Olivier Bui

Xavier Leoncini

Growth of a tree with allocations rules: Part 2 Dynamics

Keywords: 05, 45, -a Nonlinear dynamics and chaos -05, 65, +b Self-organized systems

 we examine a model of transportation network in some source-sink flow paradigm subjected to growth and resource allocation. The model is inspired from plants, and we add rules and factors that are analogous to what plants are subjected to. We study how different resource allocation schemes affect the tree and how the schemes interact with additional factors such as embedding the network into a 3D space and applying gravity or shading. The different outcomes are discussed.

Introduction

River basins, roads, public transit network, water supply network, electrical grid and vascular systems in plants and animals have in common that they are systems transporting objects or substances throughout a complex network. Each of these "transportation networks" have their own particularities which have been documented in specific literatures such as urban transport [2], river basins [3], vascular system in animals [4] and plants [5] etc. There is also more general literatures whereby unspecified transportation networks are studied through an abstract and mathematical lens [6][7][8][9][10][START_REF] Hougaard | Sharing in Networks[END_REF][START_REF] Corson | [END_REF]. In this case, the study revolves around an optimization, maximization or minimization problem. Thus the focus is usually on the topology of the network, either to construct an optimal network or to find an optimal path, though we also do have work focusing on the geometry of the pipelines [13], but the commonality is that the substance being transported rarely plays an active role. In a foregoing paper [1], we decided to change this paradigm by allowing the substance to interact with the network itself.

The principle is simple: our transportation network is now a dynamical system capable of growing or decaying, i.e. nodes are created and deleted, and the driver of the growth is the transported substance itself. It is treated as a vital resource that needs to be consumed in order to sustain a "node" alive and can be also used to create new nodes. Another particularity of the model is the addition of aspects related to locality: the network does not follow an established plan for what it should grow into, instead the network is built as the result of nodes acting more or less individually to form the global structure. This approach is largely inspired by vascular networks in biola Present address: Insert the address here if needed ogy such as perennial plants: they do not have a heart or a brain that could single-handedly control the growth or the distribution of resource throughout the plants and yet they end up with consistent shapes. Trees could be an example of self-organization arising from local rules and interactions [14]. This is why the previous paper [1] as well as the current one will draw its kinematic and dynamic rules as well as its terminology from plants: the network we are studying are called "trees", are represented by a connected acyclic graph with the initial node called a "root". At the extremities, the nodes are "leaves" and would continuously produce the vital resource which would be transported throughout the tree. Such model is supposed to be analogous to phloem transport, the phloem being the part of the tree that handles the transport of the sugar photosynthesized at the leaves [15,16]. Though the relation between the models introduced in the present paper and real plants should not be taken beyond an analogy, it can be noted that the literature on plants has a wealth of quite simplistic theoretical or numerical models to explain specific aspects of plants [START_REF] Niklas | Proceedings of the National Academy of Sciences 91[END_REF][START_REF] Eloy | [END_REF][19].

The organization of the paper is as follows, we start with a description of the model as well as the results and conclusions found in [1] relevant for the present paper in Sect. 2. This is followed by Sect. 3 where we see how the systems react to some control and try to shape the tree into diverse forms. In Sect. 4 we perform some analytical calculations and, try to explain and summarize the main takeaway from the model before concluding in Sect. 5.

Description of the model

In this Section, we will describe the model as well as summarize the results found in the foregoing paper [1]. The description of the model is divided into two Subsections. Representation of what the model is about: a growing tree taking "resource" from its leaves, using the resource to grow and feed its different parts with the consequence of death for the malnourished parts.

The first one referred as "Kinematics" details the basic rules of the model. The second Subsection specifies how the branches interact with one another.

Kinematics

In this Subsection, we describe the basic rules of the model and summarize some results about it.

Model

Let us summarize the basic model we used in [1]. Trees are modeled as graphs, where the nodes are called branches.

We will use terminology such as child and parent to describe the relation between branches. The tree initially starts as a graph with only a single node. This node will be called the "root". The graph will be able to grow by producing more branches through a few simple rules which are essentially local, while the last one introduces non locality:

-Time is discrete. Each branch with no child, we will refer to as extremity, produces some quantity p 0 of resource per unit of time. -The resource is used by extremities to create children, and only extremities can create new children, at a cost of some C r resource per child. A branch creating children ceases to be an extremity. A branch can only have N max children, at most. -Each branch has a certain width. The branch tries to increase its "width" so that it is "equal" to the number of extremities that are its descendants (children or grandchildren etc.). This "width" will be called volume of a branch V This appellation is still consistent with our plant analogy as what we call branches would actually be sections of branches of the same length, thus making a branch cross-section area "equal" to its volume. As for the rule that V must at least be equal to the extremities, we will call it "Leonardo's rule" in reference of the real rule [START_REF] Vinci | The Notebooks of Leonardo da Vinci[END_REF][START_REF] Minamino | [END_REF]. -Each branch must consume resource to grow in volume with a cost of C m multiplied by the quantity of volume created. Furthermore they must pay a maintenance cost of m 0 × V α per unit of time. α = 1/2 is the value used by default. -If a branch dies (could not pay its maintenance cost) then all its descendants will die. With only extremities being able to produce resource but every branches needing to use it for sustenance, we must add to the model a scheme for allocating the resource throughout the tree (Fig. 2). The scheme or kinematics is in two part, one called "flux down" whereby the extremities produce the resource then all the resource flows down the tree to be gathered at the "root". A caveat is: during the "flux down", the children will not transmit all the flux down their parent, instead they will consume enough of it to grow in volume V according to the "Leonardo's rule" discussed earlier and only thereafter transmit the flux down. Then we have a "flux up" where allocation choices are really made:

1. If the branch is the root it starts with all the resource gathered. Otherwise it starts with the amount its parent has decided to send (see point number 3). 2. Using the resource gathered, it pays the maintenance cost based on the volume. The branch breaks otherwise. 3. The branch send all its remaining resource to its children. The share given to each one depends on the amount the child gave back during flux down or on other factors discussed later. The "sharing" scheme dictates the dynamics of the tree. Then we go back to point number 1 above. 4. If the branch has no child (it is an extremity) then it uses the resource to create children. There is a maximum number of children it can create. Leftover are kept. During the next unit of time (we call it generation), it will be that leftover in addition to the resource produce from photosynthesis that will flow down to the root.

Previous results

There are a few things we noted in the previous paper [1] that need to be reminded in the present paper which we will do in this Section. First, the values of the production parameter p 0 , maintenance m 0 , volume growth C m and cost of branch creation C r are not important: it is actually the ratio between those parameters that are the important factors. More specifically we can reduce the set of parameters into p 0 /C r , m 0 /C r and C m /C r or simply set C r = 1. For the rest of the paper, when we talk about p 0 , m 0 and C m , we will actually refer to p 0 /C r , m 0 /C r and C m /C r respectively. On the other hand, the exponent α appearing in the maintenance formula (m 0 × V α) strongly determines how much the tree can grow and how long it survives. Theoretical calculations can also determine (assuming N max < ∞ which would only be false if our tree lives in an infinite dimension space) whether there exists tree of any given heights with a positive "balance", which we define as the total production of the tree minus its total maintenance cost. One result we established was that at α = 1 or higher, we can always find some heights beyond which no tree will have a positive balance. Only if α < 1 can we find arbitrarily tall tree, thus opening the possibility of an infinitely growing tree. However, because of the cost C m for branches to grow in volume, we also established that an infinitely growing tree would need to exponentially slower its growth rate as the tree grows taller. Other constraints are needed on parameters such as p 0 , m 0 and N max to allow the existence of infinitely growing trees, more specifically

we need p 0 /m 0 ≥ N 1-α max N 1-α max -1
to be true.

The takeaway is reducing C m to 0, α < 1 and a proper value for p 0 /m 0 allow the simulation of infinitely growing tree at a constant rate. It must be noted that the results on infinitely growing tree is true even if we do not use the kinematics driven by the "flux down" -"flux up" we described in Sect. 2.1.1, instead they derive solely from the five "simple rules" listed prior the "flux" part and as such are truths that go beyond the particular kinematics presented in the paper. Nevertheless, to perform simulations we need a kinematics and we use the "flux down and up" one, setting C m = 0 and 0 < α < 1. When it comes to how parents should split their resource during "flux up", we choose an equal share to be given to each child. Details are presented in the previous paper but the main takeaway is the system was quite "uneventful". Each tree growth simulation could be fully characterized by a set of integers which itself could be summarized by three numbers, and when we slowly vary the initial parameters it had small and predictable effects on the tree. In other words, there was no trace of any kind of "chaotic" or complex behavior.

Dynamics

In this Subsection, we specify how the branches interact with one another. We begin by introducing the resource redistribution schemes, detailing what we could expect them to do and performing some simulations to look into it. Finally, we introduce another way for the branches to interact: an embedding into a three-dimensional space.

Allocation and distribution of resource

The form of the tree will be shaped by how the resource is distributed across the tree. More precisely during the "flux up" phase when each parent shares its resource among its children, the different proportion given to each child will drive the shape of the tree. Sect. 2.1.2 presented both general results as well as results specific to some simulations. These simulations had the parents sharing equally among its children its resource during "flux up", and it resulted in uneventful results thus incentivizing us to use more complex redistribution schemes. In the present paper, we study two types of redistribution schemes: a first scheme where the parent shares a higher proportion of its flux to children that during "flux down" was the more productive and a second scheme where the parent shares more to children with higher maintenance costs. A more formal description of the first scheme is as follows: for a parent of N children, if c i is the amount of resource the child i ∈ {1, ..., N } gave to its parent during the previous "flux down" phase, then the parent will give c a i /Z 1 resource to the child i where Z 1 = N i c a i is a normalization constant. a is a positive parameter and determines the degree by which parents favor the more productive children. For the second scheme, if we note m i the maintenance cost of the child i then the parent will distribute m b i /Z 2 resource to the child i. Analogous to a, b is a positive parameter. The first redistribution scheme will be called the "reward" scheme where as the second one will be the "maintenance" scheme. The two schemes are summarized in Eq. 1. We call F i the proportion of flux a parent will give to its child i and the values of a and b determine which scheme we use. The "reward" scheme is obtained when a > 0 and b = 0 and the second one is obtained when b > 0 and a = 0. If Z = 0, we set F i = 0 for all i. Unless explicitly specified, we will not mix the two schemes, as such whenever a > 0 it is implied b = 0 and vice versa.

F i = c a i m b i Z where Z = N i c a i m b i (1)
To get a grasp on what these schemes are supposed to do: let us assume we use the "reward" distribution and look at a branch with 2 children. Then if child 1 produced x 1 in resource while the child 2 produced twice the amount which is 2x 1 , we would have F 2 = 2 a F 1 . Now let us look at what happen next generation. The side of tree emerging from child 1 creates some new extremities thus now producing x 1 + x 2 resource. But since child 2 previously received 2 a times more resource than child 1, this side would, in the simplest case, have produced 2 a times more new extremities resulting in just as much more resource produced: 2 a (x 1 + x 2). So, for the next "reward" distribution, we get F 2 = (2 a) a F 1 . And we can easily see the pattern for the following generations. This example ignores plenty of factors, but, in this simple view, a = 1 means the proportions distributed between children would not change as time passes, and the gap in resource allocation between branches will be proportional to the total Fig. 3. Tree simulated from the "apical dominance" rules described in Sect. 2.2.2. The parameters used were Nmax = 3, p0 = 9.6, m0 = 1, Cm = 1. The "reward" redistribution scheme is used with a = 1.5 and the apical dominance forces dominant parent to allocate at least 10% of their resource to their dominant child. Self-pruning end up appearing leading to the formation of a trunk.

production. On the other hand, with a > 1 would change the proportions in such a way that some branches may get less and less resource even when the total production increases (F 2 /F 1 grows exponentially in our example). What may prevent this exponential inequality increase is the total maintenance costs increasing as the tree "grows" which would impede or stop the tree growth and thus stop the gap of widening.

The "maintenance" scheme (defined by a = 0, b > 0 in Eq. 1) should not act much differently. Assuming the maintenance exponent α is 1/2 (the maintenance would scale like the square root of the branch "volume") b could yield the same trees as a/2 if we oversimplified the problem. Indeed the "maintenance" scheme scales the portion F i with the branch maintenance cost, m b i , but m i ∝ V α i and V i is just the number of extremities attached to the branch, and if the contribution during "flux down", c i , used for the "reward" scheme was proportional to the number of extremities (the sources/leaves), the correspondence "b = 2a" should appear.

"Apical dominance" in non-spatial tree

If we apply the "reward" or "maintenance" redistribution without any additional factors, the tree will simply end up "symmetric", indeed there would be no reason for Eq. 1 to yield different portions for each child i. To break this symmetry, we can give a priority to some branches.

Here is the scheme proposed: during "flux up", when the initial branch we called "root" has to distribute the flux to its children, it will now have to allocate a fixed percentage, let us say 10%, of the flux to the child labeled as its "first child" and only then would the remaining 90% be shared according to Eq. 1. Then, the "first child" of the root will allocate 10% to its own "first" child before sharing the remaining 90%, the same scheme is applied on this last "first" child etc. This scheme is loosely analogous to "apical dominance" in trees whereby some apical bud will grow more strongly [22]. Fig. 3 shows the result of the bias introduced in the "apical" scheme when combined with the "reward" distribution scheme whereby more resource are given to children that gave back the most. Self-pruning has occurred and formed a "trunk" for a = 1.5 which could be justified by the explanation we gave in Sect. 2.2.1 about a > 1 forcing branches producing less to progressively being starved as the tree grows.

Consistent with this explanation, we observe no trunk for a = 1, though for values very close to 1 we may or may not observe a trunk depending on the other parameters. It confirms that the self-pruning is indeed caused by the redistribution scheme and not simply due to the fact 10% of the resource are allocated to some branches. If the "apical dominance" scheme is only used for the first 5 generations of the simulation (and we revert back to a purely "reward" scheme afterward), then self-pruning does not appear, at least when the 10% number was picked, and instead of a tree that would continue to grow in height the tree we get either reaches some equilibrium or die. So while a relatively small or moderate perturbation allows the "reward" redistribution scheme to drastically change the topology of the tree, the perturbation should be "sustained". The system appears to be resilient to shortterm perturbation despite our talk in Sect. 2.2.1 about F 2 /F 1 potentially increasing exponentially as time passes. Predictably switching to "maintenance" scheme does not yield "b = a/2" since this equality relied on some relation between maintenance and the amount of resource of a child would possess which is explicitly broken because of the 10% priority scheme. Now let us look at a symmetry-breaking scheme that could yield the "b = a/2", and the scheme or "perturbation" should be sustained.

Spatial embedding

We will now describe how the spatial component is added to the model.

we get a three-dimensional space divided into cubes.

Our tree is embedded in this space and each branch occupies a single cube. Two branches can not occupy the same position. -A future parent can only create children in an unoccupied adjacent case, including diagonally adjacent cases. The leftmost tree uses the "reward" scheme at a = 2, the middle tree uses the "maintenance" scheme at b = 5 and the last one is at b = 6.

So a branch has 26 adjacent cases. The ground which represents the plane right below the initial branch, the "root", are considered occupied cases. -Branches do not decide the location of the children they will create at the same time: we go through the future parents according to some order. As such the ones at the bottom of this ordered list may find themselves without enough space to create as many children they wanted to have. This should create some asymmetries in the tree as exemplified in a simplified two-dimensional version of our model in Fig. 4.

The ordered list is not randomly generated at the start of each generation: priorities in this ordered list are heritable meaning the descendants of some branch A that had priority over some branch B during last generation will have priority over branch B or its descendants. We can hope the fact branches do not decide their children's locations simultaneously thus creating a hierarchy between parents is enough to apply asymmetries as powerful as the one caused by the "apical dominance" scheme. On top of this simple spatial model, we will add different other factors such as a gravitational factor and light interception and look at how they interact with the "reward" and "maintenance" redistribution schemes.

Model exploration

Adding to the previously described model, we seek to control the growth of the tree by adding more variables into the models. The added variables are gravity and light interception.

Children generated in random directions

With the introduction of space in the model a new parameter emerges which is the strategy a parent will have in order decide on the location of its children. The simplest "strategy" is the random one: each parent will create children in random available locations. We perform simulations with the proposed random strategy combined with the redistribution schemes described in Eq. 1: the tree always starts seemingly expanding in all directions somewhat looking like the middle tree of Fig. 5 then there is a Fig. 6. Using the same parameters as Fig. 5 with a = 2. The direction of the children are not chosen randomly. The tree on the right uses the apical dominance scheme described in Sect. 2.2.2 at 10%. divergence depending on the redistribution scheme used. The "reward" distribution scheme, whereby parents prioritize children that produced more resource, cause the tree to self-prune depending on the coefficient value for a used. For example, given the parameters in Fig. 5 and a > 1.3, we get the tree on the left: the tree self-pruned like in Sect. 2.2.2 and created a "trunk". For values of a closer or equal to 1, the middle tree of Fig. 5 is obtained: there is never enough self-pruning to form a substantial "trunk", the tree maintains a bush-like shape. Using the "maintenance" scheme (b > 0 and a = 0), we also obtain a bush-like tree except for very high values of b (tree on the right in Fig. 5): a trunk is apparent but it branches out into multiple directions, each ending with "blobs" of "extremities" that we will name "clusters of leaves" instead. This is largely different from the tree on the left where all the leaves are concentrated together. The main takeaway is that despite a lack of "apical lead" (see Sect. 2.2.2) and an unsystematic way to decide the location of children we can still end up with self-pruning. A more in-depth discussion is done at Sect. 4.

Non random directions for children generations

We observed that the addition a spacial component and some spatial exclusion is enough to simulate a self-pruning tree for some simple resource redistribution scheme (Fig. 5) in a way similar to the apical scheme did Fig. 3. Though, with the directions of growth chosen randomly, the tree would not grow straight.

Instead of deciding randomly the direction of children, the parents could make their decision according to a precise algorithm. The leftmost tree of Fig. 6 shows such simulation: each parent creates its first child in the same direction it is pointing toward, then the other children are birthed in a balanced way: it tries to avoid having all the children facing the same direction. The "root" branch is considered as being vertical, so its first child will be in the vertical direction. We must remind that, when several extremities have the resource to birth children, they do not decide the locations of their future children simultaneously, instead an ordered list is followed, as such branches that are high on the list get to book their "favored" locations before the other ones. We also need to remind the list is "rigid": for example, given 2 siblings A and B with a parent named C, if A is the "first" child of C then the children and all the descendants of A will be higher on the list than B or any of its descendants, this is true throughout the simulation. Thus, we could have expected the tree to grow straight since the vertical branches from the "root" are "first" children of their respective parents. To explain the fact the tree systematically grows laterally (tree on the left in Fig. 6), we could believe it is due to a lack of space in the center. We may speculate that if our 3Dspace did not have this cubic metric, the tree could have grown straight but the cubic metric advantages diagonal directions.

Regardless of this assumption, to elicit a straight growth or more generally speaking to control the form of the tree in a desired way, a more direct approach seems necessary as seen in the second tree of Fig. 6 where we use the "apical dominance" approach presented in Sect. 2.2.2 on top of the "child's location decision" algorithm. Even then, this only managed to control the trunk, the crown and the topology of the tree is still similar to the leftmost tree of Fig. 5 where all the leaves are clustered, and unlike the tree on the right of Fig. 5 with its multiple clusters. So we want to seek other approaches to control the tree growth: forcing a straight growth, controlling the shape etc. For the following exploration models, we start from the "randomly-generated direction" model again (see Sect. 3.1) and append to it factors that could control the growth.

Gravitational loads

Following the call in Sect. 3.2 to investigate how to control this dynamical system, we seek to add some parameters or factors to the model. Let us seek some intuitive factors. Since the model is inspired by biological tree a natural factor that could control its shape would be mechanical constraints. In the literature, many models of mechanical constraints on branches and trees are based on simple beam theory arguments [23][24][25][26]. Though wind loads are important [25,26], for a simpler factor we could limit ourselves to gravitational loads only: the base of a branch will be subjected to a stress induced by the weight of all the branches and leaves it is supporting. When a beam is bent some parts of it is compressed whereas other parts is stretched, and in-between is a neutral axis experiencing no stress. The further from the axis an area is the more stress it experiences such that the surface of the branch has the most stress. This maximum bending stress occurring at the surface is the quantity of interest. Let σ s this surface stress, in the simple model we will use [23,24], we associate a single constant σ b to the wood the tree is made of. This parameter represents the stress limit a branch can take: the branch breaks if the stress σ s is higher than σ b . Furthermore we have the formula:

σ s ∝ M/d 3 (2
)
where M is the bending moment and d the diameter of the branch [23,24].

The implementation of this theory into our model is as follow: during "flux down", and after a branch grows in size to match the number of extremities it supports, the moment of force resulting from the combined weight of all of its descendants is calculated. (We simply define the mass of a branch as "equal" to its volume.) From there, given a constant parameter S b , which is our equivalent of σ b , the branch breaks when

S b < T /V γ (3
)
where T is the moment of force, V the volume of the branch and γ will be put at 3/2. Indeed, contextualizing our model within the plant-analogy, what we call "branches" are segments of actual branch of some fixed length. With the "length" being held constant, V , the volume of the branch, only scales to its cross-section area which itself scales like the diameter squared resulting in

d 3 ∝ V 1.5 .
Thus, γ = 3/2 allows us to mimic Eq. 2. Another important remark regarding the model is that the branches closest to the extremities will break in "priority": if both branches A and B have reached the breakage limit S b and B is a descendant of A then B will break first, afterward the moment of force for A would be recalculated accounting for the disappearance of B. A would not break if the new calculation puts it below the limit S b . Other than that: the direction for the children are still chosen randomly, and we will simply hope that the mechanical constraint when combined with some reward redistribution scheme would allow the tree to take shape on its own. Unfortunately the simulations end up with a growth similar to what was described in Sect. 3.1, self-pruning and trunk appear but they do not grow vertically and instead can take some random directions. We could have hoped for the gravitational load factor introduced in this Section to straighten up the tree by progressively removing lateral branches and "sculpting" a vertical tree. However, this is not the result we get. The gravitational factor does not largely impact the form of the crown in many cases, with he exception of the "maintenance" redistribution case with very high value of b. We obtain the same pattern as described in Sect. 3.1 with respect to the reward redistribution scheme and maintenance scheme at low b. The difference is that the tree collapses earlier. For example, using the "reward" scheme and the values of a that induce self-pruning, we would get a tree growing similarly to the leftmost tree in Fig. 5 which leans too far in one direction, then the mechanical factor would directly break the branches at the base of the crown leaving just a shorter and naked trunk. A quirk of the model is that a collapsed trunk would typically revives because all extremity produces p 0 resource and therefore even a tree reduced to a single trunk would immediately being able to produce p 0 resource and regrow a crown which will end up brutally collapsing for similar reason and restart this cycle a number of times. On the other hand, as we implied, the "maintenance" scheme at high b that, in Sect. 3.1, gave us the multi-cluster tree in Fig. 5 is affected, for the worse: the mechanical failures seem to prevent the self-pruning into the complex multi-cluster shape. The tree stays in a bush-like state. A more thorough discussion on the problem is done in Sect. 4.3.

Light interception factor for productivity

Starting again from Sect. 3.1 again, and searching for a different factor from the mechanical one in Sect. 3.3 that could drive the shape of the tree, we choose to implement some light interception scheme. Unobstructed extremities would still produce p 0 resource while the ones hidden behind other branches would produce less due to less exposure to the "Sun". In real life situations the interception of light by leaves is complex as the rays are not simply in the direction of the Sun: light diffusion through the atmosphere called sky radiation and light scattering by clouds or other leaves are all non-negligible sources of radiation [27][28][29]. The direction of light is particularly important as models to explain the shape of real life trees based on that aspect has been proposed in the past [START_REF] Niklas | Proceedings of the National Academy of Sciences 91[END_REF]19]. Despite the complexity of the issue, the present model will only account for direct sunlight and ignore diffusion and scattering. Sunrays will hit the X-Y plane with an angle θ from 0 radian to π representing the diurnal cycle. When a ray hit a position occupied by a branch, it is stopped without scattering or reflexion. More concretely, at the start of each generation, an uniform sampling between 0 rad and π rad is performed for each extremity. An extremity that received all the rays from the angles sampled would produce p 0 resource. Otherwise it would receive a fraction of p 0 equal to the fraction of rays it received. In other words, the production is proportional to the amount of unobstructed angles. Fig. 7 is obtained: children's locations are chosen at random like in Sect. 3.1 and the gravitational aspect introduced in Sect. 3.3 is turned off. We consistently obtain a straight trunk despite the random nature branch generation. And unlike the gravitational loads model the crown is not regularly destroyed, instead the pruning is progressive and constantly shape the tree. The foliage seen in the leftmost tree of Fig. 7 is much smaller than what we saw in the leftmost tree of Fig. 5 but the behavior is the same: after the initial self-pruning and trunk formation phase, the length of the trunk will grow but the number of leaves is somehow maintained close to constant and we do not have the multi-cluster leaves of the rightmost tree in Fig. 5 but the usual mono-cluster. Slight variation in the model such as weighting each angle θ differently, instead of each sunray angle being counted the same, (for example a weight of sin(θ)) does not have a noticeable effect on the shape or behavior of the tree. If, instead of sampling θ from 0 to π, we only include vertical rays, we get the second tree of Fig. 7 instead of a bush-like tree for the "reward" scheme at low a values.

Despite being able to force a vertical growth, the shape of the tree or its behavior do not show a large amount of diversity as Fig. 7 shows all the new shapes and behaviors. On the other hand the multi-cluster leaves shape obtained previously (Fig. 5) with the "maintenance" scheme at high value of b has disappeared. This particular growth seems quite vulnerable as it also broke in face of the "gravitational load" factor.

Numerical and theoretical survey

In this Section, we perform some analytical calculations and, try to analyze and summarize the results of the simulations as well as main takeaway from the model.

Tree growth and spatial embedding

We analyze and summarize the results of the simulation.

Description of tree growth

Sect. 3.1 showed the asymmetry created by simply embedding in space the tree was enough to trigger the kind of self-pruning which happens when we force resource to be distributed to a some special branches ("apical dominance" in Sect. 2.2.2). Beyond looking at the formation or lack of trunks, we can also look at the number of extremities each tree has. Fig. 8 shows some differences between three trees: the one noted as Model 0 is a tree that is not embedded in space and where each parent share the resource equally among their children, and Model 1 are trees in space using either the "reward" distribution, whereby the resource are distributed to the more productive children, or the "maintenance" distribution which focuses on each child's needs. The evolution of these three trees are seen in Fig. 8. Both the "symmetric" tree (Model 0) and the "reward" tree (zoomed in the second plot of Fig. 8) end up in a stable phase after an initial collapse that happens quite fast. For the "reward" tree the collapse corresponds to the pruning and trunk formation events. On the other hand, the "symmetric" tree does not form trunk, the collapse event is just a brutal collapse into an equilibrium state. Something that is not shown in the second plot of Fig. 8 is that despite a numbers of extremities oscillating, the tree itself does not: the trunk continues to grow in length at a constant rate while the numbers of leaves oscillates. This contrasts with the symmetric tree which is actually in an equilibrium state. The "maintenance" tree is the only one that grows its number of leaves for a long time, it usually brutally collapses and loses most if not all its branches. If a few branches remain it sometimes restarts the same growth as the one it had at the start of the simulation, but in either cases equilibrium or stationary states are not reached.

Interactions between space and growth

The system is not very sensitive to randomness. Indeed, the randomness generated from choosing the children's directions does not affect the behavior for the "reward" and "maintenance" tree as measured by values like number of extremities or length of the "trunk". The main difference between simulations is the direction or path the trunk takes, however, the direction set aside, the overall shape is not modified by repeating the same simulations with different randomly generated directions. The only possible caveat to this last statement is the "maintenance" scheme using large b that provided us with the multiple cluster of leaves we obtained in Fig. 5. The system is not very sensitive to change in the parameters as we get the same patterns by changing the parameters slightly. And for parameters unrelated to redistribution schemes, even large changes usually have weak effects: the behaviors are identical but there may be slight changes in numbers of leaves as seen in Fig. 9. This stability is also observable from the simulations done in Sect. 2.2.2 in which children's directions where not random anymore: the trunk curved less but the topology and overall behaviors were similar. Then when we added "apical dominance" to the "reward" tree with non random directions, the only striking topological difference was a lower average number of extremities for the crown (Fig. 6). Increasing the value of a, the exponent determining how much we focus on reward (cf. Eq. 1), has initially a large impact but its effect vanishes quickly (Fig. 9).

In a way we could conclude there is little interactions between space and growth since how the tree growth explores the space does not noticeably retroact on said growth. We could further test that statement: let us call "ground" the plane below the initial branch, the root of the tree. We can remove the "ground" and see the effect of it: it had also no noteworthy effect on the growth.

Of course it does not mean the 3D embedding did nothing: it limits the numbers of branches a tree may have at any given time which is very apparent when comparing the number of branches or extremities (Fig. 8) between the two models. And the 3D embedding allowed the sustained symmetry breakage needed for the redistribution scheme to form an asymmetric tree. Though, the non-impact of the "ground" makes it clear the asymmetry is not caused by the extremities near the ground being disadvantaged.

Influence of the parameters

As we showed: when using the "reward" resource distribution scheme, after some self-pruning, the number of leaves stays stable (Fig. 8). This stable number of extremities is used to characterize each tree grown in a given set of parameters (Fig. 9). We also mentioned that how the tree growth explore the space or whether there is a "ground" or a wall are not an important factor. The redistribution scheme is the main factor that drives how the tree grow. We can see its effect in Fig. 9. However in both cases, the system reacts continuously with respect to the parameters.

There is however one caveat against this narrative of simplicity and stability presented so far. The caveat are trees appearing when using the "maintenance" scheme and large values of b (like Fig. 5). When measured through the lens of "number of extremities" or "length of the trunk", we get trees that are no less stable than the "reward" trees when repeating simulations or changing parameters, however it is possible a more detailed investigations of the topology could show differences between different simulations: for example, by trying to count the number of Parameters not mentioned on the plots holds the same values as previous plots. E is the average number of extremities a simulated tree had after self-pruning. Indeed, when using the "reward" scheme and a sufficiently high value of a then, after some transitory phase, the tree will self-prune and from there the number of extremities will only oscillate around a number and E is that number. We plot E against different values of p0 then different values of a.

clusters of leaves these trees have. The third tree in Fig. 5 certainly shows a network complex enough it should not be described solely by its number of extremities or trunk. Furthermore, unlike the "normal" mono-cluster trees, these multi-cluster trees disappear completely when we applied gravitational loads or light interception (Sect. 3.3 and 3.4) setting them as structures easily affected by perturbations.

Effects of the redistribution schemes on trunk formation

In Sect. 2.2.2 we alluded to the idea that when α = 1/2 we could expect a tree using the "reward" distribution with a = x would create the same tree as one using the "maintenance" distribution with b = 2x. Indeed, the "reward" scheme favors the more productive branches while the "maintenance" one advantages the bigger branches, since the volume of a branch is, under normal circumstances, "equal" to the number of extremities originating from it, then "maintenance" just be a rescaling of "reward" when we ignore some complications. This rescaling is however not observed (Fig. 5): the behavior between "reward and "maintenance" is so different it can not be reduced to a b = ya relation let alone b = 2a. Indeed, despite formation of trunk for a = 2, no trunk appears for b = 4 (Fig. 10), and while some trunk appears for b = 6 and beyond their length is not comparable to their counterpart and the topology is much more complex. The evolution of the number of extremities does not stabilize for b > 6, unlike the "reward" trees: the plot of the number of extremities with respect to time is similar to the b = 2 case drawn in Fig. 8 (the difference is over the number involved: higher b shows lower numbers but the shape of the plot is similar). Thus, on the one hand, no notable "interaction" between growth and space has been noted and the system is resilient to randomness (Sect. 4.1), on the other hand, some differences between the "a = x" and "b = 2x" redistribution schemes end up creating totally different trees.

We must list the factors that explain the difference between the "reward" and "maintenance" schemes. First are "leftovers" from previous cycles. Indeed, considering a branch can only create N max children, if it possess an amount higher than N max × C r there will be some leftover resource that will be carry in the next "flux down" and will make branches looks more productive to its parent. But another source of leftover, and one that would asymmetrically affect different branches, is spatial limitation: a branch unable to create as much children as it could have because the adjacent locations are occupied will not be able to use up its resource which in turn will be carried over as leftovers.

Aside from leftovers, another factor is the cost of growing volume which amounts to C m multiplied by the amount of volume a branch creates. We remind that the volume of a branch needs to be equal to the number of extremities it supports (Leonardo's rule mentioned in Section. 2.1.1). So let us assume at generation T , a branch supports E extremities, its volume is also E, but at T + 1, it grows to E + A extremities. From the "reward" redistribution formula Eq. 1, and assuming no "leftovers", the share the branch will get from its parent will be:

F T +1 = (p 0 (E + A) -AhC m) a Z T +1 = E + A(1 -h Cm p0) a Z T +1 /p a 0 (4)
The AhC m term assumes all the A extremities added at generation T + 1 are at a distance h -1 of the branch (distance in the graph-sense). But if we had A 1 added at distance h 1 -1 and A 2 added at distance h 2 -1 the term is to be replaced by (A 1 h 1 + A 2 h 2)C m , and this is generalizable to sums with more than 2. We can convince ourselves of the AhC m term by imagining the A = 1 case: one branch was added at a distance h -1, this results to the parent of this branch needing to get 1 more unit of "Volume", the grandparent would also need 1 more Volume, etc. until reaching the initial branch. As such the total Volume increased is h. By induction, we end up with AhC m . Now, looking at Eq. 4, we can easily see it should have mitigating effect on increased inequalities between children. Indeed, if we compare a child that gained A with one that did not, had the term AhC m not been present (which is the case in the "maintenance" scheme) then the former would gain even more share from the parent, moreover the share can be even lower if h > C m /p 0 in Eq. 4.

Finally a third factor making the "maintenance" and "reward" schemes different from one another even when "b = 2a" is the fact volume can not decay. A branch that supported E extremities at generation T but only E -A extremities at T + 1 will still have a volume of E despite only "producing" (E -A)p 0 at best. This effect should mitigate inequalities in the "maintenance" scheme as a loss of leaves do not result in a lesser share; but it will be a source of inequalities for the "reward" scheme.

How the three factors compete with one another to create the result we see can be summarize by Fig. 10 which depicts how the length of the trunk evolves with time. We start from a "normal" tree with a = 2 then we simulate the case C m = 0 which is not shown in Fig. 10 as the plot is identical to the "normal" tree, indicating the effect of C m is weak compared with the other factors. Then we forbid "leftovers" by forcing the reserve R to be always 0. The Figure allows us to see how we go from the "reward" trees with their growing trunks to the "maintenance" ones which do not self-prune.

The takeaway is C m is not important for trunk formation while "leftovers" have some effect. But the "nondecay" is the main factor for self-pruning or its absence when comparing a = 2 with b = 4. By definition the "nondecay of volume" factor only differentiates the two schemes after branches start to fall: it means the self-pruning in "reward" trees is not caused by groups of branches progressively getting more leaves and monopolizing more shares instead it is brutal incident such as death of probably "basal" branches that starts and drives it. On the other hand, the pruning that happens in "maintenance" scheme with the large values b > 6 (Fig. 5) is probably driven by such progressive monopolizing process. This could explain the differences in topology between those two self-pruned trees, though it is not very clear why the "progressive monopolizing" creates multiple clusters while the other process favors mono-clusters.

Gravitational load

As explained in Sect. 3.3, we fail to control the shape of the tree in any meaningful way by adding a gravitational load factor to the trees generating children in random directions: we do not obtain the vertical trunk we expected. Rather than driving the pruning and straightening the tree, breakage from gravitational loads are mostly punctual and cause a brutal collapse of the tree only once it went too far in a direction. The exception is when we use extremely low threshold of breakage to the point that a branch going two or three units of space on lateral directions would break: in such circumstances the tree would simply be a straight trunk with two or three branches

H T a = 2 a = 2 R = 0 C m = 0 Scheme 3 c = 2 b = 4 R = 0 C m = 0
Fig. 10. How the length of the trunk of a tree, noted H, grows as time T passes. We first plot a normal "reward" tree at a = 2. Then in order to showcase the effect of "leftovers" and "non-decay of volumes" (see Sect. 4.2) on self-pruning, we simulate trees lacking these factors. The second plot has no leftover (noted R = 0). For the third plot we use a custom redistribution scheme similar to the "reward" scheme but, instead of computing the total flux each child gave during "flux down", parents compute the flux they would have received if R = 0 and Cm = 0 and used this hypothetical flux to decide on the share for each child. The last plot uses the "maintenance" scheme (i.e. the "non-decay of volumes" is turned on). that are extremities at the very top, and this is not the kind of tree or growth we are looking for either. Attempts to give weight to leaves (i.e. extremities weighting extra units) does not yield results different than the ones shown so far.

Let us try to understand how branch breakage works by analyzing simple case such as in Fig. 11. For simplicity the example is in 2D. For the calculations to be simple, branch B has all its children on its right, the grandchildren are on the right of the children etc. And we wish to determine whether the branches tend to break near the extremities or near the base.

We remind Eq. 3: S b < T /V γ and the bending moment T is the combined volume of all the descendants of branch B multiplied by the distance between the barycenter of the descendants and the branch B when both these points are projected onto the X-Y plane. Another assumption for the Fig. 11 example is: all the extremities descending from branch B are at the same "distance" d (distance in a graph-theory sense) from it. Leonardo's rule needs to be true (volume of a branch equals the number of extremities it supports), meaning the total volume of the descendants of B is V B d where V B is the volume of B. This can be easily verified in simple example like in Fig. 11 and the arguments for it are similar to the derivation of the AhC m terms in Eq. 4 but with d taking the role of h. If the extremal descendants are not all at a distance d but some are at a distance d 1 while others are at d 2 the formula is changed like we did with Eq. 4. Noting ∆ B the distance (in the euclidean sense) between branch B and the barycenter when both are projected onto X-Y plane representing the ground, we have the stress

S = T /V γ B equal to: S = d∆ B V γ-1 B
. Assuming each child is strictly to the right of its parent (Fig. 11) ∆ B = (d + 1)/2: indeed, if x B is the x position of B, then all its children are at x B + 1, but the sum of volumes of all children of B is V B because of Leonardo's rules. Applying the same reasoning to the grandchildren then grand-grandchildren etc. leads to the barycenter being at x B + (d + 1)/2. The formula for ∆ B relies on the extremities being located at the position x = x B + d. But even assuming a general setting, ∆ B ∝ d could be close to reality as long as the descendants approximatively grow toward a lateral direction. The end result would be:

S ∝ d 2 V γ-1 B (5)
The last term needing to be expressed as a function of d is V B . Once such a relation is given we obtain a function S(d). If the children of the branch B also follows the assumption we needed to established the S(d) formula (i.e. starting from branch B there must be a somewhat selfsimilar growth) then the stress S on a child of B will be close to S(d -1), this means S(d) would determine how gravitational loads break branches. There is not an unique way for V B to vary as a function of d (reminder: V B is also the number of extremities from B). Assuming a form of self-similarity in the growth from branch B and that it grows laterally, we could approximate V B ∝ d β with β an undetermined exponent. In a configuration like Fig. 11 where we have a "lateral triangular" growth β 1: the angle at branch B is constant, therefore if d grows it will linearly affect the length of the base of that "triangle" which is linked to the number of extremities. But in a 3D space we can imagine a "lateral pyramidal" growth from the branch B. This would presumably give β 2 using a similar reasoning. We can imagine β < 1 when the branch do not expand in the Y -direction like the triangular shape, but instead remain approximatively confined on a line. On the other hand, β > 3 is hardly possible.

Replacing V B by d β in Eq. 4: S ∝ d 2-β(γ-1) . Because the threshold S b is a constant, when S(d) is a decreasing function it should mean structures that grew self-similarly and laterally would not break, though no such protection exists once the self-similarity ends and mechanical failures could also still happen to the ancestor-branches supporting the structure. On the other hand, if S(d) is an increasing function, it will limit the size of such structure: indeed with S(d) increasing as we go farther from the extremities S(d) would increase and the threshold S b would be reached resulting in a branch more or less close to the base of the structure falling first. In Sect. 3.3, γ = 3/2 and we established β < 3 resulting in an increasing function.

Now we have another way to investigate the impact of gravitational loads: changing γ. For example, for γ > 2 would mean S(d) is decreasing even for β = 2 which we argued it represents a lateral pyramidal growth. And γ > 3 guarantees even β = 1 structures. However performing simulations with varying γ around 2 and 3 do not result in any transition between radical behavior in growth, the trees obtained are similar to what we described so far. It could either be imputed to a weakness in our theory on S(d) or the system is resilient to perturbation and factors that do not directly affect redistribution schemes which would be consistent with the observations we made the previous Sections. Some caveats: we are not saying γ did not have effect on growth, in fact as we increase γ occurrences where all branches up to the base of trunk suddenly mechanically fail as described in Sect. 3.3 become more scarce. But it simply means the trees are now similar to the ones in Sect. 3.1 (Fig. 5) with no gravitational load: the tree does not seem to have more tendency to grow straight.

Conclusion

We studied models combining network growth, source-sink and flow paradigm and local resource allocation that were bio-inspired from trees. After a brief summary of the previous paper [1], we try to understand how resource allocation drives and controls the growth of the tree as well as examine how the system responds to the addition of new factors. More specifically, we test two resource allocation schemes: the "reward" scheme which preferentially allocates resource to more productive and wealthy nodes, and the "maintenance" scheme which allocates according to the maintenance cost of each node. Both schemes are parametrized by the exponent a for "reward" and b for "maintenance" determining how much the allocation focuses on reward or on maintenance (higher values of a means a higher focus on the productive nodes). As for the additional factors we submitted the system to, the first one directly concerns resource allocation: a small part of the resource is allocated to some nodes and we examine the system reacts to it when using either "reward" or "maintenance" scheme. A different factor looked at was spatial embedding which limits node creation by forbidding two nodes to occupy a same spatial location. Finally, bio-inspired factors were added on top of the spatial embedding such as gravitational loads created by the weight of the branches themselves or light interception whereby leaves in the shadow of other leaves or branches can not produce resource. We show the way the tree grows is strongly driven by the resource allocation schemes once a factor creates asymmetries. And such asymmetries can arise from a simple embedding in space. On the other hand, the system is resilient to further perturbations and factors when they do not directly act on resource allocation schemes: the system is not affected by random variables, changes in the values of parameters appears to affect continuously and predictably the growth, and only light interception had an effect on the shape. So when it comes to the shape of the crown, only few shapes emerged and are attached to the way resource was allocated. This may be interpreted as topology dominating geometry in this kind of system as the only purpose our attempt to geometrize served was to allow asymmetries.

Further investigations would be best focused on resource allocation only. For example, the hierarchy created from the "flux down" -"flux up" scheme we used could be replaced with a scheme where nodes would freely exchange to their neighbor. Moreover in the allocation schemes we used all nodes prioritized either "reward" or "maintenance" the same way, but an alternative analysis could consist in allowing different personalities within the same network.

 Fig. 1.Representation of what the model is about: a growing tree taking "resource" from its leaves, using the resource to grow and feed its different parts with the consequence of death for the malnourished parts.

Fig. 2 .

 2 Fig.2. A representation of the "flux down" and "flux up" kinematic described in Sect. 2.1.1. Leaves create a quantity of resource, this resource flows down to the "root" of the network with each intermediate nodes saving in their memory the amount of "flux" given by each of their child. Then the parents starting from the "root" will share their resource with their children according to factors such as the flux given by each child previously.

Fig. 4 .

 4 Fig. 4. Rough sketch of a 2D version of the spatial embedding as detailed in Sect. 2.2.3: each node of the network is now located in a square grid space. Two nodes can not occupy the same coordinates and children and parents must in be adjacent coordinates, with diagonal squares being considered adjacent.

Fig. 5 .

 5 Fig.5. Simulation of trees embedded in space using p0 = 12, m0 = 1, Cm = 1, Nmax = 3 with children's location being chosen at random. Each tree allocates its resource differently: The leftmost tree uses the "reward" scheme at a = 2, the middle tree uses the "maintenance" scheme at b = 5 and the last one is at b = 6.

Fig. 7 .

 7 Fig.7. Using the parameters in Fig.5with some exceptions: p0 = 52, The tree on the left uses a = 2 while the right one uses a = 1. These tree are simulate with the inclusion of a light interception factor whereby the leaves/extremities shaded by other branches from the "Sun" can not create resource.

= 2 Fig. 8 .

 28 Fig. 8. The first Fig. uses p0 = 9.6, the second one uses p0 = 12 and both are under m0 = 1, Cm = 1, Nmax = 3. The first oneshowcases the evolution the number of extremities E with time T in three trees: what we call Model 0 is a symmetric tree (no "reward" or "maintenance" scheme and no "apical dominance" but instead each parent shares equally its flux) and Model 1 is the spatial embedding with a random selection for the children's direction. The second Fig. is a zoom for the Model 1 and using the reward redistribution scheme at a = 2.

 Fig.9. Parameters not mentioned on the plots holds the same values as previous plots. E is the average number of extremities a simulated tree had after self-pruning. Indeed, when using the "reward" scheme and a sufficiently high value of a then, after some transitory phase, the tree will self-prune and from there the number of extremities will only oscillate around a number and E is that number. We plot E against different values of p0 then different values of a.

Fig. 11 .

 11 Fig. 11. A sketch of a part of a tree. Starting from some branch B, all children are located on the right of their parent. This simple example serves as a starting point to determine how branches break under gravitational loads (see Sect. 4.3).

Authors contribution statement

O. Bui conducted all calculations made in the paper, X. Leoncini devised the initial model and wrote the first version of the code for the initial model introduced in [1] and studied in the present paper. Both authors discussed the research at its various stages, and both contributed to the writing of the manuscript.