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Consider a supercritical d-type branching process

, n 0, in an i.i.d. environment ξ = (ξ0, ξ1, . . .), starting with one particle of type i, whose offspring distributions of generation n depend on the environment ξn at time n. In the deterministic environment case, the famous Kesten-Stigum (1966) theorem states essentially that, if the mean matrix of the offspring distribution has spectral radius ρ > 1, then for all i, j = 1, . . . , d, almost surely limn→∞

such as central limit theorems with convergence rate and large deviation asymptotics.

exists and is finite; moreover, the limit variables are nondegenerate if and only if E Z i 1 (j) log + Z i 1 (j) < +∞ for all i and j. The extension to the random environment case with d = 1 has been done by Athreya and Karlin (1971) and [START_REF] Tanny | A Necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]. Extending the Kesten-Stigum theorem to the random environment case with d > 1 is a long-standing problem. The main objective of this paper is to resolve this delicate problem. In particular, under simple conditions, we prove that for any 1 ≤ i, j ≤ d, as n → +∞, Z i n (j)/E ξ Z i n (j) → W i in probability, where W i is a non-negative random variable, E ξ Z i n (j) is the conditional expectation of Z i n (j) given the environment ξ, which diverges to ∞ with geometric rate in the sense that 1 n log E ξ Z i n (j) → γ > 0 almost surely, γ being the Lyapunov exponent of the mean matrices of the offspring distributions; moreover W i are non-degenerate for all i if and only if

E Z i 1 (j) M 0 (i,j) log + Z i 1 (j) M 0 (i,j)
< +∞ for all i and j, where M0(i, j) is the conditioned mean of the number of children of type j produced by a particle of type i at time 0, given the environment ξ. The key idea of the proof is the introduction of a non-negative martingale (W i n ) which converges a.s. to W i , and which reduces to the well-known fundamental martingale in the deterministic environment case. In addition, we prove that the direction Z i n / Z i n converges in law conditioned on the explosion event { Z i n → +∞}. The case of stationary and ergodic environment is also considered. Our results open ways to prove important properties

Introduction

Branching processes are rapidly developing areas of the theory of random processes. Their importance is mainly due to the large spectrum of applications in many fields including biology, chemistry, population dynamics, nuclear physics, etc. See for example the classical books by Harris [START_REF] Harris | The Theory of Branching Processes[END_REF] and Athreya and Ney [START_REF] Athreya | Branching Processes[END_REF]. The introduction of a random environment by Smith and Wilkinson [START_REF] Smith | On branching processes in random environments[END_REF] and Athreya and Karlin [START_REF] Athreya | On branching processes with random environments I:Extinction probabilities[END_REF] brought an important advancement in the theory and applications of branching processes. The role of random environment has been by now well understood in the case of single type branching processes, for which a number of important properties have been established, see for example the recent book by Kersting and Vatutin [START_REF] Kersting | Discrete time branching processes in random environment[END_REF]. For multi-type branching processes in random environments (MBPRE's), recent progress has been made for the critical and subcritical cases: see for example Peigné, Le Page and Pham [START_REF] Page | The survival probability of a critical multi-type branching process in i.i.d. random environment[END_REF] , Vatutin and Dyakonova [START_REF] Vatutin | Multitype branching processes in a random environment: nonextinction probability in the critical case[END_REF], and Vatutin and Wachtel [START_REF] Vatutin | Multi-type subcritical branching processes in a random environment[END_REF], who studied the convergence rate of the survival probability; for the supercritical case, we have not found recent work in the literature, and we feel that too few results are known.

For a supercritical multi-type branching process (MBP), the fundamental problem is the description of the population size at time n. Let us recall the famous Kesten-Stigum's theorem [START_REF] Kesten | A Limit Theorem for Multidimensional Galton-Watson Processes[END_REF] established in the deterministic environment case, which tells us exactly when the population size grows at an exponential rate. Consider a MBP Z n = (Z n (1), • • • , Z n (d)), n 0, where Z n (j) denotes the number of particles of types j at time n, Z 0 represents the initial population. Denote by M the (non-random) matrix of means of the offspring distributions, which is assumed to be primitive in the sense that there exists k ≥ 1 such that M k > 0. Let ρ be the spectral radius of the mean matrix M , and let u = (u(1), • • • , u(d)) and v = (v(1), • • • , v(d)) be respectively associated positive right and left eigenvectors with the normalization u = 1 and v, u = 1, where • denotes the L 1 -norm and •, • the scalar product. Assume that ρ > 1, which means that the branching process is in the supercritical regime. Denote by (Z i n ) n 0 the branching process (Z n ) n 0 starting with one initial particle of type i, that is when Z 0 = e i , where e i is the unit vector whose i-th component is 1. Kesten and Stigum [START_REF] Kesten | A Limit Theorem for Multidimensional Galton-Watson Processes[END_REF] showed that, for any 1 ≤ i, j ≤ d, as n → +∞,

Z i n (j) ρ n v(j) → W i u(i) a.s., (1.1) 
where W i is a non-negative random variable which is non-degenerate for all i if and only if E Z i 1 (j) log + Z i 1 (j) < +∞ for all i and j, and when it is non-degenerate, EW i = 1. The proof of (1.1) is based on the fundamental non-negative martingale

W i 0 = 1, W i n = Z i n , u ρ n u(i) , n 1, (1.2) 
which converges a.s. to W i . Due to the importance of the Kesten-Stigum theorem and of the fundamental martingale (W i n ), a challenging problem is to find the corresponding results for the random environment case. For the single type process, this problem was considered at the very beginning of the study of the topic in the fundamental work of Athreya and Karlin [START_REF] Athreya | Branching Processes with random environments II:Limit theorems[END_REF] (1971). In [START_REF] Athreya | Branching Processes with random environments II:Limit theorems[END_REF] it was found that for a single type branching process (Z n ) n 0 in a stationary and ergodic random environment, the sequence

W 0 = 1, W n = Z n m 0 • • • m n-1
, n 1, (1.3) with m k denoting the conditioned mean of the offspring distribution at time k given the environment, constitutes a martingale, and that, in the supercritical case where E log m 0 > 0, the limit variable W = lim n→ W n is nondegenerate if

E Z 1 m 0 log + Z 1 < +∞. (1.4) 
In case of an independent and identically distributed (i.i.d.) environment, this condition was proved to be also necessary for the non degeneracy of W by Tanny [35] (1988). Notice that when E| log m 0 | < ∞, the moment condition (1.4) is equivalent to

E Z 1 m 0 log + Z 1 m 0 < +∞.
For a multi-type branching process in random environment Z n = (Z n [START_REF] Athreya | On branching processes with random environments I:Extinction probabilities[END_REF],

• • • , Z n (d))
, n 0, the situation is much more delicate. In fact, extending the Kesten-Stigum theorem to this case is a long-standing problem. The only result that we found in the literature about the subject is a theorem by Cohn [START_REF] Cohn | On the growth of the multitype supercritical branching process in a random environment[END_REF], which we briefly recall below. For n ≥ 0, denote by M n the matrix of the conditioned means of the offspring distribution of n-th generation given the environment: the (i, j)-th entry of M n is

M n (i, j) = E ξ [Z n+1 (j) | Z n = e i ],
where E ξ denotes the conditional expectation given the environment ξ. Let M 0,n = M 0 • • • M n be the product matrix. Assume that each entry of M n is bounded a.s. from below and above by two positive constants, and that all the conditional second moments of the offspring distributions given the environment are bounded a.s. by a constant. We suppose that the MBPRE is in the supercritical regime, which means that

γ := lim n→+∞ 1 n E log M 0,n-1 > 0, (1.5) 
where M 0,n-1 is the L 1 -norm of the matrix M 0,n-1 . This definition of the supercriticality agrees with that in the deterministic environment case, since in this case log ρ = γ. Assume also the integrability condition E| log d i=1 (1-

P( Z i 1 = 0))| < ∞. Under these conditions Cohn ([6], 1989) proved that for each j = 1, • • • , d, Z i n (j) E ξ Z i n (j) → W i in L 2 , (1.6)
where W i is a non degenerate random variable satisfying EW i = 1.This result is already very interesting. However, it only gives sufficient conditions which are not necessary for Z i n (j) E ξ Z i n (j) to converge to a non degenerate random variable. Moreover, the sequence Z i n (j) E ξ Z i n (j) n≥0 in general is not a martingale; it turns out very useful to find the martingale which corresponds the fundamental martingale known in the constant environment case.

Our objective in this paper is to obtain a full extension of the Kesten-Stigum result (1.1) for a supercritical MBPRE

Z n = (Z n (1), • • • , Z n (d))
, n 0. For simplicity, let us consider the case where the Furstengerg-Kesten condition H4 (see Section 2) is satisfied, and where the environment is i.i.d. Assume the supercritical condition γ > 0. For n, k 0, let ρ n,n+k be the spectral radius of the product matrix M n,n+k = M n • • • M n+k , and let U n,n+k and V n,n+k be respectively the associated non-negative right and left eigenvectors with the normalization U n,n+k = 1 and V n,n+k , U n,n+k = 1. Set U n,∞ = lim k→∞ U n,n+k , where the limit exists a.s. according to a result of Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF] . Then we have the following analog of Kesten-Stigum's result (1.1) which describes the asymptotic behaviour of the coordinate Z i n (j): for any 1 ≤ i, j ≤ d, as n → +∞,

Z i n (j) ρ 0,n-1 V 0,n-1 (j) → W i U 0,∞ (i) in probability, (1.7) 
where U 0,∞ (i) ∈ (0, 1), W i is a non-negative random variable such that W i is non-degenerate for all i if and only if

E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) < +∞ (1.8)
for all i and j, and when it is non-degenerate, EW i = 1. A result similar to (1.6) is also proved : in Theorem 2.11 we establish (under conditions weaker than those supposed by Cohn [START_REF] Cohn | On the growth of the multitype supercritical branching process in a random environment[END_REF]) that for all 1 ≤ i, j ≤ d,

Z i n (j) E ξ Z i n (j) → W i in probability, (1.9) 
where W i is the same variable as in (1.7). As it has been just noted, the condition (1.8) is sufficient and necessary for W i to be non-degenerate. The asymptotic behavior of the direction of the vector Z i n is also of interest. We show that the unit vector Z i n / Z i n converges in law conditioned on the explosion event { Z i n → +∞}. This extends the corresponding result of Kurtz, Lyons, Pemantle and Perez [START_REF] Kurtz | A conceptual proof of the Kesten-Stigum Theorem for multi-type branching processes[END_REF] established for the deterministic environment case.

The key idea of the proof is the introduction of a non-negative martingale (W i n ) which converges a.s. to W i , and which reduces to the well-known fundamental martingale in the deterministic environment case and in the single-type random environment case. Since this is the key difficulty let us explain our construction in details. The straightforward way for a generalization of (1.2) would be replacing ρ n and the right eigenvector u by the eigenvalues ρ 0,n-1 and the corresponding right eigenvectors U 0,n-1 of the matrix M 0,n-1 ; unfortunately, this does not lead to a martingale. Our definition is based on the analog of the Perron-Frobenius theorem for products of random matrices which has been established in Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF]. From the results of [17, Theorem 1], the sequence of unit vectors (U n,∞ ) satisfies

M n U n+1,∞ = λ n U n,∞ , where λ n = M n U n+1,∞ , n
0, is a stationary and ergodic sequence. Iterating the last relation leads to the identity

M 0,n-1 U n,∞ = λ 0,n-1 U 0,∞ , with λ 0,n = λ 0 • • • λ n .
This allows us to associate with the branching process (Z i n ) the positive martingale

W i 0 = 1, W i n = Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) , n ≥ 1. (1.10)
When the environment is deterministic, the matrices M n , n 0, are identical to a single deterministic matrix, say M . In this case we have U n,∞ = U n,n+k = u, where u is the unit right eigenvector of M associated with the spectral radius ρ, and λ 0,n-1 = ρ n , so that

W i n = Z i n ,u ρ n u(i)
, which shows that the martingale (1.10) coincides with the martingale (1.2). For a single-type branching process in random environment, we have

U n,∞ = 1, λ 0,n-1 = m 0 • • • m n-1 , so that (1.10) coincides with (1.3).
In fact, in the paper we will establish more general results for stationary and ergodic environment without assuming the Furstengerg-Kesten condition. We refer the reader to Section 2 for details.

We mention that the results of this paper open ways to prove important properties such as central limit theorems with convergence rate and large deviation asymptotics, similar to those obtained in [START_REF] Bansaye | Large deviations for branching processes in random environment, Markov Process[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]. See the preprints [START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF][START_REF] Grama | Cramér type moderate deviation expansion for supercritical multi-type branching processes in random environments[END_REF].

The outline is as follows. In Section 2, we introduce the necessary notation and present the main results. In Section 3, we give some preliminaries for products of positive random matrices. The fundamental martingale (W i n ) is constructed in Section 4; the non-degeneracy of its limit is considered in Sections 5-7. Section 8 is devoted to the convergence of the direction of Z n . In Section 9 we study the convergence in probability of the normalized component Z i n (j) E ξ Z i n (j) ; its a.s. convergence is considered in Section 10. Section 11 is an appendix in which we prove several implications among the conditions used in the statements of the main results.

Background and main results

Notation and preliminary statements

We start this section by fixing some notation. For an integer d ≥ 1 let R d be the d-dimensional space of vectors with real coordinates. For 1 i d denote by e i the d-dimensional vector with 1 in the i-th place and 0 elsewhere. 

1 = (1, • • • , 1) ∈ R d stands
M := sup x =1 M x .
For a matrix or a vector X, we write X > 0 to mean that each entry of X is strictly positive. The set of non-negative integers is denoted

N = {0, 1, • • • }.
The symbol C denotes positive constants. The indicator of an event A is denoted by 1 A . The symbol

d(P)
-→ denotes the convergence in distribution under P, while P -→ means the convergence in probability P. Let ξ = (ξ n ) n≥0 be a stationary and ergodic sequence of random variables with values in an abstract space X. Each realization of ξ n is associated with d probability distributions on N d characterized by their probability generating functions

f r n (s) = ∞ k 1 ,••• ,k d =0 p r k 1 ,••• ,k d (ξ n )s k 1 1 • • • s k d d , s = (s 1 , • • • , s d ) ∈ [0, 1] d , 1 r d. A d-type branching process Z n = (Z n (1), • • • , Z n (d))
, n 0, in the random environment ξ is a process with values in N d such that Z 0 ∈ N d is fixed, and for all n ≥ 0,

Z n+1 = d r=1 Zn(r) l=1 N r l,n , (2.1) 
where Z n (j) represents the number of particles of type j of some population in generation n; conditioned on the environment ξ, the random vectors

N r l,n = (N r l,n (1), • • • , N r l,n (d))
, with N r l,n (j) denoting the offspring of type j at time n + 1 of the l-th particle of type r in the generation n, are independent for l 1, n 0, 1 r d; each N r l,n has the same probability generating function f r n for l 1. In the sequel, when the branching process (Z n ) n 0 starts with one initial particle of type i, i.e. when Z 0 = e i , we will write (Z i n ) n 0 instead of (Z n ) n 0 . Let P ξ be the additional probability under which the process (Z n ) is defined given the environment ξ. The total probability P can be formulated as P(dx, dξ) = P ξ (dx)τ (dξ), where τ denotes the law of the environment sequence ξ. The probability P ξ is usually called quenched law, while the total probability P is called annealed law. The quenched law P ξ can be considered as the conditional law of P given the environment ξ. The expectation with respect to P ξ and P will be denoted respectively by E ξ and E.

According to the definition of the model, under P ξ , the random vectors N r l,n = (N r l,n (1), • • • , N r l,n (d)) are independent and have the same probability generating function f r n :

f r n (s) = E ξ d j=1 s N r l,n (j) j , s = (s 1 , • • • , s d ) ∈ [0, 1] d .
Set for brevity N r n := N r 1,n , and let

f n = (f 1 n , • • • , f d n ). Then f r n is the generating function of N r n = (N r n (1), • • • , N r n (d)
) under P ξ . We now introduce the sequence of matrices (M n ) n∈N of conditional means given the environment, which will play a central role in our developments. For all n ≥ 0, set

M n = M n (ξ n ) := ∂f i n ∂s j (1)
1≤i,j≤d , i.e., for any 1 i, j d, the (i, j)-th entry of the matrix M n is

M n (i, j) = ∂f i n ∂s j (1) = E ξ Z n+1 (j) Z n = e i ,
which represents the conditioned mean of the number of children of type j produced by a particle of type i at time n, and which are supposed to be finite. Here and hereafter, for a d-dimensional probability generating function f , ∂f ∂s j (1) denotes the left derivative at 1 of f with respect to s j . The matrix M n depends only on ξ n and the sequence of the matrices (M n ) n≥0 is stationary and ergodic. Let 0 ≤ k ≤ n. For the product of the matrices M k , • • • , M n it is convenient to use the notation

M k,n := M k • • • M n = ∂f i k • f k+1 • • • • • f n ∂s j (1) 1≤i,j≤d
, where

∂f i k • f k+1 • • • • • f n ∂s j (1) = E ξ Z n+1 (j) Z k = e i .
In particular, with k = 0, we have for all 1 ≤ i, j ≤ d,

E ξ Z i n+1 (j) = M 0,n (i, j). (2.2)
Denote by S the semigroup of matrices of M d (R) with positive entries which are allowable in the sense that every row and column contains a strictly positive element, and by S 0 the subset of the matrices with strictly positive entries. Following Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF], we shall assume that the matrices M n satisfy the condition H1. The matrix M 0 belongs to the semigroup S P-a.s. and

P n≥0 M 0,n ∈ S 0 > 0.
This means that with positive probability, there is n such that the product matrice M 0,n is strictly positive.

Obviously if G ∈ S and G 0 ∈ S 0 then G 0 G ∈ S 0 . Let θ n be the least k such that M n,n+k ∈ S 0 :

θ n := inf k ≥ 0 : M n,n+k ∈ S 0 ,
with the convention that inf ∅ = +∞. According to Lemma 3.1 in [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF], under condition H1, we have θ n < +∞ P-a.s. for all n ≥ 0.

We shall relate the branching process Z i n n≥0 to a martingale which is the key point in our study. Our construction is based on the extension of the Perron-Frobenius theorem of Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF] for products of random matrices. Recall that, under condition H1, for any n, k ≥ 0, the product M n,n+k belongs to S P-a.s. Let ρ n,n+k be the spectral radius of M n,n+k . By the classical Perron-Frobenius theorem (see e.g. [START_REF] Athreya | Branching Processes[END_REF]), ρ n,n+k is a strictly positive eigenvalue of M n,n+k , associated to positive right and left eigenvectors U n,n+k and V n,n+k , respectively, with the normalizations U n,n+k = 1 and

V n,n+k , U n,n+k = 1.
The following propositions collect some results established by Hennion in [17, Lemma 3.3 and Theorem 1], which provide an analog of the Perron-Frobenius theorem for products of random matrices. Proposition 2.1. Assume condition H1. For all n ≥ 0, the following assertions hold :

1. for all 1 ≤ i, j ≤ d :

lim k→+∞ M n,n+k (i, j) ρ n,n+k U n,n+k (i)V n,n+k (j) 1 {θn≤k} = 1 P-a.s., (2.3) 
or equivalently

lim k→+∞ M n,n+k-1 ρ n,n+k-1 -U n,n+k-1 V T n,n+k-1 = 0 P-a.s.;
2. the sequence (U n,n+k ) k≥0 converges P-a.s. to a random unit vector, say U n,∞ > 0:

U n,n+k -→ k→+∞ U n,∞ ;
3. the sequence (V n,n+k / V n,n+k ) k≥0 converges in law to a random unit vector, say V 0,∞ > 0:

V n,n+k V n,n+k d(P) -→ k→+∞ V 0,∞ ;
4. the scalars

λ n := λ n (ξ) = M n U n+1,∞ (2.4)
are strictly positive and satisfy the relation

M n U n+1,∞ = λ n U n,∞ . (2.5)
The sequence (λ n ) will play an important role in the following. The numbers λ n will be called pseudo spectral radii of the products of random matrices. Notice that λ n behaves as the spectral radius ρ n which satisfies

M n U n,n = ρ n U n,n ; (2.6)
the point is that in (2.5), there is a shift of time in the vector U n+1,∞ appearing on the left side, which permits to iterate the formula leading to

M n,n+k U n+k+1,∞ = λ n,n+k U n,∞ , (2.7) 
where

λ n,n+k = n+k r=n λ r , for n, k ≥ 0.
This shows that the relation (2.5) is stable for products of random matrices, while the corresponding relation (2.6) for the spectral radius does not have this stability. Notice that by (2.7)

λ n,n+k = M n,n+k U n+k+1,∞ . (2.8)
Let T be the shift operator of the environment sequence:

T ξ = (ξ 1 , ξ 2 , • • • ) if ξ = (ξ 0 , ξ 1 , • • • ),
and let T n be its n-fold iteration. Note that the vector U n,∞ and the scalar λ n depend on the whole sequence

T n ξ = (ξ n , ξ n+1 , • • • ). Since the random environment ξ = (ξ n ) n≥0 is a stationary ergodic sequence, from (2.4) it follows that (λ n ) n≥0
is also a stationary ergodic sequence. We complement Proposition 2.1 by establishing a relation between the product sequence λ 0,n-1 and the spectral radius ρ 0,n-1 , which will be useful in the proof of the main results of the paper. For its proof, see Section 3.

Proposition 2.2. Assume condition H1. For all

n ≥ 0 and 1 ≤ j ≤ d, λ n = lim k→+∞ ρ n,n+k V n,n+k (j) ρ n+1,n+k V n+1,n+k (j)
1 {θ n+1 ≤k} P-a.s.

(2.9)

and

lim n→+∞ λ 0,n-1 ρ 0,n-1 V 0,n-1 , U n,∞ = 1 P-a.s.
(2.10)

Main results

We first introduce the martingale related to MBPRE. Our definition is quite different from the one for a MBP with deterministic environment. However, we shall see below that in the case of deterministic environment it comes to the same. Consider the following filtration: F 0 = σ (ξ) and, for n 1,

F n = σ ξ, N r l,k , 0 ≤ k ≤ n -1, 1 ≤ r ≤ d, l ≥ 1 .
Define the process W i n n≥0 : for all 1 ≤ i ≤ d, set

W i 0 := 1, W i n := Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) , n ≥ 1. (2.11) 
Our first theorem states that W i n n≥0 is a non-negative martingale. Theorem 2.3. Assume condition H1. For all 1 ≤ i ≤ d the sequence W i n n≥0 is a non-negative martingale w.r.t. (F n ) n≥0 under the laws P ξ and P, and hence converges P-a.s. to a random variable W i ≥ 0 which satisfies

E ξ W i ≤ 1 P-a.s.
We next give a functional equation satisfied by the quenched Laplace transform

φ i ξ (t) = E ξ e -tW i , t ≥ 0, 1 i d.
For a similar result in the deterministic environment we refer to Theorem 2, p.192 in [START_REF] Athreya | Branching Processes[END_REF].

Theorem 2.4. Assume condition H1. Then for each

1 i d, the quenched Laplace transform φ i ξ of W i satisfies φ i ξ (t) = f i 0 φ 1 T ξ t U 1,∞ (1) λ 0 U 0,∞ (i) , • • • , φ d T ξ t U 1,∞ (d) λ 0 U 0,∞ (i) , t ≥ 0. (2.12)
We now introduce a condition under which we can define the Lyapunov exponent γ of the sequence of random matrices (M n ) n≥0 .

H2. The random matrix M 0 satisfies the moment condition

E log + M 0 < +∞.
By the sub-additivity lemma, under H2, the limit

γ := lim n→+∞ 1 n E log M 0,n-1
exists and is equal to the quantity inf

k≥1 1 k E log M 0,k-1 .
Moreover, the following strong law of large numbers has been established [START_REF] Furstenberg | Products of random matrices[END_REF] :

lim n→+∞ 1 n log M 0,n-1 = γ P-a.s. (2.13)
The Lyapunov exponent γ allows to introduce the following classification of MBPRE's. We say that a MBPRE is subcritical if γ < 0, critical if γ = 0, and supercritical if γ > 0. It is easy to see that our classification coincides with the standard classification of a MBP in a deterministic environment and with that of the uni-type BPRE.

All over the rest of the paper we shall focus only on the supercritical regime where γ > 0, which by (2.13) implies that lim n→+∞ M 0,n = +∞ P-a.s.

Using an extension of Birkhoff's theorem and (2.13), we obtain the following strong law of large numbers for the product sequence λ 0,n-1 , and a new expression of γ (see Section 3.2). Proposition 2.5. Assume conditions H1 and H2. Then the expectation E log λ 0 is well defined with value in R ∪ {-∞}, and

lim n→+∞ 1 n log λ 0,n-1 = E log λ 0 = γ P-a.s.
From Proposition 2.5 it is clear that, under the conditions H1 and H2, the classification stated above can be reformulated in terms of the quantity E log λ 0 .

We then investigate the non-degeneracy of the limits W i , 1 i d. Our first result gives a sufficient condition for non-degeneracy of W i , 1 i d under condition H1. To state the result we need to introduce the following condition.

H3. There exists a constant

C > 1 such that, for all 1 ≤ i ≤ d, P-a.s. +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 { N i n ,U n+1,∞ ≥C n } < +∞.
Let q i (ξ) be the probability of extinction of the process (Z i n ) n≥0 :

q i (ξ) := P ξ lim n→+∞ Z i n = 0 .
Theorem 2.6. Assume conditions H1, H2 and γ > 0. Then H3 is a sufficient condition for W i , 1 i d to be non-degenerate, that is,

P ξ W i > 0 > 0, P-a.s., 1 i d. (2.14)
Furthermore, when W i , 1 i d are non-degenerate, then

E ξ W i = 1 P-a.s., (2.15) 
and

P ξ W i = 0 = q i (ξ) P-a.s. (2.16)
We will see that the sufficient condition H3 can be replaced by a condition of type EX log + X < ∞: see Remark 2.7. To obtain a necessary and sufficient condition for the non-degeneracy of W i , 1 i d, we need the following condition introduced by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF]: H4. There exists a constant D > 1 such that P-a.s.,

1 ≤ max 1≤i,j≤d M 0 (i, j) min 1≤i,j≤d M 0 (i, j) ≤ D.
Under condition H4 we have M 0 ∈ S 0 P-a.s., so that condition H1 is satisfied, and θ n = 1 P-a.s. for any n 0.

The following conditions, which are stronger than H3, will also be used.

H5.

There exists a constant C > 1 such that, for all 1 ≤ i, j ≤ d, P-a.s.,

+∞ n=0 E ξ N i n (j) M n (i, j) 1 N i n (j)
Mn(i,j) ≥C n < +∞.

H6.

For all 1 i d,

E Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + Z i 1 , U 1,∞ < +∞. H7. For all 1 ≤ i, j ≤ d, E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) < +∞.
Remark 2.7. In Theorem 2.6, condition H3 can be replaced by each of the conditions H5, H6 and H7 . This can be seen by the following implications which will be proved in Appendix 11:

1. under H1,H2, we have: H7 ⇒H5 ⇒ H3, H7 ⇒ H6 ⇒ H3; 2. under H4, H2, we have: H5 ⇔ H3; H7 ⇔ H6; 3. under H4, H2 and when the environment is i.i.d., we have:

H3 ⇔ H5 ⇔ H6 ⇔ H7.
The following assertion is a consequence of Theorem 2.6. Let

E i = { lim n→+∞ Z i n = +∞}
be the explosion event on which the branching process explodes, starting with one particle of type i,

1 ≤ i ≤ d.
Corollary 2.8. Assume conditions H1, H2 and γ > 0. Assume also that one of the conditions H3, H5, H6 or H7 holds. Then for all 1 ≤ i ≤ d we have q i (ξ) < 1 P-a.s. and

P ξ (E i ) = 1 -q i (ξ) P-a.s. (2.17)
Moreover, on the explosion event E i we have

lim n→+∞ 1 n log Z i n = γ P-a.s. (2.18) 
Kaplan [21, Theorem 1] proved (2.17) under stronger conditions: he assumed that all the conditional means (given the environment) are bounded a.s. from below and above by two positive constants, and that all the conditional second moments of the offspring distributions are bounded a.s. by a constant. Tanny [34, Theorem 1] obtained (2.17) and (2.18) under different conditions.

The following theorem gives a necessary and sufficient condition for the non-degeneracy of W i , 1 i d, under the Furstenberg -Kesten condition H4. Notice that when the environment is i.i.d., the condition that we obtain is of the form EX log + X < ∞ as in the classic Kesten-Stigum theorem [START_REF] Kesten | A Limit Theorem for Multidimensional Galton-Watson Processes[END_REF] established for the deterministic environment case. In this case our result coincides with the corresponding one of Kesten-Stigum [START_REF] Kesten | A Limit Theorem for Multidimensional Galton-Watson Processes[END_REF]. Theorem 2.9. Assume conditions H2, H4 and γ > 0. Then condition H5 is necessary and sufficient for W i , 1 i d, to be non-degenerate (in the sense of (2.14)); this condition is equivalent to H7 when the environment (ξ n ) n≥0 is i.i.d. Furthermore, when W i , 1 i d, are non-degenerate, then (2.15) and (2.16) hold.

We finally present our results about the asymptotic behavior of the branching process (Z n ). All these results will be stated for an i.i.d. environment under the Furstenberg-Kesten condition H4.

Under conditions H2 and H4, Furstenberg and Kesten established in [START_REF] Furstenberg | Products of random matrices[END_REF] a strong law of large numbers for all the components of the product of random matrices M 0,n-1 : for all 1 ≤ i, j ≤ d,

lim n→+∞ 1 n log M 0,n-1 (i, j) = γ P-a.s. (2.19) 
Let P E i := P(•|E i ) be the probability conditioned on E i , when P(E i ) > 0.

The next result compares the direction of the vector Z n with that of the left eigenvector V 0,n-1 of the matrix M 0,n-1 and provides its limit law.

Theorem 2.10. Assume conditions H2, H4 and γ > 0. Assume additionally that the random environment sequence ξ = (ξ

0 , ξ 1 , • • • ) is i.i.d. Then, for all 1 ≤ i ≤ d such that P E i > 0, we have Z i n Z i n - V 0,n-1 V 0,n-1 P E i -→ n→+∞ 0; (2.20)
moreover, conditional on the event E i , the sequence

Z i n / Z i n n≥0 converges in law to V 0,∞ : Z i n Z i n d(P E i ) -→ n→+∞ V 0,∞ .
(

From Theorem 2.10 and from the convergence of the martingale (W i n ) n 0 we deduce the asymptotic behaviour of the components Z i n (j), under two different normalizations E ξ Z i n (j) and ρ 0,n-1 V 0,n-1 (j). Recall that by (2.2), E ξ Z i n (j) = M 0,n-1 (i, j), and by (2.3) and H4, it holds that ρ 0,n-1 V 0,n-1 (j)

∼ M 0,n-1 (i,j) U 0,∞ (i)
with U 0,∞ (i) > 0, as n → +∞.

Theorem 2.11. Assume the conditions of Theorem 2.10. Then, for all

1 ≤ i, j ≤ d, Z i n (j) E ξ Z i n (j) = Z i n (j) M 0,n-1 (i, j) P -→ n→+∞ W i (2.22)
and

Z i n (j) ρ 0,n-1 V 0,n-1 (j) P -→ n→+∞ W i U 0,∞ (i).
(2.23) Under stronger assumptions than those used in Theorem 2.11, namely that the entries of the mean matrices M n and those of the corresponding Hessian matrices are bounded, Cohn [START_REF] Cohn | On the growth of the multitype supercritical branching process in a random environment[END_REF] proved that the convergence in (2.22) can be reinforced to the L 2 -convergence. Our result (2.23) can be compared to the well-known Kesten-Stigum theorem [24, Theorem 1] established in the deterministic environment case. In fact, when the environment is determinist, (2.23) reduces to Kesten-Stigum's result (1.1), but with the a.s. convergence therein replaced by the convergence in probability. We will give below a sufficient condition to have the a.s. convergence in (2.23) .

Moreover
From Theorem 2.11 we get the following corollary which gives the asymptotic behaviour of the norm Z i n of Z i n . Corollary 2.12. Assume the conditions of Theorem 2.10. Then for all

1 ≤ i ≤ d, Z i n E ξ Z i n = Z i n M 0,n-1 (i, •) P -→ n→+∞ W i and Z i n ρ 0,n-1 V 0,n-1 P -→ n→+∞ W i U 0,∞ (i).
Our last result states a sufficient condition to get the a.s. convergence instead of the convergence in probability in Theorems 2.10, 2.11 and Corollary 2.12. Theorem 2.13. Assume conditions H2, H4 and γ > 0. Assume additionally that the random environment sequence ξ = (ξ 0 , ξ

1 , • • • ) is i.i.d. Assume also that for some p > 1, max 1≤i,j≤d E Z i 1 (j) M 0 (i, j) p < +∞ and E M 0 1-p < +∞. (2.24)
Then the following assertions hold : 

1. W i ,
Z i n Z i n - V 0,n-1 V 0,n-1 -→ n→+∞ 0.
(2.25)

3. For all 1 ≤ i, j ≤ d, Z i n (j) E ξ Z i n (j) = Z i n (j) M 0,n-1 (i, j) -→ n→+∞ W i P-a.s., (2.26 
)

Z i n (j) ρ 0,n-1 V 0,n-1 (j) -→ n→+∞ W i U 0,∞ (i) P-a.s. (2.27) 4. For all 1 ≤ i ≤ d, Z i n E ξ Z i n = Z i n M 0,n-1 (i, •) -→ n→+∞ W i P-a.s., (2.28 
)

Z i n ρ 0,n-1 V 0,n-1 -→ n→+∞ W i U 0,∞ (i) P-a.s. (2.29)
Under assumptions stronger than those of Theorem 2.13, one can show the L p -convergence (with p > 1) instead of the a.s. convergence stated above, with an exponential rate. However this task is outside the scope of the present paper and will be done in a forthcoming work.

Asymptotic properties of the pseudo spectral radii for products of positive random matrices

In this section we prove Propositions 2.2 and 2.5 on the asymptotic properties of the sequence of pseudo spectral radii (λ n ) related to the products of positive random matrices (M n ).

Proof of Proposition 2.2

From (2.3), it holds that for all n ≥ 1 and 1

≤ j ≤ d, M n U n+1,∞ = lim k→+∞ M n U n+1,n+k = lim k→+∞ M n M n+1,n+k (•, j) ρ n+1,n+k V n+1,n+k (j) 1 {θ n+1 ≤k} = lim k→+∞ ρ n,n+k V n,n+k (j) ρ n+1,n+k V n+1,n+k (j) 1 {θ n+1 ≤k} × lim k→+∞ M n,n+k (•, j) ρ n,n+k V n,n+k (j) 1 {θn≤k} = lim k→+∞ ρ n,n+k V n,n+k (j) ρ n+1,n+k V n+1,n+k (j) 1 {θ n+1 ≤k} U n,∞ .
Combining this with (2.5), the relation (2.9) follows. Now we prove (2.10). From (2.7) we get that for all n ≥ 1,

V T 0,n-1 M 0,n-1 U n,∞ = λ 0,n-1 V T 0,n-1 U 0,∞ , so λ 0,n-1 ρ 0,n-1 V 0,n-1 , U n,∞ = 1 V 0,n-1 , U 0,∞ . (3.1)
Moreover, by Proposition 2.1 we know that U 0,n-1 -→ n→+∞ U 0,∞ > 0 P-a.s., so there exist two random variables A > 0 and N 0 ≥ 1 such that P-a.s. for all n ≥ N 0 ,

0 < A ≤ min 1≤i≤d U 0,n-1 (i) ≤ 1.
Since for all n ≥ 1 we have U 0,n-1 , V 0,n-1 = 1, it follows that for all n ≥ N 0 ,

1 ≤ V 0,n-1 ≤ 1 A . (3.2)
Consequently, for all n ≥ N 0 ,

| V 0,n-1 , U 0,∞ -1| = | V 0,n-1 , U 0,∞ -U 0,n-1 | ≤ 1 A U 0,∞ -U 0,n-1 , so that V 0,n-1 , U 0,∞ -→ n→+∞ 1 P-a.s. (3.3) 
Combining (3.1) and (3.3) gives (2.10), which ends the proof of Proposition 2.2.

Proof of Proposition 2.5

By (2.4) we have

λ 0 = M 0 U 1,∞ ≤ M 0 P-a.s..
Using condition H2, it follows that E log + λ 0 < +∞, so that E log λ 0 is well defined with value in R ∪ {-∞}. Recall that (λ n ) n≥0 is a stationary ergodic sequence of random variables. Applying an extension of the Birkhoff Ergodic Theorem [18, Theorem 1] we deduce that, P-a.s.,

lim n→+∞ 1 n log λ 0,n-1 = E log λ 0 . (3.4)
Moreover, from (2.8) we see that for all n ≥ 1, P-a.s.,

1 n log min 1≤j≤d U n,∞ (j) + 1 n log M 0,n-1 ≤ 1 n log λ 0,n-1 ≤ 1 n log M 0,n-1 . (3.5) Since log min 1≤j≤d U n,∞ (j) n≥0
is a stationary sequence of random variables, by Slutsky's lemma it follows that

1 n log min 1≤j≤d U n,∞ (j) P -→ n→+∞ 0.
Combining this with the law of large numbers (2.13) and letting n → +∞ in (3.5), we obtain that

1 n log λ 0,n-1 P -→ n→+∞ γ. (3.6)
By (3.4), (3.6) and the uniqueness of the limit in probability, it holds that E log λ 0 = γ. This concludes the proof of Proposition 2.5.

The fundamental martingale (W i n )

In this section we prove that (W i n ) is a martingale, and that the quenched Laplace transform of its limit variable satisfies a functional equation that we make precise.

Proof of Theorem 2.3

Clearly W i n n≥0 is adapted to (F n ) n≥0 , and using (2.7) we have for all n ≥ 0 and 1 ≤ i ≤ d,

E ξ W i n = E ξ Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) = M 0,n-1 (i, •), U n,∞ λ 0,n-1 U 0,∞ (i) = 1 P-a.s.
Moreover, we know that

E ξ Z i n+1 F n = M T n Z i n
, so we obtain that for all n ≥ 0 and 1 ≤ i ≤ d,

E ξ W i n+1 F n = M T n Z i n , U n+1,∞ λ 0,n U 0,∞ (i) = Z i n , M n U n+1,∞ λ 0,n U 0,∞ (i) .
Then applying (2.5) we get that for all n ≥ 0,

E ξ W i n+1 F n = Z i n , λ n U n,∞ λ 0,n U 0,∞ (i) = Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) = W i n .
This proves that the sequence W i n n≥0 is a martingale w.r.t. (F n ) n≥0 under the law P ξ . The argument is similar under the law P. By Fatou's Lemma we have E ξ W i ≤ 1 P-a.s. This ends the proof of Theorem 2.3.

Proof of Theorem 2.4

Conditioned on the environment ξ, the random vectors

Z r l,n,k = (Z r l,n,k (1), • • • , Z r l,n,k (d))
, with Z r l,n,k (j) denoting the offspring of type j at time n+k of the l-th particle of type r in the generation n, are independent and have the same probability generating function

f r n • f n+1 • •f n+k-1 .
By iterating (2.1), it is easy to see that the process (Z n ) n≥0 satisfies the relation

Z n+k = d r=1 Zn(r) l=1 Z r l,n,k , n ≥ 0, k ≥ 1. (4.1) 
From (4.1) and (2.11) we get that for all n ≥ 0 and 1

≤ i ≤ d, W i n+1 = d r=1 Z i 1 (r) l=1 Z r l,1,n , U n+1,∞ λ 0,n U 0,∞ (i) = d r=1 U 1,∞ (r) λ 0 U 0,∞ (i) Z i 1 (r) l=1 W r l,1,n , (4.2) 
where

W r l,1,n := Z r l,1,n , U n+1,∞ λ 1,n U 1,∞ (r) . Clearly Z r l,1,n n≥0
is a supercritical MBPRE in the random environment T ξ, and W r l,1,n n≥0 is its associated martingale which converges to a random variable denoted W r l,1 . Moreover, when ξ is given, the random variables W r l,1 , l ≥ 0, are independent of each other and independent of Z i 1 under P ξ , with a common distribution such that

P ξ W r l,1 ∈ • = P T ξ (W r ∈ •) .
Letting n → +∞ in (4.2) it follows that for all 1 ≤ i ≤ d,

W i = d r=1 U 1,∞ (r) λ 0 U 0,∞ (i) Z i 1 (r) l=1 W r l,1 .
Taking the Laplace transform and using the independence under P ξ of the random variables W r l,1 and Z i 1 (r) for l ≥ 0 and 1 ≤ r ≤ d, we get that for all 1 ≤ i ≤ d and t ≥ 0,

φ i ξ (t) = E ξ   d r=1 Z i 1 (r) l=1 E ξ e -tU 1,∞ (r) λ 0 U 0,∞ (i) W r l,1   = E ξ   d r=1 φ T ξ t U 1,∞ (r) λ 0 U 0,∞ (i) Z i 1 (r)   = f i 0 φ 1 T ξ t U 1,∞ (1) λ 0 U 0,∞ (i) , • • • , φ d T ξ t U 1,∞ (d) λ 0 U 0,∞ (i) ,
which is the desired equation.

Proof of Theorem 2.6

In this section we prove Theorem 2.6 about the non degeneracy of the limit variables W i . We shall adapt the proof of Lyons, Permantle and Peres in [START_REF] Lyons | Conceptual Proofs of L Log L Criteria for Mean Behavior of Branching Processes[END_REF], which first consists to interpret a branching process as a random tree. Let T be the set of (colored) trees and denote by T i ∈ T the random tree associated to the MBRE Z i n n≥0 . In fact a multi-type branching process can be identified naturally as a random colored-tree (type i is considered as color

i), which is a subset of ∪ ∞ n=1 {1, • • • , d} n × ∪ ∞ n=0 N * n with N * 0 = {∅}.
The initial particle ∅ of type i is denoted (i, ∅); a particle of type i of generation n is denoted by (i, u) with u ∈ N * n a sequence of length n; its k-th child of type j is denoted (ij, uk), which is linked with its ancestor (i, u).

We write t n = t for n ≥ 0 and t, t ∈ T , if t and t coincide up to height n. It is known that this defines a relation of equivalence. The associated equivalence classes generate the σ-fields G n , which form a filtration on T . For any s ∈ t and t ∈ T , denote by y(s) ∈ N d the number of children, by gen(s) the generation and by type(s) the type of the particle s. The distribution of T i is characterized by

P ξ T i n = t = s∈t,gen(s)<n P ξ N type(s) gen(s) = y(s) , ( 5.1) 
for any n ≥ 0 and t ∈ T ; it is well defined by the Kolmogorov extension theorem.

We shall construct an auxiliary random tree T i * called "size-biased tree", for all 1 ≤ i ≤ d. At time 0, we start with one initial particle of type i, labeled (D 0 , L 0 ) := (i, 1), which forms the generation 0 of the tree T i * . In the following, the environment environment ξ is fixed, and the notion of independence is conditioned on ξ. We generate d independent random vectors

Y j 0 ∈ N d , 1 ≤ j ≤ d, such that P ξ Y j 0 = y = y, U 1,∞ λ 0 U 0,∞ (j) P ξ N j 0 = y , y ∈ N d .
The above formula defines a probability due to the fact that

E ξ W i 1 = 1. Let Y 0 := Y D 0 0 = Y i
0 be the number of children of the initial particle (D 0 , L 0 ) = (i, 1). They constitue the particles of the first generation of the tree T i * . At time n = 1, we pick at random one particle of type D 1 of the first generation, labeled (D 1 , L 1 ), with the distribution

P ξ (D 1 , L 1 ) = (j, l) Y 0 = U 1,∞ (j) Y 0 , U 1,∞ , 1 ≤ l ≤ Y 0 (j), 1 ≤ j ≤ d.
The l-th particle of type j of the first generation, except for the particle (D 1 , L 1 ), produces its descendants of the next generations according to a random tree T j 1 (l) (which forms the subtree of T i * starting from this particle), with distribution

P ξ T j 1 (l) ∈ • = P T ξ T j ∈ • , (j, l) = (D 1 , L 1 ),
1 ≤ l ≤ Y 0 (j), 1 ≤ j ≤ d; the random trees T j 1 (l), 1 ≤ j ≤ d, l ≥ 1, are independent of each other. Moreover, we generate independent random vectors Y j 1 ∈ N d , 1 ≤ j ≤ d, which are also independent of (D 1 , L 1 ) and independent of the trees T j 1 (l), with distributions

P ξ Y j 1 ∈ • = P T ξ Y j 0 ∈ • .
The particle (D 1 , L 1 ) of the first generation produces its children of the next generation according to

Y 1 := Y D 1 1 = d j=1 Y j 1 1 {D 1 =j} , namely, Y 1 (j)
is the number of children of type j generated by the particle (D 1 , L 1 ). We then proceed in the same way. Assume that at time n ≥ 2, we have defined all the particles of generation n, and all the genealogical trees of the particles of generation n except for the direct children of (D n-1 , L n-1 ).

We pick at random one particle of type D n of the generation n, labeled (D n , L n ), with the distribution

P ξ (D n , L n ) = (j, l) Y n-1 = U n,∞ (j) Y n-1 , U n,∞ , 1 ≤ l ≤ Y n-1 (j), 1 ≤ j ≤ d,
where

Y n-1 = (Y n-1 (1), • • • , Y n-1 (d))
, with Y n-1 (j) denoting the number of children of type j of the particle (D n-1 , L n-1 ). The l-th particle of type j of the children of (D n-1 , L n-1 ), except for the particle (D n , L n ), produces its descendants of the next generations according to a random tree T j n (l) (which forms the subtree of T i * starting from this particle), with distribution

P ξ T j n (l) ∈ • = P T n ξ T j ∈ • , (j, l) = (D n , L n ), 1 ≤ l ≤ Y n-1 (j), 1 ≤ j ≤ d; these trees T j n (l), 1 ≤ j ≤ d, l ≥ 1,
are independent of each other. Moreover, we generate independent random vectors Y j n ∈ N d , 1 ≤ j ≤ d, which are independent of the past, also independent of (D n , L n ) and independent of the trees T j n (l), with distributions

P ξ Y j n ∈ • = P T n ξ Y j 0 ∈ • . The particle (D n , L n ) of

the generation n produces its children of the next generation according to

Y n := Y Dn n = d j=1 Y j n 1 {Dn=j} ,
namely, Y n (j) is the number of children of type j generated by the particle (D n , L n ). Therefore, by recurrence on n, we have defined the random tree

T i * .
For all n ≥ 0, denote by ∆ i n the distinguished path in T i * formed by the particles (D k , L k ), k ≤ n, which is identified to the last particle of the path. We show by induction that

P ξ T i * n = t, ∆ i n = σ j = U n,∞ (j) λ 0,n-1 U 0,∞ (i) P ξ T i n = t , ( 5.2) 
for all n ≥ 1, t ∈ T a tree of height at least n, and σ j ∈ t a particle of type j in generation n. For n = 1 we have

P ξ T i * 1 = t, ∆ i 1 = σ j = U 1,∞ (j) y, U 1,∞ y, U 1,∞ λ 0 U 0,∞ (i) P ξ N i 0 = y = U 1,∞ (j) λ 0 U 0,∞ (i) P ξ T i 1 = t ,
where y is the number of children of the initial particle in generation 0 in t. Now assume that (5.2) is true for some n ≥ 1. Let t ∈ T be a tree of height at least n + 1, σ j ∈ t a particle of type j in generation n + 1, σr ∈ t his ancestor of type r in generation n. Then using (5.1) and the notation introduced before (5.1), we have

P ξ T i * n+1 = t, ∆ i n+1 = σ j = P ξ T i * n = t, ∆ i n = σr P ξ ((D n+1 , L n+1 ) = σ j ) × P ξ (Y r n = y(σ r ))
s∈t,s =σr,gen(s)=n

P ξ N type(s) n = y(s) = P ξ T i * n = t, ∆ i n = σr U n+1,∞ (j) y(σ r ), U n+1,∞ × y(σ r ), U n+1,∞ λ n U n,∞ (r) P ξ (N r n = y(σ r ))
s∈t,s =σr,gen(s)=n

P ξ N type(s) n = y(s) = U n,∞ (r) λ 0,n-1 U 0,∞ (i) P ξ T i n = t U n+1,∞ (j) λ n U n,∞ (r) s∈t,gen(s)=n P ξ N type(s) n = y(s) = U n+1,∞ (j) λ 0,n U 0,∞ (i) P ξ T i n+1 = t .
Hence (5.2) remains true for n + 1. By induction (5.2) holds for all n 1. Summing over σ j in (5.2), we see that for any n ≥ 1 and t ∈ T ,

P ξ T i * n = t = z n (t), U n,∞ λ 0,n-1 U 0,∞ (i) P ξ T i n = t , ( 5.3) 
where z n (t) is the vector counting the number of particles in t at generation n, of types j = 1, • • • , d.

By abuse of notation we denote by P i and P i ξ respectively the annealed and quenshed distributions of the tree T i ∈ T . The annealed and quenshed laws of biased tree T i ∈ T are denoted by P i * and P i * ξ , and defined according to

P i * (T i ∈ •) := P i (T i * ∈ •), P i * ξ (T i ∈ •) := P i ξ (T i * ∈ •). (5.4) 
By P i * |Gn and P i |Gn we denote the restrictions of the respective laws to the σ-field G n . Then by (5.3) we obtain that for all n ≥ 0,

dP i * |Gn = W i n dP i |Gn ,
which means that P i * |Gn has the density W i n with respect to P i |Gn . However, P i * is not necessarily absolutely continuous with respect to P i . Define

W i := lim sup n→+∞ W i n .
Then according to Theorem 5.3.3 in [START_REF] Durett | Probability : Theory and Examples[END_REF] we have the following two equivalences :

W i = +∞ P i * -a.s. ⇔ W i = 0 P i -a.s.; W i < +∞ P i * -a.s. ⇔ EW i = 1.
(5.5)

Now we prove that the condition H3 is sufficient for the random variable W i to be finite P i * -a.s., which will conclude the proof of Theorem 2.6 by (5.5). Assume H3. So there exists C > 0 such that for all 1 ≤ j ≤ d, P-a.s.,

+∞ n=0 P ξ log + Y j n , U n+1,∞ n ≥ C = +∞ n=0 E ξ N j n , U n+1,∞ λ n U n,∞ (j) 1 { N j n ,U n+1,∞ ≥e Cn } < ∞.
Since the random variables Y j n , U n+1,∞ , n ≥ 0, are independent under P ξ , by the Borel-Cantelli lemma we deduce that for all 1 ≤ j ≤ d, P ξ -a.s.,

lim sup n→+∞ log + Y j n , U n+1,∞ n C.
(5.6)

Moreover (log + Y j n , U n+1,∞ ) n≥0 is a non negative stationary and ergodic stochastic process, hence by a result of Tanny [START_REF] Tanny | A Zero-One Law for Stationary Sequences[END_REF]Theorem 1] we know that lim sup n→+∞ log + Y j n , U n+1,∞ /n is either 0 P-a.s. or +∞ P-a.s. Therefore, by (5.6) it follows that for all 1 ≤ j ≤ d,

lim n→+∞ log + Y j n , U n+1,∞ n = 0 P i -a.s. (5.7) Since log + Y n , U n+1,∞ = d j=1 log + Y j n , U n+1,∞ 1 {Dn=j} , this implies that lim n→+∞ log + Y n , U n+1,∞ n = 0 P i -a.s.
Furthermore, using Proposition 2.5, as n → +∞ we have log λ 0,n-1 ∼ γn P-a.s.

The last two assertions imply that

+∞ n=0 Y n , U n+1,∞ λ 0,n-1 U 0,∞ (i)
< +∞ P i -a.s. (5.8) For all 1 ≤ i ≤ d and n ≥ 0, let Z i * n ∈ N d be the vector whose j-th component is the number of particles in T i * at generation n, of type j. For all 0 ≤ k ≤ n, let Z * k,n be the vector whose j-th component is the number of the particles in T i * at generation n, of type j, which have as ancestor one of the children of (D k , L k ), except (D k+1 , L k+1 ). Then the processes {Z * k,n , n ≥ k}, k ≥ 0, are independent (under P ξ ), with environment T k+1 ξ and initial state Z * k,k = Y k -e D k+1 . So, for all n ≥ 0, we have the decomposition

Z i * n = e Dn + n k=1 Z * k,n P i -a.s. Set Y = Y j n , D n : n ≥ 0, 1 ≤ j ≤ d .
Then by Lemma 2.2, for n ≥ 1, P i -a.s.,

E ξ Z i * n -e Dn , U n,∞ Y, Z * k,n-1 , k ≤ n -1 = n k=1 E ξ Z * k,n Y, Z * k,n-1 , k ≤ n -1 , U n,∞ = n-1 k=1 M T n-1 Z * k,n-1 , U n,∞ + Y n-1 -e Dn , U n,∞ = λ n-1 Z i * n-1 -e D n-1 , U n-1,∞ + Y n-1 -e Dn , U n,∞ .
Consequently, conditioned on Y and on the environment ξ, the process

A n := Z i * n -e Dn , U n,∞ λ 0,n-1 U 0,∞ (i) - n-1 k=0 Y k -e D k+1 , U k+1,∞ λ 0,k-1 U 0,∞ (i)
, n ≥ 0, (5.9) is a martingale w.r.t. σ (ξ, Y, {Z * k,n , k ≤ n}), n ≥ 0, under the law P i ξ . Notice that A n is bounded from below by the opposite of the series (5.8) which converges a.s., so this martingale converges P i -a.s. to a finite limit. From (5.9) and using the a.s. convergence of A n and of the series (5.8), together with the fact that e Dn ,Un,∞ λ 0,n-1 U 0,∞ (i) → 0 a.s., we deduce that

lim n→+∞ Z i * n , U n,∞ λ 0,n-1 U 0,∞ (i)
exists and is finite P i -a.s.

Therefore, by the definition of P i * (see (5.4)),

W i = lim sup n→+∞ Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) < +∞ P i * -a.s.
So applying (5.5) we see that EW i = 1, or equivalently E ξ W i = 1 P-a.s., which implies that W i is non-degenerate.

Finally, if we denote by

q i (ξ) := P ξ W i = 0 , 1 ≤ i ≤ d,
then by letting t → +∞ in (2.12) we see that q(ξ) = f 0 (q(T ξ)) , (5.10) where q(ξ) = q 1 (ξ), • • • , q d (ξ) . Clearly,

Z i n -→ n→+∞ 0 ⊂ W i = 0 . (5.11)
So, if W i is non-degenerate, then we have q i (ξ) ≤ q i (ξ) < 1 P-a.s. Hence, using [21, Proposition 3.1] we deduce from (5.10) that q(ξ) = q(ξ) P-a.s. This concludes the proof of Theorem 2.6.

Proof of Corollary 2.8

By Theorem 2.6, we know that

P ξ W i = 0 = q i (ξ) < 1.
So from (5.11) we conclude that for all 1 ≤ i ≤ d,

Z i n -→ n→+∞ 0 = W i = 0 P-a.s. (6.1)
By the definition of W i n (cf. (2.11)), we obtain that for all 1 ≤ i ≤ d and n ≥ 0,

W i n ≤ Z i n λ 0,n-1 U 0,∞ (i) . (6.2)
Using Proposition 2.5, it follows from (6.2) that, P-a.s. on the event

W i > 0 , lim inf n→+∞ 1 n log Z i n ≥ γ. (6.3)
For any ε > 0, all n ≥ 0 and 1 ≤ i ≤ d, we have

P Z i n ≥ e εn M 0,n-1 ≤ E E ξ Z i n M 0,n-1 e -εn ≤ e -εn .
It follows that n≥1 P Z i n ≥ e εn M 0,n-1 < +∞. Applying the Borel-Cantelli lemma, we deduce that

P Z i n ≥ e εn M 0,n-1 i.o. = 0,
where i.o. means infinitely often. Combining this with (2.13) we get that for all 1 ≤ i ≤ d, P-a.s.,

lim sup n→+∞ 1 n log Z i n ≤ ε + lim n→+∞ 1 n log M 0,n-1 = ε + γ.
Letting ε → 0 and using (6.1) and ( 6.3), we see that P-a.s. on the explosion event E i , lim n→+∞

1 n log Z i n = γ.
This ends the proof of Corollary 2.8.

7.

Proof of Theorem 2.9

Auxiliary results

We will need the following preliminary lemma.

Lemma 7.1. Assume condition H4. Then :

1. for all n, k ≥ 0 and 1 ≤ i, j, r ≤ d, P-a.s.,

1 D ≤ M n,n+k (i, j) M n,n+k (i, r) ≤ D and 1 D ≤ M n,n+k (i, j) M n,n+k (r, j) ≤ D; (7.1)
2. for all n ≥ 0 and 1 ≤ i ≤ d, P-a.s.,

1 dD ≤ U n,∞ (i) ≤ 1; (7.2)
3. for all n, k ≥ 0 and 1 ≤ i, j ≤ d, P-a.s.,

1 dD 2 ≤ M n,n+k (i, j)U n+k+1,∞ (j) λ n,n+k U n,∞ (i) ≤ 1. (7.3)
Proof. For k = 0, (7.1) is a direct consequence of condition H4 and the fact that the sequence (M n ) n≥0 is stationary. Moreover, for all n ≥ 0, k ≥ 1 and 1 ≤ i, j, r ≤ d, we have

M n,n+k (i, j) M n,n+k (i, r) = d l=1 M n,n+k-1 (i, l)M n+k (l, r) d s=1 M n,n+k-1 (i, s)M n+k (s, r) M n+k (l, j) M n+k (l, r) .
We note that

M n,n+k-1 (i, l)M n+k (l, r) d s=1 M n,n+k-1 (i, s)M n+k (s, r) 1≤i,l≤d
is a positive stochastic matrix. Therefore we get the first inequalities in (7.1) : for all n ≥ 0, k ≥ 1 and 1 ≤ i, j, r ≤ d, P-a.s.,

1 D ≤ min 1≤l≤d M n+k (l, j) M n+k (l, r) ≤ M n,n+k (i, j) M n,n+k (i, r) ≤ max 1≤l≤d M n+k (l, j) M n+k (l, r) ≤ D.
A similar argument gives the second inequality in (7.1). So the proof of (7.1) is complete. By (2.3) and ( 7.1) we get that for all n ≥ 0 and 1 ≤ i, j ≤ d, P-a.s.,

U n,∞ (i) U n,∞ (j) = lim k→+∞ M n,n+k (i, i) M n,n+k (j, i) ≥ 1 D .
Since U n,∞ = 1, this implies (7.2). Using (2.7), it is clear that for all n, k ≥ 0,

M n,n+k (i, j)U n+k+1,∞ (j) λ n,n+k U n,∞ (i) 1≤i,j≤d
is a positive stochastic matrix. Then, applying (2.8), (7.2) and (7.1), it follows that for all n, k ≥ 0 and 1 ≤ i, j ≤ d, P-a.s.,

M n,n+k (i, j)U n+k+1,∞ (j) λ n,n+k U n,∞ (i) = M n,n+k (i, j)U n+k+1,∞ (j) d r=1 M n,n+k (i, r)U n+k+1,∞ (r) ≥ 1 dD d r=1 M n,n+k (i, r)U n+k+1,∞ (r) M n,n+k (i, j) -1 ≥ 1 dD 2 d r=1 U n+k+1,∞ (r) -1 = 1 dD 2 . ( 7.4) 
This ends the proof of (7.3).

Proof of Theorem 2.9

Notice that the conclusion of Theorem 2.9 for an i.i.d. environment follows from that for a stationary and ergodic environment and the fact that the conditions H5 and H7 are equivalent in the i.i.d. case (cf. Lemma 11.1). So we need only to prove Theorem 2.9 when the environment is stationary and ergodic. By Theorem 2.6 and Lemma 11.1 we know that H5 is sufficient for the non-degeneracy of all the W i , 1 i d.

We now prove that if H5 fails, then each W i is degenerate. Assume that H5 fails. Then H3 fails, since H3 ⇔ H5, which means that for all C > 0,

P max 1≤r≤d +∞ n=0 E ξ N r n , U n+1,∞ λ n U n,∞ (r) 1 { N r n ,U n+1,∞ ≥C n } = +∞ > 0. (7.5)
We keep the notation of the proof of Theorem 2.6. By the definition of the tree T i * , for n ≥ 0,

Z i * n ≥ Y n-1 P i -a.s. (7.6) 
Let (F * n ) n≥0 be the filtration defined by F * 0 = σ (ξ), and for n ≥ 1,

F * n = σ ξ, N r l,k , Y r k , D k , 0 ≤ k ≤ n -1, 1 ≤ r ≤ d, l ≥ 1 .
By the conditional Borel-Cantelli lemma [8, Theorem 5.3.2] we get that for all C > 0,

log + Y n , U n+1,∞ ≥ Cn i.o. = +∞ n=1 P log + Y n , U n+1,∞ ≥ Cn F * n = +∞ . (7.7)
By the independence under P ξ between {Y r n : 1 ≤ r ≤ d} and F * n , we have

+∞ n=1 P log + Y n , U n+1,∞ ≥ Cn F * n = +∞ n=1 P ξ d r=1 log + Y r n , U n+1,∞ 1 {Dn=r} ≥ Cn F * n = +∞ n=1 d r=1 P ξ log + Y r n , U n+1,∞ ≥ Cn P ξ D n = r F * n . (7.8) For any n ≥ 1, under P ξ , D n is independent of the family {N r l,k , Y r k } with 0 ≤ k ≤ n -1, 1 ≤ r ≤ d and l ≥ 1. Therefore, for 1 ≤ r ≤ d and n ≥ 1, P ξ D n = r F * n = P ξ D n = r D k , 1 ≤ k ≤ n -1
Moreover by the construction of (D n ), for all n ≥ 1 and (j

1 , • • • , j n-1 , r) ∈ {1, • • • , d} n , P ξ D n = r D n-1 = j n-1 , • • • , D 1 = j 1 , D 0 = i = P ξ D n = r D n-1 = j n-1 = y∈N d y(r)U n,∞ (r) y, U n,∞ P ξ Y j n-1 n-1 = y = y∈N d y(r)U n,∞ (r) λ n-1 U n-1,∞ (j n-1 ) P ξ N j n-1 n-1 = y = M n-1 (j n-1 , r)U n,∞ (r) λ n-1 U n,∞ (j n-1
) .

This implies that for all 1 ≤ r ≤ d and n ≥ 1, P-a.s.,

P ξ D n = r F * n = M n-1 (D n-1 , r)U n,∞ (r) λ n-1 U n,∞ (D n-1
) .

Then, using (7.3), it follows that for all 1 ≤ r ≤ d and n ≥ 1, P-a.s.,

P ξ D n = r F * n ≥ 1 dD 2 . ( 7.9) 
Combining equality (7.8) with inequalities (7.9) and ( 7.3), we get that for all C > 0, P-a.s.,

+∞ n=1 P log + Y n , U n+1,∞ ≥ Cn F * n ≥ 1 dD 2 +∞ n=1 d r=1 P ξ log + Y r n , U n+1,∞ ≥ Cn (7.10)
By the definition of Y r n , for all C > 0,

P ξ log + Y r n , U n+1,∞ ≥ Cn = E ξ N r n , U n+1,∞ λ n U n,∞ (r) 1 {log + N r n ,U n+1,∞ ≥Cn} .
Using this together with (7.5) and (7.10), we deduce that for all C > 0,

P +∞ n=1 d r=1 P ξ log + Y r n , U n+1,∞ ≥ Cn = +∞ > 0. ( 7.11) 
Since (log + Y r n , U n+1,∞ ) n≥0 is a non negative stationary and ergodic sequence, by [32, Theorem 1] of Tanny we know that lim sup

n→+∞ log + Y r n , U n+1,∞ n is either 0 P-a.s. or + ∞ P-a.s.
As (Y r n , U n+1,∞ ), n 1, are independent under P ξ , by Borel-Cantelli lemma this implies that for all C > 0 and 1 ≤ r ≤ d, either

+∞ n=1 P ξ log + Y r n , U n+1,∞ ≥ Cn < +∞ P-a.s.,
or

+∞ n=1 P ξ log + Y r n , U n+1,∞ ≥ Cn = +∞ P-a.s.
This statement remains valid while

P ξ log + Y r n , U n+1,∞ ≥ Cn is replaced by d r=1 P ξ log + Y r n , U n+1,∞ ≥ Cn .
Therefore from (7.11) we obtain that for all C > 0, P-a.s.,

+∞ n=1 d r=1 P ξ log + Y r n , U n+1,∞ ≥ Cn = +∞. (7.12) Combining (7.7), (7.10 
) and (7.12), we deduce that lim sup

n→+∞ log + Y n , U n+1,∞ n = +∞ P-a.s.
It follows from (7.6) that, P i -a.s., lim sup

n→+∞ log + Z i * n , U n,∞ n ≥ lim sup n→+∞ log + Y n-1 , U n,∞ n = +∞. (7.13) 
By Proposition 2.5 we have log λ 0,n-1 ∼ γn P-a.s. as n → +∞. So we get from (7.13) that lim sup

n→+∞ Z i * n , U n,∞ λ 0,n-1 U 0,∞ (i) = +∞ P i -a.s.,
or equivalently

W i = lim sup n→+∞ Z i n , U n,∞ λ 0,n-1 U 0,∞ (i) = +∞ P i * -a.s.
By (5.5) we conclude that W i = 0 P i -a.s. , for any 1 ≤ i ≤ d. This ends the proof of Theorem 2.9.

Therefore we get that for all 1

≤ i ≤ d and k ≥ k 0 , sup n≥0 M n,n+k (i, j) M n,n+k (i, •) - V n,n+k (j) V n,n+k ≤ C 1 δ k P-a.s., (8.4) 
with C 1 = 2C/(1 -Cδ k 0 ). From (8.4) it follows that for all n 0, k ≥ k 0 and 1 ≤ j ≤ d, P-a.s.,

V 0,n+k (j) V 0,n+k - V n,n+k (j) V n,n+k ≤ M 0,n+k (j, j) M 0,n+k (j, •) - M n,n+k (j, j) M n,n+k (j, •) + C 1 δ n+k + C 1 δ k ≤ d i=1 M 0,n-1 (j, i) M n,n+k (i, j) M 0,n+k (j, •) - M n,n+k (j, j) M n,n+k (j, •) + 2C 1 δ k = d i=1 M 0,n-1 (j, i) M n,n+k (i, •) M 0,n+k (j, •) M n,n+k (i, j) M n,n+k (i, •) - M n,n+k (j, j) M n,n+k (j, •) +2C 1 δ k ,
So we obtain that for all n ≥ 0, k k 0 and 1 ≤ j ≤ d, P-a.s.,

V 0,n+k (j) V 0,n+k - V n,n+k (j) V n,n+k ≤ d i=1 M 0,n-1 (j, i) M n,n+k (i, •) M 0,n+k (j, •) M n,n+k (i, j) M n,n+k (i, •) - M n,n+k (j, j) M n,n+k (j, •) +2C 1 δ k ≤ max 1≤r≤d M n,n+k (r, j) M n,n+k (r, •) - M n,n+k (j, j) M n,n+k (j, •) + 2C 1 δ k ≤ 4C 1 δ k ,
where the last step holds by (8.4). Hence (8.3) holds for all k k 0 and C = 4C 1 . For k < k 0 , since

V n,n+k (j) V n,n+k 1, we have | V 0,n+k (j) V 0,n+k - V n,n+k (j) V n,n+k | 1 δ -k 0 δ k . Therefore (8.3) holds for all k 0 and C = max(4C 1 , δ -k 0 ).
The next assertion shows that conditioned on the explosion event

E i = { Z i n → +∞}, each component Z i n (j) of Z i n tends
to +∞ in probability. Proposition 8.3. Assume conditions H2, H4, and γ > 0. Then, for all 1 ≤ i, j ≤ d such that P E i > 0, we have

Z i n (j) P E i -→ n→+∞ +∞.
Proof. Clearly, it suffices to prove that for all 1 ≤ i, j ≤ d and K ≥ 0,

P Z i n (j) ≥ K, E i -→ n→+∞ P(E i ), (8.5) 
Set K 1 , K 2 ≥ 0. By (4.1), for n, k ≥ 1 and 1 ≤ i, j ≤ d, P-a.s., we have

P ξ Z i n+k (j) ≤ K 1 , Z i n ≥ K 2 = P ξ   d r=1 Z i n (r) l=1 Z r l,n,k (j) ≤ K 1 , Z i n ≥ K 2   ≤ P ξ Z r l,n,k (j) ≤ K 1 , Z i n ≥ K 2 , 1 ≤ r ≤ d, 1 ≤ l ≤ Z i n (r) = E ξ P T n ξ Z 1 k (j) ≤ K 1 Z i n (1) • • • P T n ξ Z d k (j) ≤ K 1 Z i n (d) 1 { Z i n ≥K 2 } .
It follows that, P-a.s.,

P ξ Z i n+k (j) ≤ K 1 , Z i n ≥ K 2 ≤ max 1≤r≤d P T n ξ (Z r k (j) ≤ K 1 ) K 2 .
This together with the fact that lim sup

n→+∞ P{E i , Z i n < K 2 } P(lim sup n→+∞ {E i , Z i n < K 2 }) = 0, implies that lim sup n→+∞ P(Z i n (j) ≤ K 1 , E i ) ≤ lim sup n→+∞ P Z i n+k (j) ≤ K 1 , Z i n ≥ K 2 ≤ E max 1≤r≤d P ξ (Z r k (j) ≤ K 1 ) K 2 .
Letting K 2 → +∞, it follows that lim sup

n→+∞ P(Z i n (j) ≤ K 1 , E i ) ≤ P max 1≤r≤d P ξ (Z r k (j) ≤ K 1 ) = 1 ≤ d r=1 P P ξ (Z r k (j) ≤ K 1 ) = 1 . (8.6)
By (2.19) we know that

E ξ Z r k (j) = M 0,k-1 (r, j) -→ k→+∞ +∞ P-a.s., (8.7) 
which implies that for all K 1 ≥ 0,

P P ξ (Z r k (j) ≤ K 1 ) = 1 ≤ P E ξ Z r k (j) ≤ K 1 -→ k→+∞ 0.
Therefore from (8.6), we conclude that for all K 1 ≥ 0,

P Z i n (j) ≤ K 1 , E i -→ n→+∞ 0,
which implies (8.5) and ends the proof of Proposition 8.3.

Proof of Theorem 2.10

Let 1 ≤ i ≤ d. For all n, k ≥ 0 set

Z i n = Z i n Z i n and V n,n+k = V n,n+k V n,n+k .
From (4.1) and on the event E i , for any n, k ≥ 1 we have

1 ρ n,n+k-1 V n,n+k-1 Z i n+k Z i n -M T n,n+k-1 Z i n ≤ 1 ρ n,n+k-1 V n,n+k-1 1 Z i n d j=1 d r=1 Z i n (r) l=1 Z r l,n,k (j) -M n,n+k-1 (r, j) = d j=1 d r=1 M n,n+k-1 (r, j) ρ n,n+k-1 V n,n+k-1 1 Z i n Z i n (r) l=1 Z r l,n,k (j) M n,n+k-1 (r, j) -1 . (8.8)
By the weak law of large numbers and Proposition 8.3 we get that for all 1 ≤ r, j ≤ d,

1 Z i n Z i n (r) l=1 Z r l,n,k (j) M n,n+k-1 (r, j) -1 P E i -→ n→+∞ 0. (8.9) 
Let C > 0 be sufficiently large such that (8.1) and (8.3) hold. By (8.1), for any 1 ≤ r, j ≤ d, n ≥ 0 and k ≥ 1, P-a.s.,

M n,n+k-1 (r, j) ρ n,n+k-1 V n,n+k-1 ≤ (1 + Cδ k ) U n,n+k-1 (r)V n,n+k-1 (j) V n,n+k-1 ≤ 1 + Cδ k .
Combining this with (8.8) and (8.9), we deduce that for all k ≥ 1,

1 ρ n,n+k-1 V n,n+k-1 Z i n+k Z i n -M T n,n+k-1 Z i n P E i -→ n→+∞ 0. (8.10)
Moreover, by Lemma 8.1 we get that that for any n, k ≥ 1, 

M T n,n+k-1 ρ n,n+k-1 V n,n+k-1 Z i n -Z i n , U n,n+k-1 V n,n+k-1 ≤ d r=1 d j=1 M n,n+k-1 (r, j) ρ n,n+k-1 V n,n+k-1 Z i n (r) -U n,n+k-1 (r)V n,n+k-1 (j)Z i n (r) ≤ d r=1 d j=1 U n,n+k-1 (r)V n,n+k-1 (j)Z i n (r) × M n,n+k-1 (r, j) ρ n,n+k-1 U n,n+k-1 (r)V n,n+k-1 (j) -1 ≤ max 1≤r,j≤d M n,n+k-1 (r, j) ρ n,n+k-1 U n,n+k-1 (r)V n,n+k-1 (j) -1 ≤ Cδ k . ( 8 
Y i n,k = Z i n+k ρ n,n+k-1 V n,n+k-1 Z i n , U n,n+k-1 Z i n ,
which is well defined on the explosion event E i . Notice that

Y i n,k Z i n+k -V n,n+k-1 = 1 Z i n , U n,n+k-1 × Z i n+k ρ n,n+k-1 V n,n+k-1 Z i n -Z i n , U n,n+k-1 V n,n+k-1 .
Therefore, combining the relations (8.10) and (8.11), together with (8.12), we obtain that for all k ≥ k 1 , 

P E i Y i n,k Z i n+k -V n,n+k-1 > ε 4 -→ n→+∞ 0. ( 8 
P E i Y i n,k -1 > ε 4 = lim sup n→+∞ P E i Y i n,k Z i n+k -V n,n+k-1 > ε 4 ≤ lim sup n→+∞ P E i Y i n,k Z i n+k -V n,n+k-1 > ε 4 = 0. (8.14)
Combining (8.13) with (8.14), we obtain that for all k ≥ k 1 ,

P E i Z i n+k -V n,n+k-1 > ε 2 ≤ P E i Y i n,k Z i n+k -V n,n+k-1 + Y i n,k -1 > ε 2 ≤ P E i Y i n,k Z i n+k -V n,n+k-1 > ε 4 + P E i Y i n,k -1 > ε 4 → n→+∞ 0. (8.15)
Notice that for any k 2 0, lim sup n→+∞

P E i Z i n -V 0,n-1 > ε ≤ lim sup n→+∞ P E i Z i n+k 2 -V n,n+k 2 -1 > ε 2 + lim sup n→+∞ P E i V 0,n+k 2 -1 -V n,n+k 2 -1 > ε 2 Let k 2 ≥ k 1 be such that Cδ k 2 -1 ≤ ε/2.
Then by (8.3), the second term in the right hand side is 0. The first one is also 0 by (8.15). Hence lim sup n→+∞

P E i Z i n -V 0,n-1 > ε = 0.
This proves (2.20). Since (V 0,n ) n≥0 convergences in law to V 0,∞ (see Proposition 2.1), from (2.20) we obtain directly the convergence in law of (Z i n ) n≥0 to V 0,∞ . This concludes the proof of Theorem 2.10.

Proof of Theorem 2.11 and Corollary 2.12

Proof of Theorem 2.11. By (7.3), for all 1 ≤ i ≤ d and n ≥ 1, P-a.s., we have

W i n = d j=1 M 0,n-1 (i, j)U n,∞ (j) λ 0,n-1 U 0,∞ (i) Z i n (j) M 0,n-1 (i, j) ≥ 1 dD 2 d j=1 Z i n (j) E ξ Z i n (j)
.

Consequently we get that Z i n (j)/E ξ Z i n (j) → 0 P-a.s. on the event W i = 0 , for all 1 ≤ i, j ≤ d. Now we investigate on the event W i > 0 . By (6.2) and Proposition 2.5 it holds that Z i n → +∞ P-a.s. on W i > 0 . Moreover, using (2.3) and Proposition 2.10 we have that for all 1 ≤ i, j ≤ d, as n → +∞, P-a.s.,

1 W i n Z i n (j) E ξ Z i n (j) = U 0,∞ (i)λ 0,n-1 M 0,n-1 (i, j) Z i n (j) Z i n , U n,∞ ∼ V 0,n-1 , U n,∞ V 0,n-1 (j) Z i n (j) Z i n , U n,∞ ∼ V 0,n-1 V 0,n-1 (j) Z i n (j) Z i n d r=1 Z i n (r)U n,∞ (r) Z i n , U n,∞ V 0,n-1 (r) V 0,n-1 Z i n Z i n (r)
. (

Applying Theorem 2.10 it follows that for all 1 ≤ i, j ≤ d,

Z i n (j) Z i n - V 0,n-1 (j) V 0,n-1 P E i -→ n→+∞ 0.
Since (V 0,n / V 0,n ) n≥0 converges in law to V 0,∞ with V 0,∞ > 0 P-a.s., this implies that

V 0,n-1 V 0,n-1 (j) Z i n (j) Z i n - 1 
P E i -→ n→+∞ 0. ( 9.2) 
Combining (9.1) and (9.2), we deduce that for all 1 ≤ i, j ≤ d,

1 W i n Z i n (j) E ξ Z i n (j) P E i -→ n→+∞ 1.
It follows that

Z i n (j) E ξ Z i n (j) P E i -→ n→+∞ W i ,
which concludes the proof of (2.23). From (2.23) and (2.3), we deduce (2.22) : for all 1 ≤ i, j ≤ d,

Z i n (j) ρ 0,n-1 V 0,n-1 (j) = Z i n (j) E ξ Z i n (j) U 0,n-1 (i) M 0,n-1 (i, j) ρ 0,n-1 U 0,n-1 (i)V 0,n-1 (j) P -→ n→+∞ W i U 0,∞ (i).
This concludes the proof of Theorem 2.11.

Proof of Corollary 2.12. Notice that, for all 1 ≤ i ≤ d and n ≥ 0,

Z i n E ξ Z i n -W i = d j=1 M 0,n-1 (i, j) M 0,n-1 (i, •) Z i n (j) E ξ Z i n (j) -W i .
Then, letting n → +∞ and using Theorem 2.11, we get the first convergence in Corollary 2.12. Combining this with (2.3), we get the second convergence, and we conclude the proof of Corollary 2.12.

Proof of Theorem 2.13

We need an auxiliary result to prove Theorem 2.13.

Lemma 10.1. Let (X k ) k∈N * be a sequence of i.i.d. random centered variables. Then for all n ∈ N * and p > 1:

E n k=1 X k p ≤ (B p ) p E |X k | p n, if 1 < p ≤ 2, (B p ) p E |X k | p n p 2 , if p > 2,
where

B p = 2 min k 1/2 : k ∈ N, k ≥ p 2 .
This result is a direct consequence of the Marcinkiewicz-Zygmund inequality, see [START_REF] Chow | Probability Theory : Independence, Interchangeability, Martingales[END_REF]Theorem 1.5].

Proof of Theorem 2.13. Notice that the condition (2.24) implies H7. Therefore, using Theorem 2.9, we deduce that W i , 1 i d are non-degenerate, and (2.15) and (2.16) hold. Now we shall prove the a.s. convergence (2.25)-(2.29). For that, it is sufficient to show that the convergence in probability in (8.9) can be reinforced to a.s. convergence. Indeed, if we prove that for all 1 ≤ i, r, j ≤ d and k ≥ 1, P-a.s. on the event E i ,

1 Z i n Z i n (r) l=1 Z r l,n,k (j) M n,n+k-1 (r, j) -1 -→ n→+∞ 0, ( 10.1) 
then all the convergences in probability in the proofs of Theorems 2.10, 2.11 and Corollary 2.12 can be reinforced to a.s. convergences. Now we shall prove (10.1), which is equivalent to the following statement: for all 1 ≤ i, r, j ≤ d, k ≥ 1 and 0 ≤ b < k, P-a.s. on E i ,

1 Z i kn+b Z i kn+b (r) l=1 Z r l,kn+b,k (j) M kn+b,k(n+1)+b-1 (r, j) -1 -→ n→+∞ 0. ( 10.2) 
Let Fn n≥0 be the filtration defined by: F0 = {∅} and, for n ≥ 1,

Fn = σ ξ s , N r l,s , 0 ≤ s ≤ n -1, 1 ≤ r ≤ d, l ≥ 1 .
Applying 

P Z i kn+b (r) l=1 Z r l,kn+b,k (j) M kn+b,k(n+1)+b-1 (r, j) -1 ≥ C Z i kn+b Fkn+b < +∞. ( 10.3) 
We can always assume that condition (2.24) holds for some 1 < p ≤ 2.

Since the environment sequence (ξ n ) n≥0 is i.i.d., Z r l,n,k (j)/M n,n+k-1 (r, j) is independent of Fn for all 1 ≤ i, r, j ≤ d and n, k, l ≥ 1. Therefore, using Tchebychev's inequality and Lemma 10.1, the series in (10.3) can be bounded as follows :

+∞ n=1 P Z i kn+b (r) l=1 Z r l,kn+b,k (j) M kn+b,k(n+1)+b-1 (r, j) -1 ≥ C Z i kn+b Fkn+b ≤ +∞ n=1 1 C p Z i kn+b p E Z i kn+b (r) l=1 Z r l,kn+b,k (j) M kn+b,k(n+1)+b-1 (r, j) -1 p Fkn+b ≤ +∞ n=1 B p p Z i kn+b (r) C p Z i kn+b p E Z r k (j) M 0,k-1 (r, j) -1 p .
The last series converges provided that P-a.s. 

on E i , E Z r k (j) M 0,k-1 (r, j) -1 p +∞ n=1 Z i kn+b 1-p < +∞. ( 10 
E Z i k+1 (j) M 0,k (i, j) p = E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 + 1 p ≤ E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 + d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) p ≤ 2 p-1 E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 p + 2 p-1 E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) p . ( 10.6) 
By the convexity of the function x → x p on R + we get that, for all 1 ≤ i, j ≤ d and k ≥ 1,

E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) p = E d r=1 M 0 (i, r)M 1,k (r, j) M 0,k (i, j) Z i 1 (r) M 0 (i, r) p ≤ E d r=1 M 0 (i, r)M 1,k (r, j) M 0,k (i, j) Z i 1 (r) M 0 (i, r) p ≤ d r=1 E Z i 1 (r) M 0 (r, j) p .
(10.7)

Using again the convexity of x → x p on R + , together with Lemma 10.1, we obtain that for all 1 ≤ i, j ≤ d and k ≥ 1,

E d r=1 M 1,k (r, j) M 0,k (i, j) Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 p = E d r=1 M 0 (i, r)M 1,k (r, j) M 0,k (i, j) 1 M 0 (i, r) Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 p ≤ E d r=1 M 0 (i, r)M 1,k (r, j) M 0,k (i, j)M 0 (i, r) p E ξ Z i 1 (r) l=1 Z r l,1,k (j) M 1,k (r, j) -1 p Z i 1 (r) ≤ B p p E d r=1 Z i 1 (r) M 0 (i, r) p E ξ Z r k (j) M 0,k-1 (r, j) -1 p = B p p d r=1 EM 0 (i, r) 1-p E Z r k (j) M 0,k-1 (r, j) -1 p . ( 10.8) 
Combining the relations (10.6)-(10.8), we obtain that for all 1 ≤ i, j ≤ d and k ≥ 1,

E Z i k+1 (j) M 0,k (i, j) p ≤ 2 p-1 B p p d r=1 EM 0 (i, r) 1-p E Z r k (j) M 0,k-1 (r, j) -1 p + 2 p-1 d r=1 E Z i 1 (r) M 0 (r, j) p .
(10.9) By (7.1), for all 1 ≤ i, j ≤ d, P-a.s., it holds

M 0 (i, j) ≥ 1 dD M 0 (•, j) ≥ 1 dD 2 M 0 .
Combining this with (10.9), we get that for all 1 ≤ j ≤ d and k ≥ 0,

E Z i k+1 (j) M 0,k (i, j) p ≤ 2 p-1 B p p (dD 2 ) p-1 E M 0 1-p d r=1 E Z r k (j) M 0,k-1 (r, j) -1 p + 2 p-1 d r=1 E Z i 1 (r) M 0 (r, j) p .
Using the condition (2.24), by induction on k we conclude that for all 1 ≤ i, j ≤ d and k ≥ 1,

E Z i k (j) M 0,k-1 (i, j) p < +∞.
(10.10)

Putting together (10.5) and (10.10), we obtain (10.4), which implies (10.3), and ends the proof of Theorem 2.13.

Appendix

In this section we prove the several implications among the conditions H3-H7. Proof of Lemma 11.1. We first prove that H5 ⇒ H3. For all C > 1, K > 1 and 1 ≤ i ≤ d, P-a.s., we have By a symmetry argument, for all C > 1 and 1 ≤ j, r ≤ d, P-a.s., we have

+∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 { N i n ,U n+1,∞ ≥C n } = +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 { N i n ,U n+1,∞ ≥C n } 1 {λnUn,∞(i)<K n } + +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 { N i n ,U n+1,∞ ≥C n } 1 {λnUn,∞(i)≥K n } ≤ +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 N i n ,U n+1,
E ξ N i n (j) M n (i, j) 1 N i n (r) Mn(i,r) ≥C n = E ξ N i n (j) M n (i, j) 1 N i n (r)
Mn(i,r) ≥C n 1 N i n (j)

Mn(i,j) ≥ N i n (r) Mn(i,r)

+ E ξ N i n (j) M n (i, j) 1 N i n (r)
Mn(i,r) ≥C n 1 N i n (j)

Mn(i,j) < N i n (r) Mn(i,r) ≤ E ξ N i n (j) M n (i, j)

1 N i n (j)
Mn(i,j) ≥C n + E ξ N i n (r) M n (i, r)

1 N i n (r)
Mn(i,r) ≥C n . (11.4) Combining the inequalities (11.1)- (11.4), this shows that H5 ⇒ H3.

We next prove that H7⇒H5 and H6⇒H3. Since the sequence of the environments (ξ n ) is stationary, for all C > 1 and 1 ≤ i, j ≤ d we have

E +∞ n=0 E ξ N i n (j) M n (i, j) 1 N i n (j) Mn(i,j) ≥C n = +∞ n=0 E Z i 1 (j) M 0 (i, j) 1 log + Z i 1 (j)
M 0 (i,j) ≥n log C

.

Therefore, we deduce that

B(i, j) log C ≤ E +∞ n=0 E ξ N i n (j) M n (i, j) 1 N i n (j)
Mn(i,j) ≥C n ≤ B(i, j) log C + 1, (11.5) with B(i, j) := E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) .

The implication H7⇒H5 follows. The implication H6⇒H3 can be obtained by a similar argument. We now prove that H7⇒H6. By the convexity of the function x → x log + x on R + we obtain that for all 1 ≤ i ≤ d,

E Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + Z i 1 , U 1,∞ ≤ E Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + Z i 1 , U 1,∞ λ 0 U 0,∞ (i) + E log + (λ 0 U 0,∞ (i)) ≤ E   d j=1
M 0 (i, j)U 1,∞ (j) λ 0 U 0,∞ (i)

Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j)   + E log + M 0 ≤ d j=1 E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) + E log + M 0 .
Using H2, this proves that H7⇒H6.

From now assume additionally the Furstenberg-Kesten condition H4. Then H1 holds, so from the conclusions above we see that H5⇒H3 and H7⇒H6. We will prove below the inverse implications H3⇒H5 and H7⇒H6.

We first prove that H3⇒H5. For all 1 < K < C and 1 ≤ i ≤ d, P-a.s., we have Notice that, by (7.3),

+∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 N i n ,U n+1,∞ λnUn,∞(i) ≥C n = +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 N i n ,U n+1,∞ λnUn,∞(i) ≥C n 1 { N i n ,U n+1,∞ >K n } + +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 N i n ,U n+1,∞ λnUn,∞(i) ≥C n 1 { N i n ,U n+1,∞ ≤K n } ≤ +∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 { N i n ,
N i n , U n+1,∞ λ n U n,∞ (i) = d j=1
M n (i, j)U n+1,∞ (j) λ n U n,∞ (i)

N i n (j) M n (i, j) ≥ 1 dD 2 d j=1
N i n (j) M n (i, j) .

(11.7)

Therefore we get that for all C > 0 and 1 ≤ i ≤ d, P-a.s.,

+∞ n=0 E ξ N i n , U n+1,∞ λ n U n,∞ (i) 1 N i n ,U n+1,∞ λnUn,∞(i) ≥C n ≥ 1 dD 2 d j=1 +∞ n=0 E ξ N i n (j) M n (i, j) 1 N i n (j)
Mn(i,j) ≥dD It remains to prove that H7⇒H6. By (7.3), for all 1 ≤ i, j ≤ d we have E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) ≤ E dD 2 U 1,∞ (j)Z i 1 (j) λU 0,∞ (i) log + dD 2 U 1,∞ (j)Z i 1 (j) λU 0,∞ (i)

≤ E dD 2 Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + dD 2 Z i 1 , U 1,∞ λ 0 U 0,∞ (i) ≤ dD 2 E Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + Z i 1 , U 1,∞ + E log + dD 2 λ 0 U 0,∞ (i) ≤ dD 2 E Z i 1 , U 1,∞ λ 0 U 0,∞ (i) log + Z i 1 , U 1,∞ + E log λ 0 U 0,∞ (i) dD 2 .
This, together with (11.10), proves that H7⇒H6.

Finally, in addition to the condition H4, we suppose that the environment ξ is i.i.d. Using the implications proved above, to show that all the conditions H3-H7 are equivalent, it suffices to prove that H5⇔H7. Let us prove this below. Since (ξ n ) is i.i.d., for all C > 0 and 1 ≤ i, j ≤ d the random variales

E ξ N i n (j) M n (i, j) 1 N i n (j)
Mn(i,j) ≥C n

, n ≥ 0, are independent, and bounded by 1. By the Kolmogorov's Three Series Theorem, we deduce that the condition H5 holds if and only if for all C > 0 and 1 ≤ i, j ≤ d,

E +∞ n=0 E ξ N i n (j) M n (i, j) 1 N i n (j)
Mn(i,j) ≥C n < +∞.

Combining this with (11.5), it follows that H5⇔H7. This completes the proof of Lemma 11.1.

  for the vector with all coordinates equal to 1. For any x, y ∈ R d , letx, y := product and the L 1 norm in R d . The operator norm of a matrix M = (M (i, j)) 1≤i,j≤d ∈ M d (R) is given by
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 111 Assume conditions H1 and H2. Then the following implications hold : H7 ⇒ H5 ⇒ H3, and H7 ⇒ H6 ⇒ H3. If additionally condition H4 holds, then we have the equivalences H5 ⇔ H3 and H7 ⇔ H6. Moreover, when the environment (ξ n ) is i.i.d. and H4 holds, then H3 ⇔ H5 ⇔ H6 ⇔ H7.

1 |

 1 2 C n .(11.8) Moreover, for 1 < K < C and 1 ≤ i ≤ d, it holds thatE log(λ 0 U 0,∞ (i))|≥n log( C K ) ≤ E | log(λ 0 U 0,∞ (i))| log(C/K) + 1 . (11.9)By (7.2) and Proposition (2.5), we get thatE| log(λ 0 U 0,∞ (i))| ≤ E| log λ 0 | + E| log U 0,∞ (i)| ≤ E| log λ 0 | + log(dD) < +∞. (11.10)From (11.9) and (11.10) we deduce that for 1 < K < C and 1≤ i ≤ d, /K) E| log(λ 0 U 0,∞ (i))| + 1 < +∞. (11.11)Combining the inequalities (11.6)-(11.11), we obtain the implication H3⇒H5.

  .11) Let k 0 ∈ N be large enough such that Cδ k 0 -1 ≤ 1/(dD). Then, combining (7.2) and (8.2), we see that for all 1 ≤ r ≤ d, n ≥ 1 and k ≥ k 0 , Let k 1 ∈ N be such that 2dDCδ k 1 ≤ ε/8 and k 1 ≥ k 0 . For all n ≥ 0 and k ≥ k 1 , set

	U n,n+k-1 (r) ≥	1 2dD	P-a.s.
	It follows that for all n ≥ 1 and k ≥ k 0 ,		
	Z	i n , U n,n+k-1 ≥	1 2dD	P-a.s.	(8.12)
	Let ε > 0.				

  .[START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] Applying(8.13) and the triangle inequality we have that for all k ≥ k 1 ,

	lim sup
	n→+∞

  .4) Therefore(10.3) holds if(10.4) is satisfied for all 1 ≤ i, r, j ≤ d, k ≥ 1 and 0 ≤ b < k.It remains to prove (10.4), which is done below. By Corollary 2.8, we know that for all 1 ≤ i ≤ d, P-a.s. on E i ,

	lim n→+∞	1 n	log Z i n = γ > 0.
	Therefore we deduce that, P-a.s. on E i ,
	+∞		
		Z i n	1-p < +∞.	(10.5)
	n=1		
	Now using (4.1) and the inequality (x + y) p	2 p-1 (x p + y p ), x, y	0, for
	all 1 ≤ i, j ≤ d and k ≥ 1, we have

  = 1, so that the summands are bounded by 1. Therefore, for all C > 1 and 1 ≤ i ≤ d, P-a.s.,

	By (2.5), we have d j=1	Mn(i,j)U n+1,∞ (j) λnUn,∞(i)
		+∞ n=0	E ξ		N i n , U n+1,∞ λ n U n,∞ (i)	1 N i n ,U n+1,∞ λnUn,∞(i) ≥C n
	=	+∞ n=0	E ξ	d j=1	M n (i, j)U n+1,∞ (j) λ n U n,∞ (i)	N i n (j) M n (i, j)	×
		1	d r=1	Mn(i,r)U n+1,∞ (r) λnUn,∞(r)	N i n (r) Mn(i,r) ≥C n
	≤	+∞ n=0	d j=1	E ξ	N i n (j) M n (i, j)	1	max 1≤r≤d	N i n (r) Mn(i,r) ≥C n
	≤	+∞ n=0	d j=1	d r=1	E ξ	N i n (j) M n (i, j)	1 N i n (r) Mn(i,r) ≥C n	.	(11.3)
										+∞
										1 {log + (λ 0 U 0,∞ (i))≥n log K}
										n=0
								≤ E	log + (λ 0 U 0,∞ (i)) log(K)	+ 1
								≤	E log + M 0 log(K)	+ 1 < +∞.	(11.2)

∞ λnUn,∞(i) ≥(CK) n + +∞ n=0 1 {λnUn,∞(i)≥K n } . (11.1)

First, by H2, for all K > 1 and 1 ≤ i ≤ d, it holds that

E +∞ n=0 1 {λnUn,∞(i)≥K n } = E

  U n+1,∞ ≥(CK) n } . Grama, Q. Liu, E. Pin/Multi-type branching process in a random environment 47

		+∞			
	+	n=0	1	λnUn,∞(i)≤( K C ) n .	(11.6)

I

Proof of Theorem 2.10

Auxiliary results

We need additional results on the products of the mean matrices (M n ). Set

The following Lemma was proved by Kesten and Spitzer in [START_REF] Kesten | Convergence in Distribution of products of Random Matrices[END_REF]. It gives a uniform convergence in (2.3) with an exponential rate, under the condition H4 of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF].

Lemma 8.1. Assume condition H4. Then there exists a constant C > 0 such that for all

The next result establishes a uniform convergence with an exponential rate for the left and right eigenvectors U n,n+k and V n,n+k / V n,n+k , as k → ∞.

Lemma 8.2. Assume condition H4. Then there exists a constant C > 0 such that for all k ≥ 0,

and

Proof. We only prove (8.3), since one can obtain (8.2) by similar arguments.

Let C > 0 be as in Lemma 8.1. Denote by k 0 ≥ 0 such that Cδ k 0 < 1. By Lemma 8.1, for all n ≥ 0, k ≥ k 0 and 1 ≤ i, j ≤ d we have

From this and the fact that

1, we deduce that for all 1 ≤ i ≤ d and k ≥ k 0 , sup n≥0 M n,n+k (i, j) M n,n+k (i, •) -V n,n+k (j) V n,n+k ≤ 2C 1 -Cδ k 0 δ k P-a.s.