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We consider a model with a countably infinite number of states of nature. The agents have equivalent probability beliefs and von Neumann -Morgenstern utilities. The No-Arbitrage Prices in this this paper are, up to a scalar, the marginal utilities. We introduce the Beliefs Strong Equivalence and the No Half Line Condition of the same type conditions. Under these conditions, the No Arbitrage price condition is sufficient for the existence of an equilibrium when the commodity space is l p , 1 ≤ p < +∞. This No Arbitrage condition is necessary and sufficient for the existence of equilibrium when the total endowment is in l ∞ . Moreover, it is equivalent to the compactness of the individually rational utility set.

Introduction

In finite dimensional markets with short-selling, conditions on agents' utilities ensuring the existence of equilibria are by now well understood. They can be interpreted as no-arbitrage conditions. In an uncertainty setting, where agents have different beliefs and different risk aversions, as originally shown by [START_REF] Hart | On the Existence of an Equilibrium in a Securities Model[END_REF], the no-arbitrage conditions may be interpreted as compatibility of agent's risk adjusted beliefs.

There is a huge literature on sufficient and necessary conditions for the existence of equilibria. In finite dimension, there are three categories of proofs of existence of equilibrium. The proofs consist in finding conditions called no-arbitrage conditions which, at the end, conduct to the compactness of U. In the first category, we can cite Green [START_REF] Green | Temporary general equilibrium in a sequential trading model with spot and futures transactions[END_REF], Grandmont [START_REF] Grandmont | Temporary General Equilibrium Theory[END_REF], Hammond [START_REF] Hammond | Overlapping expectations and Harts condition for equilibrium in a securities model[END_REF], Werner [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF], Allouch et al. [START_REF] Allouch | The geometry of arbitrage and the existence of competitive equilibrium[END_REF], and Dana and Le Van [8] . They impose the existence of a no-arbitrage price. This condition implies the existence of equilibrium. In the second category, see e.g. Page [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF], Nielsen [START_REF] Nielsen | Asset market equilibrium with short-selling[END_REF], Page and Wooders [START_REF] Page | A necessary and sufficient condition for compactness of individually rational and feasible outcomes and existence of an equilibrium[END_REF], Dana et al. [START_REF] Dana | On the different notions of arbitrage and existence of equilibrium[END_REF], Page et al. [START_REF] Page | Inconsequential arbitrage[END_REF]). They impose a condition on useful net trades. The third category assumes directly the set U is compact, see Dana et al. [START_REF] Dana | On the different notions of arbitrage and existence of equilibrium[END_REF].

In infinite dimension asset markets, the no-arbitrage conditions used for finite dimension do not imply existence of equilibrium. The standard assumption is to assume that the individually rational utility set is compact (see e.g. Brown and Werner [START_REF] Brown | Arbitrage and existence of equilibrium in infinite asset markets[END_REF], Dana and Le Van [7], Dana et al [START_REF] Dana | General Equilibirum in asset markets with or without short-selling[END_REF], Dana and Le Van [8]. In this paper, we consider a model with a countably infinite number of states of nature, a finite number of agents and von Neumann -Morgenstern utilities with different expectations.

More precisely, we consider a model where the utility of agent i is

U i (x i ) = ∞ s=1 π i s u i (x i s )
where π i is her belief and x i is her consumption. The commodity space is l p (π) with p ∈ {1, . . . , +∞}. 1 When the number of states is finite, say K states, following Werner [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF], one can introduce for any agent i the set of useful vectors W i to obtain the set of no-arbitrage prices denoted by S i , which are defined as the set of vectors p which satisfy p • w > 0 for any w ∈ W i \ {0}. We say that the no-arbitrage condition holds if i S i = ∅. When the utility functions are strictly concave, strictly increasing, this condition is necessary and sufficient for the existence of equilibrium.

Dana and Le Van [8] introduce, for every agent i, the convex cone P i generated by the vectors {π i s u i (x i s )} s=1,...,K where x i ∈ R K and u i (+∞) < u i (x i s ) < u i (-∞), ∀s, ∀i. The no-arbitrage cone S i is proved to be the interior of the cone P i . In this paper, we weaken the concept of no-arbitrage prices à la Dana and Le Van [8]. We define no-arbitrage prices p for agent i as follows: for any state s,

p s = λ i π i s u i (x i s )
where λ i > 0, x i ∈ l ∞ (π) and

u i (+∞) ≤ u i (x i s ) ≤ u i (-∞).
We say that the no-arbitrage condition (NA) holds if :

λ i π i s u i (x i s ) = λ j π j s u j (x j s ), ∀i, ∀j, ∀s and if for any i,

1.∀x, u i (x) < u i (-∞) ⇒ sup s u i (x i s ) < u i (-∞), 2.∀x, u i (x) > u i (+∞) ⇒ inf s u i (x i s ) > u i (+∞).
When the number of states is finite, condition (NA) ensures existence of equilibrium. When the number of states is infinite, in general, this condition only ensures the boundedness of the individually rational utility set. However, under a condition we call Beliefs Strong Equivalence and No Half Line conditions of the same type, no-arbitrage condition (NA) is sufficient for the existence of an equilibrium when the commodity space is l p (π), 1 ≤ p < +∞. This no-arbitrage condition is necessary and sufficient when the total endowment is in l ∞ (π) or when the consumption space is of finite dimension. Until now, to our knowledge, for infinite dimension asset markets, there exists Her expected utility is:

V (w 1 , w 2 , . . . , w s , . . . ) = s πsu(ws).
Since the market is complete, the choice of portfolio is equivalent to the choice of wealth. As in Hart's pioneer paper, we consider the expected utility function on wealth.

no paper where no-arbitrage condition on prices implies existence of an equilibrium and may be equivalent to the existence of equilibrium. We summarize our contribution in this paper.

• We introduce the Beliefs Strong Equivalence condition for the beliefs of the agent.

• A new notion of no half line is also defined: No Halfline Condition of the Same Type.

• We prove that no-arbitrage condition implies the compactness of the Individually Rational Utility Set and hence Existence of Equilibrium. The Individually Rational Feasible Sets may be non compact.

• This no-arbitrage condition is necessary and sufficient for the existence of equilibrium when the total endowment is in l ∞ (π) or when the consumption space is of finite dimension. Again, the Individually Rational Feasible Sets may be non compact.

The paper is organized as follows. In Section 2, we present the model, define the individually rational allocations set, the individually rational utility set and the equilibrium. Section 3 gives the definitions of the useful vectors of the agents, of Half Lines, No Half Line Condition, while No-Arbitrage prices are defined in Section 4. The assumptions are set in Section 5. We introduce there Beliefs Strong Equivalence, No Half Line of the Same Type. In Section 6, we introduce a no-arbitrage condition and show that this no-arbitrage condition is sufficient for the existence of and equilibrium. It becomes necessary and sufficient when the total endowment is in l ∞ (π). Our results are discussed in a section entitled Comments, Section 7. We devote a section for an extensive review of literature on the relationship between no-arbitrage conditions and existence of equilibrium on finite dimension assets markets and infinite dimension assets as well (Section 8). In Section 9 which is the conclusion, we explain our contribution to the problem of the existence of equilibrium on assets markets with an infinitely countable number of states of nature. Sections 10, 11 and 12 are devoted to the proofs .

The model

There are m agents indexed by i = 1, . . . , m. The consumption set of agent i is X i = l p (π) with p ∈ {1, 2, . . . , +∞} and agent i has an endowment e i ∈ l p (π). We assume that for each agent i (1) her belief in state s is π i s ≥ 0, and ∞ s=1 π i s = 1 .

(2) there exists a concave, strictly increasing, differentiable 2 function u i : R → R , such that, for any i, the function

U i (x i ) = ∞ s=1 π i s u i (x i s )
is real-valued for any x i ∈ X i . Her utility function is represented by this function U i . 3 Let us denote by π the mean probability 1 m i π i . This allows us to use l p (π), 1 ≤ p ≤ +∞ as space of consumption goods 4 .

Definition 1

1. The individually rational attainable allocations set A is defined by

A = {(x i ) ∈ (l p (π)) m | m i=1 x i = m i=1 e i and U i (x i ) ≥ U i (e i ) for all i}.
2. The individually rational utility set U is defined by

U = {(v 1 , v 2 , ..., v m ) ∈ R m | ∃x ∈ A s.t U i (e i ) ≤ v i ≤ U i (x i ) for all i}.
Definition 2 An equilibrium is a list (x i * ) i=1,...,m , p * ) such that x i * ∈ X i for every i and p * ∈ l q + (π) \ {0} and (a) For any i, U i (x)

> U i (x i * ) ⇒ ∞ s=1 p * s x s > ∞ s=1 p * s e i s , (b) m i=1 x i * = m i=1 e i .

Useful vectors

Define

a i = inf x u i (x) = u i (+∞) b i = sup x u i (x) = u i (-∞).
Definition 3 Following Werner [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF]), when X i = l p (π), we say that a vector w ∈ l p (π) \ {0} is 2 To simplify the proof of our result we assume differentiability. One can use subdifferentials of a concave function. 3 From Le Van [16], the derivative of U i is in l q (π) with 1/p + 1/q = 1. Hence for any w ∈ l p (π), the sum ∞ s=1 π i s u i (xs)ws converges in R. 4 The space l p (π) for p < +∞, is the space of infinite sequences (x1, . . . , xs, . . .) such that ∞ s=1 πs|xs| p < +∞. We are interested by the moments up to order p of the assets. The moments measure the dispersion of an asset around its mean value. When p = +∞, l ∞ (π) is the space of assets which are uniformly bounded above and below, over the states of nature.

• useful for agent i if it satisfies ∀x ∈ l p (π), ∀λ ≥ 0, s π i s u i (x s + λw s ) ≥ s π i s u i (x s ),

• a half line for agent i, if it satisfies:

i) ∀x ∈ l p (π), ∀λ ≥ 0, s π i s u i (x s + λw s ) ≥ s π i s u i (x s ) (i.e. it is useful),
ii) and there exists z ∈ l p (π) such that ∀λ ≥ 0,

s π i s u i (z s + λw s ) = s π i s u i (z s ).
The following characterization of a useful vector is an easy extension to a countably infinite number of states of a result in Dana and Le Van [8].

Lemma 1 A vector w ∈ l p (π) \ {0} is useful for agent i if, and only if,

∀x ∈ l p (π), s π i s u i (x s )w s ≥ 0. ( 1 
)
Remark 1

• If a i = 0, then w is useful for agent i iff w > 0.

• if b i = +∞, then w is useful for agent i iff w > 0.

For a vector w ∈ l p (π), let S + = {s : w s ≥ 0}, S -= {s : w s < 0}.

Lemma 2 A vector w ∈ l p (π) \ {0} is a half line for agent i if, and only if, it is useful and if there exists z ∈ l p (π) such that

s∈S + π i s u i (z s )w s + s∈S - π i s u i (z s )w s = 0. ( 2 
)
Proof : See Appendix 1.

Remark 2

• If a i = 0 then agent i has no half line.

• If b i = +∞ then agent i has no half line.

No-arbitrage prices

For any i = 1, . . . , m, let P i denote the cone

P i = λπ i s u i (x s ) s , x ∈ l p (π), λ > 0, a i < inf s u i (x i s ) < sup s u i (x i s ) < b i = λπ i s u i (x s ) s , x ∈ l ∞ (π), λ > 0 .
The cone P i is open for the l ∞ (π) topology. Hence, we obtain the following result, the proof of which is easy.

Lemma 3 For any non-null useful vector w one has s p s w s > 0, ∀p ∈ P i .

Define, as in finite dimension, the cone of no-arbitrage prices for agent i by S i = p ∈ l q (π) : ∀w non-null useful , s p s w s > 0 where 1/p + 1/q = 1. Obviously, P i ⊆ S i . When the number of states S is finite then

P i = S i .
Lemma 4 1. If ∀x, u i (x) > a i then agent i has no half line.

2. If ∀x, u i (x) < b i then agent i has no half line.

Proof : See Appendix 1.

The Assumptions

We add the following assumptions: A0 (Beliefs Strong Equivalence) 5 : For all pair of agents (i, j), there exists s i j such that

π i s i j π j s i j = inf s π i s π j s .
Under A0, without loss of generality, one can assume that π i s > 0 for any i, any s. In this paper, we always suppose that condition A0 is satisfied and π i s > 0 for any i, any s. A1 (The agents have the same type of No Half Line).

Either any agent

i satisfies 0 ≤ a i < u i (x), ∀x ∈ R, 2. Or any agent i satisfies u i (x) < b i ≤ +∞, ∀x ∈ R.
Remark 3 We recall that probabilities π i , π j are equivalent if there exists

h ij > 0 such that ∀s, π i s h ij ≤ π j s ≤ π i s h ij .
Obviously, our assumption A0 implies equivalence between beliefs. It is stronger since for any pair (i, j), there exists an index s i j such that

h ij = π i s i j π j s i j
We can interpret A0 as follows. When we assume the beliefs are equivalent, we may suppose the agents have this information, i.e., they know that for any couple (i, j) of agents, their relative beliefs π i s π j s s are uniformly bounded above.

Assumption A0 supposes they have a bit more information. For any couple (i, j) of agents, their relative beliefs π i s π j s s are uniformly bounded by their relative belief for some state s i j . But they may not know this state.

Remark 4

• If the function u i is strictly concave for any i, then the agents satisfy A1 because u i is strictly decreasing and we cannot have x with u i (x) = a i or u i (x) = b i . Very often it is assumed that the reward utility functions are strictly concave to get single valued demand correspondences. In this case, in finite dimension, the cone P i always exists.

• If the utility is not strictly concave, we are not sure that P i exists. However, under A1 which is weaker than strict concavity, the cone P i is non empty (see Proposition 1).

The Main Results

In this section, we prove our main results: (i) No-arbitrage condition (NA), which is given below, implies existence of equilibrium when 1 ≤ p < +∞. (ii) If e ∈ l ∞ (π) then No-arbitrage condition (NA) is equivalent to the existence of equilibrium.

We mimic Dana and Le Van [8] for a model with S states of nature, we restrict our No-arbitrage prices in the cone P = m i=1 P i where

P i = p ∈ l ∞ (π) : p s = λπ i s u i (x i s ) for all s, λ > 0 .
In this case x i ∈ l ∞ (π).

A first no arbitrage condition (which coincides with the standard Werner noarbitrage condition, in finite dimension) may be (NA0) m i=1 P i = ∅.

Actually, our No-arbitrage condition is:

(NA) There exists x ∈ l p (π) such that

(a) λ 1 π 1 s u 1 (x 1 s ) = λ 2 π 2 s u 2 (x 2 s ) = . . . = λ m π m s u m (x m s ), ∀s and ∀i, (b) if ∀x, u i (x) < b i then sup s u i (x i s ) < b i , (c) if ∀x, u i (x) > a i then inf s u i (x i s ) > a i .
A price p which satisfies (a), (b) and (c) will be called, in this paper, Noarbitrage price.

Remark 5 If the agents have the same belief, i.e. π i = π j = π, ∀i, ∀j, and if the utilities functions are strictly concave, then (NA) is satisfied. Indeed, in this case the agents satisfy the half-line of the same type (see Remark 4). Define

λ 1 = 1, λ i = u 1 (0) u i (0) , ∀i > 1. Take x i s = 0, ∀i, ∀s. Then we have λ 1 π 1 s u 1 (x 1 s ) = λ 2 π 2 s u 2 (x 2 s ) = . . . = λ m π m s u m (x m s ), ∀s.
To prove the existence of equilibrium we prove that the individually rational utility set U is compact. First, we impose conditions (NA) and A1 which are sufficient to obtain the boundedness of U. We then add condition A0 and get the closedness of U.

Proposition 1 Assume A1. Then (NA) ⇔ (NA0). Assume (NA). Then there exists C > 0 such that x l 1 (π) ≤ C for any x in A and U is bounded.

Proof : See Appendix 2.
The following proposition is crucial and its proof is the most difficult of this paper.

Proposition 2 Assume A0, A1. If (NA) holds, then U is compact.

Proof : See Appendix 2.
The following theorems which are the main results of the paper follow Propositions 1 and 2 and Dana, Le Van and Magnien [9].

Theorem 1 Assume A0, A1. Suppose that (NA) holds, then there exists an equilibrium for all 1 ≤ p < +∞.

Theorem 2 Let e = m i=1 e i . Assume A0, A1, 1 ≤ p ≤ +∞, and e ∈ l ∞ (π). Then NA holds ⇔ U is compact ⇔ there exists an equilibrium.

Proof : See Appendix 3.

Comments on our assumptions and our results

1. Assumption (NA) deserves an explanation. In [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF], we have an example with two agents, where (NA0) holds and we have no equilibrium because the agents do not have No Half-Line of the same line property. In our paper we introduce condition A1 (No Half Line of the same type). In this case, it is necessary to precise that for any i,

if ∀x, u i (x) < b i then sup s u i (x i s ) < b i , if ∀x, u i (x) > a i then inf s u i (x i s ) > a i ,
to obtain (NA0). More precisely, without A1, (NA0) and (NA) are not equivalent.

2. One can check that, in finite dimension, (NA) implies condition (NUBA) of Page [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF] or condition Positive semi-independence of Nielsen [START_REF] Nielsen | Asset market equilibrium with short-selling[END_REF].

3. Proposition 1 states that the set A is bounded in l 1 (π). In [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF], the authors prove that A is l 1 (π) compact when b i = +∞ for any i. Hence U is compact since l ∞ (π) ⊂ l p (π) ⊂ l 1 (π). Here we do not rule out the case with b i < +∞. In this case the set A is not necessary compact.

4. Some remarks: (i) Since P i ⊆ S i , we have i P i = ∅ ⇒ i S i = ∅. In finite dimension, this condition implies the compactness of A. In infinite dimension, it implies the boundedness of U.

(ii) In the von Neumann-Morgenstern model, if condition i P i = ∅ implies the set U is bounded, we cannot prove that condition i S i = ∅ gives the same result. Until now, there is no paper with a model in infinite dimension where condition i S i = ∅ implies the boundedness of U.

5. In Theorem 2, the equivalence between no-arbitrage condition and the existence of equilibrium requires a slightly stronger condition which is the total endowment is in l ∞ (π). In particular, if the commodity space is l ∞ (π), this condition is automatically satisfied.

Theorem 2 obviously holds also for the finite number of states case.

The no-arbitrage condition implies the compactness of the individualy rational utility sets. The individually rational feesible sets may not be compact.

6. In [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF], if a i = 0, ∀i, or b i = +∞, ∀i and if the beliefs are equivalent, there exists an equilibrium. One can see immediately that the conditions a i = 0, ∀i, or b i = +∞, ∀i imply our conditions A1. We will check that they also satisfy (NA). Since the beliefs are equivalent, there exists h > 0, such that 1 h ≤ π i s π j s ≤ h, for all i, j, s.

Consider the case where a i = 0, ∀i. Take x 1 s = 0, ∀s. Fix λ 1 > 0. Take bj ∈ (0, b j ) for j > 1. Take λ j which satisfies λ j ≥ λ 1 hu 1 (0) bj . Define x j s by

u j (x j s ) = λ 1 π 1 s u 1 (0) λ j π j s . Let āj = λ 1 u 1 (0) λ j h . We have ∀j > 1, λ 1 π 1 s u 1 (0) = λ j π j s u j (x j s ), and ∀j > 1, 0 < āj ≤ u j (x j s ) ≤ bj < b j .
The last inequalities show that (x j s ) s ∈ l ∞ (π), ∀j. The same method applies when b j = ∞, ∀j. We have proved that (NA) holds. However, [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF] does not assume A0 which is stronger than the equivalence of the beliefs. In our paper, A0 is required since a i may be non null and b i may be finite.

7. The No Half Line of the same type condition A1 is crucial for the proof of the existence of equilibrium. In [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF], we give an example of economy with two agents who do not satisfy A1. They have no half line but not of the same type. Agent 1 satisfies the statement 2 of Lemma 4 while agent 2 satisfies the statement 1 of the same lemma. The economy exhibits a no-arbitrage condition and it has no equilibrium.

8. If the utility functions u i are strictly concave and if the agents have the same belief, then from Remarks 4 and 5 we have an equilibrium. Cheng [START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF] in a model with a continuum number of states assumes the agents have the same belief and the utility functions are strictly concave. If we put his model in a model with a countably infinite number of states, we will get an equilibrium. 9. Le Van and Truong Xuan [START_REF] Van | Asset market equilibrium in L p spaces with separable utilities[END_REF] generalize the model of Cheng. The utility functions are 1 0 v i (x s , s)µ(ds). Le Van and Truong Xuan give an example where v i (x, s) = u i (x)h i (s), ∀i, ∀s and v i is concave, increasing, differentiable, (a) h i is continuous, h i (s) > 0 for all s. In this case, for any i, j, there exists s 0 such that h i (s 0 ) h j (s 0 ) = min s h i (s) h j (s) . They also assume that (b) for any i, any a there exist b > b such that u i (b) < u i (a) < u i (b ) and (c) ∀i, u i (+∞) = 0, u i (-∞) = +∞.

We will show that if we put their model, with the assumptions of their example, in a model with an infinitely countable number of states, we have an equilibrium.

Indeed

• (a) implies that A0 is satisfied.

• (b) implies that the agents satisfy No Half-Line of the same type.

• (c) implies NA is satisfied. To see that take x 1 s = 0, ∀s. For any i > 1, any s we have 0 < π 1 s π i s u 1 (0) < +∞. There exists x i s which satisfies

u i (x i s ) = π 1 s π i s u 1 (0). Finally, we get ∀s, ∀i > 1, π 1 s u 1 (x 1 s ) = π i s u i (x i s ).
8 Review of literature on existence of equilibrium on assets markets

We will present a review of literature on the no-arbitrage condition and its role on the existence of equilibrium on complete financial markets. 6 The papers we mention use the two-period model proposed by Hart. Investors are interested only in their wealth in the second period. There are k assets and S states of nature in the second period. We suppose at state s, the returns are given by a system (r 1 s , r 2 s , . . . , r k s , . . . ). For each portfolio z = (z 1 , z 2 , . . . , z k , . . . ), the wealth of the investor when state s occurs is

w s = k z k r k s .
Given the belief (π 1 , . . . , π S ), the expected utility of the agent is:

V (w 1 , w 2 , . . . , w s , . . . ) = S s=1 π s u(w s ).
Since the market is complete, the choice of portfolio is equivalent to the choice of wealth. As in Hart's pioneer paper, we consider the expected utility function on wealth. We distinguish two cases: (i) The number of states is finite, (ii) the number of states in infinite. The contribution of our paper will be discussed after this review of literature. We suppose the economy has m agents with utility functions u i , i = 1, . . . , m which are concave, continuous.

No arbitrage conditions and equilibrium on finite dimension asset markets

For simplicity we assume that the consumption sets are R S . Let us recall the definitions of the following sets.

• The individually rational attainable allocations set A is defined by

A = {(x i ) ∈ (l p (π)) m | m i=1 x i = m i=1
e i and U i (x i ) ≥ U i (e i ) for all i}.

• The individually rational utility set U is defined by

U = {(v 1 , v 2 , ..., v m ) ∈ R m | ∃x ∈ A s.t U i (e i ) ≤ v i ≤ U i (x i
) for all i}.

• A vector w ∈ R S is useful for agent i if u i (x + λw) ≥ u i (x), ∀x, ∀λ ≥ 0.
The set of useful vectors of agent i is denoted by W i .

• A vector w ∈ R S is useless for agent i if u i (x + λw) = u i (x) = u i (x - λw), ∀x, ∀λ ≥ 0.
The set of useless vectors of agent i is denoted by L i .

• A vector w ∈ R S is a half-line for agent i if there exists x such that

u i (x + λw) = u i (x), ∀λ ≥ 0.
An economy has no half-line if no agent of this economy has a half-line.

• A vector p ∈ R S is a no-arbitrage price for agent i if p • w ≥ 0 for any w ∈ W i . We denote by S i the set of no-arbitrage prices for agent i.

To prove the existence of an equilibrium a sufficient condition is the compact ness of the set U. Actually, since the utility functions are continuous, if A is compact then U is also compact. There are three categories of proofs of existence of equilibrium. The proofs consist in finding conditions called noarbitrage conditions which, at the end, conduct to the compactness of U.

In the first category, we can cite Green [START_REF] Green | Temporary general equilibrium in a sequential trading model with spot and futures transactions[END_REF], Grandmont [START_REF] Grandmont | Temporary General Equilibrium Theory[END_REF], Hammond [START_REF] Hammond | Overlapping expectations and Harts condition for equilibrium in a securities model[END_REF],

Werner [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF], Allouch et al. [START_REF] Allouch | The geometry of arbitrage and the existence of competitive equilibrium[END_REF], and Dana and Le Van [8] . They impose the existence of a no-arbitrage price. This condition implies the existence of equilibrium.

In the second category, see e.g. Page ([19]), Nielsen ([18]), Page and Wooders [START_REF] Page | A necessary and sufficient condition for compactness of individually rational and feasible outcomes and existence of an equilibrium[END_REF], Dana et alii [START_REF] Dana | On the different notions of arbitrage and existence of equilibrium[END_REF], Page et alii [START_REF] Page | Inconsequential arbitrage[END_REF]). The third category assumes directly the set U is compact, see Dana et al. [START_REF] Dana | On the different notions of arbitrage and existence of equilibrium[END_REF].

The results of the authors of the first category on the existence by imposing conditions on prices can be presented as follows.

Assume the following no-arbitrage condition: NA0: m i=1 S i = ∅. This condition says there exists a price which is a common no-arbitrage price for all the agents. We have the following result:

NA0 holds =⇒ A is compact =⇒ U is compact =⇒ Existence of equilibrium.
However, when the set of useless vectors of agent i is not reduced to {0}, the set S i is empty. Werner [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF] introduces a weaker no-arbitrage condition: NA1: W i \ L i = ∅, ∀i and there exists a vector p which satisfies p • w > 0 for any w ∈ W i \ L i . Allouch et al. [START_REF] Allouch | The geometry of arbitrage and the existence of competitive equilibrium[END_REF] introduce a more general set of no-arbitrage prices

Si = p : p • w > 0 if w ∈ W i \ L i = L i⊥ if W i = L i .
Their no-arbitrage condition is:

NA2: i Si = ∅. Condition NA2 is weaker than NA1. It coincides with NA1 if W i \ L i = ∅, ∀i. However NA1 holds =⇒ U is compact =⇒ Existence of equilibrium.
and also NA2 holds =⇒ U is compact =⇒ Existence of equilibrium.

Dana and Le Van reconsider the equilibrium theory of assets with short-selling when there is risk and ambiguity. The variational preferences are used. They observe that the equilibrium prices equal, up to a scalar, the marginal utilities generated by the equilibrium allocations of the agents. They therefore consider prices which equal, up to a scalar, the marginal utilities of the allocations of the agents. For an agent i, they define P i as the cone generated by the marginal utility of her allocations. Their condition of non-arbitrage is NA3:

i intP i = ∅. The result is NA3 holds =⇒ A is compact =⇒ U is compact =⇒ Existence of equilibrium.
Observe that these no-arbitrage conditions are sufficient for the existence of an equilibrium. They become necessary if the economy has no half-line.

The second category of papers make use of net trades. A list (w 1 , . . . , w m ) ∈ R S×m is a net trade if m i=1 w i = 0. Page [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF] and Nielsen [START_REF] Nielsen | Asset market equilibrium with short-selling[END_REF] introduce two equivalent notions, No Unbounded Arbitrage NUBA by Page [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF] and Positive Semi-Independence by Nielsen [START_REF] Nielsen | Asset market equilibrium with short-selling[END_REF].

(NUBA) If (w 1 , . . . , w m ) ∈ R S×m is a net trade which satifies w i ∈ W i for all i, then w i = 0. We can easily prove that i S i = ∅ ⇒ (NUBA). Page and Wooders [START_REF] Page | A necessary and sufficient condition for compactness of individually rational and feasible outcomes and existence of an equilibrium[END_REF] show that, if L i = {0} for all i, then i S i = ∅ ⇔ (NUBA).

Page, Wooders and Monteiro [START_REF] Page | Inconsequential arbitrage[END_REF] propose the notion of Inconsequential arbitrage. Here is the definition of Inconsequential arbitrage.

The economy satisfies Inconsequential arbitrage condition (IC) if for any net trade (w 1 , w 2 , . . . , w m ) with w i ∈ W i for all i, and (w 1 , w 2 , . . . , w m ) is the limit of λ n (x 1 (n), x 2 (n), . . . , x m (n)) with (x 1 (n), x 2 (n), . . . , x m (n)) ∈ A and λ n converges to zero when n tends to infinity, then there exists > 0 such that for n sufficiently big we have

U i (x i (n) -w i ) ≥ U i (x i (n)).
Under this condition, Page, Wooders and Monteiro prove that the set U is compact.

In Allouch et al. [START_REF] Allouch | The geometry of arbitrage and the existence of competitive equilibrium[END_REF], we find this result

(NUBA) ⇒ (NA2) ⇒ (IC) ⇒ U is compact ⇒ Existence of an equilibrium.
These conditions are equivalent if the economy has no half-line.

Since the condition stating that U is compact seems the "weakest" one, the third category of papers assumes it directly. See e.g. Dana et al. [START_REF] Dana | On the different notions of arbitrage and existence of equilibrium[END_REF] for a finite dimension model. This condition is sufficient but not necessary for the existence of an equilibrium.

No arbitrage conditions and equilibrium on infinite dimension asset markets

The proofs that the no-arbitrage conditions given above imply the compactness either of A or of U use the property that the unit-sphere is compact, in finite dimension. In infinite dimension this property does not hold anymore. Brown and Werner [START_REF] Brown | Arbitrage and existence of equilibrium in infinite asset markets[END_REF], Dana and Le Van [7], Dana et al. [START_REF] Dana | General Equilibirum in asset markets with or without short-selling[END_REF] in infinite dimension models assume directly the compactness of U. Chichilnisky and Heal [START_REF] Chichilnisky | Competitive equilibrium in Sobolev spaces without bonds on short sales[END_REF] in L 2 , assume that A is norm-bounded. Since this one is closed, it is weakly compact in L 2 . The utility functions being norm-continuous and concave, are weakly upper semi-continuous. Hence U is compact.

9 Conclusion: Our contribution 1. We follow Dana and Le Van [8] and use the marginal utilities of the agents as potential no-arbitrage prices. This idea is very natural since at the optimum prices equal marginal utilities.

2. We can observe that in infinite dimension the papers mentioned above do not provide any prices no-arbitrage condition. In this paper we give a prices no-arbitrage condition which coincides with the well-known condition i S i = ∅ when the number of states S is finite. As we wrote above, in finite dimension, this condition implies the compactness of A.

The proof of this result is based on the property that the unit sphere is compact in finite dimension. In infinite dimension, this property could not hold. Our no-arbitrage condition implies that U is bounded and the set A is bounded in l 1 (π).

3. The proofs to obtain the compactness of U when we impose (NA2) or Inconsequential Arbitrage use also the fact that the unit sphere is compact in finite dimension.

4. Therefore, to prove the compactness of U we have to find another way of proof. That is the one we propose in the present paper. This proof is an adaptation of the proofs in Cheng [START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF], Le Van and Truong Xuan [17], Daher et al. [START_REF] Daher | Asset market equilibrium with short-selling and differential information[END_REF] and Ha-Huy, Le Van and Nguyen [15]. 7 Our proof of the closedness of the utility set requires additional assumptions on the behavior of the consumers: (a) The beliefs of the agents satisfy Assumption A0. Thanks to A0, A is bounded in l 1 (π) and this result is crucial for our proof. (b) The reward functions of the agents satisfy No Half-Line of the Same Type. This assumption is also crucial (see section 7, point 7).

5. Summing up, in this paper, where the number of states is infinitely countable and the agents are risk averse, we propose a no-arbitrage condition on the prices restricted to the cone of the marginal utilities of the allocations and prove that, under the conditions we denote by Beliefs Strong Equivalence and the No Half Line Condition of the same type, our noarbitrage price condition is sufficient for the existence of an equilibrium when the commodity space is l p , 1 ≤ p < +∞. This no-arbitrage condition is necessary and sufficient for the existence of equilibrium when the total endowment is in l ∞ . Moreover, it is equivalent to the compactness of the individually rational utility set. 8

7 We cannot use the proof in Cheng [START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF] because the author assumes the marginal utilities of the allocations cannot be linear when the allocations become large. We cannot use the one in Le Van and Truong Xuan [17] or Daher et al. [START_REF] Daher | Asset market equilibrium with short-selling and differential information[END_REF] because one of their assumptions is not satisfied in our case (H4 in [START_REF] Van | Asset market equilibrium in L p spaces with separable utilities[END_REF], S4 in [START_REF] Daher | Asset market equilibrium with short-selling and differential information[END_REF]). We cannot use Ha-Huy et al. [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF] since the authors assume b i = +∞ for any i, or a i = 0 for any i. In our paper these quantities may be finite. 8 Our paper covers the results in Cheng [START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF], Le Van and Truong Xuan [17] if we put their models in an infinitely countable setting, and also Ha-Huy et al. [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF]. We are not aware of the existence of another paper in infinite dimension which introduces explicitly a prices no-arbitrage condition which is sufficient for the existence of an equilibrium and which may become also necessary.

10 Appendix 1

Proof of Lemma 2

• Assume w is a half line for agent i. Then it is useful. There exists z ∈ l p (π) which satisfies ∀λ > 0,

s π i s u i (z s + λw s ) = s π i s u i (z s ).
Take the derivative with respect to λ > 0. 9 We get s π i s u i (z s )w s = 0, ∀λ > 0. Hence (2).

• Conversely, let w be useful and satisfy (2) for some z ∈ l p (π). This is equivalent to

d dλ s π i s u i (z s + λw s ) = 0, ∀λ > 0.
Hence

s π i s u i (z s + λw s ) = C, ∀λ > 0. Let λ → 0. We get s π i s u i (z s ) = C. Hence s π i s u i (z s + λw s ) = s π i s u i (z s ), ∀λ ≥ 0.
That proves w is a half line.

Proof of Lemma 4

If b i = +∞ or a i = 0 then agent i has no half line (Remark 2). We will assume a i > 0 and b i < +∞. Since

∞ s=1 π i s u (x s )λw s ≥ s π i s u i (x s + λw s ) - s π i s u i (x s ) ≥ 0,
we have for any half line direction w = 0

s∈S + π i s u i (x s )w s + s∈S - π i s u i (x s )w s ≥ 0.
For s ∈ S + let x s → +∞ and for s ∈ S -let x s → -∞ we obtain

a i s∈S 1 π i s w s + b i s∈S - π i s w s ≥ 0.
Suppose that for some z we have

s∈S + π i s u i (z s )w s + s∈S - π i s u i (z s )w s = 0. (4) 
We have that S + = ∅, S -= ∅. Indeed, if S + = ∅ then we have from (4) a contradiction 0 = s∈S -

π i s u i (z s )w s < 0.
Similarly, if S -= ∅, we have another contradiction

0 = s∈S + π i s u i (z s )w s > 0.
Consider statement 1. If w s > 0, then u i (z s )w s > a i w s and if w s < 0 we have u i (z s ) ≥ b i w s . Hence if w = 0 we have:

0 = s∈S + π i s u i (z s )w s + s∈S - π i s u i (z s )w s > a i s∈S + π i s w s + b i s∈S - π i s w s ≥ 0.
We arrive to a contradiction. Consider statement 2. If w s > 0, then u i (z s )w s ≥ a i w s and if w s < 0 we have u i (z s ) > b i w s . Hence if w = 0 we have:

0 = s∈S + π i s u i (z s )w s + s∈S - π i s u i (z s )w s > a i s∈S + π i s w s + b i s∈S - π i s w s ≥ 0.
We arrive to another contradiction.

Appendix 2

Proof of Proposition 1 1. Consider the case where every agent i satisfies ∀x, u i (x) < b i . In this case there exists (z i s ) which satisfies ∀i, ∀s, a i < inf

s u i (z i s ) < sup s u i (z i s ) < b i Indeed, there exists η > 0 such that u i (z i s ) = u i (x i s )(1 + η) < b i , ∀i, ∀s.
Use the proof of proposition 1 in [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF] to obtain that U is bounded. 2. Now consider the case where every agent i satisfies ∀x, u i (x) > a i . In this case we can find η > 0 small enough such that for all i

a i < inf s u i (z i s ) < sup s u i (z i s ) < b i with u i (z i s ) =: u i (x i s )(1 -η )
, ∀s, ∀i. Now (z i s ) plays the role of (x i s ) while (x i s ) plays the role of (z i s ) in point 1 with 1 + η = 1 1-η .

Lemma 5 Suppose that A is bounded and (v 1 , v 2 , . . . , v m ) is in the closure of U. Suppose that there exists a sequence {x(n)} n ⊂ A such that there exists i such that lim n U i (x i (n)) > v i , and for all j = i , lim n U j (x j (n)) ≥ v j . Then (v 1 , v 2 , . . . , v m ) ∈ U.

Proof : See the proof of Claim 5, page 37, in [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and riskaverse expected utilities[END_REF].

Proof of Proposition 2

Suppose that {x i (n)} n ⊂ A such that lim n x i (n) = v i . We prove that (v 1 , . . . , v m ) ∈ U. By Proposition 1, there exists C > 0 such that for all n, x i (n) l 1 (π) < C, or |x i s (n)| < C/π i s for all s. For any i, any j, pick one s i j which satisfies:

π j s i j π i s j i = min s π j s π i s .
Take M such that for any i, j:

M > 2C π i s j i .
Case 1. For any i, for any x we have a i < u i (x). Fix 0 < δ < 1 such that u i (M ) > a i δ for all i. Let M satisfy: for any i:

0 < u i (x) < (1 + a i )x for all x > (m -1)M + |e s | 1 -δ u i (M ) > u i (M ) δ for all i.
Let E i n denote the set

E i n = s | x i s (n) > (m -1)M + |e s | 1 -δ .
Observe that for all j, s j i ∈ E i n since C > s π i s |x i s |. We consider two sub-cases:

1. ∃ i: lim sup n s∈E i n π i s x i s (n) > 0. 2. ∀ i: lim n s∈E i n π i s x i s (n) = 0.
Consider the first sub-case. By Proposition 1, A is bounded in l 1 (π). We can suppose, without loss generality, that ∞ s=n π

i s |x i s (n)| → c i > 0 when n → ∞. This implies lim n ∞ s=n π i s x i+ s (n)-lim n ∞ s=n π i s x i- s (n) = c i .
The limits of these two sums exist because x i ∈ l 1 (π). We know that j =i x i s (n) = e s -x i s (n). So, for every s, ∃j such that

x j s (n) ≤ -x i s (n)-|es| m-1 .
Since there is a finite number of agents j = i, we can assume that, for simplicity, there exist i and j which satisfy two properties:

1. ∃ E i n ⊂ N ∩ {s ≥ n}, x i s > 0 for all s ∈ E i n and lim n s∈E i n π i s x i s (n) = c i > 0.
2. For all s ∈ E i n

x j s (n) ≤ -

x i s (n) -|e s | m -1 .
To simplify the notation, denote s 0 = s j i .

Define

a = δ lim n→∞ s∈E i n π i s x i s (n) (m -1)π i s 0 .
Obviously 0 < a < C/π i s 0 . We define the sequence {y k (n)} n by

y i s (n) = x i s (n) - x i s (n) -|e s | m -1 + M if s ∈ E i n y i s (n) = x i s (n) + a if s = s 0 y i s (n) = x i s (n) if s / ∈ E i n ∪ {s 0 }.
and {y j (n)} n by

y j s (n) = x j s (n) + x j s (n) -|e s | m -1 -M if s ∈ E i n y j s (n) = x j s (n) -a if s = s 0 y j s (n) = x j s (n) if s / ∈ E i n ∪ {s 0 } and y k (n) = x k (n) for all k = i, j. Denote d = π j s 0 π i s 0 = min s π j s π i s .
For all s, π j s ≥ dπ i s . We have :

U i (y i (n)) -U i (x i (n)) = π i s 0 u i (y i s 0 (n)) -u i (x i s 0 (n)) + s∈E i n π i s [u i (y i s (n)) -u i (x i s (n))] ≥ aπ i s 0 u i (x i s 0 (n) + a) - s∈E i n π i s u i (x i s (n) - x i s (n) -|e s | m -1 + M ) x i s (n) -|e s | m -1 -M ≥ au i (M )π i s 0 -u i (M ) s∈E i n π i s x i s (n) -|e s | m -1 -M ≥ au i (M )π i s 0 -u i (M ) s∈E i n π i s x i s (n) m -1 + u i (M ) s∈E i n π i s |e s | m -1 + M ≥ π i s 0 au i (M ) - u i (M ) δ δ s∈E i n π i s x i s (n) (m -1)π i s 0 + u i (M ) s∈E i n π i s |e s | m -1 + M > 0 by letting n → ∞ because u i (M ) > u i (M )/δ. Also: U j (y j (n)) -U j (x j (n)) ≥ -au j (-M )π j s 0 + u j (-M ) s∈E i n π j s δx i s (n) m -1 = -au j (-M )π j s 0 + u j (-M ) s∈E i n π j s δx i s (n) m -1 = -au j (-M )dπ i s 0 + u j (-M ) s∈E i n π j s δx i s (n) m -1 ≥ -au j (-M )dπ i s 0 + u j (-M ) s∈E i n dπ i s δx i s (n) m -1 = d -au j (-M )π i s 0 + u j (-M )δ s∈E i n π i s x i s (n) m -1
≥ 0 by letting n go to infinity. because u j (-M ) ≥ u j (-M ).

Applying Lemma 5, we then have (v 1 , v 2 , . . . , v m ) ∈ U. The set U is compact.

Consider the second sub-case, ∀ i:

lim n s∈E i n π i s x i s (n) = 0. Since lim n s∈E i n π i s x i s (n) = 0 for all i, observe that lim n min s {s ∈ E i n } = ∞. Hence for n big enough 0 < u i (x i s (n)) < (1 + a i )x i s (n) with s ∈ E i n , then lim n s∈E i n π i s u i (x i s (n)) = 0, ∀i.
We will construct a sequence satisfying the properties:

1. lim inf n U i (y i (n)) = v i .
2. There exists d 1 and d 2 such that for all i, n, s, we have

|y i s (n)| ≤ |d 1 | + |d 2 |e s |. Fix i. For all s ∈ E i n , j =i x j s (n) = e s -x i s (n) < 0. So, 0 ≤ j =i x j+ s (n) < j =i x j- s (n). Then there exists a sequence 0 ≤ z j s (n) ≤ x j- s (n) such that j =i z j s (n) = j =i x j- s (n) -j =i x j+ s (n) = x i s (n) -e s .
We define the sequence Fix j = i. By the similar arguments as above, we construct a new sequence {y k (n)} n in A which satisfies for all s, all n: y j (n) < (m-1)M +|es| 1-δ

. By the second observation given above,

y i s (n) < M (m -1)/δ + |e s | for all s. For k = i, j, lim inf n U k (y k (n)) = v k .
We continue for the agents different from i, j. And finally, by induction, we obtain a sequence {y i (n))} n ⊂ A satisfying: ∀i, ∀n, ∀s, y i s (n) < (m-1)M +|es| 1-δ . Fix an i. We have:

(m -1)M + |e s | 1 -δ > y i s (n) = e s - j =i y j s (n) > e s - j =i (m -1)M + |e s | 1 -δ > - (m -1) 2 M 1 -δ -|e s | - (m -1)|e s | 1 -δ .
So there exist d 1 and d 2 such that for all i, n, s, we have

|y i s (n)| < d 1 + d 2 |e s |.
Moreover, this sequence satisfies lim inf n U i (y i (n)) ≥ v i for all i.

We know that for all p ≥ 1, there exists C p > 0 such that (a + b) p ≤ C p (a p + b p ) for all pair of real numbers a, b ≥ 0.

Since the sequence {y i (n)} n belongs to a compact set of product topology, we can assume that y i (n) converges to y i .

Consider the case 1 ≤ p < +∞. Fix > 0. Firstly, observe that for all n, m ≥ 1, for all N :

m s=N π i s |y i s (n) -y i s (m)| p ≤ C p ∞ s=N π i s (|y i s (n)| p + |y i s (m)| p ) ≤ C p ∞ s=N 2 p π i s [(d 1 + d 2 |e s |) p ] ≤ C 2 p 2 p ∞ s=N π i s (d p 1 + d p 2 |e s | p )
which tends to 0 when N converges to infinity.

Fix N > 0 such that m s=N π i s |y i s (n) -y i s (m)| < p 2 for all n, m. Since y i s (n) converges to y i s , for n, m big enough we have N s=1 π i s |y i s (n) -y i s (m)| < p 2 .
So, for n, m big enough, we have y i (n) -y i (m) l p (π) < . This implies the sequence {y i n } is a Cauchy sequence. Hence y i ∈ l p (π). Easily, we can prove that U i (y i ) ≥ v i for all i, from the upper-continuity of U i on compact set of l 1 (π).

Consider the case p = ∞. Since e ∈ l ∞ (π), there exists M > 0 such that for all i, n, s, |y i s (n)| < M . This implies |y i s | < M for all i, s. So, for all i, y i ∈ l ∞ (π).

We can easily prove that U i (y i ) ≥ lim inf n U i (y i (n)) ≥ v i for all i. Thus, (v 1 , v 2 , . . . , v m ) ∈ U. The set U is compact.

Case 2. For any i, for any x we have u i (x) < b i .

Fix 0 < δ < 1 such that u j (-M ) < b j δ for all j. Let M satisfy: for any i, j: 0 < u i (x) < (1 + a i )x for all x > (m -1)M + |e s | 1 -δ , u j (-M ) < u j (-M ) δ for all j.

Let E i n denote the set

E i n = s | x i s (n) > (m -1)M + |e s | 1 -δ .
Observe that for all j, s j i ∈ E i n since C > s π i s |x i s |. As in Case 1, we consider two sub-cases:

1. ∃ i: lim sup n s∈E i n π i s x i s (n) > 0.

2. ∀ i: lim n s∈E i n π i s x i s (n) = 0.

In the second sub-case, using the arguments of Case 1, we have the compactness of U. We have to consider only the first sub-case. Using the same arguments as in Case 1, we can prove the existence of i, j such that:

1. ∃ E i n ⊂ N ∩ {s ≥ n}, x i s > 0 for all s ∈ E i n and lim

n s∈E i n π i s x i s (n) = c i > 0.
2. For all s ∈ E i n

x j s (n) ≤ -

x i s (n) -|e s | m -1 .
To simplify the notation, denote s 0 = s j i .

Define a = lim n→∞ s∈E i n π i s x i s (n) (m -1)π i s 0 . Obviously 0 < a < C/π i s 0 . We define the sequence {y k (n)} n by

y i s (n) = x i s (n) - x i s (n) -|e s | m -1 + M if s ∈ E i n y i s (n) = x i s (n) + a if s = s 0 y i s (n) = x i s (n) if s / ∈ E i n ∪ {s 0 }.
and {y j (n)} n by For all s, π j s ≥ dπ i s . Using exactly the same calculus of Case 1, we get U i (y i (n)) -U i (x i (n)) = π i s 0 u i (y i s 0 (n)) -u i (x i s 0 (n)) +

y j s (n) = x j s (n) + x j s (n) -|e s | m -1 -M if s ∈ E i n y j s (n) = x j s (n) -a if s = s 0 y j s (n) = x j s (n) if s / ∈ E i n ∪
s∈E i n π i s [u i (y i s (n)) -u i (x i s (n))]
≥ π i s 0 au i (M ) -u i (M )

s∈E i n π i s x i s (n) (m -1)π i s 0 + u i (M ) s∈E i n π i s |e s | m -1 + M
≥ 0 by letting n → ∞, because u i (M ) ≥ u i (M ). Also:

U j (y j (n)) -U j (x j (n)) ≥ -au j (-M )π j s 0 + u j (-M )

s∈E i n π j s δx i s (n) m -1 = d -au j (-M )π i s 0 + u j (-M )δ s∈E i n π i s x i s (n) m -1
> 0 by letting n go to infinity. because δu j (-M ) > u j (-M ).

Applying Lemma 5, we then have (v 1 , v 2 , . . . , v m ) ∈ U. We have proved that U is compact.

12 Appendix 3 Proof of Theorem 2 We have just to prove the converse: if there exists an equilibrium then (NA) holds, and hence U is compact.

The equilibrium allocation (x ζ i , p s = λ i π i s u i (x i * s ) for all i, s. We have for all i, j, s, λ i π i s u i (x * i s ) = λ j π j s u j (x * j s ). Consider the case a i < u i (x) for all i, x. We will prove that inf s u i (x * i s ) > a i for all i. We always have

π i s π j s = λ j u j (x * j s ) λ i u i (x * i s ) < λ j b j λ i a i . (5) 
If the claim is wrong, then there exists i and subsequence s k such that x * i s k converges to +∞. Since e ∈ l ∞ (π), there exists j such that x * j s k converges to -∞. In this case since we have A0 The same arguments apply when u i (x) < b i , for all i, x. We have prove that condition (NA) is satisfied.

  {s 0 } and y k (n) = x k (n) for all k = i, j.

  j λ i a i , contradicting[START_REF] Chichilnisky | Competitive equilibrium in Sobolev spaces without bonds on short sales[END_REF].

  i * ) solves the problem: From Theorem V.3.1, page 91, in Arrow-Hurwicz-Uzawa[START_REF] Arrow | Programming in Linear spaces[END_REF], for any i, there existsζ i s.t. for any x ∈ X i . Hence π i s u i (x * i s ) = ζ i p * s , ∀i. Since u i is strictly increasing ζ i > 0. Let λ i = 1

		∞		
		max	π i s u i (x i s )
		s=1		
		∞	∞	
	s.t.	p * s x i s =		p * s e i s
		s=1	s=1	
	∞	∞	∞	∞
	π i s u i (x * i s ) -ζ i	p * s x * i s ≥	π i s u i (x s ) -ζ i	p * s x s
	s=1	s=1	s=1	s=1

We observe that when all agents have the same belief as in Cheng[START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF], then A0 is satisfied.

We focus on the case where the preferences are transitive and represented by utility functions which are concave. For the case of non transitive, non convex and not necessary continuous preferences, the reader can refer to Won and Yannelis[START_REF] Won | Equilibrium theory with unbounded consumption sets and non-ordered preferences Part I. Non-satiation[END_REF].

We can take the derivative since the function u i is well defined in l p (π). Its derivative is in l q (π) with 1/p + 1/q = 1. See LeVan [16].