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Abstract

We consider a model with a finite number of states of nature where

short sells are allowed. We present a notion of no-arbitrage price weaker

than the one of Werner [23] that we call no-arbitrage price. We prove

that in the case of separable risk averse utility functions, the existence

of one common weak no-arbitrage price is equivalent to the existence of

equilibrium.

Keywords: asset market equilibrium, individually rational attainable al-

locations, individually rational utility set, no-arbitrage prices, no-arbitrage

condition.
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1 Introduction

Equilibrium conditions on financial markets differ with the ones on good mar-

ket when short-selling is accepted. This assumption makes useless traditional

techniques using fixed point theory. In the finite dimension case, there is a huge

literature on well-known conditions called ”no arbitrage conditions”. These con-

ditions in general imply the compactness of the allocations set or the utilities

set. We can classify them in three main categories.
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The first category is based on conditions on net trade, for example Hart

[17], Page [19], Nielsen [18], Page and Wooders [20], Allouch [1], Page, Wooders

and Monteiro [21]. We define Individual arbitrage opportunity as the set of

directions along which the agent wants to trade with infinite quantities. In

the case the agents disagree too much, some agents can make an arbitrage

which is ”an opportunity with a mutually compatible set of net trades which are

utility non-decreasing and, at most, costless to make” (Hart [17]). Taking the

fact that this opportunity can be repeated indefinitely, equilibrium may not

exist. The Weak-no-market-arbitrage WNMA requires that that all mutually

compatible net trades which are non-decreasing be useless. Page [19] proposes

the no-unbounded-arbitrage NUBA, a situation in which there is no group of

agents can make mutually compatible, unbounded and utility increasing trades.

In 2000, Page, Wooders and Monteiro [21], introduce Inconsequential arbitrage

condition to ensure the existence for an equilibrium.

The second category is based on conditions on prices, for example Green

[13], Grandmont [11], [12], Hammond [16] and Werner [23]. These authors

define No-arbitrage price as element in the strictly positive dual of the set of

useful vectors. If the intersection of No-arbitrage price cones of all agents is

non empty (existence of No-arbitrage-price-system NAPS), then there exists a

general equilibrium.

The third category includes authors, like Brown and Werner [2], Dana, Le

Van, Magnien [5], who assume the compactness of attainable utility set to

ensure the existence of equilibrium.

Obviously, we can wonder whether we can have equivalent conditions be-

tween the existence of general equilibrium and these no arbitrage conditions

when the utility functions are not strictly concave. Unfortunately, the answer

is no. In this paper, we give an example in which NAPS and NUBA, even

WNMA conditions are violated, but a general equilibrium does exist (Subsec-

tion 3.3).

In 2010, Dana and Le Van [6], by considering the relationships between the

agents beliefs and risk when there is ambiguity, propose to use the set of deriva-

tives of the utility function as no-arbitrage prices set. By using this ’trick’, they

give a description of weak no-arbitrage prices and useful vectors. Furthermore,

they give an equivalence between non-emptiness of the intersection of interiors

of no-arbitrage price cones and NUBA condition, or non-emptiness of the inter-

section of relative interiors of no-arbitrage prices cones and WNMA condition.

Hence, if this intersection is non empty, existence of a general equilibrium is

ensured.

In this paper, we reconsider the equilibrium theory of assets with short-

selling when there is risk and ambiguity. The agents have maximin expected

utility functions. They are not only risk averse but also ambiguity averse. We
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suppose the set of beliefs of each agent is polyhedral, i.e. it is the convex hull of

a finite number of strictly positive probabilities. In particular when the agent

has a linear utility with one prior, our no-arbitrage condition implies existence

of equilibrium while the one by Dana and Le Van [6] cannot. Moreover, we give

an example where NUBA, WNMA, no-arbitrage la Dana and Le Van are not

satisfied. However, there exists an equilibrium because our condition holds.

Using the notion proposed by Dana and Le Van [6], that we call weak

no-arbitrage prices, we prove the equivalence between existence of a general

equilibrium and non-emptiness of the intersection of no-arbitrage prices cones.

It is easy to prove that any equilibrium price is a weak no-arbitrage price. The

difficulty is to prove the converse.

To the best of our knowledge, when the utility functions are not strictly

concave, such a result does not exist in the literature1.

Our paper is organized as follows. In Section 2 we recall several well-known

conditions (No unbounded arbitrage - NUBA, or Weak no market arbitrage -

WNMA, or No arbitrage price system - NAPS) for the existence of an equilib-

rium in a general framework. In Section 3, we consider an economy in which

any agent i has a maximin expected utility function. As in Gilboa and Schmei-

dler [14], each agent faces a set of subjective probabilites. Here we assume that

this set is the convex hull of a finite number of strictly positive probabilities.

We introduce the cone of common weak no-arbitrage prices and state the equiv-

alence between existence of equilibrium and existence of a weak no-arbitrage

price common to all the agents. In Subsection 3.3, we give an example of econ-

omy which does not satisfy either NUBA or WNMA or NAPS and however has

an equilibrium since it satisfies our no-arbitrage condition.

2 Existence of equilibrium: the general case

We use Hart’s model where the market is complete, the choice of portfolio is

equivalent to the choice of wealth. Consider an unbounded exchange economy E
with S states of nature and m agents. Since short-sales are allowed, we suppose

the consumption set Xi of agent i is RS , for any i. Agent i has an endowment

ei ∈ RS and a concave utility function U i from RS into R. We assume that for

any i, U i is strictly increasing and concave.

For a subset X ⊂ RS , denote intX the interior of X, X0 the polar of X

where X0 = {p ∈ RS | p ·x ≤ 0, ∀ x ∈ X} and X00 = (X0)0. It is well known

that if X is closed, convex and contains the origin then X00 = X.

For x ∈ RS , agent i′s weak preferred set at x is

P̂ i(x) = {y ∈ RS | U i(y) ≥ U i(x)}.
1This model is equivalent to a model where any agent has a finite number of priors
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Let Ri(x) be recession cone of P̂ i(x) (see Rockaffellar [22]). The set Ri(x) is

called the set of useful vectors for U i is given as

Ri(x) = {w ∈ RS | U i(x+ λw) ≥ U i(x), for all λ ≥ 0}.

It is easy to check that Ri(x) is a closed convex cone.

The linear space of i is defined by

Li(x) = {w ∈ RS | U i(x+ λw) = U i(x), for all λ ∈ R} = Ri(x) ∩ −Ri(x).

Elements in Li(x) will be called useless vectors at x. From the concavity of

function U i, Ri(x) and Li(x) do not depend on x. Let us set Ri = Ri(ei), Li =

Li(ei). Denote by Li⊥ the orthogonal space of Li.

Since U i is strictly increasing, we have R2
++ ⊂ Ri.

Let us first recall the no-unbounded-arbitrage condition denoted from now on

by NUBA introduced by Page [19] (see also Page-Wooders [20]), which requires

non-existence of an unbounded set of mutually compatible net trades that are

utility non decreasing.

Definition 1 The economy satisfies the NUBA condition if
∑m

i=1w
i = 0 and

wi ∈ Ri for all i implies wi = 0 for all i.

A weaker condition, called the weak-no-market-arbitrage condition (WNMA),

is introduced by Hart [17]. This condition requires that all mutually compatible

net trades which are utility non-decreasing be useless. More precisely,

Definition 2 The economy satisfies the WNMA condition if
∑m

i=1w
i = 0 and

wi ∈ Ri for all i implies wi ∈ Li for all i.

We recall the definitions of the attainable allocations set and the individually

rational utility set.

Definition 3 1. The individually rational attainable allocations set A is de-

fined by

A = {(x1, x2, · · · , xm) ∈ (RS)m |
m∑
i=1

xi =

m∑
i=1

ei and U i(xi) ≥ U i(ei) for all i}.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃ x ∈ A s.t U i(ei) ≤ vi ≤ U i(xi) for all i}.

In [21], Page, Wooders and Monteiro presented the notion of Inconsequential

arbitrage, which will be widely used in this paper.
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Definition 4 The economy satisfies Inconsequential arbitrage condition if for

any (w1, w2, . . . , wm) with wi ∈ Ri for all i,
∑m

i=1w
i = 0 and (w1, w2, . . . , wm)

is the limit of λn(x1(n), x2(n), . . . , xm(n)) with (x1(n), x2(n), . . . , xm(n)) ∈ A
and λn converges to zero when n tends to infinity, there exists ε > 0 such that

for n sufficiently big we have U i(xi(n)− εwi) ≥ U i(xi(n)).

Definition 5 An equilibrium is a list
(
(xi∗)i=1,...,m, p

∗)
)

such that p∗ ∈ RS+\{0}
and

(a) For any i, U i(x) > U i(xi∗)⇒ p∗ · x > p∗ · ei.
(b)
∑m

i=1 x
i∗ =

∑m
i=1 e

i.

Definition 6 An quasi equilibrium is a list
(
(xi∗)i=1,...,m, p

∗)
)

such that p∗ ∈
RS+ \ {0} and

(a) For any i, U i(x) > U i(xi∗)⇒ p∗ · x ≥ p∗ · ei.
(b)
∑m

i=1 x
i∗ =

∑m
i=1 e

i.

We recall the following property:

NUBA⇒WNMA⇒ Inconsequential arbitrage⇒ U is compact.

Theorem 1 If U is compact then there exists an equilibrium.

Proof : See Dana, Le Van and Magnien [7] for the existence of quasi-equilibrium.

Since short sales are allowed, in our model quasi equilibrium is also equilibrium.

For this result, see Florenzano [9].

3 Existence of equilibrium with maximin expected

utility

We consider now the economy in which any agent i has a maximin expected

utility function. Define ∆ = {π ∈ RS+ such that
∑S

s=1 πs = 1}. The agents

are ambiguous in the probabilities of the outcomes and they are averse at am-

biguity. As in Gilboa and Schmeidler [14], each agent faces a set of subjective

probabilites ∆i ⊂ ∆ = {π ∈ RS+ such that
∑S

s=1 πs = 1} and their utility

functions take the form

U i(x) = inf
π∈∆i

m∑
s=1

πsu
i(xs),

where ui : R → R is a concave, strictly increasing, differentiable function 2.

Observe that the function U i is concave3. Since taking infimum on ∆i is equiv-

2For the sake of simplicity, we assume the differentiability. The results do not change for

general case with sub-differentials, but the calculus become tedious.
3The infimum of a family of concave functions is also concave. See Rockafellar [22].
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alent to taking infimum on its convex hull, without loss of generality, suppose

that ∆i is convex.

3.1 Characterization of useful vectors

The following lemma characterizes the useful vectors set of agent i.

Denote 4

ai = inf
z∈R

ui′(z) = ui′(+∞)

bi = sup
z∈R

ui′(z) = ui′(−∞).5

Lemma 1 The vector w ∈ RS is useful for agent i if and only if for any x ∈ RS,

any π ∈ ∆i we have
S∑
s=1

πsu
i′(xs)ws ≥ 0.

Proof : See Proposition 2 in Dana and Le Van [6].

For each vector w ∈ RS , define S+(w) = {s such that ws > 0}, and S−(w) =

{s such that ws < 0}. The following proposition is a direct consequence of

Lemma 1.

Proposition 1 The vector w is useful for agent i, if and only if, for any π ∈ ∆i

we have

ai
∑

s∈S+(w)

πsws + bi
∑

s∈S−(w)

πsws ≥ 0.

Proof : See Appendix.

Corollary 1 If ai = 0 or bi =∞, then Ri = RS+.

3.2 Weak No-Arbitrage prices and existence of equilibrium

Following Dana and Le Van [6], we define the set of weak no-arbitrage prices.

P i = {p ∈ RS such that ∃λ > 0, x ∈ Rs, π ∈ ∆i, satisfying ps = λπsu
i′(xs) ∀ s = 1, 2, · · · , S}.

Lemma 2 For all i, P i is a convex cone.

Proof : See Dana and Le Van [6].

We have two cases.

Case 1: For all i except at most one agent, for any z ∈ R, either ai < ui′(z) or

bi > ui′(z).

4We rule out the case ai = bi = 0 which is not interesting. The utility function is constant

in this case

6



Proposition 2 Suppose that for all i except at most one agent, we have either

ai < ui′(z), ∀ z ∈ R, or bi > ui′(z), ∀ z ∈ R, then we have:

m⋂
i=1

P i 6= ∅ ⇔ NUBA condition ⇔ U is compact ⇔ there exists equilibrium.

Proof : See Appendix.

Case 2: Now we consider the case where for some i, the utility function ui

becomes affine when the consumption is large enough, i.e. there exists zi such

that

ui′(z) = ai for z ≥ z̄i and ui′(x) = bi for z ≤ −z̄i.

Lemma 3 Fix x ∈ RS. Then ∂U i(x) is the set

Q = {p : p = (π1u
i′(x1), π2u

i′(x2), . . . , πSu
i′(xS))}

where π ∈ ∆i satisfies U i(x) =
∑S

s=1 πsu
i(xs).

Proof : See Appendix.

We now state our main result.

Theorem 2 Suppose that each probabilities set ∆i is a convex hull of the set

of M i points, i.e. ∆i = conv{πi0, πi1, . . . , πiM i}. Then:

m⋂
i=1

P i 6= ∅ ⇔ U is compact ⇔ there exists a general equilibrium.

Proof : See Appendix.

We can give here an intuition about the hypothesis of Theorem 2. The

ambiguity problems comes from the lack of information of economic agents.

By imposing the assumption that ∆i is convex hull of a set of finite number

of priors, we want to prove that in the case the agents dispose ”not-too-bad”

information, or the ambiguous situation is not extreme, then the existence of

general equilibrium is equivalent to the existence of an weak no-arbitrage price,

which is defined as a vector of marginal utilities. This results confirms the

intuition that the prices are defined by marginal utilities.

The following Corollary is the direct consequence of Theorem 2.

Corollary 2 If for any i, ∆i is a singleton, i.e ∆i = {πi}, then P i = {p ∈
Rs such that there exists λ > 0, x ∈ RS : ps = λπisu

i′(xs), for any 1 ≤ s ≤ S}.
We also have

m⋂
i=1

P i 6= ∅ ⇔ U is compact ⇔ there exists general equilibrium.
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3.3 Example

We present here an example in which the weak no-arbitrage prices cones are

closed, their intersection is non empty, the model does not satisfy NAPS, NUBA

or WNMA conditions, but there exists an equilibrium.

We consider an economy with two agents, the number of states is S = 2. The

belief of agent 1 is represented by the probability π1
1 = π1

2 = 1
2 . The belief of

agent 2 is π2
1 = 1

3 , π
2
2 = 2

3 . Their endowments are 0. Their utility functions are

defined as follows:

u1(x) =


ln(x) if x ∈ [1/3, 1/2]

2x− 1− ln 2 if x ≥ 1/2

3x− 1− ln 3 if x ≤ 1/3

u2(x) =


ln(x) if x ∈ [1/3, 4/9]

9
4x− 1 + ln(4

9) if x ≥ 4
9

3x− 1− ln 3 if x ≤ 1
3

We have u1′(+∞) = 2, u1′(−∞) = 3 and u2′(+∞) = 9
4 , u

2′(−∞) = 3.

Therefore, the cone of no-arbitrage prices of agent 1 is P 1 = {λ(ζ1, ζ2)}λ>0

with 1 ≤ ζ1 ≤ 3
2 , 1 ≤ ζ2 ≤ 3

2 . The one of agent 2 is P 2 = {λ(ζ1, ζ2)}λ>0 with
3
4 ≤ ζ1 ≤ 1, 3

2 ≤ ζ2 ≤ 2.

The set of common weak no-arbitrage prices is the intersection of the two

cones P 1
⋂
P 2 =

{
λ(1, 3

2)
}
λ>0

. If S1, S2 are the interiors of P 1 and P 2, then

S1
⋂
S2 = ∅.

Our economy does not satisfies either NUBA or WNMA conditions. Indeed,

consider the useful vector w1 = (1,−2
3) of agent 1, the useful vector w2 =

(−1, 2
3) of agent 2. We obtain that w1 + w2 = 0. That means NUBA is not

satisfied. But −w1, −w2 are not useful vectors, hence are not in the linearity

spaces. That means WNMA does not hold. However, from our main Theorem

2, an equilibrium exists in this model. Calculus give one equilibrium allocation

as x∗11 = 1, x∗12 = −2/3, x∗21 = −1, x∗22 = 2/3, with equilibrium prices p∗1 =

1, p∗2 = 3/2.

4 Appendix

4.1 Proof of Proposition 1

Suppose that w is a useful vector of agent i. Using Lemma 1, and letting xs

converge to +∞ when s ∈ S+(w), and xs converge to −∞ when s ∈ S−(w), we

obtain the inequality.

Now, we prove the converse. For any x ∈ RS we have ai ≤ ui′(xs) ≤ bi.

This implies
∑S

s=1 πsu
i′(xs)ws ≥ ai

∑
s∈S+(w) πsws + bi

∑
s∈S−(w) πsws ≥ 0.

From Lemma 1, the vector w is useful for agent i.
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4.2 Proof of Proposition 2

Suppose that for any i 6= i0, we have either ai < ui′(z) ∀z, or bi > ui′(z), ∀z.
Using Dana and Le Van [6], for any i 6= i0, P i is open. We can hence chose

p ∈
⋂
i 6=i0 P

i, and p ∈ intP i0 . For details, see Rockafellar [22]. Applying Dana

and Le Van [6], the Proposition is proved.

4.3 Proof of Lemma 3

First observe Q ⊂ ∂U i(x). Conversely, from Clarke [4], ∂U i(x) is the convex

hull of the derivatives (π̃1u
i′(x1), π̃2u

i′(x2), . . . , π̃Su
i′(xS)), the probabilities (π̃)

satisfy U i(x) =
∑S

s=1 π̃su
i(xs). Hence ∂U i(x) ⊂ Q. 6

4.4 Proof of Theorem 2

Define ∆̃i = {πi0, πi1, πi2, . . . , πiM i}. Observe that actually U i(x) = minπ∈∆̃i

∑S
s=1 πsu

i(xs).

Denote by I the set of agents i such that there exists zi: u′(z) = ai for any

z > zi and ui′(z) = bi for any z < −zi. For i ∈ I, the weak no-arbitrage prices

cone P i is closed. For i /∈ I, the weak no-arbitrage prices cone P i is open.

(a) Suppose that there exists general equilibrium, (p∗, x∗). Using the same

arguments in Ha-Huy and Le Van [15], we have
⋂
i P

i 6= ∅.
(b) We prove the converse. Take p̄ ∈

⋂
i P

i. For each i, there exists λi > 0,

xi ∈ RS and πi0 ∈ ∆i such that ps = λiπ
i
0,su

i′(xis), for any i, any s.

Firstly, we prove that U is bounded. Indeed, for all (x1, . . . , xm) ∈ A:

m∑
i=1

λiU
i(xi)−

m∑
i=1

λi

S∑
s=1

πi0,su
i′(xis) ≤

m∑
i=1

λi

S∑
s=1

πi0,su
i(xis)−

m∑
i=1

λi

S∑
s=1

πi0,su
i(xis)

= p̄ ·

(
e−

m∑
i=1

xi

)
.

Hence for all i we have:

λiU
i(ei) ≤ λiU i(xi) ≤ p̄ ·

e− m∑
j=1

xj

+
m∑
j=1

λj

S∑
s=1

πj0,su
j′(xjs)−

∑
j 6=i

λjU
j(ej).

Summing up, we have proved that U is bounded. Now we prove that U is closed.

We will construct a sequence of economies {Et}t≥0. For each economy Et,
there are m agents, each agent has a utility function

U it (x) = min
∆i

t

m∑
s=1

πsu
i(xis) = min

∆̃i
t

m∑
s=1

πsu
i(xis),

6A more simplified version of Clarke’s one, which can be used for the case of utility functions

in theorem 2, can be found in [10].
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where the probabilities set ∆i
t is the convex hull of ∆̃i

t which has M i
t + 1 points:

the probability πi0 used in the definition of p̄ and M i
t other points.

Let T (Et) =
∑m

i=1M
i
t .

Observe that for any opportunity of arbitrage (w1, w2, . . . , wm), i.e.
∑m

i=1w
i =

0 with wi ∈ Ri, we have p ·
∑m

i=1w
i = 0. Since p ·wi ≥ 0, this implies p ·wi = 0

for any i.

Moreover, we have

0 = p · wi ≥ ai
∑

s∈S+(wi)

πi0,sw
i
s + bi

∑
s∈S−(wi)

πi0,sw
i
s ≥ 0,

which implies

ai
∑

s∈S+(wi)

πi0,sw
i
s + bi

∑
s∈S−(wi)

πi0,sw
i
s = 0.

But actually, if
∑m

i=1w
i = 0 with wi ∈ Ri, then for any i /∈ I, we have wi =

0. Indeed, in the contrary case, since for i /∈ I, P i is open, we have p · wi > 0,

a contradiction. Hence if ai
∑

s∈S+(wi) π
i
0,sw

i
s + bi

∑
s∈S−(wi) π

i
0,sw

i
s > 0, then

i ∈ I.

For each economy Et = {U it ,∆i
t, ∆̃

i
t}mi=1, denote

At =

{
(x1, x2, . . . , xm) ∈ (RS)m |

m∑
i=1

xi = e and U i(ei) ≤ U it (xi)

}
.

Ut =
{

(v1, v2, . . . , xm) ∈ Rm | ∃ x ∈ At such that U i(ei) ≤ vi ≤ U it (xi)
}
.

We denote also Rit the set of useful vectors of U it , and Wt the set

Wt =

{
(w1, w2, . . . , wm) ∈ R1

t ×R2
t × · · · ×Rmt |

m∑
i=1

wi = 0

}
.

We denote by P it the set of weak-no-arbitrage-prices of agent i in the econ-

omy Et. In this sequence (Et) we will have

∀t, U it ≤ U it+1 ⇒ Rit ⊆ Rit+1 ⇒ P it+1 ⊆ P it .

However, we still have: ∀t, P it is open if i /∈ I, and P it is closed if i ∈ I.

We now start the construction of our economies Et.
Our initial economy is E0: ∆i

0 = ∆i, M i
0 = M i, ∆̃i

0 = ∆̃i, and utility function

U i0(xi) = U i(xi) for all i, for all xi ∈ RS . If for all (w1, . . . , wm) ∈ W0, for all

πi ∈ ∆i we have:

ai
∑

s∈S+(wi)

πisw
i
s + bi

∑
s∈S−(wi)

πisw
i
s = 0

then we stop.
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Suppose that there exists (w1, w2, . . . , wm) ∈W0 such that:

ai0
∑

s∈S+(wi0 )

π̃i0s w
i0
s + bi0

∑
s∈S−(wi0 )

π̃i0s w
i0
s > 0

for an i0, and a probability π̃i0 ∈ ∆̃i0
0 .

Firstly, recall that i0 ∈ I. We define the E1 as an economy with m agents,

where agent i with i 6= i0 has the set of probabilities ∆i
1 = ∆i

0, a utility function

U i1(xi) = U i0(xi), for all xi ∈ RS . For agent i0, we define ∆i0
1 as the convex hull

of ∆̃i0
0 \ {π̃i0}. The new utility function is defined as:

U i01 (xi0) = inf
π∈∆

i0
1

S∑
s=1

πsu
i0(xi0s )

= min
π∈∆

i0
1

S∑
s=1

πsu
i0(xi0s )

= min
π∈∆̃

i0
1

S∑
s=1

πsu
i0(xi0s ).

Observe that T (E1) = T (E0)− 1.

We will prove that for this new economy, U1 = U0.

Observe that for i 6= i0, U i0 = U i1, and U i00 ≤ U i01 . Hence U0 ⊂ U1. We also

have P i1 = P i0 for i 6= i0 and P i01 ⊆ P
i0
0 . Moreover, P i1 is open if i /∈ I and P i1 is

closed if i ∈ I.

We also observe that
⋂
i P

i
1 6= 0. Indeed, πi0 ∈ ∆i

1, then p ∈ P i1 for all i. U1

is then bounded. Denote C > 0 this upper bound.

Suppose that (v1, v2, . . . , vm) ∈ U1. There exists (x1, x2, . . . , xm) such that∑
i x

i = e and U i(ei) ≤ vi ≤ U i1(xi) for all 1 ≤ i ≤ m.

Since i0 ∈ I, there exists z̄i0 > 0 such that ui0′(z) = ai for z > z̄i0 and

ui0′(z) = bi for z < −z̄i0 .

Take λ > 0 large enough such that xi0s + λwi0s > z̄i0 , ∀s ∈ S+(wi0) and

xi0s + λwi0s < −z̄i0 , ∀s ∈ S−(wi0). Observe that for z > z̄i0 we have ui0(z) =

ui0(z̄i0) + ai0(z− z̄i0), and for z < −z̄i0 we have ui0(z) = ui0(z̄i0) + bi0(z− zi0).

Then:

S∑
s=1

π̃i0s u
i0(xi0s + λwi0s )−

S∑
s=1

π̃i0s u
i0(xi0s )

=
∑

s∈S+(wi0 )

π̃i0s [ui0(z̄i0) + ai0(xi0s + λwi0s − z̄i0)]

+
∑

s∈S−(wi0 )

π̃i0s [ui0(z̄i0) + bi0(xi0s + λwi0s − z̄i0)].
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And we have:

S∑
s=1

π̃i0s u
i0(xi0s + λwi0s ) = Z + λ

ai0 ∑
s∈S+(wi0 )

π̃i0s w
i0
s + bi0

∑
s∈S−(wi0 )

πi0s w
i0
s

 , (1)

where Z is a constant:

Z =
S∑
s=1

π̃i0s u
i0(xi0s ) +

∑
s∈S+(wi0 )

π̃i0s [ui0(z̄i0) + ai0(xi0s − z̄i0)]

+
∑

s∈S−(wi0 )

π̃i0s [ui0(z̄i0) + bi0(xi0s − z̄i0)].

Since ai0
∑

s∈S+(wi0 ) π̃
i0
s w

i0
s + bi0

∑
s∈S−(wi0 ) π̃

i0
s w

i0
s > 0, if we let λ tends to

infinity, the right hand term of (1) converges to infinity. Then for λ > 0 large

enough,
∑S

s=1 π̃
i0
s u

i0(xi0s + λwi0s ) > C, the upper bound of U1. Hence we have

min
∆̃

i0
0 \{π̃i0}

S∑
s=1

πsu
i0(xi0s + λwi0s ) = min

π∈∆̃
i0
0

S∑
s=1

πsu
i0(xi0s + λwi0s )

and then

U i00 (xi0 + λwi0) = min
π∈∆̃

i0
0

S∑
s=1

πsu
i0(xi0s + λwi0s )

= min
∆̃

i0
0 \{π̃i0}

S∑
s=1

πi0s u
i0(xi0s + λwi0s )

= min
∆̃

i0
1

S∑
s=1

πi0s u
i0(xi0s + λwi0s )

= U i01 (xi0 + λwi0).

So for λ > 0 large enough, we have for all 1 ≤ i ≤ m:

U i(ei) ≤ vi ≤ U i1(xi) ≤ U i1(xi + λwi) = U i0(xi + λwi).

Observe that
∑

i(x
i + λwi) =

∑
i e
i. Hence U1 ⊂ U0.

Now we are ready to finish the proof. The economy E1 has U1 = U0. Since

πi0 ∈ ∆i
1 for all i, we have

⋂
i P

i
1 6= ∅. This implies U1 is bounded. We recall

that T (E1) = T (E0)− 1. If in the economy E1, for any
∑

iw
i = 0 with wi ∈ Ri1,

we have

ai
∑

s∈S+(wi)

πisw
i
s + bi

∑
s∈S−(wi)

πisw
i
s = 0,

then we stop.
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If there exists w ∈W1 such that there exist i1 and π̃i1 ∈ ∆i1
1 satisfying

ai1
∑

s∈S+(wi1 )

π̃i1s w
i1
s + bi1

∑
s∈S−(wi1 )

πi1s w
i1
s > 0,

then i1 ∈ I and by the same argument as for the previous step, we can construct

a new economy E2, and so on. After each step, the number of probabilities which

determine the ambiguity set of the agents diminishes by 1: T (Et+1) = T (Et)−1.

Since there exists a finite number of probabilities which determine ∆i, the

process has to stop at some step T . The utility sets of T + 1 economies are

equal U0 = U1 = · · · = UT . The economy ET satisfies the property: for all

w ∈WT , for all πi ∈ ∆i
T we have

ai
∑

s∈S+(wi)

πisw
i
s + bi

∑
s∈S−(wi)

πisw
i
s = 0.

Now we will prove that ET satisfies Inconsequential arbitrage condition. Sup-

pose there exist (w1, . . . , wm) ∈ WT , a sequence {(x1
n, . . . , x

m
n )} ⊂ A, and an-

other positive sequence λn → 0 such that limn λnx
i
n = wi. Observe if ws > 0

then xin,s → +∞ and if ws < 0 then xin,s → −∞. Take ε > 0 arbitrarily.

For n large enough, for any i ∈ I, we have for any s, either wis = 0, or

xin,s − εwis > z̄i if s ∈ S+(wi), and xin,s − εwis < −z̄i if s ∈ S−(wi) .

For every n, there exists πin ∈ ∆i
T such that U iT (xin) =

∑
s π

i
n,su

i(xin,s). And

we have for n large enough:

U iT (xin − εwi)− U iT (xin) ≥
S∑
s=1

πin,su
i(xin,s − εwis)−

S∑
s=1

πin,su
i(xin,s)

≥
m∑
s=1

πin,s(−εwis)ui′(xin,s − εwis)

= −ε[ai
∑

s∈S+(wi)

πin,sw
i
s + bi

∑
s∈S−(wi)

πin,sw
i
s]

= 0.

For i /∈ I, since wi = 0, we have U iT (xi − εwi) = U iT (xi).

The economy ET satisfies Inconsequential arbitrage condition and hence UT
is compact. This implies U = UT is also compact. From Theorem 1, our initial

economy has an equilibrium.

References

[1] N. Allouch, C. Le Van and F.H. Page (2002): The geometry of arbitrage

and the existence of competitive equilibrium. Journal of Mathematical

Economics 38, 373-391.

13



[2] D. Brown and J. Werner (1995): Existence theorems in the classical asset

pricing model. Econometrica 59, 1169-1174.

[3] D. Brown. and J. Werner (1995): Arbitrage and existence of equilibrium

in infinite asset markets. Review of Economic Studies, 62, 101-114.

[4] F.H. Clarke (1993): Optimization and nonsmooth analysis. John Wileys

and Sons.

[5] R.A Dana, and C. Le Van (1996): Asset Equilibria in Lp Spaces: A Duality

Approach. Journal of Mathematical Economics, 25, 263-280.

[6] R.A. Dana and C. Le Van (2010): Overlapping risk adjusted sets of priors

and the existence of efficient allocations and equilibria with short-selling.

Journal of Economic Theory, 145, 2186-2202.

[7] R.A. Dana, C. Le Van and F. Magnien (1997): General Equilibirum in asset

markets with or without short-selling. Journal of Mathematical Analysis

and Applications 206, 567-588.

[8] R.A. Dana, C. Le Van and F. Magnien (1999): On the different notions of

arbitrage and existence of equilibrium. Journal of Economic Theory 86,

169-193.

[9] M. Geistdorfer-Florenzano (1982): The Gale-Nikaido-Debreu Lemma and

the Existence of Transitive Equilibrium With or Without the Free Disposal

Assumption. Journal of Mathematical Economics 9, 113-134.

[10] M. Geistdorfer-Florenzano, C. Le Van: Finite dimensional convexity and

optimization. Springer.

[11] J.M. Grandmont (1972): Continuity properties of a von Neumann-

Morgenstern utility. Journal of Economic Theory, 5, 45-57.

[12] J.M. Grandmont (1977): Temporary general equilibrium theory. Econo-

metrica 45, 535-572.

[13] J.R. Green (1973): Temporary general equilibrium in a sequential trading

model with spot and futures transactions. Econometrica 41, 1103-1124.

[14] I. Gilboa, D. Schmeidler (1989): Maximin expected utility with non-unique

prior. Journal of Mathematical Economics 18, 141-153.

[15] T. Ha-Huy, C. Le Van (2017): Existence of equilibrium on asset mar-

kets with a countably infinite number of states. Journal of Mathematical

Economics, fortcoming.

14



[16] P. Hammond (1983): Overlapping expectations and Hart’s conditions for

equilibrium in a securities models. Journal of Economic Theory 31, 170-

175.

[17] O. Hart (1974): On the Existence of an Equilibrium in a Securities Model.

Journal of Economic Theory 9, 293-311.

[18] L.T. Nielsen (1989): Asset market equilibrium with short-selling. Review

of Economic Studies, 41, 392-469.

[19] F.H. Page (1987): On equilibrium in Hart’s securities exchange model.

Journal of Economic Theory 41, 392-404.

[20] F.H. Page, and M.H. Wooders, (1996): A necessary and sufficient con-

dition for compactness of individually rational and feasible outcomes and

existence of an equilibrium. Economics Letters 52, 153-162.

[21] F.H. Page, M.H. Wooders and P.K. Monteiro (2000): Inconsequential

arbitrage. Journal of Mathematical Economics 34, 439-469.

[22] J.T. Rockafellar (1970): Convex Analysis. Princeton University Press,

Princeton, New Jersey.

[23] J. Werner (1987): Arbitrage and the Existence of Competitive Equilibrium.

Econometrica 55, 1403-1418.

15


