This paper presents a new set-membership estimation methodology for uncertain switched LPV discrete-time systems subject to unknown inputs, unmeasurable time-varying parameters and measurement noise. The proposed approach provides a guaranteed interval that is constructed as the sum of punctual state estimation and its corresponding estimation error limits. First, a punctual switched unknown input observer, robust against unknown inputs and time-varying uncertainties, is constructed. The proposed switched observer design is based on the solution of an optimization problem in terms of LMIs. Then, an outer-approximation of the enclosure set of state estimation error is computed using the admissible bounds of state and uncertainties. Application to vehicle state estimation is provided to show the design procedure and the flexibility of the proposed scheme. Comparison to real data demonstrates the accuracy and effectiveness of the obtained results.

Set-membership Switched Observers based on Interval Characterization of the Estimation Error

Sara Ifqir * Vicenç Puig * * Dalil Ichalal * Naima Ait-Oufroukh * Saïd Mammar * 1. INTRODUCTION It is frequently necessary to estimate some variables describing the systems states that are not directly measurable for technical or economic reasons. This problem is solved by the use of "virtual sensors" generally called observers. State estimation has received considerable attention during the last decades [START_REF] Baffet | Estimation of vehicle sideslip, tire force and wheel cornering stiffness[END_REF][START_REF] Lin | Observers design for switched discrete-time singular time-delay systems with unknown inputs[END_REF][START_REF] Yang | Observers for linear systems with unknown inputs[END_REF]. Two distinct approaches have been proposed to estimate states variables. The first rests on conventional punctual estimators, such as Luenberger observers [START_REF] Ciccarella | A luenberger-like observer for nonlinear systems[END_REF], adaptive observers [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF], unknown inputs observers [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF]] and sliding mode observers [START_REF] Drakunov | Sliding mode observers. tutorial[END_REF], where a specific value for the state is estimated at each time instant. However, due to the presence of uncertainties, the design of a conventional estimator that converges in the noisy-case towards the ideal value of the state, is often very challenging. The second method consists of using set-membership approaches [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF], Le et al. 2013a[START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF]] in order to estimate a set of admissible values (interval) for the state, and therefore, evaluate intuitively the accuracy of the estimation. In this paper, a combination of both approaches is used. A new set-membership state estimation methodology, easy to implement, with less computing time is proposed for switched discrete-time LPV systems. The considered system is subject to unknown inputs, unmeasurable timevarying parameters and measurement noise. The proposed set-membership switched observer provides a guaranteed state interval which is constructed as the sum of punctual estimated trajectories and corresponding estimation error bounds. The proposed switched observer can robustly estimate punctual state trajectories by decoupling unknown inputs and attenuating the effect of uncertainties. The necessary and sufficient conditions for the existence of such an observer are obtained with the aid of common quadratic Lyapunov function and Input-to-State stability technique. A constructive design procedure based on LMI conditions is given. Extra degrees of freedom provided by slack variables are used to reduce the conservativeness introduced by the use of the common Lyapunov function. Since zonotopes utilize linear mappings and Minkowski sums which can be computed exactly and efficiently [START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF]], a zonotopic threshold analysis method is used to compute an outer approximation of the reachable set of state estimation error. This characterized set allows to encompass all acceptable state estimation errors in a very simple and accurate way. The extent of this set informs us of the uncertainty with which the state vector is punctually estimated. Based on this approach, it is no longer necessary to use similarity transformations to design cooperative interval observers. Thus, the impulsive behavior as well as time computational complexity induced by these similarity transformations can be avoided. Finally, numerical simulations are provided to show the feasibility of the proposed scheme to estimate vehicle lateral velocity and yaw rate enclosure sets. Comparison to real data acquired using an instrumented vehicle demonstrates the potential of the estimation method. In fact, since the proposed strategies are simple to implement and do not require a huge real-time calculation, their application to industrial systems is suitable. This paper is organized as follows: The problem statement is introduced in Section 3. Section 4 is devoted to present the main contribution of this work which is the design of switched unknown input observer for uncertain discretetime systems using a zonotopic bounding approach. Finally, in Section 5, an application of the proposed methodology to vehicle lateral velocity and yaw rate estimation illustrates the interest of such approach. Conclusions are presented in Section 6. Notation. In the rest of this paper, IR (IR + ) represents the set of all real (positive) numbers and IR n (IR n + ) the ndimensional real (positive) vector space. For a vector x ∈ R n or a matrix M ∈ R n×n , one denotes x = max{0, x}, x = x -x or M = max{0, M }, M = M -M . For two vectors x 1 and x 2 , the inequalities x 1 ≤ x 2 (x 1 ≥ x 2 ) are interpreted element-wise. The relation Q 0 (resp. Q ≺ 0) means that the matrix Q is positive (resp. negative) definite. M T stands for the transpose of the matrix M and I n to the identity matrix of dimension n × n.

PRELIMINARIES

As discussed in the Introduction, set-membership techniques are used in this paper. In this regard, it is necessary to introduce some basic definitions and operations used in zonotope and interval frameworks. Definition 1. An unitary interval is denoted by B = [-1; 1]. An unitary box in IR nx , is a box composed of n x unitary intervals. Lemma 1. [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF] Let the vector x ∈ IR nx be a variable vector with given bounds x, x ∈ IR nx such that x ≤ x ≤ x.

(1) If A ∈ IR nx×nx is a constant matrix, then

A + x -A -x ≤ Ax ≤ A + x -A -x. (1) 
(2) If A ∈ IR nx×nx is a variable matrix such that A ≤ A ≤ A for some A, A ∈ IR nx×nx , then

A + x + -A + x --A -x + + A -x -≤ Ax ≤ A + x + -A -x + -A + x -+ A -x -. (2) 
where • + = max(0, •) and [Le et al. 2013a] A zonotope of order m in IR n is defined by the translation of the center p ∈ IR n of an unitary hypercube image of dimension m in IR n under a linear transformation, the zonotope X is defined by: [Le et al. 2013a]). Consider the zonotope X = p⊕HB m , the smallest interval box that contains this zonotope, i.e. its interval hull, is computed by:

• -= • + -•. Definition 2.
X = p, H = p ⊕ HB m = {p + Hz : z ∈ B m } (3) Definition 3. The Minkowski sum of two sets X 1 and X 2 is given by X 1 ⊕ X 2 = {x 1 + x 2 : x 1 ∈ X 1 , x 2 ∈ X 2 }. Property 1. The Minskowski sum of two zonotopes X 1 = p 1 ⊕ H 1 B m1 and X 2 = p 2 ⊕ H 2 B m2 is also a zonotope defined by X = X 1 ⊕ X 2 = (p 1 + p 2 ) ⊕ [H 1 H 2 ]B m1+m2 . Definition 4. (Zonotope interval hull
X = p ⊕ rs(H)B n (4) where rs(H) is a diagonal matrix such that rs(H) ii = m j=1 |H ij |, i = 1, . . . , n.

PROBLEM STATEMENT

Let us consider the following discrete-time LPV system

x k+1 = (A 0,σ(k) + ∆A σ(k) (ξ k ))x k + (B 0,σ(k) + ∆B σ(k) (ξ k ))u k + E σ(k) d k y k = Cx k + ϑ k (5) where x k ∈ IR nx , u k ∈ IR nu , d k ∈ IR n d , y k ∈ IR ny , ϑ k ∈ IR n ϑ
are the state, the control input, the unknown input, the measurement output and noise vectors, respectively. σ(k) : IR + → I = {1, 2, ..., N } is the switching signal assumed to be available in real time. The matrices A 0,σ(k) ∈ {A 0,1 , A 0,2 , ..., A 0,N } and B 0,σ(k) ∈ {B 0,1 , B 0,2 , ..., B 0,N } are the state space matrices assumed to be constant and known a priori. E σ(k) ∈ IR nx×n d and C ∈ IR ny×nx stand for the unknown input distribution matrix and the output equation matrix, respectively. The matrices ∆A

σ(k) (ξ k ) ∈ {∆A 1 (ξ k ), ∆A 2 (ξ k ), ..., ∆A N (ξ k )} and ∆B σ(k) (ξ k ) ∈ {∆B 1 (ξ k ), ∆B 2 (ξ k ), ..., ∆B N (ξ k )}
are assumed to be unknown but bounded representing the uncertainty of the system caused by the unmeasurable time-varying parameter ξ k ∈ Ξ, where Ξ is an interval box given by:

Ξ = {ξ k ∈ IR n ξ |ξ k ≤ ξ k ≤ ξ k } (6)
For easiness of further developments, the state space representation ( 5) is rewritten in the following equivalent form:

x k+1 = A 0,σ(k) x k + B 0,σ(k) u k + E σ(k) d k + δ σ(k) y k = Cx k + ϑ k (7)
where

δ σ(k) = ∆A σ(k) (ξ k )x k + ∆B σ(k) (ξ k )u k .
For the system (7), a switched observer that reconstructs the state x k without any information on the unknown input d k can be constructed using the input u k and the measured output y k as

xk+1 = N σ(k) xk + K σ(k) y k + G σ(k) u k -H σ(k) y k+1 ŷk = C xk (8) 
where the initial state x0

∈ IR nx . N σ(k) , K σ(k) , G σ(k)
and H σ(k) are gain matrices with appropriate dimensions to be determined.

The dynamics of the state estimation error e k = x k -xk is given by

e k+1 = (In + H σ(k) C)x k+1 -N σ(k) xk -K σ(k) y k -G σ(k) u k + H σ(k) ϑ k+1
By denoting P σ(k) = I n + H σ(k) C and using (7), the dynamics of the state estimation error is

e k+1 = (P σ(k) A 0,σ(k) -K σ(k) C)x k -N σ(k) xk +(P σ(k) B 0,σ(k) -G σ(k) )u k + P σ(k) E σ(k) d k +P σ(k) δ σ(k) + H σ(k) ϑ k+1 -K σ(k) ϑ k (9)
If the following relationships hold 9) is reduced to

N σ(k) = P σ(k) A 0,σ(k) -K σ(k) C (10a) P σ(k) B 0,σ(k) -G σ(k) = 0 (10b) P σ(k) E σ(k) = 0 (10c) then, (
e k+1 = N σ(k) e k + ∆ σ(k) (11) where ∆ σ(k) = [P σ(k) H σ(k) -K σ(k) ] [δ σ(k) ϑ k+1 ϑ k ] T .
From (11), one can see that d k has been decoupled under the conditions (10c), but the effect of uncertainties ∆ σ(k) still persists. Now, suppose that we know at each timeinstant a box, denoted [e k ], which includes, with guarantee, all possible estimation error e k , that is 

∀σ(k), ∀k ≥ 0, e k ∈ [e k ] = [e k , e k ] ( 12 
∀σ(k), ∀k ≥ 0, x k ∈ [x k ] = xk + [e k ]
(13) So, an interval observer for the switched LPV system (7) can be compactly written as

xk+1 = N σ(k) xk + K σ(k) y k + G σ(k) u k -H σ(k) y k+1 (14a) [x k ] = xk + [e k ]
(14b) Therefore, the proposed interval estimation method ( 14) rests on a combination between a punctual unknown input switched observer and a set-membership characterization of the estimation error. In fact, the punctual observer in (14a) generates an estimation of the nominal state trajectories. Afterwards, the effect of uncertainties on the estimated trajectories is addressed using interval analysis so that the real state vector is included in the box [x k ] = [x k , x k ] defined by (14b). This ensures that all the state trajectories consistent with parameter and initial state vectors uncertainties are enclosed by the interval observer ( 14) in a guaranteed way.

SWITCHED UNKNOWN INPUTS OBSERVER

DESIGN BASED ON INTERVAL ANALYSIS In this section, a constructive method to design the Switched Unknown Input Observer (14) for switched discrete-time systems ( 7) is presented. The robustness issue with respect to additive uncertainties δ σ(k) is analyzed using Common Lyapunov function and Input-to-State Stability principle. The design consists on finding the observer gain K σ(k) such that the observer error dynamics (11) is asymptotically stable when ∆ σ(k) = 0 and is ISSstable with respect to uncertainties when ∆ σ(k) = 0.

LMI formulation

Consider the switched discrete-time linear system described by (7). The observer (14a) provides a punctual state estimation xk if the observer gain K σ(k) is chosen such that the observer error dynamics is stable, and the effect of uncertainties is attenuated. To ensure that, let state first the following assumption. Assumption 1. The necessary and sufficient conditions for the existence of the SUIO (8) for the system (7) are:

(1) rank(CE σ(k) ) = rank(E σ(k) ) = q , ∀σ(k);
(2) The pair (P σ(k) A 0,σ(k) , C) is at least detectable ∀σ(k). Remark 1. The first condition in Assumption 1 ensures that equation (10c) is solvable, and a general solution can be given as follows:

H σ(k) = -E σ(k) (CE σ(k) ) † + Y σ(k) (I n -(CE σ(k) )(CE σ(k) ) † ) (15)
where (CE σ(k) ) † is the generalized inverse matrix of CE σ(k) , given by

(CE σ(k) ) † = ((CE σ(k) ) T (CE σ(k) )) -1 (CE σ(k) )
(16) and Y σ(k) is an arbitrary matrix of appropriate dimension. For convenience of the notation, let define

U σ(k) = -E σ(k) (CE σ(k) ) † and J σ(k) = I n -(CE σ(k) )(CE σ(k) ) † , then ( 
15) can be rewritten as

H σ(k) = U σ(k) + Y σ(k) J σ(k) (17) 
Remark 2. The second condition, sometimes referred as "strong detectability condition" is equivalent to that the transmission zeros from the unknown-input to the output must be stable, i.e.

rank sIn -A 0,σ(k) E σ(k) C 0 = n + q, (18) 
holds ∀σ(k) and for all complex number s with Re(s) ≥ 0.

The next theorem provides sufficient conditions for the state estimation error (11) to be ISS-stable under arbitrary switching. Before proceeding, we begin by stating the following equivalence. Lemma 2. The following conditions are equivalent:

(1) There exists a symmetric matrix Q such that

N T QN + (ε -1)Q N T Q QN Q -γIn ≺ 0 (19) 
(2) There exist a symmetric matrix Q and a matrix S such that

(ε -1)Q 0 N T S T ( * ) -γIn S T ( * ) ( * ) -S T -S + Q ≺ 0 (20)
Proof. If we apply the Schur complement with respect to the block (3,3) of ( 20), we retrieve directly (19) by choosing S = S T = Q, hence (1) implies (2). Moreover, from the first block of (20), we have (ε-1)Q ≺ 0. Then, multiplying (20) by T = I n 0 N T 0 I n I n on the left and T T on the right, we get ( 19), which establishes that (2) implies (1) and the proof is complete. Theorem 1. The switched system (11) is uniformly ISSstable with respect to the switching signal σ(k) if there exist a symmetric and positive definite matrix Q, matrices S and W i , ∀i ∈ I, a constant γ > 0 for given positive scalars α and 0 < ε < 1 such that the following condition holds

min Q,S,W i ,X i γ    (ε -1)Q 0 A T i (In + U i C) T S T + A T i C T J T i X T i -C T W T i ( * ) -γIn S T ( * ) ( * ) -S T -S + Q    ≺ 0 (21)
with W i = SK i and X i = SY i for any switching signal σ(k). Furthermore, the state estimation error ( 11) is ultimately bounded and satisfies

lim k→∞ e k 2 ≤ γ α(1 -ε) ∆ σ(k) ∞ ( 22 
)
where ∆ σ(k) = P δ σ(k) and the maximum norm is given by ∆

σ(k) ∞ = max{|∆ 1 |, |∆ 2 |, . . . , |∆ N |}.
Proof. For the stability analysis, we use the following common quadratic ISS-Lyapunov function

V (e k ) = e T k Qe k , Q = Q T 0 (23)
Setting ∆V (e k ) V (e k+1 ) -V (e k ), we have

∆V (e k ) = e T k+1 Qe k+1 -e T k Qe k and using (11), we obtain

∆V (e k ) = N σ(k) e k + ∆ σ(k) T Q N σ(k) e k + ∆ σ(k) -e T k Qe k = e T k N T σ(k) QN σ(k) e k + ∆ T σ(k) QN σ(k) e k +e T k N T σ(k) Q∆ σ(k) + ∆ T σ(k) Q∆ σ(k) -e T k Qe k
By adding the terms εe T k Qe k and -γ∆ T σ(k) ∆ σ(k) , we have

∆V (e k ) = e T k ∆ T σ(k) N T σ(k) QN σ(k) + (ε -1)Q N T σ(k) Q ( * ) Q -γIn × e k ∆ σ(k) -εe T k Qe k + γ∆ T σ(k) ∆ σ(k) (24) 
Then, for all i ∈ I, the satisfaction

N T i QN i + (ε -1)Q N T i Q ( * ) Q -γIn ≺ 0 (25)
is equivalent to fulfill the following condition

(ε -1)Q 0 N T i S T ( * ) -γIn S T ( * ) ( * ) -S T -S + Q ≺ 0, ∀i ∈ I (26)
according to Lemma 2. If we substitute H i given by ( 17) into N i in (10a), the matrix inequality in (26

) becomes ∀i ∈ I    (ε -1)Q 0 A T i (In + U i C) T S T + A T i C T J T i Y T i S T -C T K T i S T ( * ) -γIn S T ( * ) ( * ) -S T -S + Q    ≺ 0 (27)
By using W i = SK i and X i = SY i , LMI ( 21) is found.

Then, under the conditions of the theorem, it follows from (24) that ∀σ(k) 29) over the interval [0, k), we have

∆V (e k ) < -εe T k Qe k + γ∆ T σ(k) ∆ σ(k) (28) that implies V (e k+1 ) < (1 -ε)V (e k ) + γ ∆ σ(k) 2 (29) Integrating (
V (e k ) ≤ (1 -ε) k V (e 0 ) + γ k-1 m=0 (1 -ε) k-m-1 ∆ σ(m) 2
knowing that ( 23) is satisfied for some β > α > 0, the following inequality

α e k 2 ≤ V (e k ) ≤ β e k 2
(30) allows to deduce that

e k 2 ≤ 1 √ α β(1 -ε) k e 0 2 2 + γ 1 -ε k-1 m=0 [1 -ε] k-m ∆ σ(m) 2 2 1 2
Hence, when k → ∞ and using the maximum norm of ∆ σ(k) , ( 22) is obtained which ends the proof.

Characterization of all possible estimation error

In a bounded-error estimation context, we are interested in characterizing the interval of admissible values for the state consistent with the observed data, in the sense that the errors between model outputs and observations fall within prior bounds. This is done by recursively calculating a zonotopic outer-approximation of the effect of the parameter uncertainties and measurement noise. In this subsection, we show how to design a suitable interval observer under the following assumptions. Assumption 2. The initial state x 0 is inside an initial zonotope X 0 , implying that the initial state estimation error e 0 is inside the zonotope E 0 = CX 0 , i.e. e 0 ∈ E 0 . Assumption 3. The measurement noise vector ϑ k is unknown but bounded by a set

V ϑ = {ϑ ∈ IR n ϑ : |ϑ k | ≤ V} (31)
Assumption 4. It is assumed that the time variations of state and input vectors x k and u k are limited to some admissible bounds x k , x k , u k and u k such that

x k ≤ x k ≤ x k and u k ≤ u k ≤ u k .
Note that since ξ k ∈ Ξ, the system matrices ∆A σ(k) (ξ k ) and ∆B σ(k) (ξ k ) are bounded based on (6) as

∆A σ(k) ≤ ∆A σ(k) (ξ k ) ≤ ∆A σ(k) (32a) ∆B σ(k) ≤ ∆B σ(k) (ξ k ) ≤ ∆B σ(k) (32b)
Therefore, using Assumption 4, the uncertain vector δ σ(k) can be bounded by applying Lemma 1. Subsequently, and under Assumption 3, the additive term ∆ σ(k) in ( 11) can be bounded by means of an interval box D given by:

D = {∆ σ(k) ∈ IR nx | ∆ σ(k) ≤ ∆ σ(k) ≤ ∆ σ(k) , ∆ σ(k) , ∆ σ(k) ∈ IR nx } (33) 
where

∆ σ(k) = P + σ(k) δ σ(k) -P - σ(k) δ σ(k) + (H σ(k) -K σ(k) )V (34a) ∆ σ(k) = P + σ(k) δ σ(k) -P - σ(k) δ σ(k) + (H σ(k) -K σ(k) )V (34b) and δ σ(k) = ∆A + σ(k) x + k -∆A + σ(k) x - k -∆A - σ(k) x + k + ∆A - σ(k) x - k + ∆B + σ(k) u + k -∆B + σ(k) u - k -∆B - σ(k) u + k + ∆B - σ(k) u - k δ σ(k) = ∆A + σ(k) x + k -∆A + σ(k) x - k -∆A - σ(k) x + k + ∆A - σ(k) x - k + ∆B + σ(k) u + k -∆B + σ(k) u - k -∆B - σ(k) u + k + ∆B - σ(k) u - k Furthermore, D can be rewritten as a zonotope D = ∆ c ⊕ H ∆ σ(k) B n , where H ∆ σ(k) ∈ IR nx×nx is a diagonal matrix
with the main diagonal being ∆ σ(k) and ∆ c is a known and constant vector.

In this regard, the state estimation ( 11) can be bounded by the zonotope e k+1 ∈ E k+1 = e c k+1 , H k+1 with e c k+1 = N σ(k) e c k (36a)

H k+1 = N σ(k) H k H ∆ σ(k) (36b
) where e c k+1 and H k+1 are the center and segment matrix of the zonotope E k+1 , respectively. The equivalent compact description of ( 36) is given as follows

E k+1 = N σ(k) E k ⊕ D
(37) An interval for the estimation error e k can be obtained by computing the interval hull E k (cf. Definition 4) of the zonotope E k .

APPLICATION TO VEHICLE LATERAL DYNAMICS 5.1 Vehicle Model

Vehicle lateral dynamics may be modeled using a two degree of freedom (2-DOF) model known as the "bicycle model" to describe the lateral and yaw motions [START_REF] Rajamani | Vehicle dynamics and control[END_REF]. Note that vehicles traveling at high speeds may be affected by lateral wind disturbances, resulting in lateral motion. The acting point of the resulting force, f w , is called the aerodynamics center (AC). The distance between the aerodynamics center and the center of gravity is noted by l w . Therefore, the vehicle lateral motion when subject to wind force can be expressed using the following state space model:

vy ψ = A v vy ψ + B v δ f + E v f w (38) 
where

Av =    -(c f + cr) mvx crlr -c f l f mvx -vx crlr -c f l f Izvx - crl 2 r + c f l 2 f Izvx    , Bv = c f m c f l f Iz , Ev =   1 m lw Iz  
where m, I z , are the mass and the yaw moment, v x and v y are lateral and longitudinal velocities, ψ is the yaw rate, l f , l r are distances from front and rear axle to the center of gravity (CG). c f , c r are the cornering stiffness of front and rear tires while δ f represents the front steering angle. In the vehicle model ( 38), yaw rate ψ is available for measurement. Moreover, vehicle longitudinal velocity v x and cornering stiffness coefficients c f and c r are timevarying. In order to fully make use of the range variations of these uncertain parameters, the following representation is used:

c f = c f0 + ∆c f , c r = c r0 + ∆c r ( 
39) where the linear part, denoted by c i0 , i ∈ {r, f }, presents a priori known nominal value. The readjustment variable, i.e ∆c i , i ∈ {f, r} assumed to be unknown but bounded, is added to correct the value of the cornering stiffness coefficients in case that a change occur in road adhesion or vehicle loading condition. Whereas, the longitudinal velocity is considered piecewise constant, and, different local sub-model are derived. A switching strategy that depends on the measured velocity is implemented. By applying the first order Euler approximation on model ( 38) and taking into account the above consideration, a discrete-time model of the form ( 5) is obtained where,

ξ k = [∆c f ∆c r ]
T ∈ Ξ. Using the switched unknown input observer ( 14), the state estimate xk is made robust against unknown lateral wind gusts disturbance and aforementioned uncertainties.

Simulations results

The real data used in the validation process are acquired using a prototype instrumented vehicle in a test track located in the city of Versailles-Satory, France. An artificial lateral wind gust input (Figure 1) is incorporated into the real measurements in simulation using nonlinear vehicle model [START_REF] Rajamani | Vehicle dynamics and control[END_REF]]. Steering angle and longitudinal velocity profiles are plotted in Figure 1. The simulation test is performed considering three local vehicle dynamics in which the longitudinal velocity is considered constant and differs from one mode to another. This can be seen as a subdivision of the range of variation of the longitudinal speed in three sub-regions, for low, medium and high speed. In the present scenario, the local longitudinal velocity values are: v 1 x = 8.5m/s, v 2 x = 13.55m/s and v 3

x = 18.05m/s. The switching law presented in Figure 2 is computed as in the earlier chapters as follows:

σ(k) = 1 if vx ∈ [V 0 x , V 1 x [ 2 if vx ∈ [V 1 x , V 2 x [ 3 if vx ∈ [V 2 x , V 3 x ] (40) with V 0 x = 10.6m.s -1 , V 1 x = 11m.s -1 , V 2 x = 16m.s -1 and V 3
x = 19.8990m.s -1 . Numerical simulations were performed using Matlab software environment. The punctual switched unknown input observer is initialized at x0 = [0 0] T . According to the procedure described in Subsection 4.1, the corresponding gain matrices of the UIO (8) for the lateral dynamics system (7) are designed 1 . The resulting 1 Details are omitted due to space limitation. attenuation level is γ = 0.0120 for ε = 0.5 and a sampling time T s = 0.6s. Next, to implement the interval observer ( 14), the initial state is assumed to belong to the zonotope X 0 = p 0 ⊕ H 0 B 2 , where p 0 = [0 0] T and H 0 = 0.01 0 0 0.01 . The upper and lower bounds of the state and input vector u k are defined by: x k = -x k = [0.8 0.3] T , u k = u k + 0.01 and u k = u k -0.01. Furthermore, it is assumed that the cornering stiffness parameters are affected by ±10% uncertainty in their nominal values. Thus, the box D can be easily deduced using (33). The estimation error bounds are computed at each sample time k from the interval hull of the zonotope (37). The resulting bounds are then used to obtain the interval enclosing all possible values of the state vector x k . Figure 3 Particularly, the yaw rate is precisely estimated during steady-state and transient period when comparing to real measurement ψm . Concerning lateral velocity, the performance of our observer is quite good expect when the steering angle changes quickly. In fact, with a quick steering movement of the driver and high lateral acceleration, lateral force increases significantly, and thus, reaches the nonlinear region. So, a linear approximation of lateral force dynamics seems not so obvious to use since cornering stiffness coefficient cannot be identified with certainty. Therefore, the benefit of the adaptive dynamic tire model based estimator is evident. Admittedly, the proposed interval characterization of the estimation error allows to better understand and enhance observer performances, especially in the experiments where sudden change in road surface is expected. As shown in Figure 5, the simulated as well as measured data and their corresponding nominal estimates are inside the computed interval.

6. CONCLUSION This paper investigates a set-membership state estimation scheme for uncertain switched discrete-time systems. The proposed methodology is based on a combination of punctual switched unknown input observers and zonotopic threshold analysis. It has been shown that the observer can be made robust against parameter uncertainties and measurement noise by using Input-to-State stability criteria. By characterizing the set of all possible state estimation errors, the worst-case residual bounds are computed using zonotopes. This guaranteed threshold avoids generating false alarms related to modeling errors and inaccurate measurements. An application to vehicle robust state estimation is presented providing satisfactory results.

  ) where e k and e k are the lower and upper bounds of the box [e k ]. Accordingly, we can define a box at each instant k, denoted [x k ], which contains in a guaranteed way the real value of the state vector x k ,
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 1 Fig. 1. Lateral wind gust input fw, steering angle δ f , and longitudinal velocity vx.
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 2 Fig. 2. Switching law σ(k).

  compares the punctual estimated lateral velocity vy and yaw rate ψ with simulated and measured trajectories v s y and ψm , respectively. In Figure 4, the enclosure of all possible state estimation errors are shown. Finally, Figure 5 represents the guaranteed state estimation obtained for vehicle lateral velocity and yaw rate. The proposed switched unknown input observer provides a successful estimation of the vehicle lateral dynamics.
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 3 Fig. 3. Comparison of v s y and vy (fisrt two figures) and comparison of ψm and ψ.

Fig. 4 .

 4 Fig. 4. Enclosure of e 1 = v s y -vy and e 2 = ψsψ.

Fig. 5 .

 5 Fig. 5. Lateral velocity vy and yaw rate ψ.