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Abstract

We study the ergodic properties of horospheres on rank 1 manifolds with non-
positive curvature. We prove that the horospheres are equidistributed under the
action of the geodesic flow towards the Bowen-Margulis measure, on a large class
of manifolds. In the case of surfaces, we define a parametrization of the horocyclic
flow on the set of horocycles containing a rank 1 vector that is recurrent under the
action of the geodesic flow. We prove that the horocyclic flow in restriction to this
set is uniquely ergodic. The results are valid for large classes of manifolds, including
the compact ones.
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1 Introduction

Horocyclic flows associated to a geodesic flow have been extensively studied on compact
surfaces with constant negative curvature [10], and later on compact surfaces with vari-
able negative curvature [15, 16]. They are uniquely ergodic and mixing, and they have
zero topological entropy, among other properties. More generally, on negatively curved
compact manifolds of any dimension, the Bowen-Margulis measure is the unique mea-
sure invariant under the unstable foliation, and all the horospheres are equidistributed
towards this measure [20]. In this paper, we have two goals: first, we produce a result
on the equidistribution of horospheres for rank 1 manifolds with nonpositve curvature;
and second, for the case of surfaces, we prove the unique ergodicity of the horocyclic
flow restricted to a well-chosen subset of rank 1 vectors.

M. Babillot gave a simple proof of the mixing property of the geodesic flow and
showed the equidistribution of horospheres under the action of this flow towards certain
product measures for manifolds with negative curvature [1]. For the Bowen-Margulis
measure, the equidistribution of horospheres can be stated as follows.

Theorem. [1, Theorem 3] Let M be a non-elementary complete connected Riemannian
manifold with negative curvature bounded away from 0. Assume that the geodesic flow
gt on the unitary tangent bundle T 1M of M is topologically mixing on the set of non-
wandering vectors, and that the Bowen-Margulis measure µ is finite. Then, for every
unstable horosphere H ⊂ T 1M , every open subset U of H containing a nonwandering
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vector is equidistributed under the action of the geodesic flow; i.e. for every bounded and
uniformly continuous function f on T 1M , we have

1

µH(U)

∫
U
f ◦ gt dµH −−−−→

t→+∞

1

µ(T 1M)

∫
T 1M

f dµ,

where {µH}H are the conditional measures of the Bowen-Margulis measure µ along the
unstable foliation.

We refer the reader to [18] for the so-called Patterson-Sullivan construction of the
Bowen-Margulis measure in negative curvature. Several criteria for the finiteness of this
measure are given in [19].

The Bowen-Margulis measure can be generalized to nonpositively curved rank 1
manifolds. G. Knieper constructed this measure in [12], following the method pioneered
by Patterson and Sullivan [17, 21], and proved that it is the unique measure of maximal
entropy when the manifold is compact. In this article, we explain an optimal way to
generalize the equidistribution of horospheres towards Bowen-Margulis for nonpositively
curved rank 1 manifolds, following the approach of Babillot.

In the equidistribution theorem, we consider the averages of a function with respect
to a measure µH , which we will define in Section 2.2, associated to the horocycle H. On
a negatively curved manifold, if U is an open subset of H containing a nonwandering
vector, the µH -measure of U is positive, so it makes perfect sense to average a function
over U . However, on manifolds of nonpositive curvature, not every open subset of a
horocycle containing a nonwandering vector has positive measure. As an example, we
take a nonflat surface containing a flat cylinder (Figure 1). All the vertical vectors
with base point in a longitudinal segment of the cylinder are in the same unstable
horocycle. The set U formed by these vectors has zero µH -measure, which is clear from
its construction, although each vector of U is periodic and, in particular, nonwandering.

Figure 1: A surface with a flat cylinder.

Theorem A shows that, under certain hypothesis, an open subset U of a horosphere
H is equidistributed in time, as soon as U has positive µH -measure. We emphasize that
rank 1 compact manifolds with nonpositive curvature satisfy the hypothesis, so there is
equidistribution.

Theorem A. Let M be a rank 1 nonpositively curved non-elementary complete con-
nected Riemannian manifold. Assume that the geodesic flow gt on the unitary tangent
bundle T 1M of M is topologically mixing on the set of nonwandering vectors, and that
the Bowen-Margulis measure µ is finite. Then, for every horosphere H ⊂ T 1M contain-
ing a nonwandering vector, every open subset U of H of finite but positive µH-measure
is equidistributed under the action of the geodesic flow; i.e. for every bounded and uni-
formly continuous function f on T 1M , we have

1

µH(U)

∫
U
f ◦ gt dµH −−−−→

t→+∞

1

µ(T 1M)

∫
T 1M

f dµ.
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In the case of a piece of horocycle U with zero µH -measure, it could be reasonable
to wonder if there is equidistribution with respect to another measure giving a positive
value to U , for instance, the Lesbesgue measure, which is very natural. The example of
the surface with a flat cylinder shows that this is also not possible, because the geodesic
flow acts periodically on the piece of horocycle U ; then, for a well-chosen function f ,
the averages of f ◦ gt on U could oscillate endlessly.

In the second part of the article, we study the case of surfaces, which is easier to
deal with as the horospheres can be parametrized by a flow. The dynamical properties
of horocyclic flows are well understood in some situations. For instance, on a negatively
curved compact surface, the Bowen-Margulis measure is the unique probability measure
invariant under the horocyclic flow [15]. For geometrically finite manifolds, there is a
classification of the Radon measures invariant under the horocyclic flow [20, Corollary
6.5].

We follow Marcus’s method, based on the definition of a parametrization of the
horocyclic flow by the measures on the horocycles. Unfortunately, it is not possible
to define an analogous parametrization on the whole space for rank 1 surfaces with
nonpositive curvature, due to the presence of flat regions. We avoid this difficulty, by
restricting our system to the set Σ of vectors whose horocycle contains a rank 1 vector
recurrent under the geodesic flow. Under the hypothesis of the theorem, this set has
full Bowen-Margulis measure and is Gδ-dense in the unitary tangent bundle. Thanks to
the equidistribution of the horocycles of Theorem A and a part of the strategy followed
by Y. Coudène in [4], we prove the unique ergodicity of the horocyclic flow on Σ for
manifolds that satisfy the duality condition, which means that the nonwandering set of
the geodesic flow is the whole unitary tangent bundle. Rank 1 compact surfaces with
nonpositive curvature are included.

Theorem B. Let M be an orientable rank 1 complete connected Riemannian surface
with nonpositive curvature satisfying the duality condition. Assume that the Bowen-
Margulis measure µ is finite. Then every finite Borel measure on Σ invariant under the
horocyclic flow hs is a constant multiple of the Bowen-Margulis measure µ|Σ restricted
to Σ.

In this article, we only work with expanding horospheres and expanding horocyclic
flows, but all the results have an analogy in the contracting setting.
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suggestions.
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2 Measures on the horocycles and equidistribution

2.1 Notation

Let M be a complete connected Riemannian manifold of nonpositive curvature and
denote by gt : T 1M → T 1M the geodesic flow on the unitary tangent bundle T 1M of
M . Recall that the rank of a vector v in T 1M , denoted by rank v, is the dimension
of the parallel Jacobi fields along the geodesic tangent to v. There is always a parallel
Jacobi field in the tangent direction of the geodesic, so the rank must be between 1 and
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the dimension of M . We say that the manifold M is of rank 1 if it contains at least
one vector of rank 1. Let us start with some standard definitions and recall the most
important facts about rank 1 manifolds.

Most part of the reasoning takes place on the universal cover M̃ of M . We consider
the Riemannian distance d on M̃ and the distance d1 associated to the Sasaki metric
on T 1M̃ . A geodesic ray is, by definition, a map σ : [0,+∞) → M̃ that minimizes
length. Two geodesic rays σ1, σ2 are asymptotic if the distance d(σ1(t), σ2(t)) is uni-
formly bounded for all t ≥ 0. The boundary at infinity ∂M̃ is the set of asymptotic
classes of rays. We refer the reader to [3] and [2] for a better understanding of this
construction.

The Busemann cocycle at ξ in ∂M̃ between x and y in M̃ is defined as

βξ(x, y) = lim
t→+∞

d(x, σ(t))− d(y, σ(t)),

where σ is any ray in the class ξ. If v is a vector in T 1M̃ , their points at infinity v−
and v+ in ∂M̃ are respectively the asymptotic classes of the negative and positive rays
tangent to v. We can define the (unstable) horosphere of v as the set

Hu(v) = {w ∈ T 1M̃ |w− = v−, βv−(π(v), π(w)) = 0},

where π : T 1M̃ → M̃ is the projection to the basis. The point v− in ∂M̃ is called the
center of the horosphere Hu(v). Horospheres are C1 submanifolds of T 1M̃ of dimension
dimM − 1.

We also use the notation ∂2M̃ = (∂M̃ × ∂M̃) \ ∆, where ∆ is the diagonal of
∂M̃ × ∂M̃ , and define the map

P : T 1M̃ −→ ∂2M̃ × R
v 7−→ (v−, v+, βv−(x0, π(v)).

It is known that this map is a homeomorphism when the curvature is negatively pinched,
but both the injectivity and the surjectivity may fail in the context of nonpositively
curved rank 1 manifolds. Nevertheless, restricted to rank 1 vectors, P is still a homeo-
morphism onto its image [2].

In the sequel, we identify M with the quotient of M̃ by some discrete subgroup of
isometries Γ, which is isomorphic to the fundamental group of M . The limit set Λ(Γ) is
the set of accumulation points of an orbit Γx0, x0 ∈ M̃ , in M̃ ∪∂M̃ . It does not depend
on the choice of x0 and it is contained in the boundary at infinity ∂M̃ . We also define
the nonwandering set Ω to be the set {v ∈ T 1M̃ | v−, v+ ∈ Λ(Γ)}. The name of this set
comes from the fact that its projection to T 1M is the topological nonwandering set of
the geodesic flow. In order to have some complexity in the geodesic flow, we ask that Γ
(or M) is non-elementary, which means that the limit set Λ(Γ) is infinite.

A δ-dimensional conformal density, δ ≥ 0, is a family of finite Borel measures
{µx}x∈M̃ on ∂M̃ supported by the limit set Λ(Γ) and such that any two measures µx, µy,

where x, y ∈ M̃ , are equivalent and satisfy the relation
dµy
dµx

(ξ) = exp (−δβξ(y, x)).
In addition, we say that such a family of measures is Γ-invariant if γ∗µx = µγx for
all γ ∈ Γ, x ∈ M̃ . The Patterson construction provides examples of invariant δ(Γ)-
dimensional conformal densities, where δ(Γ) is the critical exponent of Γ (see [11] for
example). Henceforth, we will fix a point x0 ∈ M̃ and denote by µx0 an element of an
invariant δ-dimensional conformal density.
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2.2 Definition of the Bowen-Margulis measure

We now define a product measure on the unitary tangent bundle of M̃ , which will pass
to the quotient T 1M , as Knieper did in [12] for a compact manifold. Consider the set
of geodesic endpoints E(M̃) := {(v−, v+) ∈ ∂2M̃ | v ∈ T 1M̃}. For every (ξ, η) ∈ E(M̃),
the set π(P−1({(ξ, η)} × R)) is nonempty, and it has been shown to be a flat totally
geodesic submanifold of M̃ [9]. In fact, it is either a single geodesic or a flat totally
geodesic submanifold of dimension at least 2. In any case we denote by Vol the induced
volume measure of no matter what submanifold π(P−1({(ξ, η)} × R)).

Firstly, we define a measure µ̄ on E(M̃), which we extend to ∂2M̃ , by its density

dµ̄(ξ, η) = eδ(βξ(x0,pξ,η)+βη(x0,pξ,η))dµx0(ξ) dµx0(η),

where pξ,η is any point in π(P−1({(ξ, η)} ×R)). The definition does not depend on the
choices of pξ,η, and µ̄ is invariant under the diagonal action of Γ on ∂2M̃ . Now, the
measure µ on T 1M̃ associated to µx0 gives the value

µ(A) =

∫
∂2M̃

Vol(π(P−1({(ξ, η)} × R) ∩A)) dµ̄(ξ, η) (1)

to a Borel subset A ⊂ T 1M̃ . It is clear that this measure is both Γ and gt-invariant.
The gt-invariant measure obtained on the quotient T 1M will also be denoted by µ, for
simplicity of notation.

Many authors have studied the ergodic properties of this measure. G. Link and J. C.
Picaud gave a version of the Hopf-Tsuji-Sullivan dichotomy under the assumption that
M contains a closed rank 1 geodesic (see [14] and [13]). In this article we will always be
in the conservative case of the dichotomy: Γ is of divergent type, the radial limit set has
full µx0-measure and the system (T 1M, gt, µ) is conservative and ergodic. Furthermore,
in this case there is a unique conformal density µx0 and its dimension is the critical
exponent δ = δ(Γ) of Γ, this measure µx0 has no point masses, and the measure class
of µx0 is ergodic under the action of Γ. We refer to µ as the Bowen-Margulis measure.
Whenever M is compact, it turns out that the Bowen-Margulis measure µ is the unique
measure of maximal entropy up to a multiplicative constant as proved by G. Knieper in
[12].

Let H be the set of unstable horospheres in T 1M̃ and let Γ act on H. There is a
simple identification of H by its point at infinity and the value of the Busemann cocycle:
the map

H −→ ∂M̃ × R
Hu(v) 7−→ (v−, βv−(x0, π(v)).

is bijective. This allows us to define a Γ-invariant measure µ̂ on the space of horospheres
H by the density

dµ̂(Hu(ξ, t)) = e−δtdµx0(ξ)dt,

where Hu(ξ, t) is the unstable horosphere with coordinates (ξ, t) ∈ ∂M̃ × R.

We can now define a family {µH}H∈H of measures on each horosphere that has
good properties, analogous to the negative curvature case. For each horosphere H, we
consider the projection to the positive endpoint PH : H → ∂M̃ \ {ξ}, where ξ is the
center of H. Let us treat a point as a 0-manifold, for the sake of simplicity. For any
vector v in T 1M̃ , the set of base points of vectors on the horosphere Hu(v) that are also
positively asymptotic to v, i.e. the set π(P−1

Hu(v)(v+)), is a totally geodesic submanifold

of π(P−1((v−, v+) × R)). We denote its volume measure by Vol with the convention
that it is the delta measure when the submanifold consists of a single point. For each
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η ∈ ∂M̃ \ {v−}, we choose w ∈ P−1
Hu(v)(η)) and write φv(η) = eδβη(x0,π(w)), which in fact

only depends on η, but not on w. The measure µHu(v) assigns the value

µHu(v)(A) =

∫
∂M̃\{v−}

Vol(π(P−1
Hu(v)(η) ∩A))φv(η) dµx0(η)

to a subset A ⊂ Hu(v).

We enumerate the main properties of these measures that follow from the definition.

(i) If w ∈ Hu(v), then µHu(v) = µHu(w). Hence, we can speak of a family {µH}H∈H
of measures on each horosphere.

(ii) They are Γ-invariant; i.e. for all γ in Γ and all H in H, we have γ∗µH = µγH .

(iii) They are exponentially expanded by the geodesic flow: µgtH = eδt(gt)∗µH .

(iv) The measure µ is the product of {µH}H∈H by µ̂: for all A ⊂ T 1M̃ ,

µ(A) =

∫
H
µH(A ∩H) dµ̂(H). (2)

For our purpose, we assume that the Bowen-Margulis measure µ on the space T 1M
is finite, hence the geodesic flow is conservative, according to the Poincaré recurrence
theorem, and there is only one conformal density µx0 . Our goal is to find an equidistri-
bution result in the sense that the µH -averages of functions on a horosphere H tend to
the µ-averages on the whole space. The starting point is always the mixing property of
the geodesic flow with respect to the Bowen-Margulis measure µ. The next result says
that this property is equivalent to the topological mixing of the geodesic flow on Ω. We
do not know if this equivalence has been stated in this generality, although it can be
expected and the main part of the work is already published.

There is a third equivalent property related to the length of the closed geodesics,
analogous to what happens in negative curvature. We define the rank 1 length spectrum
as the set of lengths of rank 1 closed geodesics. We say that the rank 1 length spectrum
is non-arithmetic if the rank 1 length spectrum generates a dense subgroup of R.

Theorem 2.1. Let M be a rank 1 nonpositively curved non-elementary complete con-
nected Riemannian manifold. Assume that the Bowen-Margulis measure µ is finite.
Then the following are equivalent:

(i) The geodesic flow gt is topologically mixing on the nonwandering set Ω.

(ii) The geodesic flow gt is mixing with respect to the Bowen-Margulis measure µ.

(iii) The rank 1 length spectrum is non-arithmetic.

Proof. (ii) =⇒ (i) The mixing property with respect to a measure implies the topological
mixing on the support of the measure. In our case, the support of µ is the nonwandering
set Ω, so the implication is proved.

(i) =⇒ (iii) We reproduce the reasoning used in negative curvature [5]. Since the set
of rank 1 vectors is open [2], we can find a closed ball B of certain radius only containing
rank 1 vectors. Let ε > 0 be a given number. We apply the closing lemma for the rank
1 set [9, Proposition 4.5.15]: there exists constants T0 > 0 and δ > 0 such that, for
every v ∈ B and t ≥ T0 with d1(v, gt(v)) ≤ δ, there exists a periodic rank 1 vector v′ at
distance d1(v, v′) ≤ ε, where the period t′ of v satisfies |t− t′| < ε.
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There exists a nonempty open subset U of Ω of diameter smaller than δ and such
that U ⊂ B. Since the geodesic flow on Ω is topologically mixing, there exists a number
T ≥ T0 such that for all t ≥ T , we have U ∩ gt(U) 6= ∅. In particular, there is a rank 1
vector v in B satisfying d1(v, gt(v)) ≤ δ. Hence, for each t ≥ T , there exists a periodic
rank 1 vector of period in [t− ε, t+ ε]. Since ε is arbitrary, this proves that the rank 1
length spectrum is non-arithmetic.

(iii) =⇒ (ii) This implication may be the hardest, but it is essentially done in the
proof of Theorem 2 in [1], asserting that the geodesic flow is mixing with respect to
µ on a compact manifold. All the arguments work for a rank 1 manifold with finite
Bowen-Margulis measure, but at the end, instead of applying the compactness, we can
use the assumption of non-arithmeticity of the length spectrum.

To summarize, in all statements M is a non-elementary nonpositively curved com-
plete connected manifold with a geodesic of rank 1 such that the geodesic flow is topo-
logically mixing on Ω and such that the Bowen-Margulis measure µ is finite. In the
previous discussions, we assumed that the manifold M had a closed geodesic of rank 1.
The existence of such a geodesic follows from the rest of hypothesis, as we now explain.
On a rank 1 manifold M with finite Bowen-Margulis measure, there exists a recurrent
rank 1 vector, because both recurrent and rank 1 vectors have full µ-measure. We apply
the closing lemma in restriction to the rank 1 set [9, Proposition 4.5.15] to this recurrent
rank 1 vector, so we obtain a periodic rank 1 vector, which determines a closed rank 1
geodesic.

2.3 Equidistribution of horocycles

We start with a local result showing that near rank 1 vectors there is equidistribution:
for a function f : T 1M → R, the average on a horosphere of its lift f̃ : T 1M̃ → R pushed
by the geodesic flow converges to the average of f with respect to the Bowen-Margulis
measure.

Proposition 2.2. Let M be a rank 1 nonpositively curved non-elementary complete
connected Riemannian manifold. Assume that the geodesic flow gt on T 1M is topolog-
ically mixing on Ω and that the Bowen-Margulis measure µ is finite. Then, for every
rank 1 vector v ∈ Ω ⊂ T 1M̃ , there exists an open subset U of Hu(v) containing v which
is equidistributed under the action of the geodesic flow; i.e. for every bounded and uni-
formly continuous function f on T 1M and every Borel neighborhood V ⊂ U of v we
have

1

µHu(v)(V )

∫
V
f̃ ◦ gt dµHu(v) −−−−→

t→+∞

1

µ(T 1M)

∫
T 1M

f dµ.

Proof. We follow the same strategy as M. Babillot in [1], which consists in approximating
the integral on a piece of horosphere by the integral of the same function on a box around
that piece, and then use the mixing property of the geodesic flow with respect to µ. The
added difficult is to find a box with a good system of coordinates, which is done by
avoiding the vectors of higher rank.

Let v be a rank 1 vector in Ω and denote its horosphere by H. From [2] we know
that there exist disjoint connected neighborhoods A1 and A2 of v− and v+, respectively,
in ∂M̃ such that: for every (ξ, η) ∈ A1 × A2 there exists a unique geodesic from ξ to
η, and it has rank 1. This allows us to consider a coordinate neighborhood of v via the
map P of the form A1 ×A2 × R.

We claim that the proposition is true with U = P−1
H (A2). Consider any neighborhood

V ⊂ U of v and write V+ := {w+ |w ∈ V } for its projection to the boundary at infinity
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∂M̃ . Since v is nonwandering, its endpoints are in the limit set, and this guarantees
that V+ and V have positive measure. We notice that the integral on V of a function h
of T 1M̃ can be written in coordinates as∫

V
hdµHu(v) =

∫
V+

h(v−, η, t0)eδβη(x0,π(v−,η,t0))dµx0(η),

where t0 has the value βv−(x0, π(v)), because the volume Vol is always 1 on rank 1
vectors. This is because P−1({(v−, η, t0)} consists of just one vector when v is of rank
1. Otherwise, the flat strip theorem [2, Corollary I.5.8(ii)] asserts that v bounds a flat
totally geodesic surface, which is not possible for a rank 1 vector.

Given ε > 0, we can find a small connected neighborhood B ⊂ A1 of v− and a
number r > 0 such that:

(i) ∀ξ ∈ B, ∀η ∈ V+, 1− ε ≤ eδβη(π(v−,η,t0), π(ξ,η,t0)) ≤ 1 + ε,

(ii) ∀(ξ, η) ∈ B × V+, ∀s ∈ [−r, r],∀t ≥ 0, |f̃(v−, η, t0 + t)− f̃(ξ, η, t0 + t+ s)| < ε.

The first property follows from the continuity of the map P on the coordinate neigh-
borhood, and the continuity of the projection π and of the Busemann function. We use
that V+ is relatively compact to assert that the inequality holds uniformly in η ∈ V+.
For property (ii), we apply the uniform continuity of f̃ , and then we choose B and r so
that the points (v−, η, t0) and (ξ, η, t0 + s) are close enough for ξ ∈ B and s ∈ [−r, r],
uniformly in η ∈ V+. Since these points are in the same weak stable leaf, the distance
between them does not increase when they are pushed by the geodesic flow, which allows
us to deduce the above property for all t ≥ 0. Again the condition v ∈ Ω implies that
v− ∈ Λ(Γ), which ensures that B has positive measure.

These estimates allow one to compare the average of f̃◦gt on the set V with respect to
µHu(v) and the average of the same function on the box of the form P−1(B×V+×[t0, t0+
r]) with respect to the measure µ by means of the product structure of µ (Equation 1).
More precisely, for all nonnegative t,[∫

V f̃ ◦ gt dµHu(v)

µHu(v)(V )
− ε

]
1− ε
1 + ε

≤

∫
P−1(B×V+×[t0,t0+r]) f̃ ◦ gt dµ

µ(P−1(B × V+ × [t0, t0 + r]))
≤

[∫
V f̃ ◦ gt dµHu(v)

µHu(v)(V )
+ ε

]
1 + ε

1− ε
.

Moreover we may assume that the neighborhood P−1(B ×A2 × [t0, t0 + r]) ⊂ T 1M̃
is homeomorphic to its projection on the unit tangent bundle of the manifold M . Then,
since the geodesic flow is mixing with respect to µ, the average of f̃ ◦ gt in P−1(B ×
V+× [t0, t0 + r]) converges to 1

µ(T 1M)

∫
fdµ when t goes to infinity. We have thus shown

the equidistribution of U .

To deduce a global result, we need to understand what happens on vectors of rank
different from 1, and the next two lemmas will be crucial. The unstable manifold of v
in T 1M̃ is the set

W u(v) = {w ∈ T 1M̃ | d1(gt(v), gt(w))→ 0, t→ −∞},

it is a subset of the unstable horosphere, but they are not necessarily equal in nonpositive
curvature.
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Lemma 2.3. Let M be a rank 1 nonpositively curved non-elementary complete connected
Riemannian manifold. If v is a rank 1 recurrent vector in T 1M̃ , then its unstable
horosphere coincides with its unstable manifold, Hu(v) = W u(v), and it consists of rank
1 vectors exclusively.

Proof. The fact that the unstable manifold and the horosphere coincide is already proved
in [12, Proposition 4.1]. Let w in W u(v) and r its rank, we will see that r is 1. Since v
is negatively recurrent there exist a sequence tn → −∞ and isometries γn ∈ Γ such that
γn(gtn(v))→ v when n→∞. Now we have

d1(v, γngtn(w)) ≤ d1(v, γngtn(v)) + d1(gtn(v), gtn(w)) −→ 0

and the rank of γngtn(w) is the same as the rank of w, r. Since v is a limit of vectors of
rank r and the rank function is upper semi-continuous, we deduce r ≤ rank v = 1.

Lemma 2.4. Let M be a rank 1 nonpositively curved non-elementary complete connected
Riemannian manifold. Assume that the Bowen-Margulis measure µ is finite and that
the geodesic flow gt on T 1M is ergodic with respect to the µ. Then, for every horocycle
H, the set of vectors in H of rank equal or bigger than 2 is µH-negligible.

Proof. Let Rec1 ⊂ T 1M̃ be the set of rank 1 vectors which are recurrent under gt on
the quotient T 1M and S ⊂ T 1M̃ be the set of vectors of rank 2 or higher. We claim
that the projections to the boundary of these two sets are disjoint, Rec1

+ ∩ S+ = ∅.
Otherwise, there are vectors v ∈ Rec1 and w ∈ S such that v+ = w+. By Lemma 2.3,
the unstable horosphere of −v only contains vectors of rank 1. The geodesic associated
to −w intersects this horosphere Hu(−v) (Figure 2), so w should have rank 1, which is
a contradiction.

Figure 2: Vectors v and w of the proof.

Around a nonwandering rank 1 vector there is a neighborhood only consisting of rank
1 vectors, and this neighborhood has positive measure because it intersects the support
of µ. As mentioned before, the manifold M contains a closed rank 1 geodesic, which
is an example of nonwandering rank 1 geodesic. The set of rank 1 vectors has positive
measure, and it is invariant under the geodesic flow. So the set of rank 1 vectors has
full measure because of the ergodicity of µ. In consequence, the set of rank 1 recurrent
vectors Rec1 has also full µ-measure in view of Poincaré recurrence theorem. By the
product structure of µ, we see that Rec1

+ has positive µx0-measure. Finally, Rec1
+ is a

Γ-invariant set, so we deduce that Rec1
+ has full µx0-measure because Γ acts ergodically.

Therefore, S+ is negligible. The endpoints of higher rank vectors in Hu(v) are
clearly in S+ and, using the definition of the measure on the horosphere, we obtain
µHu(v)(S ∩Hu(v)) = 0.
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We can finally prove Theorem A, which we have reformulated in terms of horospheres
on the universal cover M̃ . On the horospheres centered at the limit set, every open
set with positive and finite measure is equidistributed (Figure 3). Being positive is
equivalent to having a nonwandering rank 1 vector. In particular, all relatively compact
neighborhoods of nonwandering rank 1 vectors are equidistributed.

Figure 3: The average of f on the image of an open subset U of a horosphere H by the
geodesic flow gt with respect to µH tends to the average of f with respect to µ.

Theorem 2.5. Let M be a rank 1 nonpositively curved non-elementary complete con-
nected Riemannian manifold. Assume that the geodesic flow gt on T 1M is topologically
mixing on Ω and that the Bowen-Margulis measure µ is finite. Then, for every horo-
sphere H ⊂ T 1M̃ centered at Λ(Γ), every open subset U of H of finite but positive µH-
measure is equidistributed under the action of the geodesic flow; i.e. for every bounded
and uniformly continuous function f on T 1M , we have

1

µH(U)

∫
U
f̃ ◦ gt dµH −−−−→

t→+∞

1

µ(T 1M)

∫
T 1M

f dµ.

Proof. We first observe that the set U1 of rank 1 vectors in U is open in H, because the
set of rank 1 vectors is open in T 1M̃ [2]. By Lemma 2.4, the set U1 has full measure
in U , so the averages on the two sets are the same. Next, we use the fact that µH is
a Radon measure: given a number ε > 0, there exists a compact subset K ⊂ U1 such
that µH(U1 \K) < ε.

Since Ω is closed, L = K∩Ω is again compact, and L has full measure in K, because
vectors outside of Ω are not in the support. We want to show that L is equidistributed.
Proposition 2.2 gives an equidistributed open neighborhood Uv of each vector v in L.
The set L can be covered by finitely many Uv because it is compact. We can cut
these sets where they intersect to obtain a family {Vi}1≤i≤n of equidistributed pairwise
disjoint Borel sets whose union contains L, thanks to the fact that the subsets of Uv are
equidistributed too.

If we let λ :=
∫
fdµ/µ(T 1M), the set V := V1 ∪ · · · ∪ Vn is equidistributed because∫

V f̃ ◦ gt dµH

µH(V )
=

∑n
i=1

∫
Vi
f̃ ◦ gt dµH

µH(V )
−−−−→
t→+∞

∑n
i=1 µH(Vi)λ

µH(V )
= λ.

On the other hand, we have µH(U \ V ) < ε, so∣∣∣∣ 1

µH(U)

∫
U
f̃ ◦ gt dµH −

1

µH(V )

∫
V
f̃ ◦ gt dµH

∣∣∣∣ ≤ 2ε ‖f‖∞
µH(U)

for all t ≥ 0. This proves that U is equidistributed as well.
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3 Unique ergodicity of the horocyclic flow

3.1 Surfaces with nonpositive curvature

In the second part of the article we restrict our attention to surfaces. Our goal is to define
a flow that preserves the Bowen-Margulis measure and whose orbits are horocycles. Then
we would like to interpret the equidistribution of horocycles in terms of the ergodic
properties of this flow. The idea is to define the parametrization of the flow by the
measures on the horocycles as in the negative curvature case [15]. However, the presence
of flat pieces of horocycle makes impossible to define globally a continuous flow with
this method. We have found a subset Σ of the unitary tangent bundle which excludes
the horocycles causing trouble, like that of Figure 1, and which is topologically and
metrically large. We will define a parametrization of the horocyclic flow on Σ and prove
that it is uniquely ergodic.

In this section, M is a non-elementary rank 1 orientable surface with nonpositive
curvature and the Bowen-Margulis measure µ, constructed as before, is assumed to be
finite. We will further assume that M satisfies the duality condition, which means that
every vector of T 1M is nonwandering, or equivalently we assume that Λ(Γ) = ∂M̃ .
Under these hypothesis, the geodesic flow is topologically mixing [7, Theorem 6.3], so
it is also mixing with respect to the Bowen-Margulis measure. The duality condition is
satisfied if M has finite Riemannian volume, as an application of the Poincaré recurrence
theorem.

Moreover, we know that any two distinct points in the boundary at infinity can be
connected by a geodesic. It follows from the fact that, for a nonflat surface M with
the duality condition, the universal cover M̃ satisfies the visibility axiom [8, Proposition
2.5]. Therefore, the map P is surjective.

We notice that an orientation of the border at infinity ∂M̃ induces an orientation to
each horocycle in H. One vector v ∈ T 1M̃ divides its horocycle Hu(v) in two connected
sets, one in the positively oriented direction, Hu

+(v), and the other in the negatively
oriented, Hu

−(v). The group of isometries Γ is orientation-preserving because M is

orientable. In consequence, horocycles on T 1M̃ descend to T 1M as oriented immersed
curves.

Horocycles are diffeomorphic to the real line. Let H be a horocycle of T 1M̃ . The
interval (v, w) ⊂ H between two vectors v, w ∈ H is the connected subset bounded by
v and w. The map PH : H → ∂M̃ \ {ξ}, where ξ is the center of H, which projects
a vector to its positive endpoint, is continuous and surjective. We also observe that
PH(v) = PH(w), with v 6= w, implies, according to the flat strip theorem, that the
curvature vanishes on the strip π(∪t∈Rgt((v, w))). Such an interval (v, w) will be called
flat piece of horocycle (see Figure 4). It is clear that H does not contain any flat piece
if and only if PH is injective, in which case PH is also a homeomorphism.

3.2 Definition of the horocyclic flow on a certain subset of T 1M

Next, we define a subset of the unitary tangent bundle T 1M̃ of M̃ and we study the
properties of its horocycles and their associated measures. Let Σ̃ ⊂ T 1M̃ denote the set
of vectors whose horocycle contains a rank 1 recurrent vector, that is to say,

Σ̃ =
⋃

v∈Rec1
Hu(v).

This set is invariant under Γ, under the geodesic flow and under the horocyclic foliation,
in the sense that Σ̃ contains a horocycle H as soon as it contains one vector of H. Our set

11



Figure 4: Universal cover of the surface M with a region where the curvature vanishes
(shadowed region). We represent an unstable horocycle with a flat piece.

Σ̃ contains a Gδ-dense set, namely the set of rank 1 recurrent vectors Rec1. The latter
is the intersection of the set of rank 1 vectors, which is open and dense [2, Corollary
III.3.8], with the set of recurrent vectors, which is Gδ-dense when all the vectors of T 1M
are nonwandering. The set Σ̃ also has full µ-measure. By Lemma 2.3, all the vectors in
Σ̃ have rank 1 and each horocycle H ⊂ Σ̃ coincides with the unstable manifold. This
also implies that the horocycles in Σ̃ do not contain any flat pieces of horocycle.

In the next lemma, which will be needed later, we prove a sort of continuity of the
measures on the horocycles contained in Σ̃.

Lemma 3.1. The map

{(v, w) ∈ Σ̃× Σ̃ |w ∈ Hu(v)} −→ R
(v, w) 7−→ µHu(v)((v, w))

is continuous.

Proof. Let v and w two points in Σ̃ sharing horocycle. The function on a pair of points
(v′, w′) close to (v, w) can be written as the integral

µHu(v′)((v
′, w′)) =

∫
(v′+,w

′
+)
e
δβη(x0,π(P−1

Hu(v′)(η)))
dµx0(η).

Given ε > 0, we can suppose that µx0((v′+, w
′
+)4(v+, w+)) < ε. We estimate the

Busemann cocycles on Hu(v) and Hu(v′) as we did in the proof of Proposition 2.2: for
all η ∈ (v+, w+) we have

1− ε ≤ eδβη(π(P−1
Hu(v)

(η)), π(P−1
Hu(v′)(η))) ≤ 1 + ε,

provided that v′ is close to v. We also observe that exp(δβη(x0, π(P−1
Hu(v′)(η)))) is

bounded by a constant K for v′ in a neighborhood of v and η in a neighborhood of
v+ or w+. With these approximations we get the inequalities

(1− ε)µHu(v)((v, w))−Kε ≤ µHu(v′)((v
′, w′)) ≤ (1 + ε)µHu(v)((v, w)) +Kε,

which show the continuity at (v, w).

Let us remark that only the fact that all the vectors in the domain Σ̃ have rank 1
was used in the previous proof. Next, we state and prove some properties of individual
measures on horocycles that will help later to define the parametrization.

12



Lemma 3.2. Let H be a horocycle of T 1M̃ and v ∈ H:

(i) The measure µH has no point masses.

(ii) If H does not contain any flat piece, then µH is of full support in H.

(iii) The measure µH is finite on compact sets.

(iv) If v is in Σ̃, then the half horospheres Hu
+(v) and Hu

−(v) have infinite measure.

Proof. (i) We know that µx0 has no point masses. If w ∈ H, µx0({v+}) = 0 directly
implies that µH({v}) = 0.

(ii) If U ⊂ H is an open nonempty subset, PH(U) is also open and nonempty. So
µx0(PH(U)) > 0 because its support is Λ(Γ) = ∂M̃ . Then µH(U) =

∫
PH(U) φvdµx0 > 0.

(iii) If K ⊂ H is compact, PH(K) is also compact. The function φv is bounded on
PH(K). The volume part of the integral is bounded by the length of K. Then it is clear
that µH(K) is finite.

(iv) By (iii) it is clear that, for every w ∈ Hu(v), the measure of Hu
+(v) is infinite if

and only if so is the measure of Hu
+(w). So we can assume that v is in Rec1.

Let Bu(w, r) denote the open ball in Hu(w) of center w and radius r > 0. The balls
Bu(w, 1) have two boundary points aw, bw ∈ Hu(w) that depend continuously on w so
that Bu(w, 1) = (aw, bw). In view of Lemma 3.1, the function w 7→ µHu(w)((aw, w)) is

continuous. The continuity at v implies that there exists a neighborhood U of v in Σ̃
such that for all w ∈ U

µHu(w)((aw, w)) ≥ 1

2
µHu(v)((av, v)). (3)

The inequality is in fact valid on ∪γ∈ΓγU because the family of measures is Γ-invariant.

Since v is recurrent, there is a sequence tk converging to −∞ and isometries γk ∈ Γ
such that the the distance d1(gtkv, γkv) goes to 0. For k big enough, the vector gtkv is
in γkU , so Equation 3 remains true if we replace w by gtkv. Let ak, bk be the points
in Hu(gtkv) such that Bu(gtkv, 1) = (ak, bk). Using the fact that the measures on
horocycles expand exponentially, we obtain

µHu(v)((g−tkak, v)) = e−tkµHu(gtkv)((ak, gtkv)) ≥ 1

2
e−tkµHu(v)((av, v)).

This shows that in one half-horocycle there are subsets of arbitrarily large measure. We
proceed analogously for the other half-horocycle, with bk instead of ak.

We can now define a suitable parametrization of the horocyclic flow on the set Σ̃.
Given v ∈ Σ̃, we consider the function mv : Hu

+(v) → (0,+∞) defined by mv(w) :=
µHu(v)((v, w)). The map mv is well defined by properties (ii) and (iii) of Lemma 3.2,
is continuous by (i), strictly increasing (with the order given by the orientation) by
(ii) and surjective by (iv). Then mv is in fact a homeomorphism, because the domain
and the codomain of the function are topologically the real line. For s > 0, we set
hs(v) = m−1

v (s), so that the measure of the interval (v, hs(v)) is s. There is a similar
map on the negative half horocycle Hu

−(v) that allows us to define the flow hs(v) for
negative time, and we also set the obvious relation h0(v) = v.

It is clear that the flow satisfies the group law, hs1 ◦ hs2 = hs1+s2 , because of the
additivity of the measure and property (i). For the same reasons, the measure of every in-
terval I ⊂ Hu(v) (hence, every measurable set) is preserved, µHu(v)(hs(I)) = µHu(v)(I).
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Thanks to the product structure of the measure (Equation 2), we deduce that hs pre-
serves µ. The expanding property of the measures on horocycles is transformed into the
commutation relation gt ◦ hs = hseδt ◦ gt between the geodesic flow and the horocyclic
flow. Only the continuity of hs remains to be proved.

Lemma 3.3. The flow
R×Σ̃ −→ Σ̃
(s, v) 7−→ hs(v)

is continuous.

Proof. Let s ∈ R and v ∈ Σ̃ and consider sequences sk → s and vk → v. We know
that the horocycles Hu(w) depend continuously on w, so for each k there exists a vector
wk ∈ Hu(vk) such that the sequence {wk}k converges to hs(v). By Lemma 3.1, we have
µHu(vk)((vk, wk)) → µHu(v)((v, hs(v))) = |s|. We deduce then that the measures of the
intervals (wk, hsk(vk)) tend to 0. If the distance between wk and hsk(vk) tends to 0 too,
then we obtain hsk(vk)→ hs(v) so the flow is continuous at (s, v).

Otherwise, we get a contradiction. In effect, suppose that, for some ε > 0 and
subsequence ki, the Riemannian distance d1(wki , hski (vki)) is greater than ε. Then,
since wki → hs(v), for i big enough hski (vki) is at distance greater than ε/2 from hs(v).
But the sequence hski (vki) must accumulate at some point ζ in Hu(v) ∪ {v−}, outside
of a ball centered at hs(v). Again by the continuity of the measure, it follows that
µHu(v)((hs(v), ζ)) = 0, which is impossible because the interval is nonempty.

3.3 Unique ergodicity of the horocyclic flow on Σ

To study the ergodic properties of the horocyclic flow we introduce the Birkhoff averages.
Let f : T 1M → R be a Borel function and f̃ : T 1M̃ → R its lift. For a number R > 0
and v in Σ̃, we define

MR(f)(v) :=
1

R

∫ R

0
f̃(hs(v))ds.

A simple computation using the commutation relation between the geodesic and the
horocyclic flow shows that MR(f ◦ gt) = MReδt(f) ◦ gt.

Moreover, if we suppose that f is bounded and uniformly continuous, the equidis-
tribution under the action of the geodesic flow we showed in Theorem A implies that
the Birkhoff averages M1(f ◦ gt) converge pointwisely to

∫
fdµ/µ(T 1M) when the time

t goes to +∞. However, we need to understand the behavior of MR(f) when R goes
to infinity, that is to say, the equidistribution of horocycles in length. To do this we
will use the relation M1(f ◦ gt) = Meδt(f) ◦ gt and some kind of uniform convergence of
the averages M1(f ◦ gt) towards the average of f on the unitary tangent bundle of the
manifold M , which we are going to prove.

It is clear from the continuity of the measures on horocycles (Lemma 3.1) that the
function M1(f ◦ gt) is continuous on Σ̃. We can prove the following improved result.

Proposition 3.4. Let M be an orientable rank 1 complete connected Riemannian sur-
face with nonpositive curvature satisfying the duality condition. Let f be a bounded and
uniformly continuous function on T 1M . Then the family of functions {M1(f ◦ gt)}t>0

is equicontinuous at every vector of Σ̃.

Proof. Let v be a vector in Σ̃. The average of the horocyclic flow can be written explicitly
as

M1(f ◦ gt)(w) =

∫
(w,h1(w))

f̃ ◦ gt dµHu(w) =
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=

∫
(w+,h1(w)+)

f̃ ◦ gt(P−1
Hu(w)(η))e

δβη(x0, π(P−1
Hu(w)

(η)))
dµx0(η).

Fix ε > 0. We consider a relatively compact neighborhood U of v such that , for all
w ∈ U ,

µx0((v+, h1(v)+)4(w+, h1(w)+)) < ε.

Let C be a uniform bound of exp(δβη(x0, P
−1
Hu(w)(η))) for w ∈ U and η in a compact

neighborhood of (v+, h1(v)+). When w approaches v, the set (w+, h1(w)+) will be
contained in this compact neighborhood. Then we can change the domain of integration
in equation 3.3 to (v+, h1(v)+) with an error of ε ‖f‖∞C at most.

By the uniform continuity of f̃ , there is a number r > 0 such that |f̃(w)− f̃(w′)| < ε
if d1(w,w′) < r. If w is close enough to v, for all η ∈ (v+, h1(v)+), P−1

Hu(w)(η) is at

distance less than r from P−1
Hu(v)(η). Applying the geodesic flow gt, t ≥ 0 to these two

vectors, their distance does not increase. Hence, when w is close to v,

∀t ≥ 0, ∀η ∈ (v+, h1(v)+), |f̃(gt(P
−1
Hu(w)(η)))− f̃(gt(P

−1
Hu(v)(η)))| < ε.

This is essentially the same we did in property (ii) of the proof of Proposition 2.2. We can
also control the difference between exp(δβη(x0, P

−1
Hu(w)(η))) and exp(δβη(x0, P

−1
Hu(v)(η)))

if we consider a w close enough to v. So the values of the functions at w are close to the
values at v uniformly in t when the two vectors are close. This shows that {M1(f ◦gt)}t>0

is equicontinuous at v.

We also observe that the function M1(f ◦gt) is bounded by the uniform norm ‖f‖∞.
Both the set Σ̃ and the functions MR(f) : Σ̃→ R are invariant under Γ, so they descend
respectively to a set Σ ⊂ T 1M and some functions M̄R(f) : Σ → R. We will apply the
Arzelà-Ascoli theorem on the space of continuous functions C(K) over a compact set
K ⊂ Σ. For every uniformly continuous and bounded function f : T 1M → R, the family
{M̄1(f ◦gt)|K}t>0 ⊂ C(K) is equicontinuous and uniformly bounded, so it is a relatively
compact subset of C(K) in the uniform convergence topology. This is enough to prove
that M̄1(f ◦ gt)|K converges uniformly to

∫
fdµ/µ(T 1M) when t → +∞, or we get a

contradiction otherwise. Indeed, if we suppose that there is not uniform convergence,
there will exist a constant ε > 0, a sequence tn → +∞ and points wn in K such that∣∣∣∣M̄1(f ◦ gtn)(wn)−

∫
fdµ

µ(T 1M)

∣∣∣∣ ≥ ε. (4)

However, because of the sequential compactness of the closure of {M̄1(f ◦ gt)|K}t>0,
there exists a subsequence tnk where M̄1(f ◦ gtnk )|K converges uniformly to some func-

tion ϕ in C(K). In particular, M̄1(f ◦ gtnk )|K converges pointwisely to ϕ, but also to∫
fdµ/µ(T 1M) as mentioned above (consequence of Theorem A), so ϕ is constant and

equal to
∫
fdµ/µ(T 1M). But M̄1(f ◦ gtnk ) converging to

∫
fdµ/µ(T 1M) in the uniform

norm contradicts Equation 4. We have shown:

Proposition 3.5. Let M be an orientable rank 1 complete connected Riemannian sur-
face with nonpositive curvature satisfying the duality condition. Assume that the Bowen-
Margulis measure µ is finite. Let f be a bounded and uniformly continuous function on
T 1M . Then the functions M̄1(f ◦ gt) : Σ → R converge uniformly on compact sets to
the constant

∫
fdµ/µ(T 1M) when the time t tends to +∞.

Finally, we state Theorem B again and prove it with the help of the Birkhoff averages.
Recall that Σ is the set of vectors whose horosphere contains a rank 1 recurrent vector,
and Σ has full µ-measure in T 1M .
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Theorem 3.6. Let M be an orientable rank 1 complete connected Riemannian surface
with nonpositive curvature satisfying the duality condition. Assume that the Bowen-
Margulis measure µ is finite. Then every finite Borel measure on Σ invariant under the
horocyclic flow hs is a constant multiple of the Bowen-Margulis measure µ|Σ restricted
to Σ.

Proof. Firstly, let us prove that, for every bounded and uniformly continuous function
f : T 1M → R and for every vector v in Σ, there exists a sequence tn → +∞ such that
the Birkhoff integral M̄etn (f)(v) tends to λ :=

∫
fdµ/µ(T 1M).

There is a recurrent vector w in the unstable horocycle of v, since v is in Σ. Let
tn be a sequence tending to +∞ such that g−tn(w) → w. Then obviously g−tn(v) also
tends to w. We consider the compact set K := {g−tn(v)}n≥0∪{w} ⊂ Σ. By Proposition
3.5, the functions M̄1(f ◦ gt) converge uniformly on K to the global average λ of f .
Therefore, using the time-scale relation, we have

|M̄etn (f)(v)− λ| = |M̄1(f ◦ gtn)(g−tn(v))− λ| ≤ sup
u∈K
|M̄1(f ◦ gtn)(u)− λ| n→+∞−−−−−→ 0.

We can now prove that the restriction µ|Σ of µ to Σ is the unique measure on Σ
invariant under hs, up to a multiplicative constant. Suppose that ν is an ergodic hs-
invariant probability measure on Σ. By the Birkhoff ergodic theorem, for every bounded
and uniformly continuous function f : Σ→ R, for ν-a.e. v in Σ, we have

M̄R(f)(v) =
1

R

∫ R

0
f(hs(v))ds

R→+∞−−−−−→
∫

Σ
fdν.

We take v one of the points of Σ where M̄R(f) converges to
∫
fdν. We can extend f to

a bounded and uniformly continuous function f̂ on T 1M , because Σ is dense in T 1M .
As we have seen, there is a sequence Rn = etn where M̄R(f̂)(v) = M̄R(f)(v) tends to λ
as well. So we obtain ∫

Σ
fdν = λ =

∫
T 1M fdµ

µ(T 1M)
=

∫
Σ fdµ

µ(Σ)
,

because Σ has full µ-measure. We have concluded that ν is equal to the normalization
of µ|Σ.

3.4 Alternative proof of the unique ergodicity

We would like to point out another way to prove Proposition 3.5, which does not require
the equidistribution of horocycles (Theorem A). Instead, we use a version of the Arzelà-
Ascoli theorem for the compact-open topology, the ergodic theorem and the fact that
there exists a dense horocycle in Σ. Actually, we can prove that all the horocycles of Σ
are dense.

Lemma 3.7. Let M be a rank 1 nonpositively curved complete connected Riemannian
surface with the duality condition. Then every horocycle H contained in Σ is dense in
T 1M .

Proof. It follows directly from two results of Eberlein. A nonpositively curved complete
connected manifold that satisfies the visibility axiom and the duality condition, like M ,
has a dense horocycle in T 1M [7, Theorem 5.2]. Next we apply [7, Theorem 5.5] to M ,
which says that a horocycle Hu(v) in H is dense in T 1M if and only if v is not almost
minimizing. We say that v is almost minimizing if there exists a constant C > 0 such
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that, for all t ≥ 0, we have d(π(v), π(gt(v))) ≥ t − C. If a horocycle H is contained
in Σ, then there is a recurrent vector in H and, in particular, this vector is not almost
minimizing. Thus, the horocycle H is dense in T 1M

We consider the space of continuous functions C(Σ) on the set Σ equipped, this
time, with the compact-open topology. Recall that, for functions on a metric space, the
convergence in the compact-open topology is equivalent to the convergence on compact
subsets. The next fact will be used in the alternative proof of Proposition 3.5.

Lemma 3.8. If a uniformly bounded sequence of functions fn in C(Σ) converges in the
compact-open topology to a function f ∈ C(Σ), then the sequence also converges to f in
the L2(Σ, µ|Σ)-norm.

Proof. Recall that a Polish space is a separable completely metrizable topological space.
The set of rank 1 recurrent vectors Rec1 ⊂ Σ is a Gδ subset of T 1M . Then Rec1 is a
Polish space, because Gδ subsets of Polish spaces are Polish spaces and T 1M is Polish.

Finite Borel measures on a Polish space are Radon. For Rec1 and the restriction of
µ to Rec1, this means that, given any number ε > 0, there is a compact set K ⊂ Rec1

such that µ(Rec1 \ K) < ε. In addition, the set Rec1 is of full measure in T 1M . We
have ∫

Σ
|fk − f |2 dµ ≤ 4C2ε+

∫
K
|fk − f |2 dµ,

where C is a bound of f and the sequence {fn}. The last term tends to 0 because of
the uniform convergence of fn to f on compact subsets.

Let f be a bounded and uniformly continuous function on T 1M . Applying the
Arzelà-Ascoli theorem for the compact-open topology [6, Theorem XII.6.4], since the
family of functions {M̄1(f ◦gt)}t>0 is equicontinuous and uniformly bounded, we obtain
that it has a compact closure in C(Σ) with the compact-open topology. To complete the
proof of Proposition 3.5, we show that the only accumulation point of {M̄1(f ◦ gt)}t>0

in the compact-open topology is the constant function
∫
fdµ/µ(T 1M).

Let ϕ in C(Σ) be the limit of a sequence M̄1(f ◦ gtk) in the compact-open topology,
where tk → +∞. By Lemma 3.8, ϕ is the limit in L2(Σ, µ|Σ) of the same sequence.
On the other hand, we apply the L2 ergodic theorem for the system (Σ, hs, µ|Σ) to the
function f ∈ L2(Σ, µ|Σ). It says that M̄t(f) converges to an hs-invariant function f̄ in
the L2 norm, with the equality

∫
f̄dµ =

∫
fdµ. Thanks to gt invariance of µ, we have

the inequality

∥∥ϕ− f̄ ◦ gtk∥∥2
≤
∥∥ϕ− M̄1(f ◦ gtk)

∥∥
2

+
∥∥f̄ − M̄etk (f)

∥∥
2
,

which implies the L2-convergence of f̄ ◦ gtk to ϕ, because both terms on the right side
tend to zero. The function f̄ is hs-invariant, so f̄ ◦ gtk are also invariant because the
geodesic and the horocyclic flow commute. Then their limit, the continuous function ϕ
of Σ, is also invariant under hs.

In brief, the function ϕ is constant on the orbits of hs, and these orbits are dense
by Lemma 3.7. Since ϕ is continuous, we conclude that it is constant on Σ. In fact, the
value of the constant is

∫
fdµ/µ(T 1M), because we have∫
ϕdµ =

∫
f̄ ◦ gtk dµ =

∫
f̄ dµ =

∫
f dµ.
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4 Conclusion

In the first part of the article, we succeed in generalizing the equidistribution of horo-
spheres under the action of the geodesic flow in an optimal way. The question of the
asymptotic behavior of the horospherical averages on a ball of increasing radius remains
open in its complete generality. In the second part, we overcome the difficulties in the
application of Marcus’s method by restricting the problem to a certain subspace and we
obtain the unique ergodicity of the horocyclic flow. However, Theorem B does not solve
completely the problem of the horocyclic flow in nonpositive curvature, since it does not
say what happens to the flow on the whole space. Even in the compact case, we do not
know if there could exist other invariant measures outside of the set Σ.

We can consider a continuous horocyclic flow h̃s on the whole unitary tangent bun-
dle T 1M (for example, with the parametrization by the Riemannian distance). Recall
that there is an identification between the following objects: Borel measures on T 1M
invariant under h̃s, families of measures on the transversal manifolds of the unstable
foliation invariant under holonomy and measures on the set of horocycles H invariant
under the action of Γ. Similarly, there is an identification between the measures on Σ
invariant under hs and the measures on the set HΣ of horocycles in Σ̃ invariant under
Γ.

Under the hypothesis of Theorem B, the system (Σ, hs) is uniquely ergodic, then so
is (Σ, h̃s|Σ). We deduce that there is a unique ergodic invariant probability measure ν of
(T 1M, h̃s) such that ν(Σ) > 0 and this measure is actually the Bowen-Margulis measure
µ. As mentioned, now we would like to know if there are other invariant measures
outside of Σ. In particular, we want to answer if the horocyclic flow of a nonpositively
curved rank 1 compact surface is uniquely ergodic. For a more general situation such
as geometrically finite manifolds, we wonder if there is a classification of the invariant
Radon measures as in the negative curvature case.
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