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Abstract
In this work, we study numerically the convergence of the scalar D2Q9 lattice Boltzmann
scheme with multiple relaxation times when the time step is proportional to the space step
and tends to zero. We do this by a combination of theory and numerical experiment. The
classical formal analysis when all the relaxation parameters are fixed and the time step tends
to zero shows that the numerical solution converges to solutions of the heat equation, with
a constraint connecting the diffusivity, the space step and the coefficient of relaxation of
the momentum. If the diffusivity is fixed and the space step tends to zero, the relaxation
parameter for the momentum is very small, causing a discrepency between the previous
analysis and the numerical results. We propose a new analysis of the method for this specific
situation of evanescent relaxation, based on the dispersion equation of the lattice Boltzmann
scheme. A new asymptotic partial differential equation, the damped acoustic system, is
emergent as a result of this formal analysis. Complementary numerical experiments establish
the convergence of the scalar D2Q9 lattice Boltzmann scheme with multiple relaxation times
and acoustic scaling in this specific case of evanescent relaxation towards the numerical
solution of the damped acoustic system.

∗ Contribution presented to the 26th DSFD Conference, Erlangen (Germany), 10 - 14 July 2017.
Computers & Fluids, volume 172, pages 301-311, 2018.
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1) Introduction
Lattice Boltzmann models are simplifications of the continuum Boltzmann equation obtained
by discretizing in both physical space and velocity space. The discrete velocities vi retained
typically correspond to lattice vectors of the discrete spatial lattice. That is, each lattice
vertex x is linked to a finite number of neighboring vertices by lattice vectors vi ∆t. A particle
distribution f is therefore parametrized by its components in each of the discrete velocities,
the vertex x of the spatial lattice, and the discrete time t. A time step of a classical lattice
Boltzmann scheme [15] then contains two steps:
(i) a relaxation step where the distribution f at each vertex x is locally modified into a new
distribution f ∗, and
(ii) an advection step based on the method of characteristics as an exact time-integration
operator. We employ the multiple-relaxation-time approach introduced by d’Humières [10],
wherein the local mapping f 7−→ f ∗ is described by a diagonal operator in a space of
moments.
In [6], we have studied the asymptotic expansion of various lattice Boltzmann schemes with
multiple-relaxation times for different applications. We used the so-called acoustic scaling,
in which the ratio λ ≡ ∆x/∆t is kept fixed. We supposed also that the relaxation operator
remains fixed. In this manner, we demonstrated the possibility of approximating diffusion
processes described by the heat equation.
The importance of using small values of relaxation parameters was recognized for linear vis-
coelastic fluids by Lallemand et al. [14]. Independently, unexpected results in simulations
for advection-diffusion processes have been described by Dellacherie in [4]. We have studied
experimentally in [3] the curious convergence of the D1Q3 multiple-relaxation time lattice
Boltzmann scheme with one conserved variable when using the acoustic scaling in one spa-
tial dimension. The asymptotic equation of the lattice Boltzmann scheme is no longer an
advection-diffusion model but a damped acoustic model. In this contribution, we show and
analyze an analogous phenomenon for two spatial dimensions with the scalar D2Q9 lattice
Boltzmann scheme. The difficulty concerns the highlighting of the convergence with the
numerical experiments.
In Section 2, we recall some fundamentals relative to the D2Q9 lattice Boltzmann scheme for
scalar conservation laws. In Section 3, we study convergence of this scheme for diffusive and
acoustic scaling. A formal analysis is proposed in Section 4, with the dispersion equation
method, initially proposed in [16]. We establish that with acoustic scaling, the convergence
of the scalar D2Q9 scheme is not the heat equation but an unexpected model! Finally,
we study the experimental convergence of the scalar D2Q9 scheme in several situations in
Section 5.

2) Scalar D2Q9 lattice Boltzmann scheme for thermal problems
The D2Q9 lattice Boltzmann scheme uses a set of discrete velocities described in Figure 1.
A density distribution fj is associated to each velocity vj ≡ λ ej, where λ ≡ ∆x

∆t
is the

fixed numerical lattice velocity. The first three moments for the density and momentum are
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defined according to

(1) ρ =
8∑
j=0

fj = m0 , Jx ≡ ρ ux =
8∑
j=0

λ e1
j fj = m1 , Jy ≡ ρ uy =

8∑
j=0

λ e2
j fj = m2 ,

where the eαj are the αth cartesian components of the vectors ej introduced previously. We
complete this set of moments and construct a vector m of moments mk according to

(2) m = M f ,

with an invertible fixed matrix M usually [15] given by

M =



1 1 1 1 1 1 1 1 1

0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ
−4λ2 −λ2 −λ2 −λ2 −λ2 2λ2 2λ2 2λ2 2λ2

0 λ2 −λ2 λ2 −λ2 0 0 0 0

0 0 0 0 0 λ2 −λ2 λ2 −λ2

0 −2λ3 0 2λ3 0 λ3 −λ3 −λ3 λ3

0 0 −2λ3 0 2λ3 λ3 λ3 −λ3 −λ3

4λ4 −2λ4 −2λ4 −2λ4 −2λ4 λ4 λ4 λ4 λ4


.

For scalar lattice Boltzmann applications, the density ρ is the “conserved variable”.

Figure 1: Particle distribution fj for 0 ≤ j ≤ 8 of the D2Q9 lattice Boltzmann scheme

• The particle distribution at equilibrium f eq is a function only of this conserved variable.
For this thermal D2Q9 lattice Boltzmann scheme, the vector of equilibrium moments meq

is given by

(3) meq =
(
ρ , 0 , 0 , α λ2 ρ , 0 , 0 , 0 , 0 , λ4 β ρ

)t
.

In most applications, the coefficients α and β are usually taken to be

(4) α = −2 , β = 1 .
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The lattice Boltzmann scheme is comprised of two fundamental steps : relaxation and ad-
vection. During the relaxation step, the conserved variable ρ is not modified, and the
non-conserved moments m1 to m8 relax towards an equilibrium value: meq

k = ψk(ρ) for
k ≥ 1, where the ψk are the linear functions of the conserved moment given by (3). The
specification of this step also needs relaxation rates sk : for k ≥ 1 such that

m∗k = mk + sk
(
meq
k − mk

)
,

where the superscript ∗ denotes the moment mk after the relaxation step. The table of
relaxation parameters sk chosen in our simulations is as follows

(5) [s] =
(
sJ , sJ , se , sx , sx , sq , sq , sε

)
.

We introduce also the 8×8 diagonal matrix S whose diagonal elements are the components
of the vector [s]. In our computations, we take the following numerical values

(6) se = 1.7 , sx = 1.1 , sq = 1.1 , sε = 1.7 .

Only the relaxation coefficient sJ for the first order momentum is allowed to vary in our
numerical experiments.
Then using the matrix M−1 the relaxation step becomes in f space :

(7) f ∗i (x, t) =
∑
`

M−1
i ` m

∗
` .

During the advection step fi(xj) is transported from the node xj by the discrete velocity vi
to the node xj + vi∆t. Thus the evolution of populations fi for 0 ≤ i ≤ 8 at internal node x
is described by:

(8) fi(x, t+ ∆t) = f ∗i (x− vi∆t, t) , 0 ≤ i ≤ 8 .

• In [6], we have analyzed several lattice Boltzmann models with the Taylor-expansion
method, including the present one defined by Eqs. (2, 3, 5, 8). The hypothesis used was
that the reference velocity λ and the relaxation coefficients sJ , se, sx, sq and sε remain
constant as the spatial step ∆x tends to zero. Then the conserved variable ρ satisfies (at
least formally!) the heat equation:

(9)
∂ρ

∂t
− κ ∆ρ = O(∆x2) ,

where the thermal diffusivity κ is given by the relation

(10) κ ≡ 4 + α

6
σ λ∆x , σ ≡

( 1

sJ
− 1

2

)
.

The coefficient σ is known as the “Hénon parameter” in reference to the pioneering work
of Hénon [9]. Observe that when the relaxation coefficient sJ and the mesh velocity λ are
fixed, the thermal diffusivity tends to zero as the space step ∆x tends to zero. This lattice
Boltzmann scheme is stable in the fluid case (see [15]) under the condition:

−4 < α < 2 .

For the scalar case, the condition α+4 > 0 is clear to assume that the thermal diffusivity κ

is positive (see (10)) and the condition α < 2 corresponds to our experimental know how.
Observe that with these choices, the value of the relaxation parameter sJ has to be fit with
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the physical diffusivity κ and the mesh size ∆x through the relation (10) if the space step
and time step are varying proportionately. In particular, we have the expansion

(11) sJ =
4 + α

6κ
λ∆x + O(∆x2)

as ∆x tends to zero.
• Diffusive scaling can also be used and we refer, e.g., to the work of Junk et al. [11]. In
this case, the ratio

(∆x)2

∆t
= λ∆x

remains fixed. This diffusive scaling is intensively used with the explicit finite difference
method for solving the heat equation. It is well known [17] that the time step must be
proportional to the square of the spacial step in order for the method to be stable. An
asymptotic analysis can be done for this simple lattice Boltzmann thermic model, as, e.g.,
in our contribution [7], and we obtain again the heat equation (9) as the scaling limit of
the model. With this diffusive scaling, the parameters σ and sJ remain constant if the
thermal diffusivity is given and the mesh size ∆x tends to zero. Remark also that the
convergence of the lattice Boltzmann scheme was rigorously proved for the diffusive scaling
for Navier-Stokes flows in periodic and bounded domains in [12] and for one dimensional
convection-diffusion-reaction equations in [13].

3) First numerical experiments
We study the diffusion of a Gaussian profile in a square domain. In order to control the com-
puter cost during the numerical experiment and to be certain that the numerical experiment
is not polluted by the boundary scheme, we impose periodic boundary conditions. We use
two variants of the scalar D2Q9 lattice Boltzmann scheme: diffusive and acoustic scaling.
• Scalar D2Q9 numerical experiments with diffusive scaling
We solve numerically the heat equation

(12)
∂ρ

∂t
− κ ∆ρ = 0 ,

in the square Ω = [−1, 1]2, with periodic boundary conditions. The initial condition is a
Gaussian:

(13) ρ0(x, y) = exp
(
− x2 + y2

0.09

)
, −1 ≤ x, y ≤ 1 .

The coefficients α and β of the equilibrium are fixed according to (4) and we keep fixed
the relaxation coefficient for momentum :
(14) sJ =

3

2
.

We use the particular diffusive time step ∆t = ∆x2. Then σ ≡ 1
sJ
− 1

2
= 1

6
and the

diffusivity follows the relation κ = σJ
3

and

(15) κ =
1

18
.

We have chosen an odd number of mesh cells in these numerical experiments. With the
constraint ∆t = ∆x2, it is not possible to obtain exactly the same exact final time. We have
adapted the number of time steps in order to have very close values for the final time with
the different meshes.
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• Comparison with finite-difference approximation
Remark that the solution of the heat equation on a square with an initial Gaussian and
periodic boundary conditions has to our knowledge no analytical solution. In consequence,
we compare the solution obtained by the lattice Boltzmann scheme with the result computed
with two-dimensional finite differences, centered in space and explicit in time. The degrees
of freedom are located at half-integer positions, exactly as done with the lattice Boltzmann
scheme:

ρn
i+ 1

2
, j+ 1

2
≈ ρ
((
i+

1

2

)
∆x,

(
j +

1

2

)
∆x, n∆t

)
.

We finite difference the heat equation (12) in the following way :
1

∆t

(
ρn+1
i+ 1

2
, j+ 1

2

− ρn
i+ 1

2
, j+ 1

2

)
− κ
[

1

∆x2

(
ρn
i+ 3

2
, j+ 1

2
− 2 ρn

i+ 1
2
, j+ 1

2
+ ρn

i− 1
2
, j+ 1

2

)
+

1

∆y2

(
ρn
i+ 1

2
, j+ 3

2
− 2 ρn

i+ 1
2
, j+ 1

2
+ ρn

i+ 1
2
, j− 1

2

)]
= 0 .

We use exactly the same grid in space for both schemes and exactly the same time step
(and in consequence the same number of time steps). The parameters for both schemes are
compared in Table 1.

Number of cells 13× 13 27× 27 55× 55 111× 111 223× 223

nb. of time steps D2Q9 8 36 128 600 2048
final time 0.18935 0.19753 0.17741 0.19479 0.16473

Table 1: D2Q9 numerical experiments with diffusive scaling, sJ given by (14) and diffusivity
κ by (15).

Figure 2: Two-dimensional heat equation (12), κ = 1
18
. D2Q9 scheme with diffusive scaling

(left) vs. explicit finite differences (right) ; mesh 111 × 111, time = 0.19479.
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Figure 3: Two-dimensional heat equation (12), κ = 1
18
. D2Q9 scheme with diffusive scaling

(left) vs. explicit finite differences (right) ; mesh 223 × 223, time = 0.16473.

The results follow what is expected. The approximate solutions of both schemes are very
similar as observed in Figures 2 and 3 for 111× 111 and 223× 223 meshes. The difference
between the two schemes at the final time is presented in Figure 4. The order of convergence
of this residual is approximately of order 4. Since the finite difference method is of second
order accuracy [17], this indicates that the lattice Boltzmann method approaches the heat
equation with second-order accuracy.

Figure 4: Two-dimensional heat equation (12), κ = 1
18
. Difference of the numerical results

computed with the D2Q9 scheme with diffusive scaling and explicit finite differences at the
final times presented in Table 1. The order of convergence for this residual in the L∞ norm
is equal to 3.41 and in the L2 norm it is 3.96.
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• Scalar D2Q9 numerical experiments with acoustic scaling

We still wish to solve the heat equation (12) in the square Ω = [−1, 1]2 with periodic
boundary conditions. The initial condition is again given by a Gaussian profile (13). The
given diffusivity is imposed by the value (15). We adopt an acoustic scaling with ∆t = ∆x

for the D2Q9 lattice Boltzmann simulations. We compare the results with explicit finite
differences; in this case, we take ∆t ' ∆x2 and the time step is chosen in order to obtain
exactly the same final time than with the lattice Boltzmann method.

Number of cells 13× 13 27× 27 55× 55 111× 111 223× 223

D2Q9 sJ parameter 1.5 1.182 0.830 0.52 0.298
nb. of time steps D2Q9 8 16 32 64 128

nb. of time steps, finite differences 8 32 128 512 2048
final time 0.18935 0.18234 0.17902 0.17741 0.17661

Table 2: D2Q9 numerical experiments with acoustic scaling. The diffusivity κ = 1
18

is
imposed in all the simulations.

Figure 5: Two-dimensional heat equation (12), κ = 1
18
. D2Q9 lattice Boltzmann scheme

with acoustic scaling (left) vs. explicit finite differences (right) ; results at time = 0.17741
for a 111 × 111 mesh.
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Figure 6: Two-dimensional heat equation (12), κ = 1
18
. D2Q9 lattice Boltzmann scheme

with acoustic scaling (left) vs. explicit finite differences (right) ; results at time = 0.1766 for
a 223 × 223 mesh.

• The numerical results presented in Figures 5 and 6 for the two meshes of 111 × 111 and
223 × 223 seem correct. But a quantitative examination of the results (Figure 7) shows
that after a convergence similar to the one obtained for diffusive scaling (see Figure 4), a
persistent difference appears. This qualitative behaviour is very similar to what has been
observed in [3] in one spatial dimension.

Figure 7: Two-dimensional heat equation (12), κ = 1
18
, D2q9 scheme with acoustic scaling

vs. explicit finite differences at the final times presented in Table 2. There is no numerical
evidence of coherence between the two methods when the mesh is refined.
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A new analysis of the scheme is necessary to explain this lack of convergence towards the
expected diffusive model.

4) Dispersion equation for an evanescent relaxation
In this section, we propose a first-order analysis when the last relaxation coefficients in (6)
remain fixed or when the relaxation coefficient sJ for the momentum J follows the choice
presented in Eq. (11), id est

(16) sJ =
4 + α

6
λ2 ∆t

κ
+ O(∆t2) .

• Fixed relaxations
We write the relation (8) in terms of the moments m defined in (2):

(17) mk(x, t+ ∆t) =
∑
j `

Mk jM
−1
j ` m

∗
`(x− vj ∆t, t) .

Before doing a Taylor expansion at order 1, we introduce the following “momentum velocity”
operator matrix Λ defined according to

(18) Λk ` ≡ −
∑
j ` α

Mk j v
α
j M

−1
j `

∂

∂xα
.

For the D2Q9 scheme, this matrix can be explicitly calculated [5] and we have

(19) Λ = −



0 ∂x ∂y 0 0 0 0 0 0
2λ2

3
∂x 0 0 1

6
∂x

1
2
∂x ∂y 0 0 0

2λ2

3
∂y 0 0 1

6
∂y −1

2
∂y ∂x 0 0 0

0 λ2 ∂x λ2 ∂y 0 0 0 ∂x ∂y 0

0 λ2

3
∂x −λ2

3
∂y 0 0 0 −1

3
∂x

1
3
∂y 0

0 λ2

3
∂y −λ2

3
∂x 0 0 0 −1

3
∂y

1
3
∂x 0

0 0 0 λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

0 0 0 λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 0 0 0 λ2 ∂x λ2 ∂y 0


.

We split the moment vector into two blocks:

(20) m =

(
W

Y

)
with W = ρ in our scalar example and Y a column vector with 8 components. We
decompose also the operator matrix Λ into four blocks that respect the decomposition (20):

(21) Λ ≡
(
A B

C D

)
.

In our case, A is a scalar 1 × 1 matrix, B has one line and 8 columns, C is composed
by 8 lines and 1 column and D is a 8×8 square matrix as shown in the right-hand side of
relation (19). We can also introduce a constant matrix E with 8 lines and one column such
that the relation (3) can be written in the form

(22) Y eq ≡ Em .
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The relation (17) is expanded at first order:
(23) m+ ∆t ∂tm+ O(∆t2) = m∗ + ∆tΛm∗ + O(∆t2)

and due to (22), we have

(24) m∗ =

(
I 0

S E I− S

)
m.

The relation (23) can be written in the form
(25) Lm ≡ m∗ −m+ ∆t

(
− ∂tm+ Λm∗

)
= O(∆t2) ,

with

(26) L ≡
(

0 0

S E −S

)
+ ∆t

[(
−∂t 0

0 −∂t

)
+

(
A B

C D

) (
I 0

S E I− S

)]
.

The dispersion relation associated with the relation (25) can be written in a simple way:
(27) detL = 0 .

We expand this determinant in order to eliminate the non-conserved moments Y . Moreover,
due to the right-hand side of Eq. (25), we can neglect all the terms of second or third order
relative to ∆t. We write the expression (26) of the matrix L in the form

L =

(
∆t (−∂t + A+B S E) ∆t B (I− S)

S E + ∆t (C +DS E) −S + ∆t (−∂t +D (I− S))

)
.

We apply Gaussian elimination in order to make explicit the condition (27). We multiply
this matrix at left by the regular matrix K defined by

(28) K =

(
I ∆t B (I− S)S−1

0 I

)
.

Then we have, after some lines of algebra,

K L =

(
I ∆t B (I− S)S−1

0 I

) (
∆t (−∂t + A+B S E) ∆t B (I− S)

S E + ∆t (C +DS E) −S + ∆t (−∂t +D (I− S))

)
=

(
∆t (−∂t + A+B S E) + ∆t B (I− S)S−1 S E O(∆t2)

S E + O(∆t) −S + O(∆t)

)
and we have the following triangular form for the product K L:

K L =

(
∆t (−∂t + A+BE) O(∆t2)

S E + O(∆t) −S + O(∆t)

)
.

Then the relation (27) is equivalent at first order to the following set of first order partial
differential equations:
(29) (−∂t + A+BE)W = O(∆t) ,

recovering the first step of the Berlin algorithm presented in Augier et al. [2]. For the scalar
diffusion problem, this equation expresses simply that

∂tρ = O(∆t) .

This result is consistent with the second-order analysis presented at the relation in (9).
When we use diffusive scaling, this dispersion equation can be adapted in order to recover
the heat equation at zero order of accuracy. It is then equivalent to the Taylor expansion
method with the diffusive scaling, as used in [7].
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• Evanescent relaxations
When ∆t and ∆x tend to zero with the acoustic scaling, these two infinitesimals are of the
same order. The expansion (16) of the relaxation coefficient sJ implies that the previous
asymptotic calculus has to be made more precise. The coefficient sJ is now at first order
proportional to the time step ∆t. We decompose the non-conserved moments Y into two
families: the quasi-conserved moments U id est the two components of the momentum J

in the scalar case– and the other truly non-conserved moments Z:

(30) Y =

(
U

Z

)
.

The 8-component vector Y is split into a first vector U ∈ R2 and a second one Z with
6 components. In other words, the family of moments is split into three components:

m =

WU
Z

 .

Then the 8×8 relaxation matrix S can be decomposed into two blocks:

(31) S =

(
∆t S̃ + O(∆t2) 0

0 SZ

)
.

The top left block in the right hand side of (31) tends to zero as the mesh is refined. The
equilibrium vector E is naturally split into the quasi-conserved component EU and the
truly relaxing component EZ :

(32) E =

(
EU
EZ

)
.

We have: S E =

(
∆t S̃ 0

0 SZ

) (
EU
EZ

)
=

(
∆t S̃ EU
SZ EZ

)
and the relation (24) takes the form

(33) m∗ =

 I 0 0

∆t S̃ EU I−∆t S̃ 0

SZ EZ 0 I− SZ

 m.

Then the momentum velocity operator matrix Λ is split into 9 blocks:

(34) Λ =

A A2 B1

A3 A4 B2

C1 C2 D4

 .

This block structure (34) is explicitly given for our thermal D2Q9 in the form

Λ = −



0 ∂x ∂y 0 0 0 0 0 0
2λ2

3
∂x 0 0 1

6
∂x

1
2
∂x ∂y 0 0 0

2λ2

3
∂y 0 0 1

6
∂y −1

2
∂y ∂x 0 0 0

0 λ2 ∂x λ2 ∂y 0 0 0 ∂x ∂y 0

0 λ2

3
∂x −λ2

3
∂y 0 0 0 −1

3
∂x

1
3
∂y 0

0 λ2

3
∂y −λ2

3
∂x 0 0 0 −1

3
∂y

1
3
∂x 0

0 0 0 λ2

3
∂x −λ2 ∂x λ2 ∂y 0 0 1

3
∂x

0 0 0 λ2

3
∂y λ2 ∂y λ2 ∂x 0 0 1

3
∂y

0 0 0 0 0 0 λ2 ∂x λ2 ∂y 0


.
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Then

L =

 0 0 0

∆t S̃ EU −∆t S̃ 0

SZ EZ 0 −SZ

−∆t

∂t 0 0

0 ∂t 0

0 0 ∂t


+∆t

A A2 B1

A3 A4 B2

C1 C2 D4

  I 0 0

∆t S̃ EU I−∆t S̃ 0

SZ EZ 0 I− SZ

 .

This expression can be expanded to first order in ∆t without any change in the result of the
Gaussian elimination. Then we can neglect the terms of order one in ∆t in the last product
of two matrices. We obtainA A2 B1

A3 A4 B2

C1 C2 D4

  I 0 0

0 I 0

SZ EZ 0 I− SZ

 =

A+B1 SZ EZ A2 B1 (I− SZ)

A3 +B2 SZ EZ A4 B2 (I− SZ)

C1 +D4 SZ EZ C2 D4 (I− SZ)

 ,

and, up to order O(∆t), we have

(35) L=

 ∆t(−∂t + A+B1 SZ EZ) ∆t A2 ∆t B1 (I− SZ)

∆t(S̃ EU + A3 +B2 SZ EZ) ∆t(−S̃ − ∂t + A4) ∆t B2 (I− SZ)

SZ EZ + ∆t (C1 +D4 SZ EZ) ∆t C2 −SZ + ∆t(−∂t +D4(I− SZ))

.
With the method of Gaussian elimination used previously, we multiply the matrix L ob-
tained in (35) on the left by the following matrix

K ′ =

I 0 ∆t B1 (I− SZ)S−1
Z

0 I ∆t B2 (I− SZ)S−1
Z

0 0 I


whose determinant is equal to 1. After some elementary algebra, we obtain

K ′ L =

 ∆t (−∂t + A+B1EZ) ∆t A2 O(∆t2)

∆t (S̃ EU + A3 +B2EZ) ∆t (−S̃ − ∂t + A4) O(∆t2)

SZ EZ + O(∆t) ∆t C2 −SZ + O(∆t)

 .

On one hand, detK ′ = 1 and on the other hand, the last column of the matrix K ′ L is
composed of negligible terms except for the last one. Then we have the condition (27) if and
only if the determinant of the 2× 2 upper block matrix is null. In other terms, this matrix
has a nontrivial kernel at order one relative to ∆t and we have

(36)
(
−∂t + A+B1EZ A2

S̃ EU + A3 +B2EZ −∂t − S̃ + A4

) (
W

U

)
= O(∆t) .

Then the equivalent partial differential equations are written as a system involving the
conserved variable W and the quasi conserved moments U :

(37)

{
∂tW = (A+B1EZ)W + A2 U + O(∆t)

∂tU + S̃ U = (A3 +B2EZ + S̃ EU)W + A4 U + O(∆t) .

This result generalizes the first analysis done in [3] for the D1Q3 scheme. When we replace
the block matrices introduced in the relations (31), (32) and (34) by their D2Q9 values,
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we establish that with the acoustic scaling, the scalar D2Q9 lattice Boltzmann scheme with
acoustic scaling admits the following asymptotic damped acoustic model

(38)


∂ρ

∂t
+ divJ = O(∆x)

∂Jα
∂t

+ c2
0

∂ρ

∂xα
+ g Jα = O(∆x) , 1 ≤ α ≤ 2 ,

with a sound velocity c0 and a damping coefficient g given by the relations

(39) c2
0 =

λ2

6
(4 + α) , g =

c2
0

κ
.

The above is a very interesting analysis, and clearly the correct two-dimensional analog of
the earlier result for D1Q3. We point out that it is equivalent to a damped wave equation.

5) Scalar D2Q9 scheme converging towards damped acoustic
We have now two partial differential equations with which to compare the numerical solution
obtained with the scalar D2Q9 lattice Boltzmann scheme: the initial heat equation (12)
and the damped acoustic system (38). We first consider numerical experiments done in
Section 3 and compare our previous results with this new model. We also study in detail the
eigenmodes of the system (38) and propose a simple numerical experiment with a sinusoidal
analytic solution. The evolution of an initial Gaussian is again performed, with two diffusion
coefficients varying by one order of magnitude.
• Damped acoustics as a limiting model for the previous numerical experiments?
We wish to approximate the system of damped acoustic equations (38). The sound velocity
is given by (39). With the choice (4), we obtain the classical value c0 = λ√

3
. The imposed

diffusivity κ and the relation (39) fix the value g = 6 for the zero-order damping in the
momentum equation of (38). The geometry is the square Ω = [−1, 1]2 with periodic bound-
ary conditions. The initial density is still given by a Gaussian profile (13). Because the
momentum J at equilibrium is identically null, we have taken this specific value as initial
condition of our lattice Boltzmann simulations. We suppose in consequence that the initial
condition for the momentum is simply J(x, t = 0) = 0.
We adopt acoustic scaling with ∆t = ∆x for the D2Q9 lattice Boltzmann simulations. For
the acoustic system (38), we use explicit finite differences with staggered grids, hereafter
named as “HaWAY” method and described with some details in the Appendix. In this case,
the acoustic time step ∆ta for finite-difference simulations is proportional to the spatial step
∆x, with a stability constraint. The corresponding experiments are described in Table 3.

number of cells 13 × 13 27 × 27 55 × 55 111 × 111 223 × 223
D2Q9 sJ parameter 1.5 1.182 0.830 0.52 0.298
nb. of time steps d2q9 8 16 32 64 128
idem, finite differences 32 64 128 256 512

final time 0.18935 0.18234 0.17902 0.17741 0.17661

Table 3: Numerical experiments with the D2Q9 lattice Boltzmann test case studied in Sec-
tion 3 compared with the damped acoustic model (38) simulated with the HaWAY method.
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Figure 8: Numerical results for the damped acoustic model with the experimental plan
proposed in Table 3.

The results obtained with this new experiment are very similar to the one obtained in
Section 3. In particular, the numerical results computed with the damped acoustic model
are very close to the ones presented in Figures 5 and 6. When we look to the convergence
with quite fine grids (Figure 8), the signal is better than in Figure 7 but this experiment is
still not entirely convincing.
• Waves for the damped acoustic model
We search modes of the type

(40)

{
ρ = ρ0 exp (−γ t+ i k · x)

J = J0 exp (−γ t+ i k · x)

for the damped acoustic model (38–39). Then we have to solve the following ill-posed linear
system:
(41) −γ ρ0 + i k · J0 = 0 , i k · ρ0 + (g − γ) J0 = 0 .

A first solution is a transverse stationary wave with γ = g, ρ0 = 0 and k · J0 = 0. We
do not consider this mode in this contribution. Then the other modes satisfy the following
dispersion relation
(42) γ2 − g γ + |k|2 c2

0 = 0 .

This equation has complex propagative roots when
(43) g < 2 |k| c0 ,

i.e., when the diffusivity κ is suficiently large measured in a scale system based on the sound
velocity and wave number:

κ >
c0

2 |k|
.
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In that case, the eigenvalue γ takes the form

(44) γ =
g

2
∓ i ω , ω =

√
|k|2 c2

0 −
g2

4
.

The eigenvectors are finally given according to

(45)


ρ = ρ0 exp

(
− g

2
t
)

exp
(
i(k · x± ω t)

)
J = i

k

|k|2
ρ0

(
− g

2
∓ i ω

)
exp

(
− g

2
t
)

exp
(
i(k · x± ω t)

)
.

We consider a pure analytical test case as the next experiment.

• A two-dimensional sinusoidal wave
We keep the value κ = 1

18
' 0.05555 of the diffusivity introduced in (15). We use the

traditional value c0 = 1√
3
and the dissipation coefficient g (see (39)) is still equal to g = 6.

We change the domain and consider [0, 2 π]2 with the initial condition ρ = cos
(
(2π (x+y)

)
and J = 0. Then k = 2 π (1, 1) and the right-hand side of (43) is 2 |k| c0 ' 5.924. In this
case, the damped acoustic model (38) exhibits a non-propagative mode.
The initial condition is presented in Figure 9. The autocorrelation of density

Γ(t) ≡

∫
Ω

ρ(x, t) ρ(x, 0) dx∫
Ω

|ρ(x, 0)|2 dx

is typical of a diffusion process as shown in Figure 10. The convergence for simple dyadic
meshes is presented in Figure 11.

Figure 9: Two-dimensional wave with wave vector k = 2π (1, 1). Initial condition.
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Figure 10: Two-dimensional wave with wave vector k = 2π (1, 1), g ' 6, 2 |k| c0 ' 5.924.
Autocorrelation of density.

Figure 11: Two-dimensional wave with wave vector k = 2π (1, 1), g ' 6, 2 |k| c0 ' 5.924.
Convergence towards the damped acoustic model (38).
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Figure 12: Two-dimensional wave with wave vector k = 2π (1, 1), g ' 5.6470. Autocorrela-
tion of density with 2 |k| c0 ' 5.924 for various meshes.

Figure 13: Two-dimensional wave with vector k = 2π (1, 1), g ' 5.6470. Convergence
towards the damped acoustic model (38) with 2 |k| c0 ' 5.924. The order of convergence is
1.27 for the L2 norm and 1.30 in norm L∞.
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A second numerical experiment has been conducted. We keep the same domain [0, 2 π]2

with the same initial condition ρ = cos
(
(2π (x+y)

)
. Then k = 2π (1, 1) and the right-hand

side of (43) is equal to 2 |k| c0 ' 5.924. We change the value of the diffusivity κ introduced
in (15) to κ = 17

288
' 0.05903. We keep the traditional value c0 = 1√

3
. Then the dissipation

coefficient g (see (39)) is now g ' 5.6470. Then the damped acoustic model (38) exhibits a
propagative mode in this case. The autocorrelation function is presented in Figure 12. The
convergence curve is depicted in Figure 13. We observe that this convergence is not regular.
An extra-fine mesh with dimensions 1024× 1024 has been necessary in order to confirm the
order of accuracy.

• Complementary experiments for an initial Gaussian

We have compared the scalar D2Q9 lattice Boltzmann scheme with acoustic scaling with
numerical solutions of the heat equation (12) as presented in Section 3 and with HaWAY
simulations of the damped acoustic system (38) in Section 4. We consider again the first
geometry studied in this contribution, id est the square Ω = [−1, 1]2 with periodic boundary
conditions. An initial Gaussian profile (13) is given at t = 0. Two numerical experiments
have been considered: a quite viscous one with imposed diffusivity κ = 0.15 and another
one with κ = 0.015. The numerical parameters are displayed in Table 4.

number of cells 132 272 552 1112 2232 4472 8952 17912

sJ withκ = 0.15 0.292 0.152 0.0777 0.0392 0.0197 0.00989

sJ withκ = 0.015 1.262 0.903 0.575 0.333 0.181 0.0947 0.0484 0.0245

Table 4: Initial Gaussian. D2Q9 numerical experiments with acoustic scaling ; values of sJ
for the viscosities κ = 0.15 and κ = 0.015.

Figure 14: Initial Gaussian, κ = 0.15. Three simulations done for the damped acoustic
model with finite differences HaWAY discretization (left), D2Q9 lattice Boltzmann scheme
(middle), and for the heat equation with finite differences (right). Approximate solutions
are presented for time T = 1 with 111× 111 meshes.
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Figure 15: Initial Gaussian, κ = 0.15. Three simulations done for the damped acoustic
model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme and
heat equation with finite differences. Density field at time = 2 of a 55× 55 mesh.

Figure 16: Initial Gaussian, κ = 0.15. Three simulations done for the damped acoustic
model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme and
heat equation with finite differences. Autocorrelation of density for a 55× 55 mesh.
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Figure 17: Initial Gaussian, κ = 0.15. Damped acoustic model with HaWAY finite dif-
ferences, D2Q9 lattice Boltzmann scheme and heat equation. The order of convergence at
time = 2 towards damped acoustic is 0.756 for the L2 norm and 0.653 in norm L∞.

The results for the first test case with κ = 0.15 are presented in Figures 14, 15, 16 and 17.
In Fig. 14, a qualitative view of the numerical result on a given mesh shows that the scalar
D2Q9 scheme and the HaWAY scheme for damped acoustic are closer to each other than
they are to the solution of the heat equation. The three profiles of density are shown in
Fig. 15 and a comparison of autocorrelation functions in Fig. 16. Even on a relatively coarse
mesh, the conclusion is the same and our new asymptotic analysis of the acoustic system
(38) is consistent with the numerical results. Last but not least, both the error between
D2Q9 and thermics on one hand, and that between D2Q9 and damped acoustics on the
other hand are displayed in Fig. 17. The error between the lattice Boltzmann scheme and
the damped acoustic results tends to zero whereas the error between D2Q9 and the thermic
model remains stationary.

The second numerical experiment with κ = 0.015 is presented in Figures 18, 19, and 20. At
time = 2 on a relatively coarse mesh, the three numerical solutions can not be distinguished
as shown in Fig. 18. It is also the case for the autocorrelation function as presented in
Fig. 19. The numerical convergence is delicate for this test case. During one decade of
mesh refinement, the three methods present very close results as shown in Fig. 20. Two
additional computations on 895× 895 and 1791× 1791 refined meshes have been necessary
to demonstrate the convergence of the scalar D2Q9 scheme towards the damped acoustic
system. Observe that the most refined mesh contains more than 3 millions cells!
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Figure 18: Initial Gaussian, κ = 0.015. Three simulations done for the damped acoustic
model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme and
for the heat equation with finite differences. Density field at time = 2 for a 27× 27 mesh.

Figure 19: Initial Gaussian, κ = 0.015. Three simulations done for the damped acoustic
model with HaWAY finite differences, D2Q9 lattice Boltzmann scheme and for the heat
equation with finite differences. Autocorrelation of density at time = 2 for a 27× 27 mesh.
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Figure 20: Initial Gaussian, κ = 0.015. Three simulations done for the damped acoustic
model with finite differences HaWAY discretization, D2Q9 lattice Boltzmann scheme and
for the heat equation with finite differences. The order of convergence at time = 2 towards
damped acoustic is 0.954 for the L2 norm and 0.934 in norm L∞.

6) Conclusion
We have first considered the scalar D2Q9 lattice Boltzmann scheme with diffusive scaling.
Our experiments confirm numerical convergence to the solution of the heat equation. Of
course, the mathematical proof of this numerical fact has now to be established.
We have also studied convergence properties of the scalar D2Q9 scheme with an acoustic
scaling for the diffusion of a Gaussian profile, when it is supposed to approximate diffusion
problems. Our numerical experiments show consistent results with the diffusion equation
solution for relaxation parameters that are not too small, sJ ≥ 0.5 typically. When this re-
laxation coefficient is very small, however, numerical convergence is defective for the diffusion
of a Gaussian.
For very small values of the relaxation parameter, the asymptotic analysis has been re-
vised when the physical diffusion is given. We have developed a new analysis of the lattice
Boltzmann method using the dispersion equation and Gaussian elimination when relaxation
parameters can tend to zero. This asymptotic analysis shows that a damped acoustic model
is emergent at first order. Complementary numerical experiments (see Figures 11, 13, 17
and 20) show the numerical convergence of the D2Q9 lattice Boltzmann scheme with acoustic
scaling and a relaxation coefficient sJ determined in such a way that the usual relation (10)
is satisfied, towards the damped acoustic system. Due to the mathematical convergence of
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the lattice Boltzmann scheme with diffusive scaling [13], this result is unexpected, as pointed
in the title.
The results presented here can be interpreted physically in terms of frequency dependent
transport coefficients that should be used when the time scale of the macroscopic phe-
nomenon under study is not very large compared to microscopic time scales. Future study
should focus on the extension of this analysis to second order. A natural extension of this
question concerns lattice Boltzmann models conserving a priori both mass and momentum.
Our preliminary results show that a system of five partial differential equations is emer-
gent in the case of two space dimensions. This question will be studied in a forthcoming
contribution.
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Appendix. HaWAY staggered finite differences
We consider the acoustic model proposed in Eq. (38):

(46)



∂ρ

∂t
+
∂Jx

∂x
+
∂Jy

∂y
= 0

∂Jx

∂t
+ c2

0

∂ρ

∂x
+ g Jx = 0

∂Jy

∂t
+ c2

0

∂ρ

∂y
+ g Jy = 0 .

Figure 21: HaWAY grid for staggered (density, momentum) finite differences
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Given a spatial grid ∆x, ∆y and a time step ∆t, we consider integer multiples of these
parameters for the discretization in space and time. The density ρ is approximated at
half-integer vertices in space and integer points in time whereas the momentum Jx (re-
spectively Jy) is approximated at integer nodes (respectively half-integer nodes) in the x-
direction, semi-integer nodes (respectively integer nodes) in the y-direction, and half-integer
values in time:
(47) ρ ≈ ρni+1/2, j+1/2 , Jx ≈ J

x, n+1/2
i, j+1/2 , Jy ≈ J

y, n+1/2
i+1/2, j .

The Figure 21 gives an illustration of this classical choice [1, 8, 18].
• We discretize the first equation of Eqs. (46) with a four-point centered finite-difference
schemes around the vertex

(
(i+ 1

2
) ∆x , (j + 1

2
) ∆y , (n+ 1

2
) ∆t

)
:

(48)
ρn+1
i+1/2, j+1/2 − ρni+1/2, j+1/2

∆t
+
J
x, n+1/2
i+1, j+1/2 − J

x, n+1/2
i, j+1/2

∆x
+
J
y, n+1/2
i+1/2, j+1 − J

y, n+1/2
i+1/2, j

∆y
= 0 .

We use the same approach for the discretization of the second equation of Eqs. (46) around
the node

(
i∆x , (j + 1

2
) ∆y , n∆t

)
:

(49)
J
x, n+1/2
i, j+1/2 − J

x, n−1/2
i, j+1/2

∆t
+

c2
0

∆x

(
ρni+1/2, j+1/2 − ρni−1/2, j+1/2

)
+ g Jx, ni, j+1/2 = 0

and the third equation of Eqs. (46) around the node
(
(i+ 1

2
) ∆x , j∆y , n∆t

)
:

(50)
J
y, n+1/2
i+1/2, j − J

y, n−1/2
i+1/2, j

∆t
+

c2
0

∆y

(
ρni+1/2, j+1/2 − ρni+1/2, j−1/2

)
+ g Jy, ni+1/2, j = 0 .

We interpolate the momentum at integer time vertices with a simple average:

Jx, ni, j+1/2 =
1

2

(
J
x, n+1/2
i, j+1/2 + J

x, n−1/2
i, j+1/2

)
, Jy, ni+1/2, j =

1

2

(
J
y, n+1/2
i+1/2, j + J

y, n−1/2
i+1/2, j

)
.

We incorporate these expressions into the relations Eq. (49) and Eq. (50). We obtain

(51)
( 1

∆t
+
g

2

)
J
x, n+1/2
i, j+1/2 +

c2
0

∆x

(
ρni+1/2, j+1/2 − ρni−1/2, j+1/2

)
=
( 1

∆t
− g

2

)
J
x, n−1/2
i, j+1/2

and

(52)
( 1

∆t
+
g

2

)
J
y, n+1/2
i+1/2, j +

c2
0

∆y

(
ρni+1/2, j+1/2 − ρni+1/2, j−1/2

)
=
( 1

∆t
− g

2

)
J
y, n−1/2
i+1/2, j .

The numerical scheme is now entirely defined for internal nodes. In this study we have used
periodic boundary conditions.

References

[1] A. Arakawa. “Computational Design for Long-Term Numerical Integration of the Equa-
tions of Fluid Motion”, Journal of Computational Physics, vol. 1, p. 119-143, 1966.

[2] A. Augier, B. Graille, F. Dubois. “On rotational invariance of Lattice Boltzmann
schemes”, Computers and Mathematics with Applications, vol. 67, p. 239-255, 2014.

[3] B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. Tekitek. “ Curious convergence
properties of lattice Boltzmann schemes for diffusion with acoustic scaling”, Communi-
cations in Computational Physics, to appear, 2018.





B.M. Boghosian, F. Dubois, B. Graille, P. Lallemand, and M.M. Tekitek

[4] S. Dellacherie. “Construction and Analysis of Lattice Boltzmann Methods Applied to a
1D Convection-Diffusion Equation”, Acta Applicandae Mathematica, vol. 131, Issue 1,
p. 69-140, 2014.

[5] F. Dubois. ”Third order equivalent equation of lattice Boltzmann scheme”, Discrete and
Continuous Dynamical Systems-Series A, vol. 23, p. 221-248, 2009.

[6] F. Dubois, P. Lallemand. “Towards higher order lattice Boltzmann schemes ”, J. Stat.
Mech.: Theory and Experiment, P06006, 2009.

[7] F. Dubois, P. Lallemand. “On Triangular Lattice Boltzmann Schemes for Scalar Prob-
lems”, Communications in Computational Physics, vol. 13, p. 649-670, 2013.

[8] F.H. Harlaw, J.E.Welsch. “Numerical calculation of time-dependent viscous incompress-
ible flow of fluid with a free surface”, Physics of Fluids, vol. 8, p. 2182-2189, 1965.

[9] M. Hénon. “Viscosity of a Lattice Gas”, Complex Systems, vol. 1, p. 763-789, 1987.

[10] D. d’Humières. “Generalized Lattice-Boltzmann Equations”, in Rarefied Gas Dynamics:
Theory and Simulations, vol. 159 of AIAA Progress in Astronautics and Astronautics,
p. 450-458, 1992.

[11] M.Junk, A.Klar, L.-S. Luo. “Asymptotic analysis of the lattice Boltzmann equation”,
Journal of Computational Physics, vol. 210, p. 676-704, 2005.

[12] M.Junk, Z. Yang. “Convergence of lattice Boltzmann methods for Navier- Stokes flows
in periodic and bounded domains”, Numerische Mathematik, vol. 112, Issue 1, p. 65-87,
2009.

[13] M.Junk, Z. Yang. “L2 convergence of the lattice Boltzmann method for one dimensional
convection-diffusion-reaction equations”, Communications in Computational Physics,
vol. 17, Issue 5, p. 1225-1245, 2015.

[14] P. Lallemand, D. d’Humières, L.-S. Luo, R. Rubinstein. “Theory of the lattice Boltz-
mann method: three-dimensional model for linear viscoelastic fluids”, Physical Review E,
vol. 67, 021203, 2003.

[15] P. Lallemand, L.-S. Luo. “Theory of the lattice Boltzmann method: Dispersion, dissi-
pation, isotropy, Galilean invariance, and stability”, Physical Review E, vol. 61, p. 6546-
6562, 2000.

[16] M. Pinsky. “Differential equations with a small parameter and the central limit theorem
for functions defined on a finite Markov chain”, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 9, vol. 9, Issue 2, p. 101-111, 1968.

[17] R. D. Richtmyer, K. W. Morton. Difference Methods for Initial-Value Problems, Inter-
science Publishers, New York, 1957.

[18] K. Yee. “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol. 14,
p. 302-307, 1966.




