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Introduction

In recent years, the demand for electrical energy never stopped while at the same time the constraints related to its production increased [START_REF] Belkaid | A Comprehensive study of different photovoltaic peak power tracking methods[END_REF], [START_REF] Nzoundja Fapi | A Fuzzy Logic MPPT Algorithm with a PI Controller for a Standalone PV System under Variable Weather and Load Conditions[END_REF]. Indeed, more and more power will be produced by the photovoltaic (PV) process which converts sunlight into electricity. The drawbacks of this source of energy are the intermittence of the PV source and the fact that power supplied by the PV generator depends on unpredictable weather conditions. In order to overcome them, the maximum power point tracking (MPPT) technics can be applied. Furthermore, the MPPT is a reliable method to extract at any time the maximum power in order to optimize the energy production. Indeed, the improvement of the photovoltaic generator requires optimal operation of the DC-DC converters used as an interface between the PV generator and the load to be supplied [START_REF] Tofoli | Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems[END_REF]- [START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF].

A wide range of MPPT algorithms have been developed to ensure optimal operation of the photovoltaic system. We can mention traditional MPPT methods which mainly include the following perturb and observe (P&O) [START_REF] Kolluru | A Comprehensive Review on Maximum Power Tracking of a Photovoltaic System Under Partial Shading Conditions[END_REF], [START_REF] Belkaid | Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions[END_REF], fractional open-circuit voltage (FOCV) [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF], [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF], fractional short-circuit current (FSCC) [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF], [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF], incremental conductance, hill climbing (HC) [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF], [START_REF] Zhu | Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency[END_REF], while the intelligent MPPT control method includes the neural network, fuzzy logic control (FLC) [START_REF] Tofoli | Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems[END_REF]- [START_REF] Kolluru | A Comprehensive Review on Maximum Power Tracking of a Photovoltaic System Under Partial Shading Conditions[END_REF], [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF], [START_REF] Alajmi | Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System[END_REF]- [START_REF] Amara | Improved Performance of a PV Solar Panel with Adaptive Neuro Fuzzy Inference System ANFIS based MPPT[END_REF], genetic algorithms, particle swarm optimization, teachinglearning-based optimization [START_REF] Tofoli | Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems[END_REF]- [START_REF] Kolluru | A Comprehensive Review on Maximum Power Tracking of a Photovoltaic System Under Partial Shading Conditions[END_REF]. Among all the previous MPPT strategies, in [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF] the authors compare performances and tracking accuracy between the bisection numerical algorithms based MPPT with the FSCC and FOCV MPPT methods. A new digital control scheme for a standalone PV system using fuzzy logic and a dual MPPT controller is presented in [START_REF] Ahmad | Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control[END_REF]. A new FLC for MPPT of PV systems is proposed in [START_REF] Alajmi | Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System[END_REF]; the author uses the hill climbing search method by fuzzifying the rules of such techniques and suppresses their drawbacks. In [START_REF] Ahmed | An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency[END_REF], the conventional P&O method, various weather conditions by using the FSCC algorithm is proposed. An hybrid version of P&O algorithm, short-circuit current and open-circuit voltage techniques with improved relations are derived in [START_REF] Murtaza | MPPT technique based on improved evaluation of photovoltaic parameters for uniformly irradiated photovoltaic array[END_REF]. To minimize insufficiency effect of the classic incremental conductance method, the proposed method in [START_REF] Radjai | Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE[END_REF] developed a new incremental conductance controller based on a fuzzy duty cycle change estimator with direct control.

Various MPPT algorithms have adopted the hybrid approach to improve the efficiency of MPPT [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF], [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF], [START_REF] Zhu | Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency[END_REF], [START_REF] Radjai | Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE[END_REF]- [START_REF] Murtaza | A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems[END_REF]. In Ref. [START_REF] Ahmad | Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control[END_REF], the method samples short-circuit current (Isc) and open-circuit voltage (Voc) are used to locate maximum power point (MPP). However, the information regarding the procedure of the short-circuit current and opencircuit voltage is missing. The methods presented in Refs. [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF], [START_REF] Ahmed | An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency[END_REF] are based on the association of P&O and FOCV MPPT algorithms. Techniques in [START_REF] Murtaza | A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems[END_REF] measure the opencircuit voltage to estimate the maximum voltage but lack a separate strategy for the estimation of duty cycle of the boost converter. Considering these disadvantages, this paper presents a new enhanced MPPT method, which is the association of hill climbing, fractional open-circuit voltage and fractional short-circuit current algorithms. The main aim is to try to improve hill climbing method by combining fractional open-circuit voltage and fractional short-circuit current, while keeping the control technique simple. The particularity of the enhanced MPPT resides in the fact that, the relations are developed to estimate the maximum voltage and the maximum current without open-circuiting and shortcircuiting of the PV array. Using the maximum current and the maximum voltage magnitudes, a new duty cycle optimization method expression is designed for the DC-DC boost converter. This suppresses the need of any control schemes (PI/PID etc…).

To validate the proposed method, much performance should be evaluated like: the number of variables (number and type of sensors used), the control strategy (indirect control, direct control or probabilistic control), the tracking style (analogic or digital implementation) and the result of tracking (Accuracy and speed of tracking) [START_REF] Tofoli | Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems[END_REF][START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF][START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF][START_REF] Li | Evaluation of Different Maximum Power Point Tracking (MPPT) Techniques based on Practical[END_REF]. The proposed MPPT is ideally suited for standalone and DC-load PV systems. To check the validity of the proposed algorithms several tests with real-time weather conditions have been carried out. The electrical synoptic of experimental configuration of the PV system is illustrated in 

Enhanced MPPT algorithm for PV systems

To enhance the output power of PV panels, the MPPT algorithms used gradually decrease or increase the duty cycle of the converter used as the interface between the load and the PV panel.

2.1.

The fractional open-circuit voltage (FOCV) and fractional short-circuit current (FSCC) method

The FOCV method consists in comparing the voltage delivered by the PV panel with the maximum voltage (Vmpp) considered as a reference [START_REF] Belkaid | A Comprehensive study of different photovoltaic peak power tracking methods[END_REF], [START_REF] Gupta | A comparative investigation of maximum power point tracking methods for solar PV system[END_REF]. The reference voltage is obtained from the linear relationship between Vmpp and Voc of the PV module [START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF], [START_REF] Shebani | Comparing Bisection Numerical Algorithm with Fractional Short Circuit Current and Open Circuit Voltage Methods for MPPT Photovoltaic Systems[END_REF]: [START_REF] Belkaid | A Comprehensive study of different photovoltaic peak power tracking methods[END_REF] where Kv is the voltage proportionality constant.

The disadvantage of this technique is that it is necessary to perform the Voc measurement from time to time. The load must therefore be disconnected during this measurement, resulting in a loss of power.

The FSCC algorithm is one of the simplest offline techniques. The MPPT obtained using this technique is calculated using Eq. ( 2) [START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF], [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF].

(

) 2 
where Ki is the current proportionality constant.

Despite the fact that the implementation of this method is simple and inexpensive, its performance is comparatively low due to the utilization of inexact values of Ki in the computation of Impp. FSCC MPPT requires only a current sensor and is consequently less costly. The disadvantage is the recurring loss of power when the short-circuit current is measured [START_REF] Belkaid | A Comprehensive study of different photovoltaic peak power tracking methods[END_REF], [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF].

Hill climbing algorithm

The best thing about the hill climbing MPPT method is its simplicity (see Fig. 2). It uses the duty cycle of the boost converter as feedback parameter when the task of the MPPT is carried out [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF], [START_REF] Alajmi | Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System[END_REF]. The main disadvantage of this technique is due to the trade-off between the stability of the system in a period of constant irradiation. Another disadvantage is the absence of a rapid response in case of a rapid change in radiation [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF], [START_REF] Alajmi | Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System[END_REF]. The period of steady radiation requires a very small value of variation in the duty cycle, ∆D to avoid a strong oscillation of the power about the peak power point, reducing the energy captured by the PV. On the other hand, rapidly changing irradiation requires a higher duty cycle value to accelerate the pursuit of peak power.

Fig. 2. State flowchart of hill climbing MPPT technique.

The Proposed MPPT Method

There are several factors to consider when developing and choosing MPPT execution techniques, such as costs, convergence speed, and the ability of an algorithm to detect several maxima quickly. The enhanced technique is developed to improve the efficiency of conventional hill climbing by reducing the oscillation to the steady state and preventing its divergence at the maximum power point locus. As with other types of hill climbing technique, the enhanced method is based on the P-V characteristic curve of the photovoltaic grid and the MPP is followed by evaluating the differential sign of power calculated by the estimated values of Vmpp and Impp as a function of voltage. When the Dmpp estimates in operation reaches the neighborhood of the maximum power point, the size of the disturbance step is diminished to a minimum value by the variable step size strategy.

The maximum voltage point (Vmpp) estimation

An ideal photovoltaic cell is a cell for which Rp is infinitely large. [START_REF] Mukti | Modeling and Performance Analysis of PV Module with Maximum Power Point Tracking in Matlab/Simulink[END_REF], [START_REF] Rodrigues | Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity[END_REF]. The expression of the generated current is given by the following equation [START_REF] Rodrigues | Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity[END_REF], [START_REF] Batzelis | Simple PV performance equations theoretically well founded on the single-diode model[END_REF]:

(3) Maximum power is obtained by canceling the derivation of the power [START_REF] Kajiwara | Performance-Improved Maximum Power Point Tracking Control for PV System[END_REF]:
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The derivative of the Eq. ( 3) put into Eq. ( 5) gives: [START_REF] Kolluru | A Comprehensive Review on Maximum Power Tracking of a Photovoltaic System Under Partial Shading Conditions[END_REF] Taking into account Eq. ( 2), Vmpp can be found as [START_REF] Belkaid | Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions[END_REF] The Impp is deducted from Eq. ( 5) and Eq. ( 7):

The maximum voltage of PV cell can be calculated from Eq. ( 5) and Eq. ( 8):

(9)

The maximum current point (Impp) estimation

By supposing that Iph equals to Isc in Eq. ( 3), the exponential factor being very significant, factor "-1" can be overlooked. Eq. ( 3) can be reduced as: [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF] Using Eq. ( 10) to obtain Io, considering that the PV panel is at the open-circuit current point, which means that I is equal to 0. The relation Io is given by the relation below: [START_REF] Zhu | Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency[END_REF] Putting Io from the above Eq. ( 10), lead to the following equation: [START_REF] Alajmi | Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System[END_REF] Using Eq. ( 10) to solve VT, the PV panel is assumed to be at the maximum power point, i.e. V=Vmpp and I=Impp, so the previous equation can be re-ordered as: [START_REF] Haji | Fuzzy and P&O Based MPPT Controllers under Different Conditions[END_REF] Inserting the values of VT from the Eq. ( 12) lead to: [START_REF] Ahmad | Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control[END_REF] The relation of Impp have been derived by putting Eq. ( 1) and Eq. ( 2) into Eq [START_REF] Ahmad | Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control[END_REF]. ( 15)

Dmpp estimation

In PV systems, DC-DC converter (boost, buck, etc…) is used between PV panel and the load. For that MPPT engineered utilizes DC-DC converter to vary Rout. The expression between input voltage (Vin) and output voltage (Vout) of a boost converter illustrated in Fig. 1 can be expressed by: [START_REF] Ahmed | An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency[END_REF] where, D is duty cycle. If we have 100% performance, we can assume Pout =Pin, therefore: [START_REF] Murtaza | MPPT technique based on improved evaluation of photovoltaic parameters for uniformly irradiated photovoltaic array[END_REF] By using Eq. ( 16) and Eq. ( 17), it can be written as : [START_REF] Radjai | Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE[END_REF] The relation of the DC-DC boost converter can be rewritten by two equations in two different points at non-MPP by Eq. ( 19) and at MPP by Eq. ( 20). ( 19) [START_REF] Murtaza | A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems[END_REF] by equalizing the Eq. ( 19) and Eq. ( 20), then adding the expressions of Vmpp from Eq. ( 9) and Impp from Eq. ( 15) in the latter, the result lead to the relation of new duty cycle Dmpp below:
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Comprehensive architecture of the MPPT method

It has three fundamental parameters: Impp, Vmpp and Dmpp which represent the maximum current, the maximum voltage and the duty cycle respectively. The relations are respectively given by Eq. ( 9), Eq. ( 15), and Eq. ( 21). The proposed technique is shown in Fig. 3. This algorithm consists of three steps. The algorithm starts with a measurement of the short-circuit current and then uses the FSCC algorithm (blue loop). Since the algorithm enters the red loop while the PV generator is running at MPP and is responsible for setting the PV generator Ppv near the MPP neighborhood by the Dmpp relationship expressed in Eq [START_REF] Li | Evaluation of Different Maximum Power Point Tracking (MPPT) Techniques based on Practical[END_REF]. Finally, in the green loop, the algorithm imposes the Vmpp and Impp criteria which are calculated from Eqs ( 9) and ( 15) respectively, which are described in the previous section. The proposed method remains in this loop until the limits are exceeded. If the limits are exceeded, the algorithm returns to the blue loop and the dynamic operation is restarted. 

Experimental tests and results

In this section, a comparison of the experimental results of the hill climbing and the enhanced MPPT algorithm is presented. In order to compare their algorithms, some parameters to evaluate their performance are described. Subsequently, a comprehensive description of the different elements of the experimental test bench used in this work is proposed. Finally, the results of experiments in different weather conditions are discussed.

Parameters for the evaluation of MPPT algorithm

Some well-known parameters can evaluate the effectiveness of an MPPT algorithm and assess its performance, like the tracking efficiency given by Eq. ( 22), the ripple rate of Eq. ( 23), the average power given by Eq. ( 24), the response time and the implementation complexity. The above criteria are appropriate for simulation tests [START_REF] Tofoli | Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems[END_REF]- [START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF], [START_REF] Mukti | Modeling and Performance Analysis of PV Module with Maximum Power Point Tracking in Matlab/Simulink[END_REF], [START_REF] Kajiwara | Performance-Improved Maximum Power Point Tracking Control for PV System[END_REF] but are less relevant in outside experiments which are subject to changing and random conditions. Nevertheless, simulations will never allow the fully characterization of a PV panel and its power tracking strategy [START_REF] Danandeh | Comparative and comprehensive review of maximum power point tracking methods for PV cells[END_REF], [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF], [START_REF] Kajiwara | Performance-Improved Maximum Power Point Tracking Control for PV System[END_REF].

In this paper, the MPPT methods described in Section II are tested and assessed using real conditions of temperature and irradiance. The different measurements (voltage, current and power) are accessed by the ControlDesk software to calculate the tracking efficiency, ripple rate, average power, and response time. These data are used to verify the performance of different MPPT methods.

The tracking efficiency (η) is an important parameter in the MPPT algorithm. This value is calculated as follows [START_REF] Belkaid | Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions[END_REF], [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF]:
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The average power (Pm) is the PV output power under the control of MPPT over some period of time T. It is calculated as follows [START_REF] Sher | A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT[END_REF], [START_REF] Boukenoui | Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems[END_REF]: [START_REF] Batzelis | Simple PV performance equations theoretically well founded on the single-diode model[END_REF] The response time (τr) corresponds to the time needed to reach the new MPP value.

Implementation aspects

The experimental evaluation of the MPPT algorithms performance is verified by using the test bench which is illustrated in Fig. 4. This bench was designed and implemented at the IRIMAS Laboratory, located in IUT of Mulhouse of the University of Haute Alsace in France. The test bench consists of the following elements:

A photovoltaic solar panel Solarex Solex FSM 145W-24 placed outside the building, following the south-east orientation (whose characteristics are given in Table 1). Two sensors TSL2591 and DHT11 are used to record irradiance and temperature respectively. These data are stored in an SD card via the Arduino Ethernet module with a sampling period of one second (refers to Fig. 4a).

As shown in Fig. 4b, the current sensor Probe Model PR20 and voltage sensor Model ST 1000-II are used to acquire the current and voltage output of the solar panel. Both of these data are used as input variables for the MPPT controller to produce a PWM signal. The Semikron Semiteach -IGBT DC-DC converter, engineered to operate in continuous inductive current mode (whose specifications of which are given in Table 2), is directly linked to the PWM controller, which receives and amplifies the signal of the Slave port I/O PWM of the dSPACE1104 control Board. This signal will be utilized to control the IGBT power of the DC-DC boost converter, which in turn will shift the operating power to the MPP and achieve maximum operating performance. The load linked to the output of the DC-DC boost converter is a load of 120 Ω, chosen to facilitate the study. A digital oscilloscope WavaJet LeCroy visualizes at all times the signals (voltage, current, PWM signal and power).

The DS1104 Control Board is linked to a computer containing the experimental ControlDesk software and Matlab/Simulink software. The studied MPPT algorithms are schematically implemented in Matlab/Simulink via blocks from the Simulink libraries. Then, exploiting the features of the real-time interface toolbox (i.e., the RTI data block with a simplest frequency of 10 KHz) available in the Simulink libraries. The implemented MPPT algorithms are interfaced with the hardware.

The ControlDesk software allows managing to process hosted on the control board. It has been used as a signal acquisition system, which is intended to -acquire and store the measured signals, -give access to the display of the various curves, -facilitate real-time analysis of the MPPT method performance in controlling the PV system.

The hardware platform is permanently linked to the desktop computer for interactive control, status monitoring and code download. 

Experimental results and discussion

The experimental test bench in Fig. 4 is used to obtain the acquisition of measured data to validate the proposed method. The experiment is performed under an average irradiation of 876 W/m² and at an average ambiant temperature of 31 °C recorded by their respective sensors on Thursday, September 20, 2018, local time in France. During the experiment, the experimental results of the start and equilibrium conditions were recorded using the control panel map. In addition, these data were utilized to assess and compare the performance of each MPPT algorithm in monitoring the true maximum power point (MPP).

It is clear from Fig. 5 that the true MPP is 100 W. The experimental starting waveforms for the current, voltage and PV output power extracted by hill climbing MPPT method, and the proposed method are presented in Fig. 5 (a) and (b) respectively. From the waveforms illustrated in Fig. 5, it can be seen that the current and voltage starting points are around 0.2 A and 37 V respectively. In addition, the PV output power and current increase during the start-up phase while the voltage decreases. In this experiment, the algorithms studied all converge towards the neighborhood of the exact PMP (100 W) But with various response times and oscillation rates (see Table 4). In steady state, the extracted power is measured and saved by the data acquisition control desk with a sampling period of 1ms for each MPPT algorithm. Fig. 6 shows the duty cycle variation for both controllers. With the proposed method, the optimized duty cycle is achieved more quickly and has less steady-state oscillations.

In order to elucidate the degradation in steady-state effectiveness, the average power output, power ripples and efficiency of the experiment are collected and evaluated in Table 4. On the basis of Table 3 and Fig. 7, it is clear that hill climbing method has been impacted in terms of effectiveness, resulting in substantial losses in the power produced. The proposed method's performance was not significantly affected, and consequently, the power ripples in the proximity of the MPP were negligible. An efficiency of 98.45% was also obtained. 4 presents the results obtained with the MPPT algorithms, that is to say the conventional hill climbing approach and the proposed approach. Eq. ( 22), Eq. ( 23) and Eq. [START_REF] Batzelis | Simple PV performance equations theoretically well founded on the single-diode model[END_REF] were used respectively to calculate different parameters such as the tracking efficiency, the ripple rate and the average power.

From Fig. 7, Table 3 and Table 4, it is clearly observed that the proposed method has insignificant power ripples and very good reliability in monitoring the MPP. As a result, the energy loses are very low, as the monitoring efficiency obtained by the proposed method is 98.45%. The steady-state performance of hill climbing MPPT algorithm has considerable power undulations (0.9 W), which results in lower efficiency in MPP monitoring (92.75%) and considerable energy losses compared to the proposed method. 

Conclusion

The energy efficiency of the photovoltaic system depends on good performance with maximum power point tracking (MPPT) algorithms to extract the maximum power. An enhanced MPPT algorithm has been proposed in this document for this purpose. The proposed MPPT algorithm has been developed to solve the problems of the conventional MPPT hill climbing method. Indeed, the proposed algorithm is based on the estimation of the boost converter duty cycle associated with the conventional hill climbing algorithm. These techniques have been experimented and tested under real weather conditions. The experimental implementation has been designed with DS1104 control board, allows a comparison of the performance of the enhanced algorithm and the conventional hill climbing by calculating their tracking efficiency, ripple rate, average power and response time. In changing conditions, the proposed algorithm offers greater a precision and a better efficiency than the conventional hill climbing MPPT method.

Fig. 1 .

 1 In this figure, the acquisition unit must acquire measured analog signals (current and voltage of the PV panel). These signals are processed by the DS1104 control board and sent by means of Slave I/O pulse width modulation (PWM) channels to the PWM controller to drive the DC-DC boost converter. The enhanced hill climbing MPPT algorithm and proposed method are presented in Section II. Section III presents the experimental test implementation and results. Section IV concludes the work.

Fig. 1 .

 1 Fig. 1. Electrical synoptic scheme of experimental setup of the PV system.

Fig. 3 .

 3 Fig. 3. The State flowchart of the enhanced algorithm.

Fig. 4 .

 4 Fig. 4. The experimental test bench setup

Fig. 5 .

 5 Fig. 5. Experimental PV curves of voltage, power and current for different methods for the test

Fig. 7 .

 7 Fig. 7. Experimental curves of power for different methods

Table 1 :

 1 Electrical parameters of the Solarex Solex FSM 145W-24.

	Parameters	Values Symbols
	Maximum power (W)	145	Pmpp
	Temperature coefficient of Isc (A/K)	0.0065	ksc
	Maximum Current (A)	4.2	Impp
	Maximum voltage (V)	34.4	Vmpp
	Parallel cell	1	Np
	Temperature coefficient of Voc (V/K) -0.3609	koc
	Open-circuit Voltage (V)	43.5	Voc
	Series cells	72	Nsc
	Short-circuit current (A)	4.7	Isc

Table 2 :

 2 Parameters of DC-DC boost converter

	Parameters	Values Symbols
	Rated input current (A)	30	Iin
	Boost inductor (mH)	1.0	L
	Input filter capacitor (µF)	90	Cin
	Output filter capacitor (µF)	47	Cout
	Rated output current (A)	30	Iout
	Rated output voltage (V)	400	Vout
	Maximum Switching frequency (KHz)	50	f
	3.3.		

Table 3 :

 3 MPPT comparison 

		Hill Climbing	Improved MPPT
		MPPT Algorithm	Algorithm
	PV power (W)	90	98.28
	PV voltage (V)	30	27.3
	PV current (A)	3	3.6

Fig. 6. Comparison of duty cycle for different methods for the test Table

Table 4 .

 4 Performance and comparison of the different MPPT methods for experiment

	Temperature,	Parameters	Hill Climbing	Improved MPPT
	Irradiance		MPPT Algorithm	Algorithm
		Efficiency η (%)	92.75	98.45
		Ripple rate of the power to (W)	2.5	0.5
	T= 31 °C, G = 876 W/m²	Average power Pm (W) Response time τr (s) The used sensors	93 0.6 Voltage, Current	98 0.25 Voltage, Current
		Initial setting parameters	2 parameters	2 parameters
		Implementation complexity	Low	Medium
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