 0 and kdec,ch = kdec,ph = kdec,H2
= 0.

Since sin
1 = 0, SS7 and SS8 do not exist, as shown in Proposition 2. Using Table 9,

we see that:

Table 9. Existence and local stability conditions of steady states
of (1), when Sin

ph = 0 and kdec,ch = kdec,ph = kdec,H2 = 0. All
functions are given in Tables 1 and 11, while φ4 and µi are given
by (4) and (9).

Existence conditions Stability conditions

SS1 Always exists µ0

(
Y Sin

ch, S
in
H2

)
< D, µ2

(
Sin

H2

)
< D

SS2 µ2

(
Sin

H2

)
> D Y Sin

ch < ϕ0(D)

SS3 µ0

(
Y Sin

ch, S
in
H2

)
> D

µ1

(
Y Sin

ch − s0, S
in
H2

+ ω
(
Y Sin

ch − s0

))
< D

Sin
H2
− ωY Sin

ch < M2(D)− ωϕ0(D)

with s0 solution of ψ0(s0) = D

SS4

(1− ω)Y Sin
ch + Sin

H2
> φ1(D),

Y Sin
ch > M0(D, s2) +M1(D, s2)

with s2 solution of

Ψ(s2, D) = (1− ω)Y Sin
ch + Sin

H2

(1− ω)Y Sin
ch + Sin

H2
< φ2(D),

∂Ψ
∂s2

(s2, D) > 0, φ3(D) > 0

SS5
Y Sin

ch > ϕ0(D),

Sin
H2
− ωY Sin

ch>M2(D)− ωϕ0(D)
Y Sin

ch < ϕ0(D) + ϕ1(D)

SS6
(1− ω)Y Sin

ch + Sin
H2

> φ2(D),

Y Sin
ch > ϕ0(D) + ϕ1(D)

φ3(D)>0 or φ3(D)<0 and φ4(D,Sin
ch, S

in
H2

)>0

• SS1 always exists and is unstable, since the second stability condition in Table 9
does not hold, as

µ2

(
Sin

H2

)
' 1.0845 > D = 0.01. (46)

• SS2 exists, since the existence condition in Table 9 holds from (46). It is stable
if and only if

Sin
ch < ϕ0(D)/Y =: σ3.

• SS3 exists if and only if µ0

(
Y Sin

ch, S
in
H2

)
> D, which is equivalent to

Sin
ch > (M0(D,Sin

H2
))/Y =: σ1.

For Sin
ch = σ1, there is a transcritical bifurcation of SS3 and SS1, which have the

same components at σ1 (see Table 2). Consider the function y = F (Sin
ch) defined

by:

F (Sin
ch) = µ1(Y Sin

ch − s0, S
in
H2

+ ω(Y Sin
ch − s0)), (47)

where s0 depends also on Sin
ch. The first stability condition of SS3 in Table 9 is

written F
(
Sin

ch

)
< D. Fig. 6 shows that this condition holds for all Sin

ch > σ1,
since the maximum of the function F is smaller than 0.0013 and D = 0.01. From
the second stability condition, SS3 is stable if and only if

Sin
ch >

Sin
H2
−M2(D)+ωϕ0(D)

ωY =: σ4.
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y

F
(
Sin
ch

)

Sin
chσ1

y

F
(
Sin
ch

)

Sin
chσ1

Figure 6. Curve of the function y = F
(
Sin

ch

)
showing that

F
(
Sin

ch

)
< 0.0013, for all Sin

ch > σ1.

• Recall that ω ' 0.53 < 1 for the set of parameters given in Table 10. Therefore,
equation Ψ(s2, D) = (1− ω)Y Sin

ch + Sin
H2

admits two solutions s∗12 and s∗22 which

correspond to two steady states SS41 and SS42, respectively. When it exists, SS41

is unstable, as stated in Remark 3. From Table 9, the first existence condition of
these steady states holds if and only if

Sin
ch ≥

φ1(D)−Sin
H2

(1−ω)Y =: σ2.

Fig. 7 shows that the second existence condition of SS41 and SS42 in Table 9
holds, for all Sin

ch ∈ [σ2, 0.05], since the straight line of equation y = Y Sin
ch is

above the curves of the functions y = M0

(
D, s∗i2

)
+ M1

(
D, s∗i2

)
, for i = 1, 2,

respectively. SS42 is unstable, since the third stability condition does not hold
as φ3(D) ' −6513 < 0. Therefore, SS41 and SS42 exist and are unstable for all
Sin

ch ≥ σ2. They disappear for Sin
ch < σ2. For Sin

ch = σ2 there is a saddle-node
bifurcation. For Sin

ch = σ5 there is a transcritical bifurcation of SS41 and SS6.

y

y
=
Y
S
in
ch

y
=
M

0

( D, s∗12
) +

M
1

( D, s∗12
)

y = M0

(
D, s

∗2
2

)
+M1

(
D, s

∗2
2

)

Sin
ch

σ2

Figure 7. The green line of equation y = Y Sin
ch is above the red

and blue curves of the functions M0

(
D, s∗i2

)
+M1

(
D, s∗i2

)
, i = 1, 2.

• From Table 9, SS5 exists if and only if

σ3 := ϕ0(D)
Y < Sin

ch <
Sin
H2
−M2(D)+ωϕ0(D)

ωY =: σ4.

For Sin
ch = σ3, there is a transcritical bifurcation of SS5 and SS2. For Sin

ch = σ4,
there is a transcritical bifurcation of SS5 and SS3. When it exists, SS5 is stable
since

Sin
ch < σ4 ' 0.011191 < ϕ0(D)+ϕ1(D)

Y ' 0.013717.

• From Table 9, SS6 exists if and only if

Sin
ch >

φ2(D)−Sin
H2

(1−ω)Y =: σ5 ' 0.016575, Sin
ch >

ϕ0(D)+ϕ1(D)
Y ' 0.013717.

Then, SS6 exists if and only if Sin
ch > σ5. For the stability of SS6, we have

φ3(D) < 0 and we plot the functions φ4 with respect to Sin
ch. Fig. 8 shows
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that the equation φ4(Sin
ch) = 0 has a unique solution σ6 ' 0.029877 such that

φ4(Sin
ch) < 0 for all σ5 < Sin

ch < σ6 and φ4(Sin
ch) > 0 for all Sin

ch > σ6.

y

φ4

(
Sin
ch

)

σ5

σ6 Sin
ch

y

φ4

(
Sin
ch

)

Sin
ch

σ5

σ6

Figure 8. Curve of the function φ4

(
Sin

ch

)
for Sin

ch > σ5 and the

solution σ6 of equation φ4

(
Sin

ch

)
= 0. (e) A magnification for Sin

ch ∈
(σ5, 0.034).

To give a numerical evidence of the Hopf bifurcation occurring through the
positive steady state SS6 as Sin

ch varies, we determine the eigenvalues of the matrix
J1 defined by (39) and evaluated at this steady state. Fig. 9(a) shows that one
eigenvalue λ1

(
Sin

ch

)
remains negative for all Sin

ch ∈ (σ5, 0.05]. Fig. 9(b) shows

that the two other eigenvalues are real and distinct for all Sin
ch ∈ (σ5, σ

?) and we
denote them by λ2

(
Sin

ch

)
and λ3

(
Sin

ch

)
, then they become a complex-conjugate

pair for all Sin
ch ∈ (σ?, 0.05) and we denote them by

λ2,3

(
Sin

ch

)
= α

(
Sin

ch

)
± iβ

(
Sin

ch

)
,

which becomes purely imaginary for the particular value Sin
ch = σ6 such that

α(σ6) = 0, with β(σ6) 6= 0. Moreover, one has

dα
dSin

ch

(σ6) > 0.

Therefore, SS6 changes its stability through a supercritical Hopf bifurcation with
the emergence of a stable limit cycle that we illustrate in Fig. 4.

σ5 Sin
ch

λ1

λ3

λ2

α

σ5-

σ?6 σ6

Sin
ch

Figure 9. Three eigenvalues of the matrix J1 evaluated at SS6
as a function of Sin

ch. Real part of the pair of eigenvalues λ2,3 for
Sin

ch ∈ (σ?, 0.05] where σ? = 0.018.

Appendix B. Tables. In this section, we provide the biological parameter values
in Table 10 and we present in Table 11 various auxiliary functions defined in Table
1 in the case of specific growth functions (9).
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Table 10. Nominal parameter values. Units are expressed in
Chemical Oxygen Demand (COD).

Parameter Wade et al. [31] Unit

km,ch

km,ph

km,H2

29
26
35

kgCODS/kgCODX/d

KS,ch

KS,H2,c

KS,ph

KI,H2

KS,H2

0.053
10−6

0.302
3.5×10−6

2.5×10−5

kgCOD/m3

Ych

Yph

YH2

0.019
0.04
0.06

kgCODX/kgCODS

Table 11. Auxiliary functions in the case of growth functions
given by (9).

Auxiliary function Definition domain

M0(y, s2) = yK0(L0+s2)
m0s2−y(L0+s2)

0 6 y < m0s2
L0+s2

M1(y, s2) = yK1(KI+s2)
m1KI−y(KI+s2)

0 6 y < m1KI
KI+s2

M2(y) = yK2
m2−y

0 6 y < m2

M3(s0, z) = zL0(K0+s0)
m0s0−z(K0+s0)

0 6 z < m0s0
K0+s0

s0
2(D) = L0(D+a0)

m0−D−a0
D + a0 < m0

s1
2(D) = KI (m1−D−a1)

D+a1
D + a1 < m1

Ψ(s2, D)= (1− ω) (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2)

+ (D+a1)K1(KI+s2)
m1KI−(D+a1)(KI+s2)

+ s2

{
D ∈ I1 : s0

2 < s2 < s1
2

}
ψ0(s0) =

m0s0(sin2 −ω(sin0 −s0))
(K0+s0)(L0+sin2 −ω(sin0 −s0))

s0 ∈
[
max

(
0, sin

0 −sin
2 /ω

)
,+∞

)
ψ1(s1) = m1s1KI

(K1+s1)(KI+sin2 +sin1 −s1)
s1 ∈

[
0, sin

1 + sin
2

]
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(1950), 390-410.

[22] S. Nouaoura, N. Abdellatif, R. Fekih-Salem and T. Sari, Mathematical analysis of a three-

tiered model of anaerobic digestion, preprint (2020), hal-02540350.
[23] A. Rapaport and M. Veruete, A new proof of the competitive exclusion principle in the

chemostat, Discrete & Continuous Dyn. Syst. - B , 24 (2019), 3755–3764.

[24] T. Sari, M. El Hajji and J. Harmand, The mathematical analysis of a syntrophic relationship
between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645.

[25] T. Sari and J. Harmand, A model of a syntrophic relationship between two microbial species

in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9.
[26] T. Sari and M.J. Wade, Generalised approach to modelling a three-tiered microbial food-web,

Math. Biosci., 291 (2017), 21–37.
[27] M. Sbarciog, M. Loccufier and E. Noldus, Determination of appropriate operating strategies

for anaerobic digestion systems, Biochem. Eng. J., 51 (2010), 180–188.

[28] H.L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Compe-
tition, Cambridge University Press, Cambridge, UK, 1995.

[29] S. Sobieszek, G.S.K. Wolkowicz and M.J. Wade, A qualitative study of an anaerobic food-web
reveals the importance of hydrogen for microbial stability, preprint (2020), arXiv:2002.06057.

[30] M.J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B.

Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry, Perspectives in mathe-

matical modelling for microbial ecology, Ecol. Modell., 321 (2016), 64–74.
[31] M.J. Wade, R.W. Pattinson, N.G. Parker and J. Dolfing, Emergent behaviour in a

chlorophenol-mineralising three-tiered microbial ‘food web’, J. Theor. Biol., 389 (2016), 171–
186.

[32] M. Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion,

Math. Biosci. Eng., 9 (2012), 445–459.

[33] G.S.K. Wolkowicz, Successful invasion of a food web in a chemostat, Math. Biosci., 93 (1989),
249–268.

[34] A. Xu, J. Dolfing, T.P. Curtis, G. Montague and E. Martin, Maintenance affects the stability
of a two-tiered microbial ‘food chain’?, J. Theor. Biol., 276 (2011), 35–41.

E-mail address: sarra.nouaoura@enit.utm.tn

E-mail address: radhouene.fekihsalem@isima.rnu.tn

E-mail address: nahla.abdellatif@ensi-uma.tn

E-mail address: tewfik.sari@inrae.fr

http://www.ams.org/mathscinet-getitem?mr=MR3820337&return=pdf
http://dx.doi.org/10.1016/j.mbs.2018.05.004
http://dx.doi.org/10.2478/v10006-009-0036-0
http://dx.doi.org/10.3934/mbe.2010.7.641
https://ejde.math.txstate.edu/Volumes/2017/255/elhajji.pdf
http://www.ams.org/mathscinet-getitem?mr=MR3190858&return=pdf
http://arima.inria.fr/017/017003.html
http://www.ams.org/mathscinet-getitem?mr=MR3619206&return=pdf
http://dx.doi.org/10.1016/j.mbs.2017.02.007
http://dx.doi.org/10.1126/science.6767274
http://www.ams.org/mathscinet-getitem?mr=MR3729476&return=pdf
http://dx.doi.org/10.1002/9781119437215
http://dx.doi.org/10.1002/9781119437215
http://dx.doi.org/10.1016/j.jprocont.2007.05.005
http://dx.doi.org/10.1099/mic.0.27924-0
http://www.ams.org/mathscinet-getitem?mr=MR2525141&return=pdf
http://dx.doi.org/10.3934/dcdsb.2009.12.337
http://dx.doi.org/10.1016/B978-0-12-460482-7.50023-3
https://hal.archives-ouvertes.fr/hal-02540350
http://www.ams.org/mathscinet-getitem?mr=MR3986255&return=pdf
http://dx.doi.org/10.3934/dcdsb.2018314
http://www.ams.org/mathscinet-getitem?mr=MR2957538&return=pdf
http://dx.doi.org/10.3934/mbe.2012.9.627
http://www.ams.org/mathscinet-getitem?mr=MR3482317&return=pdf
http://dx.doi.org/10.1016/j.mbs.2016.02.008
http://www.ams.org/mathscinet-getitem?mr=MR3679223&return=pdf
http://dx.doi.org/10.1016/j.mbs.2017.07.005
http://dx.doi.org/10.1016/j.bej.2010.06.016
http://dx.doi.org/doi.org/10.1017/CBO9780511530043
http://dx.doi.org/doi.org/10.1017/CBO9780511530043
http://arxiv.org/pdf/2002.06057
http://dx.doi.org/10.1016/j.ecolmodel.2015.11.002
http://www.ams.org/mathscinet-getitem?mr=MR3430964&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2015.10.032
http://www.ams.org/mathscinet-getitem?mr=MR2897087&return=pdf
http://dx.doi.org/10.3934/mbe.2012.9.445
http://www.ams.org/mathscinet-getitem?mr=MR0984280&return=pdf
http://dx.doi.org/10.1016/0025-5564(89)90025-4
http://www.ams.org/mathscinet-getitem?mr=MR2974969&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2011.01.026
mailto:sarra.nouaoura@enit.utm.tn
mailto:radhouene.fekihsalem@isima.rnu.tn
mailto:nahla.abdellatif@ensi-uma.tn
mailto:tewfik.sari@inrae.fr

	1. Introduction
	2. Assumptions and steady states
	3. Study of the model without maintenance
	4. Application to a chlorophenol-mineralising three-tiered microbial `food web'
	5. Conclusion
	Appendix A. Proofs
	Appendix B. Tables
	REFERENCES

