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 with two additional ingredients: altruism and an asset (or land) bringing non-stationary positive dividends (or fruits). We study the global dynamics of capital stocks and asset values as well as the interplay between them. Asset price bubbles are also investigated.

Introduction

According to the literature on pure rational bubbles (asset without dividend) à la [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], a bubble may coexist with physical capital because (1) agents want to buy the asset at any date (the young buys the bubble from the old) and (2) the real interest rate of the economy without bubble asset is lower than the population growth rate (the economy experiences capital overaccumulation or low interest rate). 1 Although this literature is huge, very few papers have tackled the issue of bubble when dividends are positive. Many unaddressed questions on bubbles with positive dividend remain. Why do these bubbles arise? What are their dynamic properties? How do the capital and financial asset values interfere over time? What is the difference between bubbles of assets with and without dividends?

Our goal is to address these open issues. In addition, we generalize [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] with a kind of altruism. Altruism matters affecting the offspring's saving and the portfolio composition. Therefore, the novelty of the paper is twofold and rests on the introduction of forward (or descending) altruism and a financial asset (or land) bringing non-stationary positive dividends (or fruits) in the overlapping generations (OLG) benchmark à la [START_REF] Diamond | National debt in a neoclassical growth model[END_REF].

First, we prove that standard Inada condition ensures the existence of an interior intertemporal equilibrium. We do so in two steps: (1) proving the existence in finite-horizon cases, and (2) passing to the limit, we get an equilibrium for the infinite-horizon case. Notice that, without Inada condition, this existence result may fail. Indeed, in a low productivity situation, households prefer to invest in financial asset instead of physical capital, which may lead to zero aggregate capital (this is possible because households can consume dividends).

Results on equilibrium existence are complemented by a global analysis of equilibrium including the case of bubbly equilibria. As in the standard literature [START_REF] Tirole | On the possibility of speculation under rational expectations[END_REF][START_REF] Kocherlakota | Bubbles and constraints on debt accumulation[END_REF][START_REF] Santos | Rational asset pricing bubbles[END_REF][START_REF] Huang | Asset price bubbles in Arrow-Debreu and sequential equilibrium[END_REF], we say that a bubble exists at an equilibrium if the equilibrium price of financial asset exceeds the present discounted value of its dividends, that is its fundamental value. In short, we call the bubble the difference between the asset price and the fundamental value. This equals the value at infinity of one unit of asset. In particular, when dividend is zero at any date, the asset is called bubble by [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] or fiat money by other authors [START_REF] Bewley | The optimal quantity of money[END_REF][START_REF] Weil | Confidence and the real value of money in an overlapping generations economy[END_REF].

We firstly prove that, if there is no bubbly equilibrium, then the economy has a unique equilibrium. Hence, the main part of our analysis focuses on multiple equilibria where bubbles may appear.

One of our main results is that a bubble exists only if the sum over time of ratios of dividend to production is finite. By consequence, in a bounded economy,2 a bubble exists only if the sum over time of dividends is finite. This entails a number of implications. For instance, when dividends are strictly positive, there does not exist a steady stated associated with a bubble in the asset; this property holds whatever the level of interest rate. By contrast, as proved by [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], a pure bubble may arise at the steady state: this is the very difference between bubbles in assets with and without dividend. A particular case of our setup is [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF] who provided an example of bubble where dividends may be positive but becomes zero after a finite number of periods.

We also show that, in a bounded economy with high interest rate (i.e., the interest rate at the steady state of the economy without financial asset is strictly higher than the population growth rate), there does not exist asset bubble. This result is independent of the level of asset dividends and, in this respect, quintessential. Of course, it covers [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], where dividends are zero at any date, and rests on the following intuition. As seen above, in a bounded economy, bubbles are excluded when dividends do not converge to zero. When dividends converge to zero, we can prove that in the long run (1) the capital stock is bounded from above by that at the steady state of the economy without financial asset and (2) the asset value converges to zero. Combing these properties and the high interest rate condition, the discounted value of one unit of asset converges to zero, which means that there is no bubble.

Summing up, we obtain two necessary conditions for bounded economies, under which bubble may arise: (1) a low interest rate and (2) a finite sum of dividends. Interestingly, we prove that along a bubbly equilibrium, capital stocks converge either to the steady state of the economy without financial asset or to the level at which the interest rate equals the rate of population growth. This implies in turn that asset values must converge along a bubbly equilibrium.

Our above general findings are complemented by analyses in special cases. More precise, in the case of Cobb-Douglas and linear technologies, we obtain a continuum of bubbly equilibria. Closed forms are also computed under some specifications. We find that a higher degree of forward altruism lowers the interest rate in the economy without financial asset. In this respect, we can say that descendent altruism promotes bubbles. To the best of our knowledge, these examples are the first ones dealing with bubble of an asset with positive dividend in a production economy with concave technology.

In the last part of the paper, we revisit the connection between bubble, interest rate and asset price. The seminal article by [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] finds out that existence of pure bubbles requires a low interest rate. Such conclusion rests on the boundedness of aggregate output, including asset dividends. Indeed, in the case of high interest rate, if a bubble exists, the asset values grow to infinity and the equilibrium feasibility is violated. However, we argue that, in the case of unbounded growth (of the capital-free side of production), incomes of households are high enough to cover the value of asset with bubble (that agents may buy) even if this asset value grows to infinity (because of high interest rate). Moreover, in such an economy, dividends are no longer required to be bounded. This is also an added value of our paper.

At a first sight, we may be convinced that asset prices increase in time along a bubbly equilibrium. However, we provide a counterexample of bubbly equilibrium along which asset prices may increase, decrease or even fluctuate in time. This means that there is no robust causal link between bubble existence and monotonicity of asset prices.

The rest of the paper is organized as follows. Section 2 introduces the economic fundamentals. Section 3 and 4 present some equilibrium properties and a formal definition of bubble. Section 5 provides general results on equilibrium transition for bubbles and capital. Section 6 and Section 7 focus on particular cases and global dynamics. All the technical proofs are gathered in Appendices.

Model

We consider a two-period OLG model of rational bubbles in the spirit of [START_REF] Diamond | National debt in a neoclassical growth model[END_REF], [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] and [START_REF] Weil | Confidence and the real value of money in an overlapping generations economy[END_REF]. Time is discrete t = 0, 1, 2, . . . . Production. At each date, there is a representative firm with the production function F (K, L) where K and L are the aggregate capital and the labor forces. We require standard assumptions.

Assumption 1. F is constant returns to scale, concave, strictly increasing and in C 2 .

Let R t and w t represent the return on capital and the wage rate. Profit maximization under complete capital depreciation implies

R t = R (k t ) ≡ f (k t ) and w t = w (k t ) ≡ f (k t ) -k t f (k t ) (1)
where k t ≡ K t /L t denotes the capital intensity, f (k t ) ≡ F (k t , 1), Generations. Assume that there are N t new individuals enter the economy at time t. The growth factor of population is supposed to be constant: n = N t+1 /N t .

Households. Each young agent lives for two periods and supplies one unit of labor. Assume that preferences of households are rationalized by an additively separable utility function

U (c t , d t+1 ) ≡ u(c t ) + βu(d t+1 )
where β represents the degree of patience, while c t and d t+1 denote the consumption demands at time t and t + 1 of a household born at time t.

Assumption 2. u is in C 2 , u (c) > 0 > u (c), u (0) = ∞.
Agent born at date t saves through a portfolio (a t , s t ) of financial asset and physical capital. Consumption prices are normalized to one. q t and δ t ≥ 0 denote the asset price and the dividend in consumption units, while b t ≡ q t a t and ξ t ≡ δ t a t the values of asset and dividend respectively. The sequence of dividends (δ t ) is assumed to be exogenous.

Once households buy the asset a t , they will be able to resell it tomorrow and perceive dividends (in term of consumption good). This asset can also be interpreted as a Lucas' tree or land, or stock as in [START_REF] Kocherlakota | Bubbles and constraints on debt accumulation[END_REF].

Budget constraints of household born at date t are written

c t + s t + q t a t ≤ w t + g t (2) d t+1 + ng t+1 ≤ R t+1 s t + (q t+1 + δ t+1 ) a t (3) xd t+1 ≤ ng t+1 (4)
where g t+1 represents the bequests from parents to offspring and x is the degree of forward (or descending) altruism.

There are two theoretical approaches to bequests. (1) In the case of selfish preferences, households leave only unintended bequests due to lifespan uncertainty [START_REF] Davies | Uncertain lifetime, consumption, and dissaving in retirement[END_REF] or leave bequests to receive care in the old age and give more to the child who provides more care. (2) In the case of altruistic preferences, households leave bequests to offspring even if children provide no care and give more to the child with greater needs [START_REF] Becker | A Treatise on the Family[END_REF].

Empirical studies show that bequests matter. [START_REF] Kotlikoff | The role of intergenerational transfers in aggregate capital accumulation[END_REF] calculate the share of intergenerational transfers in total households' wealth in the United States and find a range between 46 and 81% according to the method used. Other studies show lower shares. About two-thirds of the studies using U.S. data support the altruism model while those using French data support the selfish exchange model [START_REF] Laferrere | Microeconomic models of family transfers[END_REF].

Our model is a model of altruistic preferences. Instead of considering as in [START_REF] Barro | Are government bonds net wealth[END_REF] the utility of children in the utility of parents, we introduce a "moral" constraint (which can be interpreted either as naive behavior or the result of social pressures (either moral or religious)): parents leave a share of their wealth when old to offspring. In a two-period OLG model this wealth coincides with the second-period consumption. A commitment to leave a given fraction is more observable than a choice based on the utility of offspring in the utility of parents [START_REF] Barro | Fertility choice in a model of economic growth[END_REF]. Our model is justified on the empirical ground because, as seen above, bequests matter and many empirical studies support an altruistic behavior. Moreover, this kind of altruism allows us to have a tractable model. 34 The market clearing conditions sum up to N t s t = K t+1 and N t a t = N t+1 a t+1 , that is, respectively to

s t = nk t+1 (capital)
(5) a t = na t+1 (financial asset).

(6)

Definition 1. Let k 0 > 0, g 0 > 0 be given. A positive list (q t , R t , w t , c t , d t+1 , g t+1 , s t , a t , k t+1 ) t is an intertemporal equilibrium for the economy with forward altruism if (i) given (q t , q t+1 , R t , w t , g t ), the allocation (c t , d t+1 , g t+1 , s t , a t ) maximizes U (c t , d t+1 ) subject to constraints (2, 3, 4) and (ii) conditions (5, 6) are satisfied for any t ≥ 0.

Under Inada condition f (0) = ∞, we have k t > 0 for any t.5 So, in the rest of the paper we will focus on equilibria with k t > 0 for any t. In this case, the consumer's program leads to an (equilibrium) no-arbitrage condition:

q t = q t+1 + δ t+1 R t+1 (7) 
meaning that what we pay to buy 1 unit of asset today equals to what 1 unit of asset will bring for us tomorrow.

Remark 1. At equilibrium, the budget constraints become binding. Combining them with (5), ( 6) and ( 7) we obtain a sequence (b t , k t+1 ) t≥0 which is a reduced and equivalent form of equilibrium. Thus, from now on, we will refer to this sequence as an equilibrium.

Equilibrium

This section provides some basic equilibrium properties and introduces the notion of bubble. Constraints (2), ( 3) and (4) entail ng t = xd t . Combining this with ( 6) and ( 7), we observe that the household's total saving s t + b t only depends on w t + g t and R t+1 . Moreover, since the function u is strictly concave, the solution of household problem is unique and we can write

nk t+1 + b t = S x (w t + g t , R t+1 ) (8)
where S x is interpreted as a saving function. We require the following assumption under which the function S x is increasing in R t+1 (see De la Croix and [START_REF] De La Croix | A Theory of Economic Growth, Dynamics and Policy in Overlapping Generations[END_REF] for instance).

Assumption 3. The function cu (c) is increasing.

Since (3), (4) are binding, we obtain g t = xd t /n and d t (1 + x) = R t nk t + (q t + δ t )a t-1 . Combining this with (6), we get that

g t = x 1 + x (k t f (k t ) + b t + ξ t ) . (9) 
By consequence, equation (8) becomes

nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0.
Remark 2. Conditions (2), (3), ( 4) and (9) imply that

c t + nk t+1 + b t 1 + x = f (k t ) - k t f (k t ) 1 + x + xξ t 1 + x (10)
and hence b t ≤ (1 + x) f (k t ) + xξ t . Therefore, if k t and ξ t are bounded from above, the asset value will be also bounded from above.

We can summarize as follows.

Lemma 1. Let k 0 > 0, g 0 > 0 be given. Assume that Assumptions 1, 2, 3 holds. Then, the sequence (k t+1 , b t ) t≥0 is an interior equilibrium if and only if

nk 1 + b 0 -S x w 0 + g 0 , f (k 1 ) = 0 (11) nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 for t ≥ 1 (12) b t+1 = b t f (k t+1 ) n -ξ t+1 for t ≥ 0 (13) b t > 0, k t+1 > 0 for t ≥ 0. ( 14 
)
Moreover, the system (11-14), in the case it has solution, is equivalent to (11,13,14) and

k t+1 = G x (k t , b t , ξ t ) ( 15 
)
where the function G : R 3 + → R is defined as the solution of

H kt,bt,ξt (k) ≡ nk + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k) = 0. G x is continuously differentiable, ∂G x ∂k t > 0, ∂G x ∂b t < 0, ∂G x ∂ξ t > 0.
and G x (k, 0, ξ) > 0 for any k > 0 any ξ > 0.

Proof. See Appendix A.1.

All assumptions in Lemma 1 are for instance satisfied with Cobb-Douglas production function F (K, L) = AK α L 1-α and isoelastic preferences U (c, d) = ln c + β ln d or U (c, d) = (c 1-σ + βd 1-σ ) / (1 -σ) with σ ∈ (0, 1).

It should be noticed that we need to prove the existence of solution of the system (11-14) before having the recursive equation (15). In the following, we will present the existence of solution of the system (11-14) which is essential to explore equilibrium properties. Before doing this, it is natural to impose the following assumption.

Assumption 4. ξ ≡ sup t ξ t < ∞ or, equivalently, sup t (δ t a 0 /n t ) < ∞.

Lemma 2 (existence of an interior equilibrium). Given k 0 , g 0 . Assume that Assumptions 1, 2 holds and the function cu (c) is increasing. If f (0) = ∞, then the system (11-14) has a solution (b t , k t+1 ) t≥0 and such a sequence is an interior equilibrium.

Proof. See Appendix A.2.

Comment. This existence result is far from trivial. One may think that it can be easily proved by the following argument: given b 0 > 0, any (k t , b t ) t≥1 determined by (11-13) is an equilibrium; so, there are multiply equilibria. However, this argument is not correct because (k t , b t ) t≥1 determined only by (11-13) may be negative at some date. The point is to prove that there exists b 0 > 0 such that the sequence (k t , b t ) t≥1 determined by (11-13) is positive.

The existence of an interior equilibrium rests on a sufficiently high productivity of capital (f (0) = ∞). This equilibrium may fail to exist in the case of low productivity. An example of failure with linear technology is provided in Section 6.2 and supplemented with economic interpretation. 6Lemma 2 is a generalized version of Proposition 1.2 in De la Croix and [START_REF] De La Croix | A Theory of Economic Growth, Dynamics and Policy in Overlapping Generations[END_REF] where they prove the equilibrium existence in an OLG model as in our framework but without financial asset. Their proof cannot be directly applied in our model because of the presence of the long-lived asset with non-stationary dividends. Our proof consists of two steps: (1) proving the existence in finite-horizon cases, and (2) passing to the limit, we get an equilibrium for the infinite-horizon case. The reader is referred to Citanna andSiconolfi (2010, 2012) for the generic existence of a recursive equilibrium in stochastic OLG economies. It seems that their results cannot be directly applied to our framework because we consider a production economy with a long-lived asset having non-stationary dividends.

Definition and existence of bubbles

In this section, we present a formal definition of bubble and a characterization of bubble existence as its direct consequence.

Solving recursively (7), we obtain an asset price decomposition in two parts

q t = Q t,t+τ q t+τ + τ s=1 Q t,t+s δ t+s , where Q t,t+s ≡ 1 R t+1 . . . R t+s
is the discount factor of the economy from date t to t + s.

In the spirit of [START_REF] Tirole | On the possibility of speculation under rational expectations[END_REF], [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], [START_REF] Kocherlakota | Bubbles and constraints on debt accumulation[END_REF], [START_REF] Santos | Rational asset pricing bubbles[END_REF] and [START_REF] Huang | Asset price bubbles in Arrow-Debreu and sequential equilibrium[END_REF], we define the fundamental value of financial asset and the bubble.

Definition 2.

1. The Fundamental Value of a unit of asset at date t is the sum of discounted values of dividends:

F V t ≡ ∞ s=1 Q t,t+s δ t+s .
2. We say that there is a bubble at date t if q t > F V t .

3. When δ t = 0 for any t ≥ 0 (the Fundamental Value is zero), we say that there is a pure bubble if q t > 0 for any t.

Clearly, we have q t = F V t + lim τ →∞ Q t,t+τ q t+τ . Thus, condition q t -F V t > 0 does not depend on t. Therefore, if a bubble exists at date 0, it exists forever. Moreover, we also see that

q t+1 -F V t+1 = R t+1 (q t -F V t ).
Remark 3. Our asset is related to the asset with rent (dividend) in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] since both the assets bring dividends at any date. However, [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] assumes that the rent (dividend) is stationary while dividends are non-stationary in our model. In [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], there is no bubble with a positive rent, while, in our model, asset bubbles may arise as we will show below. [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF] considers an asset (he calls land) with positive dividends, but in a pure exchange economy, and he assumes that there exists t 0 such that δ t = 0 for any t ≥ t 0 , while our model encompasses the productive sector and δ t may be strictly positive at any date.

It should be noticed that when δ t = 0 for any t, some others, e.g. [START_REF] Weil | Confidence and the real value of money in an overlapping generations economy[END_REF] or [START_REF] Bewley | The optimal quantity of money[END_REF], interpret the asset as fiat money.

For notational simplicity, we set Q 0 ≡ 1 and Q t ≡ Q 0,t for any t. No-arbitrage condition (7) implies that

q 0 = 1 R 1 (1 + δ 1 q 1 )q 1 = 1 R 1 R 2 (1 + δ 1 q 1 )(1 + δ 2 q 2 )q 2 = • • • = Q T q T (1 + δ 1 q 1 ) • • • (1 + δ T q T ).
Bubbles exist if and only if lim

T →∞ Q T q T > 0 which is equivalent to ∞ t=1 (1 + δ t /q t ) < ∞. It is easy to see that ∞ t=1 (1 + δ t /q t ) < ∞ holds if and only if ∞ t=0 δ t /q t < ∞.
Therefore, we have necessary and sufficient conditions (based on endogenous variables) for the existence of bubbles of assets with positive dividends.7 

Proposition 1. In the case of strictly positive dividends (δ t > 0 for any t), the following statements are equivalent.8 1. A bubble exists at date t.

lim

T →∞ Q T q T > 0, i.e. lim T →∞ b T n T /Π T τ =1 f (k τ ) > 0. 3. ∞ t=0 δ t /q t < ∞, i.e. ∞ t=0 ξ t /b t < +∞.
Proposition 1 is very general because its proof rests only on the no-arbitrage condition (7) and Definition 2. Here, technology and preferences play no role.

Let us give another interpretation of bubble condition ∞ t=0 δ t /q t < ∞. Look at budget constraints

c t + s t + q t a t ≤ w t + g t d t+1 + ng t+1 ≤ R t+1 s t + (q t+1 + δ t+1 ) a t .
We may rewrite

(q t+1 + δ t+1 )a t = q t+1 1 + δ t+1 q t+1 a t .
Here, one buys a t units of asset at date t, with price q t . At the next date (date t + 1), she receives (1 + δ t+1 /q t+1 )a t units of the same asset, with price q t+1 . By the way, δ t+1 /q t+1 can be interpreted as the financial asset's interest rate (in terms of asset, not in terms of consumption good) between dates t and (t + 1). So, bubble condition ∞ t=0 δ t /q t < ∞ may be named "low asset interest rates condition".

Remark 4 (No-arbitrage condition revisited). The above interpretation allows us to revisit the no-arbitrage condition (7) which can be rewritten as R t+1 q t /q t+1 -1 = δ t+1 /q t+1 . Let τ t+1 ≡ q t+1 /q t -1 the inflation rate calculated with the asset prices. We also defined r t+1 ≡ R t+1 -1. We then obtain:

1 + r t+1 1 + τ t+1 -1 = δ t+1 q t+1 (16) 
By approximating 1+r t+1 1+τ t+1 ≈ (1 + r t+1 -τ t+1 ), we obtain so-called no-arbitrage condition:

r t+1 ≈ δ t+1 q t+1 + τ t+1 (17) 
This means that the real return in terms of consumption good (which is the numeraire) in the production sector equals the sum of the interest rate (in terms of asset) and the inflation rate calculated with the asset prices.

We now come back with the issue of asset bubbles. By combining Proposition 1 and Remark 2, we can prove an important consequence: bubble existence requires very low dividends with respect to output.

Corollary 1. Consider the case of positive dividends (δ t > 0 for any t).

Bubble existence implies

∞ s=1 [ξ s /f (k s )] < ∞.
Consequently, if ξ t = ξ ∀t, there does not exist a steady state associated with a bubble in the asset.

Comments.

1. Notice that Corollary 1 does not require any condition about the boundedness of capital stock or dividends. It also holds for non-stationary technologies.

Corollary 1 is stronger than a well-known result of literature on rational bubbles in infinite-horizon models (Le Van andPham, 2014, 2016): bubbles are ruled out if the sequence of ratio of dividend to aggregate output is bounded below from zero.

2. Let us interpret the asset a t as land and ξ t as fruits of land at period t. Thanks to Corollary 1, we realize why [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF] needs to assume that trees produce fruits only for a finite number of periods9 in order to get land bubbles.

3. Bubbles of assets with and without dividends. The last point of Corollary 1 means that, at the steady state, an asset yielding positive dividends generates no bubble whatever the level of interest rates. However, bubbles of an asset without intrinsic value [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] may exist at the steady state when interest rates are low. This is the fundamental difference between bubbles of assets with and without dividends.

4. When there is no bubble, the structure of the asset becomes that of the rent introduced by [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF]. Corollary 1 also reminds us Proposition 7 in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] who considers a model with money in the utility function. Bubble formation rests on transactions and speculative demand for money. Dividends (on money) are reinterpreted by Tirole in terms of (marginal) utility, while, in our paper, asset dividends are paid in consumption units. [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] shows that positive returns on money rule out the possibility of bubbles; by contrast, in our model, bubbles may appear when dividends tend to zero (see Section 6).

Transitional dynamics of capital stocks and asset values

In this section, we provide general results about the equilibrium transition for capital stocks and asset values. According to Lemma 1, the interior equilibrium system is written

b t+1 = b t f (k t+1 ) n -ξ t+1 and k t+1 = G x (k t , b t , ξ t ) (18) with b t > 0 and k t+1 > 0. ( 19 
)
(18) is a two-dimensional system with an infinite number of parameters, including the degree of forward altruism x and the sequence of exogenous dividends (ξ t ). Systems of this kind are difficult to handle. Nevertheless, we have obtained equilibrium existence in Lemma 2.

We first look at the set of equilibrium trajectories and, then, we give some asymptotic results. We observe that, for each b 0 > 0, there exists a unique sequence (k t , b t ) t≥0 satisfying (18). So, given an equilibrium (k t+1 , b t ), the asset fundamental value F V 0 at date 0 can be computed through b 0 . Hence, we write F V 0 = F V 0 (b 0 ). The initial asset value b 0 affects the size of bubbles b 0 -F V 0 (b 0 ) along the equilibrium transition, and indeterminacy of initial bubble entails in turn the multiplicity of bubbly equilibria. The following lemma is one of the main contributions of the paper.

Lemma 3. Let assumptions 1, 2, 3 be satisfied.

1. The set B 0 of all the values b 0 > 0 such that the sequence (k t+1 , b t ) t≥0 determined by ( 18) is an equilibrium, is an interval.

The fundamental value function

F V 0 (b 0 ) is decreasing in b 0 while the size of bubble b 0 -F V 0 (b 0 ) is strictly increasing.
3. There exists at most one bubbleless solution. Moreover, if there are two equilibria with initial asset values b 0,1 < b 0,2 , then any equilibrium with initial asset value b 0 ∈ (b 0,1 , b 0,2 ] is bubbly.

Proof. See Appendix B.1.

According to (18), it is easy to see that k t+1 ≤ G x (k t , 0, ξ), where ξ ≡ sup t ξ t .

Assumption 5. There exists a unique kξ ,x > 0 such that kξ

,x = G x (kξ ,x , 0, ξ) with G x (k, 0, ξ) > k if k < kξ ,x and G x (k, 0, ξ) < k if k > kξ ,x .
Under this assumption, it is easy to see that k t < max(k 0 , kξ ,x ) for any t. So, (k t ) is uniformly bounded from above. Therefore, Corollary 1 leads to the following result.

Corollary 2. Under Assumptions 1, 2, 3, 4, and 5, a bubble exists only if ∞ s=1 ξ s < ∞. Consequently, if ξ t = ξ > 0 for any t, there does not exist a steady state associated with a bubble in the asset.

When ∞ s=1 ξ s = ∞ there is no bubbly equilibrium, and then, according to point (3) of Lemma 3, there exists a unique equilibrium. Thanks to Assumption 5, we need to focus only on the case ∞ s=1 ξ s < ∞ to look for economies where bubbles may arise.

Assumption 6. For b > 0 and ξ > 0 small enough, there exists a unique k b,ξ solution to

G x (k, b, ξ) = k. Denote by k * x the solution to G x (k, 0, 0) = k. Observe that k *
x is the level of capital stock at the steady state of the economy without financial asset (b t = 0 and ξ t = 0 for any t). Notice also that lim b,ξ→0 k b,ξ = k *

x and k b,ξ is decreasing in b. Let us present the main result of the section: the global analysis of dynamics of capital stocks and asset values.

Proposition 2. Let Assumptions 1, 2, 3, 4, 5, 6 be satisfied.

If f (k *

x ) > n, then there exists a unique equilibrium, which is bubbleless. In addition, if we add that lim t→∞ ξ t = 0, then lim t→∞ b t = 0.

2. If f (k * x ) < n and ξ 0 ≥ ξ 1 ≥ • • • ≥ lim t→∞ ξ t = 0.
Denote by x n the solution to f (x) = n. Then, any equilibrium belongs to one of the following three cases.

(a) lim inf t→∞ k t < x n . In this case, the equilibrium solution is bubbleless and unique.

(b) lim t→∞ k t = k * x and lim t→∞ b t = 0. (c) lim t→∞ k t = x n and lim t→∞ b t = b n where b n satisfies x n = G x (x n , b n , 0). 10 Proof. See Appendix B.2.
Proposition 2 can be viewed as a generalized version of Proposition 1 in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF]. The novel point is that we work with non-stationary dividends that rise a challenge, while [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] considers an asset with zero dividend (he calls it a bubble).11 Another added value is the role of altruism which we will discuss more in details in Section 6.1.

Let us provide the intuition for the first part of Proposition 2. Recall that the value of bubble is the discounted value of one unit of asset at the infinity lim

T →∞ Q T q T = lim T →∞ 1 a 0 Q T b T n T = lim T →∞ 1 a 0 n T Π T τ =1 f (k τ ) b T .
This value depends on the the asset value, the population growth rate and the interest rates of the economy. Since the asset value is uniformly bounded from above, and interest rate is high (in the sense that f (k * x ) > n), the value of bubble will be zero. This is true whatever the level of dividends. Considering a particular case where ξ t = 0 for any t and no altruism (x = 0), we recover point (a) of Proposition 1 in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF]. However, in a more general case as ours, along the unique equilibrium, the asymptotic property of capital stocks and asset values may not hold. There is room for fluctuations in the capital stocks if dividends ξ t fluctuate. 12The second case (f (k * x ) < n) is much more complicated because of the multiple equilibria arising. However, we get also a novel result: if an equilibrium experiences a bubble, then capital stock and asset value must converge. Asset values may converge to zero or to a positive value.

The following result concludes the section and is a direct consequence of Proposition 2 and Lemma 1.

Corollary 3. Let assumptions 1, 2, 3, 4, 5, 6 be satisfied. The economy experiences a bubble only if f (k *

x ) ≤ n and t≥1 ξ t < ∞.

Examples

In this section, we consider some particular cases and provide more explicit equilibrium analyses. We also provide some new examples of multiple equilibria with and without bubbles.

Logarithmic utility and Cobb-Douglas technology

We consider the case of a Cobb-Douglas production function f (k) = Ak α and a logarithmic utility function U (c, d) = ln c + β ln d with β > 0. The income sharing between consumption and total saving is given by

c t = 1 1 + β (w t + g t ) and s t + q t a t = β 1 + β (w t + g t ) .
The equilibrium system is explicitly written

nk 1 + b 0 = β 1 + β (w 0 + g 0 ) k t+1 = αAγ x k α t + (1 -σ) ξ t -σb t n ∀t ≥ 1 (20) b t+1 = αAb t nk 1-α t+1 -ξ t+1 ∀t ≥ 0 (21) b t > 0, k t+1 > 0, ∀t ≥ 0 (22)
with the following parameters indexed in the degree of altruism (x):

γ x ≡ β 1 + β 1 -α + x α (1 + x) , θ * x ≡ α (γ x -1) σ and σ ≡ 1 - β 1 + β x 1 + x .
With our explicit production and utility functions, we compute the reduced functions:

G x (k, b t , ξ t ) = αAγ x k α + (1 -σ) ξ t -σb t n G x (k, 0, 0) = αAγ x n k α , k * x ≡ (αAγ x /n) 1/(1-α) .
Remark 5.

1. We observe that γ x = n/f (k * x ), so condition f (k * x ) < n becomes equivalent to γ x > 1. Parameter γ x captures the distorsion with respect to the Golden Rule.

2. Under Cobb-Douglas technology and Assumption 4, we see that (k t ) is uniformly bounded from above.

It is easy to check that these specifications satisfy Assumptions 1, 2, 3, 5, 6. Moreover, according to Corollary 2, an equilibrium is bubbly only if t≥1 ξ t < ∞, the case we will focus on. Consequently, Proposition 2 applies. The following result complements Proposition 2.

Proposition 3. Assume that f (k) = Ak α and U (c, d) = ln c+β ln d with 0 < β < 1. Suppose also that ξ t > 0 for any t and lim t→∞ ξ t = 0.

1. If γ x < 1 (i.e., f (k * x ) > n)
, there is a unique equilibrium, which is bubbleless and lim t→∞ b t = 0. Moreover, if this equilibrium satisfies lim inf t≥0 k t > 0, then the ratio of asset value to production tends to zero: lim t→∞ b t /(Ak α t ) = 0.

2. If γ x > 1 (i.e., f (k * x ) < n). Let (b t , k t+1
) t≥0 be an equilibrium, then there are three cases:

(a) lim inf t→∞ k t = 0.

(b) The sequence (b t ) converges to 0, and

(k t ) converges to k * x ≡ (αAγ x /n) 1/(1-α) . (c) The sequence (b t ) converges to b = n (γ x -1) x n , and (k t ) converges to x n ≡ (αA/n) 1/(1-α) .
Proof. See Appendix C.1.

Remark 6 (comparative statics). The limit of capital stock k * x in case (2.b) of Proposition 3 increases in the degree of forward altruism (x). The limit of asset value b = n (γ x -1) x n in case (2.c) of Proposition 3 increases in x.

These positive effects are intuitive and from the form of forward altruism: bequests are proportional to consumption of old and they improve income, and then saving of young people. The more the savings of the young, the higher the amount at their disposal to buy the financial asset and/or the physical capital.

In Proposition 3, with Cobb-Douglas technology and logarithmic utility function, the dynamical system is more simple and we obtain more results with respect to Proposition 2. Precisely, the second part of Proposition 3 does not require the decreasing property of dividends sequence and point (2.a) is lim inf t→∞ k t = 0 instead of lim inf t→∞ k t < x n as in Proposition 2.

Let us explain the idea of the second part of Proposition 3. First, logarithmic utility function implies that the saving rate is constant and Cobb-Douglas technology entails that both income from physical capital R t k t and salary w t are always proportional to the production f (k t ). We then obtain the following key equation (see Appendix C.1 for more details)

b t+1 Ak α t+1 = b t Ak α t α αγ x + (1 -σ) ξ t / (Ak α t ) -σb t / (Ak α t ) - ξ t+1 Ak α t+1 .
When lim inf t→∞ k t > 0 and lim t→∞ ξ t = 0, the sequence ξ t / (Ak α t ) converges to zero. By consequence, in the long run we can obtain the convergence of the ratio of asset value to production b t /(Ak α t ), and hence of b t and of k t . Points (2.b) and (2.c) correspond to part (b) of Proposition 1 in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF]. It should be noticed that [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] does not consider the case where lim inf t→∞ k t may be zero. However, this case may be possible. The following example provides an illustration.

Example 1 (equilibrium with lim t→∞ k t = 0). Consider the selfish economy (x = 0) with production and utility functions:

f (k) = Ak α and U (c, d) = ln c + β ln d with 0 < β < 1.
Let us construct the sequence of dividends (ξ t ) as follows. First, we introduce λ and (x t ) by

λ ≡ α 2 + α 4 + 4α 3 (1 -α) 2(1 -α) > max 1, ln 1 + 2 γ 0 and x t ≡ max e λ t , 1 + 2/γ 0 where γ 0 ≡ 1 -α α β 1 + β .
Second, we define a sequence ( bt , kt+1 , ξ t ) by bt = αAγ 0 kα t -n kt+1 and kt+1 = αA kα

t nx t ξ t+1 ≡ αA bt n k1-α t+1 -bt+1 . ( 23 
)
With this setup, lim t→∞ ξ t = 0.

In this economy with above fundamentals, the sequence (b t , k t+1 ) t≥0 , determined by (b t , k t+1 ) = ( bt , kt+1 ) for any t ≥ 0, is the unique equilibrium, and it satisfies lim t→∞ k t = lim t→∞ b t = 0.

Proof. See Appendix C.2.

Example 1 indicates that there is an economy with Cobb-Douglas technology, in which there exists an equilibrium with lim t→∞ k t = lim t→∞ b t = 0. In this example, the sequence of dividends (ξ t ) is strictly positive but converges to zero. However, dividends in first days are very high comparing to capital stock. This causes the concentration of savings in asset instead of physical capital, which implies the same situation for the next day, and so on to infinity. The aggregate capital hence converges to zero. However, we can verify the ratio of dividend on capital converges to infinity, i.e., lim t→∞ ξ t /k t = ∞ (for details, see Appendix C.2). One can prove, by using the same argument in the proof of point (2.a) in Proposition 2 and noticing that lim t→∞ k t = 0 in Example 1, that this equilibrium is the unique equilibrium of the economy.

In the economy in Example 1, if we exclude the positive dividends, then we recover the standard model in which lim t→∞ k t = x n ≡ (αA/n) 1/(1-α) for any k 0 > 0. So, Example 1 suggests an interesting property: the presence of financial asset having dividends (ξ t ) may create a collapsing equilibrium (in the sense that lim t→∞ k t = lim t→∞ b t = 0). This result recall us to a well-known "resources curse", though the situation in our article is not exactly the same discussed in the literature.

We now illustrate and complement point 2 of Proposition 3 by providing an example where lim inf t→∞ k t > 0 and there are multiple bubbly equilibria. Following Corollary 2, we will choose dividends decrease geometrically.

Example 2 (continuum of bubbly equilibria with forward altruism). Let ξ t ≡ ξ/n t with n > γ x > 1 and

k m ≡ min {k 0 , x n } ≤ x n ≡ αA n 1 1-α < k ≡ αAγ x n 1 1-α ≤ k M ≡ max k 0 , k ξ ∈ (0, ξ)
where ξ > 0 is solution to

α αγ x + (1 -σ) ξ/(Ak α M ) = 1 n + ξ θ * x Ak α m .
Then, any sequence (b t , k t+1 ) t≥0 determined by the system (20)-( 21) and b 0 such that θ * x Ak α 0 /n < b 0 < θ *

x Ak α 0 , is an equilibrium. By consequence, according to Lemma 3, there are continuum equilibria with bubble. Moreover, k t ≥ k m > 0 for any t.

Proof. See Appendix C.3.

In Example 2, the dividends are not so high comparing to the physical capitals, so the capital sequence is bounded away from zero. By Proposition 3, it converges either to k *

x with f (k *

x ) < n, either to x n with f (x n ) = n. In Example 2, there exist a continuum number of equilibrium path, and hence a continuum number of bubbly equilibria. For every equilibrium path, except the one having the positive bubble component, the asset value b t converges to zero. These results are consistent with the analysis in the case where ξ t = 0 for any t as in [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF].

Remark 7. Bubbles arise in an OLG model à la Diamond [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF]. However, under positive bequests, an arbitrarily small degree of altruismà la [START_REF] Barro | Are government bonds net wealth[END_REF] immediately kills the bubble in models à la Diamond (Bosi et al., 2016).

In our paper, forward altruism is based on constraints instead of utility. In this case, bubbles are preserved in OLG models with altruism. The reason is that bequests from old to young are proportional to consumption of old. The old finance these bequests partly purchasing the bubble when young.

Explicit solution in the case of pure bubble

In this section, we consider the dynamics of pure bubbles à la [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] by setting ξ t = 0 for any t. In this case, the value of bubble equals the asset value. We provide the explicit trajectories of both capital stocks and asset values.

The equilibrium system is written

nk 1 + b 0 = β 1 + β (w 0 + g 0 ) (24) nk t+1 + σb t = γ x αAk α t ∀t ≥ 1 (25) nb t+1 = αAk α-1 t+1 b t (26) with k t+1 > 0, b t ≥ 0, where σ ≡ 1 - β 1 + β x 1 + x ∈ (0, 1] , γ x ≡ β 1 + β 1 -α + x α (1 + x) = n f (k * x )
.

Here, k * x is the capital intensity in the bubbleless steady state, that is the steady state solution of (25) with b = 0:

k * x = ρ 1/(1-α) γx ( 27 
)
with ρ γx ≡ γ x αA/n. We eventually introduce the bubble critical value:

bx

≡ (w 0 + g 0 ) β 1 + β γ x -1 γ x -1 + σ = (w 0 + g 0 ) 1 - 1 + x + αβ (1 + x) (1 -α) (1 + β) (28) 
which is positive if γ x > 1. These elements allows us to introduce the main result of this section.

Proposition 4. Assume that f (k) = Ak α , U (c, d) = ln c + β ln d with 0 < β < 1, and ξ t = 0 for any t.

1. If γ x ≤ 1 (i.e. f (k * x ) ≥ n),
the equilibrium is unique and bubbleless and the equilibrium sequence of capital intensities is given by

k t = ρ 1-α t-1 1-α γx k α t-1 1 ∀t ≥ 2, k 1 = β n(1 + β) (w 0 + g 0 ) (29) Moreover, lim t→∞ k t = k * x ,
where k * x is given by (27).

2. If γ x > 1 (i.e. f (k * x ) < n), the equilibrium is indeterminate. The set of equilibria (k t+1 , b t ) t≥0 is defined by ( 25), ( 26), and b 0 ∈ 0, bx . Moreover, (a) (bubbleless equilibrium) If b 0 = 0, and, thus, b t = 0 forever. The sequence (k t ) is given by ( 29).

(b) (bubbly equilibrium) If b 0 > 0, then b t > 0 for any t. When b 0 < bx , we have lim t→∞ b t = 0 and lim t→∞ k t = k * x . When b 0 = bx , we have lim t→∞ b t > 0. We also have

b t = γ x -1 σ nk t+1 ∀t ≥ 0 ( 30 
)
k t = ρ 1-α t-1 1-α 1 k α t-1 1 ∀t ≥ 2, k 1 = α(w 0 + g 0 ) n(1 -α) 1 - β 1 + β x 1 + x (31)
and ρ 1 ≡ αA/n. Moreover,

lim t→∞ k t = ρ 1/(1-α) 1 < k * x and b x ≡ lim t→∞ b t = n γ x -1 σ ρ 1/(1-α) 1 > 0. ( 32 
)
Proof. See Appendix C.4.

Definition 3. bx is the (upper) size of bubbly asset value at initial date with forward altruism (in the case γ x > 1).

The value ρ 1/(1-α) 1 corresponds to the value x n determined by f (x n ) = n and introduced in Proposition 2.

Proposition 4 illustrates and complements Proposition 2 in the case ξ t = 0 for any t. It is instructive to compare these two propositions. Proposition 4 supplies a number of new results: explicit equilibrium sequences, a proof of global convergence, a necessary and sufficient condition for bubble existence as well as for equilibrium indeterminacy. All these issues remain unaddressed in theoretical papers. 13Another added value of this section is that we can compute explicitly bx , the maximum feasible bubble at the initial date, in terms of fundamental parameters. Indeed, recall that [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] only proves the existence of such the maximum level. However, under specifications in Proposition 4, this level can be computed by (28).

The explicit form also allows us to analyze the impact of some relevant parameter (impatience and altruism) on equilibrium trajectories.

Comparative statics

1. (existence of bubble). Condition γ x ≡ n/f (k * x ) > 1 (i.e. low interest rates or capital overaccumulation) is equivalent to

α(1 + x) 1 -α + x < β 1 + β . ( 33 
)
The left-hand side of (33) decreases with x. Thus, forward altruism promotes the emergence of bubbles.

Both the limits k *

x and b x increase in x. The intuition is similar to that in Remark 6.

(maximum value bx ).

Let us compute the effects of initial capital, patience and altruism on the maximum level of asset value. According to (28), we have

∂ bx ∂k 0 , ∂ bx ∂β , ∂ bx ∂x > 0.
4. (equilibrium transition). Consider the case of low interest rates (i.e., f (k * x ) < n or γ x > 1). Look at the asymptotically bubbly equilibrium (i.e. b 0 = bx ). We see that b 0 = bx increases in x, so k 1 determined by (24) decreases in x. Since k t+1 = ρ 1 k t for any t, we see that k t decreases in x for any t. Hence, R t increases in x for any t. By using the induction argument and the fact that b t = R t b t-1 /n for any t ≥ 0, we obtain that b t increases in x for any t. So, along the asymptotically bubbly equilibrium, asset value14 b t increases but capital stock k t decreases in the forward altruism degree.

Logarithmic utility and linear technology

We consider the case of a linear production function F (K, L) = RK + wL and logarithmic utility function U (c t , d t+1 ) = ln c t + β ln d t+1 with 0 < β < 1. In this case, we have

c t = 1 1 + β (w t + g t ) and s t + q t a t = β 1 + β (w t + g t ) g t = x 1 + x (k t f (k t ) + b t + ξ t ) ∀t ≥ 1
with g 0 given. The equilibrium system becomes

nk t+1 + 1 - β 1 + β x 1 + x b t = R β 1 + β x 1 + x k t + β 1 + β w + x 1 + x ξ t ∀t ≥ 1 (34) b t+1 + ξ t+1 = R n b t (35) 
with k t > 0 and b t > 0. Notice that, at the initial date, nk 1 + b 0 = β 1+β (w + g 0 ). We compute the fundamental value of financial asset:

F V 0 = ∞ t=1 δ t R t = ∞ t=1 n t ξ t R t a 0 .
Solving recursively no-arbitrage condition in (35) yields

b t = R t n t b 0 - t s=1 n s R s ξ s . ( 36 
)
We now present the main result of this section, which characterizes all equilibria.

Proposition 5. Assume that F (K, L) = RK +wL and U (c, d) = ln c+β ln d with 0 < β < 1.

At equilibrium, we have

nk t+1 + b t = D t β 1 + β (w + g 0 ) + βw 1 + β 1 -D t 1 -D where D ≡ R n β 1 + β x 1 + x . ( 37 
)
Hence,

R > n.

There is no bubbly equilibrium.

2. R ≤ n. Assume that

D t β 1 + β (w + g 0 ) + βw 1 + β 1 -D t 1 -D - R t n t β 1 + β (w + g 0 ) - t s=1 n s R s ξ s > 0 ∀t ≥ 1.
Then, the set of interior equilibria (k t+1 , b t ) t≥0 is determined by conditions ( 36), ( 37) and b 0 ∈ a 0 F V 0 , β 1 + β (w + g 0 ) .

If b 0 > a 0 F V 0 , then the equilibrium is bubbly; moreover, in this case, lim t→∞ b t > 0 if and only if R = n.

Proof. See Appendix C.5.

Condition R > n (resp. R < n) corresponds to the case of high (resp. low) interest rate in Proposition 2. Thanks to specifications in Proposition 5 we can compute and get a complete characterization of interior equilibrium paths.

More economic implications of Proposition 5 will be presented in Section 7.

Remark 8 (no interior equilibrium). According to (37), we see that

D t β 1 + β (w + g 0 ) + βw 1 + β 1 -D t 1 -D > b t = R t n t b 0 - t s=1 n s R s ξ s ≥ ∞ s=t+1 n s-t R s-t ξ s .
Hence, there is no interior equilibrium if

D t β 1 + β (w + g 0 ) + βw 1 + β 1 -D t 1 -D < ∞ s=t+1 n s-t R s-t ξ s ∀t.
This happens when the productivity R is low. The intuition is that, when the productivity is low, households tend to invest in financial asset rather than in physical capital. Therefore, the capital stock k t may be zero.

7 Bubble, asset price and interest rate revisited 7.1 Does the existence of bubbles really require low interest rates and low dividends?

The seminal article by [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] proves that pure bubbles may arise if the interest rate at the steady state of the economy without financial asset is below the population growth rate. As shown above, this well-known result still holds for an asset bringing non-stationary dividends in an altruistic economy. Both findings are based on the boundedness of both production (per capital) f (k t ) and dividend (per capital) ξ t .

In this section, we revisit this result. Precisely, we consider an economy where the output may grow, and we wonder whether existence of bubble still requires low interest rates and low dividends conditions.

For the sake of simplicity, we reconsider Proposition 5 but with a non-stationary linear technology: F t (K, L) = RK + w t L, where R, w t > 0 are exogenous. The equilibrium system becomes

nk t+1 + 1 - β 1 + β x 1 + x b t = R β 1 + β x 1 + x k t + β 1 + β w t + x 1 + x ξ t ∀t ≥ 1 (38) b t+1 + ξ t+1 = R n b t .
We have, as (36),

b t = R t n t b 0 - t s=1 n s R s ξ s . ( 39 
)
Let us provide an example where (1) bubbles appear, (2) R > n and (3) ξ t may be unbounded.

To do so, we choose (w t , ξ t ) and b 0 such that

β 1 + β w t > 1 - β 1 + β x 1 + x R t n t b 0 - t s=1 n s R s ξ s (40) b 0 ∈ ∞ s=1 n s R s ξ s , β 1 + β (w + g 0 ) (41)
Then the sequence (k t+1 , b t ) defined by ( 38), ( 39), ( 40) and ( 41) is an interior equilibrium; moreover bubbles appear if and only if b 0 > ∞ s=1 n s R s ξ s . The economic intuition of our counterexample is the following. When the productivity on the capital-free side of production w t grows, the labor income of households increases. If such a productivity is high enough, salary w t may growth faster than (R/n) t , and in this case it would be high enough to cover the value of asset with bubbles that agents may buy. By consequence, even when the interest rate is high (i.e., R > n), there may be a bubble.

Remark 9. [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF] considers on OLG model where consumers receive exogenous dividends. However, [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF]Weil ( ) (p. 1469) ) assumes that dividends become zero from some date on to allow for the possibility of bubble. However, the above example shows that a bubbly equilibrium is possible even if dividends are positive at any date and may tend to infinity.

Bubbles and monotonicity of asset prices

By definition, an asset bubble appears when the asset price is strictly higher than the asset fundamental value. Some authors are interested in checking whether a causal link holds between the existence of asset bubble and the rise of asset price. [START_REF] Weil | On the possibility of price decreasing bubbles[END_REF] explains why along a bubbly equilibrium the asset prices may decrease. In Proposition 5, under a linear technology, the asset price at date 0 is given by

q t = b t a t = b t n t a 0 = R t a 0 b 0 -a 0 F V 0 + ∞ s=t+1 n s ξ s R s .
We see that the asset price q t may increase or decrease or even fluctuate (in time) along a bubbly equilibrium. In other words, there is no causal relationship between the existence of bubbles and monotonicity of asset pricing.

Conclusion

We have introduced two additional ingredients in an OLG model à la [START_REF] Diamond | National debt in a neoclassical growth model[END_REF]: an asset bringing positive dividends and a kind of descendent altruism. We have shown that bubbles are ruled out if the sum (over time) of ratios of dividend to output is finite. When outputs are bounded from above, the economy experiences a bubble only when (1) interest rates remain below the population growth factor and (2) the sum (over time) of dividends is finite. Some examples of multiple bubbly equilibria have been provided. However, when outputs are not bounded, bubbles may appear even if the interest rates are greater than the population growth rates or even if dividends do not converge to zero (or even if they tend to infinity).

In standard framework, the forward altruism promotes pure bubble à la [START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] and has a positive impact on asset values but a negative impact on the capital stocks along the transition sequence of an asymptotically bubbly equilibrium.

A Proofs of Section 3

A.1 Proof of Lemma 1 12) is equivalent to H kt,bt,ξt (k t+1 ) = 0 where

Since b t-1 f (kt) n = b t + ξ t , equation (
H kt,bt,ξt (k) ≡ nk + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k) = 0 for t ≥ 1.
The saving function S x is increasing in f (k) because cu (c) is increasing in x. So, the function H kt,bt,ξt (k) is increasing in k. Since we assume that (11-14) has a solution, we define G x (k t , b t , ξ t ) the solution of equation H kt,bt,ξt (k) = 0, and hence

k t+1 = G x (k t , b t , ξ t ). It is easy to see that G x is continuously differentiable. We can see that ∂Sx ∂(w+g) (w +g, R) ∈ (0, 1). 15 Hence, H kt,bt,ξt (k) increases if b t increases. By consequence, G x (k t , b t , ξ t ) is decreasing in b t . It is easy to see that G x (k t , b t , ξ t ) is increasing in both k t and ξ t .
According to (10), we have

nk t+1 + b t 1 + x ≤ f (k t ) - k t f (k t ) 1 + x + xξ t 1 + x . (A.1)
As a result, we get G x (k, +∞, ξ) = -∞.

The property G x (k, 0, ξ) > 0 for any k > 0 any ξ > 0 is easily proved by using the definition of G x .

A.2 Proof of Lemma 2

We prepare our proof by intermediate steps. First, we prove the following claim.

Claim 1. Let a positive sequence (ξ t ) be given. Consider a date t ≥ 1. Given b t+1 ≥ 0, k t > 0, there exists b t and k t+1 such that

nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 for t ≥ 1 b t+1 = b t f (k t+1 ) n -ξ t+1 b t > 0, k t+1 > 0.
Moreover, k t+1 and b t are continuously increasing in k t .

15 Indeed, given W > 0 and R > 0, the function S x is defined by u (W -S x ) = βR 1+x u R 1+x S x . Taking the derivative of both sides, we get

u (W -S x ) 1 - ∂S x ∂W = βR 2 (1 + x) 2 u R 1 + x S x ∂S x ∂W .
Since ∂Sx ∂W > 0, we have ∂Sx ∂W < 1.

Proof of Claim 1. It is sufficient to prove that there is k t+1 > 0 such that

nk t+1 + n (b t+1 + ξ t+1 ) f (k t+1 ) -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x n f (k t+1 ) (b t+1 + ξ t+1 ) + ξ t , f (k t+1 ) = 0 for t ≥ 1. (A.2)
First, as in the proof of Lemma 1, we see that ∂Sx ∂a 1 (a 1 , a 2 ) ∈ (0, 1). So, combining this with the fact that the saving function is increasing in f (k t+1 ), we can verify that the left-hand side of the above equation is an increasing function on k t+1 . Moreover, since f (0) = ∞, the left-hand side is negative when k t+1 is small enough and positive when k t+1 is high enough. Therefore, equation (A.2) has a unique solution k t+1 > 0. For such

k t+1 > 0, we determine b t by b t = n f (k t+1 ) (b t+1 + ξ t+1 ) .
It is easy to see that the function f

(k t ) -1 1+x k t f (k t ) is increasing in k t .
So, combining this with equation (A.2) and property of the saving function, we see that k t+1 and b t are continuously increasing in k t .

By using the same argument in the proof of Claim 1, we also get the following result.

Claim 2. Let a positive sequence (ξ t ) t≥0 , and b 1 ≥ 0, k 0 > 0, g 0 > 0 be given. There exists b 0 > 0 and k 1 > 0 such that

nk 1 + b 0 -S x w 0 + g 0 , f (k 1 ) = 0, b 1 = b 0 f (k 1 ) n -ξ 1 .
Moreover, k 1 and b 0 are continuously increasing in k 0 .

We now prove the following result.

Claim 3. Let a positive sequence (ξ t ) be given. Consider an integer

T ≥ 1. Given k 1 > 0, b T +1 = 0, there exists (k t+1 , b t ) T t=1 such that, for any 1 ≤ t ≤ T , nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 b t+1 = b t f (k t+1 ) n -ξ t+1 b t > 0, k t+1 > 0.
and k 2 , b 1 are continuously increasing in k 1 .

Proof of Claim 3. We prove by using the induction argument (with respect to T ). According to Claim 1, Claim 3 holds for T = 1. Suppose that Claim 3 holds until T . Let us prove it for T + 1. Let k 2 > 0, b T +1 = 0. Since Claim 3 holds for the integer T , there exists (k t+1 , b t ) T +1 t=2 such that, for any t = 2, . . . , T + 1,

nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 b t+1 = b t f (k t+1 ) n -ξ t+1 b t > 0, k t+1 > 0.
and b 2 is continuously increasing in k 2 . We now have to prove that there exist k 2 > 0 and b 1 > 0 such that

nk 2 + b 1 -S x f (k 1 ) - 1 1 + x k 1 f (k 1 ) + x 1 + x (b 1 + ξ 1 ), f (k 2 ) = 0 ∀t ≥ 0 b 2 = b 1 f (k 2 ) n -ξ 2 ∀t ≥ 0 and k 2 , b 1 are continuously increasing in k 1 . Note that b 2 depends on k 2 .
We can prove this by using the argument in the proof of Claim 1 and the property that b 2 is increasing in k 2 .

Note that k 2 , b 1 are continuously increasing k 1 .

Claim 4 (T -truncated equilibrium system). Let a positive sequence (ξ t ) be given. Consider an integer

T ≥ 0. Given k 0 > 0, g 0 > 0, b T +1 = 0, there exists (k t+1 , b t ) T t=0 such that nk 1 + b 0 -S x w 0 + g 0 , f (k 1 ) = 0 nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 b t+1 = b t f (k t+1 ) n -ξ t+1 b t > 0, k t+1 > 0.
for any 1 ≤ t ≤ T , and k 1 , b 0 are continuously increasing in k 0 , g 0 .

Proof. According to Claim 2, Claim 4 holds for T = 0. Suppose that Claim 4 holds. Let us prove it for T + 1.

Let k 1 > 0, b T +1 = 0. Since Claim 3 holds, there exists (k t+1 , b t ) T +1 t=1 such that, for any t = 1, . . . , T + 1,

nk t+1 + b t -S x f (k t ) - 1 1 + x k t f (k t ) + x 1 + x (b t + ξ t ), f (k t+1 ) = 0 b t+1 = b t f (k t+1 ) n -ξ t+1 b t > 0, k t+1 > 0.
and b 1 , k 2 are continuously increasing in k 1 .

We now have to prove that there exists k 1 > 0, b 0 > 0 such that

nk 1 + b 0 -S x w 0 + g 0 , f (k 1 ) = 0 b 1 = b 0 f (k 1 ) n -ξ 1 .
and b 0 , k 1 are continuously increasing in k 0 . Notice that b 1 depends on k 1 . We can prove this by using the argument in the proof of Claim 1 and the property that b 1 is increasing in k 1 .

We now come back to the proof of Lemma 2. According to previous claims, the Ttruncated equilibrium system defined in Claim 4 has a solution (b T t , k T t+1 ) t≤T . Let now T tend to infinity: there exists a sub-sequence (t n ) such that lim n→∞ b tn t , k tn t+1 = (b t , k t+1 ) for any t. It is easy to see that (b t , k t+1 ) t≥0 is a solution to (18).

A.3 Proof of Corollary 1

Condition (10) implies that b t ≤ (1 + x) f (k t ) + xξ t . By combining this with point (iii) of Proposition 1, the existence of bubble implies that

∞ t=1 ξ t (1 + x) f (k t ) + xξ t < ∞.
Since x > 0, we have lim t→∞ ξ t /f (k t ) = 0. So, there is t 0 such that (1 + x) f (k t ) + xξ t < (2 + x) f (k t ) for any t ≥ t 0 . As a result, we obtain

∞ s=t 0 ξ s f (k s ) < (2 + x) ∞ s=t 0 ξ t (1 + x) f (k t ) + xξ t < ∞.
B Appendix: proofs of Section 5

B.1 Proof of Lemma 3

(1) Consider the two solutions b 1 0 ≤ b 2 0 with (b 1 t , k 1 t+1 ) and (b 2 t , k 2 t+1 ) two corresponding sequences of asset values and capital stocks. Suppose that b 1 0 ≤ b 0 ≤ b 2 0 . Consider the sequence (b t , k t+1 ) generated (18). By induction, it is easy to prove that for any t ≥ 0, we have

k 1 t+1 ≥ k t+1 ≥ k 2 t+1 and b 1 t ≤ b t ≤ b 2 t .
Hence, the sequence (b t , k t+1 ) is also a solution of the dynamic system.

(2) Take b 1 0 and b 2 0 as at point (1). For any t, we have k 1 t+1 ≥ k 2 t+1 and b 1 t ≤ b 2 t , and, therefore,

f (k 1 t+1 ) ≤ f (k 2 t+1 ). Hence, F V (b 1 0 ) ≥ F V (b 2 0 ) and, if b 1 0 < b 2 0 , we have b 1 0 - F V (b 1 0 ) < b 2 0 -F V (b 2 0 ). The function b 0 -F V (b 0 ) is strictly increasing. (3) Since, for any solution, we have b 0 -F V (b 0 ) ≥ 0, point (3) is a direct consequence of point (2).

B.2 Proof of Proposition 2

We prepare our proof by the following result.

Lemma 4. Let Assumptions 1, 2, 3, 4, 5, 6 be satisfied. Suppose also that f (k *

x ) > n and lim t→∞ ξ t = 0. Then, lim t→∞ b t = 0.

Proof of Lemma 4. Fix x > k *

x such that f (x) > n. Let ξ > 0. There exists T (ξ) such that ξ t ≤ ξ for any t ≥ T (ξ). Hence, k T +t ≤ G t

x (k T , 0, ξ). Moreover, we see that lim t→∞ G t x (k T , 0, ξ) = k 0,ξ for any k T > 0. Hence, we obtain lim sup t→∞ k t ≤ k 0,ξ for any ξ.

Let ξ converge to 0, we have that k 0,ξ converges to k * x , and hence lim sup t→∞ k t ≤ k * x < x. So, there exists T high enough such that k t ≤ x for any t ≥ T .

Assume that lim sup t b t > 0. Let > 0 satisfy (lim sup t b t ) [f (x)/n -1] -> 0. Then, there exists T 0 > T high enough such that k t ≤ x and ξ t < for any t ≥ T 0 . Thus, we have

b T f (k T +1 ) n -1 -ξ T +1 ≥ b T f (x) n -1 -> 0. Therefore, b T +1 -b T = b T f (k T +1 ) n -1 -ξ T +1 > 0, and hence b T +2 -b T +1 = b T +1 f (k T +2 ) n -1 -ξ T +2 ≥ b T +1 f (x) n -1 -> b T f (x) n -1 -> 0.
So, the sequence (b t ) t≥T is increasing and converges to b < +∞, since from ( 10), (b t ) t is uniformly bounded from above. Therefore, from the no-arbitrage condition (7), k t+1 converges to x n with f (x n ) = n. This leads to a contradiction since, for all t ≥ T , f (k t ) ≥ f (x) > n. We have proved that b t converges to 0.

We now come back to the proof of Proposition 2. Part 1. Assume that f (k * x ) > n. Case 1: lim sup t→∞ ξ t > 0, according to Corollary 1, every equilibrium is bubbleless. Case 2: lim t→∞ ξ t = 0. For any ξ > 0, there exists T such that ξ T +t < ξ for any t ≥ 0. Hence, k T +t ≤ G t

x (k T , 0, ξ), which implies lim sup t→∞ k t ≤ k 0,ξ . Let ξ converges to 0, we have that k 0,ξ converges to k *

x , and hence lim sup t→∞ k t ≤ k * x . According to Lemma 4, we have lim t→∞ b t = 0. By combining this with condition lim sup t→∞ k t ≤ k *

x , it is easy to prove that lim sup T →∞ n T T t=1 f (kt) b T = 0. So, there is no bubble.

Part 2. Consider now the case f (k * x ) < n. CASE 1: Consider the case lim inf t→∞ k t < x n . If lim sup t→∞ k t < x n , there exists a sufficiently large T and y n such that k T +t < y n < x n for any t ≥ 0. Hence,

f (k T +t ) > f (y n ) > f (x n ) = 1. By consequence, we obtain that lim T →∞ n T T t=1 f (kt) b T = 0.
Assume now that lim sup t→∞ k t ≥ x n . Suppose that the solution is bubbly. According to point (iii) of Proposition 1, we have lim t→∞ ξ t /b t = 0.

Let x satisfy lim inf t→∞ k t < x < x n . Since lim sup t→∞ k t ≥ x n , there exists T high enough satisfying k T +1 ≤ k T , k T +1 ≤ x and ξ T +t /b T +t ≤ f (x)/n -1 for any t ≥ 0. For this T , we have

b T +1 = f (k T +1 ) n b T -ξ T +1 ≥ f (x) n b T -ξ T ≥ b T and, therefore, k T +2 = G x (k T +1 , b T +1 , ξ T +1 ) ≤ G x (k T , b T , ξ T ) = k T +1 < x.
By induction, the sequence (k T +t ) ∞ t=0 is decreasing and converges to some value which is smaller that x < x n . This leads to a contradiction with the hypothesis lim sup t→∞ k t ≥ x n . Hence, the solution is bubbleless.

We now prove that this is the unique equilibrium. Assume that there is another equilibrium (k t+1 , b t ) t≥0 with b 0 > b 0 . Since b 0 > b 0 , we have k t < k t for any t. Hence, lim inf t→∞ k t ≤ lim inf t→∞ k t = 0. So, we get lim inf t→∞ k t = 0 which implies that the equilibrium (k t+1 , b t ) t≥0 is bubbleless. This is impossible because according to point 3 of Lemma 3 there is at most one bubbleless equilibrium.

Point (iii) of Lemma 3 implies that the equilibrium is unique. CASE 2: lim inf t→∞ k t ≥ x n . CASE 2.1. Focus first on the case lim inf t→∞ k t > x n . There exist > 0 small and T high enough such that, for any t ≥ T , we have k

t > x n + . This implies b t+1 < f (k t+1 ) n b t < f (x n + ) n b t .
Thus, the sequence (b t ) is decreasing and converges to 0. Fix b > 0 and ξ > 0. Take T sufficiently high such that b T +t < b, ξ T +t < ξ for any t ≥ 0. Then, G t

x (k T , b, 0) ≤ k T +t ≤ G t x (k T , 0, ξ) and, for any b > 0 and ξ > 0, lim inf t→∞ k t ≥ k b,0 and lim sup t→∞ k t ≤ k 0,ξ .

Let b, ξ tend to 0 we get lim inf t→∞ k t = lim sup t→∞ k t = k * x . CASE 2.2. Consider now the case lim inf t→∞ k t = x n . First, we prove that lim inf t→∞ b t ≥ b n where b n satisfies x n = G x (x n , b n , 0). Suppose the contrary. Fix b such that lim inf t→∞ b t < b < b n . From G x (k b,0 , b, 0) = k b,0 and x n < G x (x n , b, 0), we get k b,0 > x n . Since G x (x n , b, 0) > x n , we can take > 0 satisfying G x (x n -, b, 0) > x n + . Take also T high enough such that k T > x n -and b T < b. We find

k T +1 = G x (k T , b T , ξ T ) ≥ G x (k T , b, 0) > x n + b T +1 = f (k T +1 ) n b T -ξ T +1 < b T < b.
By induction, we obtain k T +t > x n + and b T +t < b for any t. Hence, lim inf t→∞ k t ≥ x n + > x n , that is a contradiction. Remark 10. In the proof of cases (2.b) and (2.c) of Proposition 2, we do not use the monotonicity of (ξ t ) ∞ t=0 .

C Appendix: proofs of Section 6 .

(1) Focus on the first case: there exists T such that b

T /(Ak α T ) ≤ θ * x . Then, b t+1 Ak α t+1 < b t Ak α t α αγ x + (1 -σ) ξ t /(Ak α t ) -σb t /(Ak α t ) < b t Ak α t α αγ x -σθ * x = b t Ak α t < θ *
x for any t ≥ T . The sequence (b t /(Ak α t )) is decreasing. This implies the existence of lim t→∞ b t / (Ak α t ) ≡ θ, with 0 ≤ θ < θ * x . Let us show that θ = 0. Suppose that θ > 0. θ becomes solution of θ = αθ/ (αγ x -σθ) that is θ = θ *

x : a contradiction. 

) > (1 + ε) θ * x . Since ξ t → 0, we observe that lim t→∞ (1 + ε) θ * x α αγ x + (1 -σ) ξ t /(Ak α t ) -σ (1 + ε) θ * x -(1 + ε) θ * x = (1 + ε) θ * x α αγ x -σ (1 + ε) θ * x -(1 + ε) θ * x > 0.
Thus, there exists T high enough such that b T /(Ak α T ) > (1 + ε) θ * x and, for every t ≥ T , α

(1 + ε) θ * x αγ x + (1 -σ) ξ t /(Ak α t ) -σ (1 + ε) θ * x -(1 + ε) θ * x - ξ t+1 A (inf s k s ) α > 0. Therefore, b T +1 Ak α T +1 = b T Ak α T α αγ x + (1 -σ) ξ T /(Ak α T ) -σb T /(Ak α T ) - ξ T +1 Ak α T +1 > α (1 + ε) θ * x αγ x + (1 -σ) ξ T /(Ak α T ) -σ (1 + ε) θ * x - ξ T +1 A (inf t k t ) α > (1 + ε) θ * x .
By induction, we find, for every

t ≥ T , b t /(Ak α t ) > (1 + ε) θ * x and b t+1 Ak α t+1 - b t Ak α t = b t Ak α t α -αγ x -(1 -σ) ξ t /(Ak α t ) + σb t /(Ak α t ) αγ x + (1 -σ) ξ t /(Ak α t ) -σb t /(Ak α t ) - ξ t+1 Ak α t+1 > (1 + ε) θ * x α -αγ x -(1 -σ) ξ t /(Ak α t ) + σ (1 + ε) θ * x αγ x + ξ t /(Ak α t ) -σ (1 + ε) θ * x - ξ t+1 Ak α t+1 = (1 + ε) θ * x σεθ * x -(1 -σ) ξ t /(Ak α t ) αγ x + ξ t /(Ak α t ) -σ (1 + ε) θ * x - ξ t+1 Ak α t+1 .
This implies that lim inf t→∞ b t+1 /(Ak α t+1 ) -b t /(Ak α t ) > 0: for T high enough, the sequence (b t /(Ak α t )) ∞ t=T is increasing and converges to θ > θ *

x . Applying the same argument of point (1), we get θ = θ *

x , that is a contradiction. It is immediate to see that lim t→∞ b t /(Ak α t ) = θ * x and, then, k t → x n , and b t → n (γ x -1) x n /σ when t tends to infinity.

C.2 Proof of Example 1

The equilibrium system is written as

k t+1 = αAγ 0 k α t -b t n , b t+1 = αAb t nk 1-α t+1 -ξ t+1 , b t > 0, k t+1 > 0. (C.1)
The proof is articulated in two steps. STEP 1. Let (x t ) be a positive sequence such that

x t ≥ 1 γ 0 and x t + 1 γ 0 x t+1 ≥ 1 γ 0 + 1 (C.2)
for every t (such a sequence exists, for example, x t = 1/γ 0 for any t). We prove that there exists a sequence of nonnegative dividends (ξ t ) and bt , kt+1 a solution of system (C.1) with kt+1 = αA kα t nx t ∀t.

(C.3)

To show that such sequences exist, consider the sequence bt , kt+1 defined by (C.3) and bt = αAγ 0 kα t -n kt+1 . Since x t ≥ 1/γ 0 , we have bt = αAγ 0 kα t -n kt+1 ≥ 0 for every t. We define the sequence (ξ t ) with dividends (23) for every t ≥ 0. Then,

ξ t+1 = αA αAγ 0 kα t -n kt+1 n k1-α t+1 -αAγ 0 kα t+1 -n kt+2 = αAγ 0 kα t+1 αA kα t n kt+1 - 1 γ 0 -1 + n kt+2 αAγ 0 kα t+1 = αAγ 0 kα t+1 x t + 1 γ 0 x t+1 -1 - 1 γ 0 . (C.4)
According to inequality (C.2), we see that ξ t+1 ≥ 0 for every t ≥ 0 and, therefore, bt , kt+1 is solution of system (C.1) with sequence of dividends (ξ t ). STEP 2. Let us now prove Example 1. We see that x t = e λ t for every t ≥ 1, and x 0 ≡ max {e, 1 + 2/γ 0 } ≥ e. The sequence (x t ) satisfies restrictions (C.2). Consider the sequence ( bt , kt+1 ) defined by (C.3) and bt = αAγ 0 kα t -n kt+1 jointly with the sequence of dividends (23). We have lim t→∞ x t = ∞ and, according to (C.4), ξ t+1 > 0 for every t. Thus, the sequence bt , kt+1 is solution of system (C.1) with lim t→∞ kt = lim t→∞ bt = 0.

Let us prove now that lim t→∞ ξ t+1 = 0. According to (C.4) and the fact that lim t→∞ x t = ∞, it is sufficient to prove that lim t→∞ kα t+1 x t = 0. Solving recursively (C.3), and using x t = e λ t , we find that

kα t+1 = αA n α 1-α t+1 1-α kα t+2 0 x α t+1 0 Π t-1 s=0 1 x α 1+s t-s = αA n α 1-α t+1
1-α kα t+2 0

x α t+1 0 e -t-1 s=0 α 1+s λ t-s .

We notice that λ is solution of λ t = 2 s=0 α 1+s λ t-s . Then, for t > 4, x α t+1 0 e -α 4 λ t-3 .

Since λ > 1, we get that lim t→∞ kα t+1 x t ≤ 0. By using (C.4) and the fact that lim t→∞ kt+1 = 0, lim t→∞ x t = ∞, it is easy to check that lim t→∞ ξ t / kt = ∞ and lim t→∞ ξ t /f ( kt ) = ∞.

C.3 Proof of Example 2

Let (b t , k t+1 ) be a sequence determined by the system (20)-( 21) and b 0 ∈ (θ *

x Ak α 0 /n, θ * x Ak α 0 ). To prove that this is an equilibrium, we check that b t > 0 and k t+1 > 0 for any t ≥ 0.

According to (20), we see that k t+1 > 0 if αAγ x k α t > σb t , which is satisfied when b t < θ *

x Ak α t . Therefore, we have just to prove that b t ∈ (θ * x Ak α t /n t+1 , θ * x Ak α t ) for every t. Let us apply the induction argument.

(1) We show first that b t < θ 

C.4 Proof of Proposition 4

A bubble exists if and only if b t > 0 for any t.

Combining ( 25) and ( 26), we get a single dynamic equation:

z t+1 = γ x z t -1 ∀t ≥ 0 (C.5)
where z t ≡ nk t+1 / (σb t ). The solution of the difference equation (C.5) is given by z t = γ t x z 0 -1-γ t x 1-γx , ∀t ≥ 1, provided that γ x = 1. (1) When γ x ≤ 1, there is no bubble. Indeed, if γ x ≤ 1, z t becomes negative soon or later: this leads to a contradiction. In this case, capital transition becomes k t+1 = ρ γx k α t . Solving recursively, we find the explicit solution (29). We observe that, according to ( 27 A positive solution exists if and only if z 0 ≥ 1/ (γ x -1). Hence, the existence of a positive solution requires

b 0 ≤ γ x -1 σ nk 1 = γ x -1 σ β 1 + β (w 0 + g 0 ) -b 0 .
Solving this inequality for b 0 , we find 0 < b 0 ≤ bx . Now, given b 0 ∈ 0, bx , the sequence (k t+1 , b t ) constructed by ( 25) and ( 26) is an equilibrium with b t > 0 for any t.

When b 0 < bx (that is z 0 > 1/ (γ x -1)), because of (C.6), we get lim t→∞ z t = ∞. According to (25), k t is uniformly bounded from above, which implies that lim t→∞ b t = 0. Thus, lim t→∞ k t = k *

x . When b 0 = bx , we have z t = 1/ (γ x -1) for any t ≥ 0. In this case, k t+1 = ρ 1 k α t where ρ 1 ≡ αA/n for any t > 0 and b t = (γ x -1) nk t+1 /σ. Solving recursively, we get the explicit solution (30).

C.5 Proof of Proposition 5

(1) When R > n.

Denote D ≡ R n β 1+β x 1+x . According to (34), and using the fact that b t + ξ t = R n b t-1 we have Since nk 1 + b 0 = β 1+β (w + g 0 ), we obtain

k t+1 = Dk t + 1 n β 1 + β w + x 1 + x ξ t - 1 n 1 - β 1 + β x 1 +
nk t+1 = D t (nk 1 + b 0 ) + βw 1 + β D t -1 D -1 - R t n t b 0 - t s=1 n s R s ξ s .
If there is an equilibrium with bubble, then b 0 > ∞ grows faster than the right hand side of (C.9). Hence, k t+1 will be strictly negative for t high enough, a contradiction. Hence, there is no bubble.

(2) When R ≤ n. The proof in this case is easy.

  Since lim inf t→∞ b t ≥ b n for any b < b n and ξ > 0, there exists T satisfying b T +t > b and ξ T +t < ξ for any t. This implies k T +t < G t x (k T , b, ξ) and lim sup t→∞ k t ≤ G t x (k T , b, ξ) = k b,ξ . Let b converge to b n . ξ converges to 0. Thus, k b,ξ converges to k bn,0 = x n and lim sup t→∞ k t ≤ x n ≤ lim inf t→∞ k t . Hence, lim t→∞ k t = x n and lim t→∞ b t = b n .

  Let γ x > 1. (2.a) If b t = 0, then (29) follows immediately. (2.b) Focus on the case b t > 0. Then, we obtainz t = [(γ x -1) z 0 -1] γ t x + 1 γ x -1 . (C.6)

R

  s ξ s . Let us denote B := b 0 -∞ s=1 n s R s ξ s . Since D < R/n, we observe that b t > R n t B, which converges to infinity and

  Proposition 2 implies that there is a unique equilibrium and this equilibrium is bubbleless. Moreover, Proposition 2 also implies that b t converges to zero. By consequence we have lim t→∞ b t /(Ak α t ) = 0 if lim inf t→∞ k t > 0. Part 2. We have only to consider the case lim inf t→∞ k t > 0, or equivalently inf t k t > 0.

	Consider an equilibrium (b t , k t+1 ). Conditions (20) and (21) give		
	b t+1 Ak α t+1	=	αb t nk t+1	-	ξ t+1 Ak α t+1	=	b t Ak α t	α αγ x + (1 -σ) ξ t / (Ak α t ) -σb t / (Ak α t )	-	ξ t+1 Ak α t+1

C.1 Proof of Proposition 3 Part 1. If f (k * x ) > n,

  Thus, we have lim t→∞ b t /(Ak α t ) = 0. Since inf t k t > 0, we get lim t→∞ b t = 0 and lim t→∞ k t = k * x . (2) Focus on the second case: We have b t /(Ak α t ) > θ * x for every t. Let us prove that lim t→∞ b t /(Ak α t ) = θ * x . If the contrary holds, lim sup t→∞ b t /(Ak α t ) = θ > θ * x which implies in turn the existence of ε > 0 and T high enough such that b T /(Ak α T

  Then, we prove that b t > θ * x Ak α t /n t+1 implies b t+1 > θ * x Ak α t+1 /n t+2 . Since b t ≤ θ * x Ak α t for every t, we have k t ≥ k m for every t. Using (20) and (21), we obtain

	* x Ak α t implies b t+1 < θ * x Ak α t+1 . Indeed, considering (20) and t αγ x + (1 -σ)ξ t -σb t b t α Ak α -ξ t+1 Ak α t+1 = b t Ak α t α αγ x + (1-σ)ξt-σbt Ak α t -ξ t+1 Ak α t+1 b t Ak α t α αγ x -σbt Ak α t -ξ t+1 Ak α t+1 < b t Ak α t α αγ x -σθ * x = b t Ak α t ≤ θ * x . Ak α = ≤ t+1 -θ * x n t+2 = b t Ak α t α αγ x + (1-σ)ξt-σbt Ak α t -ξ n t+1 Ak α t+1 -θ * x n t+2 (2) b t+1 (21), we find b t+1 Ak α t+1 θ * x > n t+1

  So, we find that nk t+1 + b t = D(nk t + b t-1 ) + βw 1+β , and therefore=⇒ nk t+1 + b t = D t (nk 1 + b 0 ) +

											x	b t	(C.7)
		= Dk t +	1 n	β 1 + β	w +	1 n	(Db t-1 -b t ).	(C.8)
	nk t+1 + b t D t	=	nk t + b t-1 D t-1 +	βw 1 + β	1 D t =⇒	nk t+1 + b t D t	= nk 1 + b 0 +	βw 1 + β	t s=1	1 D s
							βw 1 + β	t-1 s=0	D s = D t (nk 1 + b 0 ) +	βw 1 + β	D t -1 D -1	.	(C.9)

That is output per capita is uniformly bounded from above.

See Bosi et al. (2016) for bubbles in an OLG model where altruism à la[START_REF] Barro | Are government bonds net wealth[END_REF] is introduced through a recursive utility.

The reader is referred to[START_REF] Michel | Intergenerational altruism and neoclassical growth models[END_REF] for a review of altruism and[START_REF] Galperti | A theory of intergenerational altruism[END_REF] for an axiomatic theory of intergenerational altruism.

Sections

6.2 and 7 provide equilibrium properties for the linear technology case.

See Le[START_REF] Van | Intertemporal equilibrium with financial asset and physical capital[END_REF] for equilibrium analysis in an infinite-horizon general equilibrium model where the aggregate capital stock k t may be zero.

These conditions are similar to those in[START_REF] Montrucchio | Cass transversality condition and sequential asset bubbles[END_REF] or Le[START_REF] Van | Financial asset bubble with heterogeneous agents and endogenous borrowing constraints[END_REF].

Condition δ t > 0 ∀t is to ensure that q t > 0 at any date, which is needed to define δ t /q t .

Formally, there is T 0 such that ξ t = 0 for any t ≥ T 0 .

As in[START_REF] Tirole | Asset bubbles and overlapping generations[END_REF], we do not consider the nongeneric case f (k * x ) = n in our paper.

[START_REF] Tirole | Asset bubbles and overlapping generations[END_REF] also considers another asset that bring stationary dividend (or rent). However, he implicitly assumed that there does not exist bubble in this asset.

See Le[START_REF] Van | Intertemporal equilibrium with financial asset and physical capital[END_REF] for an analysis in an infinite-horizon setting.

[START_REF] Bosi | Rational bubbles and expectation-driven fluctuations[END_REF] show the local indeterminacy of real bubbles (rational exuberance). We focus instead on global indeterminacy of real bubbles.

When dividends are zero, asset value and bubble coincide.
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