N

N

Projective dimension and commuting variety of a
reductive Lie algebra

Jean-Yves Charbonnel

» To cite this version:

Jean-Yves Charbonnel. Projective dimension and commuting variety of a reductive Lie algebra. 2020.
hal-02877905

HAL Id: hal-02877905
https://hal.science/hal-02877905

Preprint submitted on 22 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02877905
https://hal.archives-ouvertes.fr

PROJECTIVE DIMENSION AND COMMUTING VARIETY OF A REDUCTIVE LIE

AsstrRACT. The commuting variety of a reductive Lie algebra g is the underlying variety of a well defined
subscheme of g X g. In this note, it is proved that this scheme is normal and Cohen-Macaulay. In particular,
its ideal of definition is a prime ideal. As a matter of fact, this theorem results from a so called Property (P)
for a simple Lie algebra. This property says that some cohomology complexes are exact.
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1. INTRODUCTION

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie
algebra of finite dimension, ¢ is its rank, and G is its adjoint group.

1.1. The dual of g identifies with g by a non degenerate symmetric bilinear form on g extending
the Killing form of the derived algebra of g. Denote by (v, w) — (v, w) this bilinear form and
I, the ideal of k[g X g] generated by the functions (x,y) + (v, [x,y]), v € g. The commuting
variety C(g) of g is the subvariety of elements (x,y) of g X g such that [x,y] = 0. It is the
underlying variety of the subscheme 8(g) of g X g defined by /,. It is a well known and long
standing open question whether or not this scheme is reduced, that is C(g) = 8(g). According to
Richardson [Ri179], C(g) is irreducible and according to Popov [Po08, Theorem 1], the singular
locus of 8(g) has codimension at least 2 in C(g). Then, according to Serre’s normality criterion,
arises the question to know whether or not C(g) is normal. There are many results about the
commuting variety. A result of Dixmier [Di79] proves that I, contains all the elements of the
radical of ,, of degree 1 in the second variable. In [Ga-Gi06], Gan and Ginzburg prove that for
g simple of type A, the invariant elements under G of I, is a radical ideal of the algebra k[g x ql¢
of invariant elements of k[g X g] under G. In [Gi12], Ginzburg proves that the normalization of
C(g) is Cohen-Macaulay.

1.2. Main results. According to the identification of g and its dual, k[g X g] is equal to the
symmetric algebra S(g X g) of g X g. The main result of this note is the following theorem:

Theorem 1.1. The subscheme of g X g defined by I, is Cohen-Macaulay and normal. Further-
more, 1, is a prime ideal of S(g X g).

According to Richardson’s result and Popov’s result, it suffices to prove that the scheme S(g)
is Cohen-Macaulay. The main idea of the proof in the theorem uses the main argument of the
Dixmier’s proof: for a finitely generated module M over S(g X g), M = 0 if the codimension of
its support is at least / + 2 with [ the projective dimension of M (see Appendix B).

All the complexes considered in this note are localizations of submodules of the algebra
S(g X g) ® S(g) ® A(g). We introduce the characteristic submodule of g, denoted by B,. By
definition, B, is a submodule of S(g X g) ® g and an element ¢ of S(g X g) ® g is in B, if and
only if for all (x, y) in a dense subset of g X g, ¢(x, y) is in the sum of the subspaces g™** with
(a,b) in k? \ {0} and g***? the centralizer of ax + by in g. According to a Bolsinov’s result, B,
is a free S(g X g)-module of rank b, the dimension of the Borel subalgebras of g. Moreover, the
orthogonal complement to B, in S(g X g) ® g is a free S(g X g)-module of rank b, — £ and for ¢
in By, {(@(x,y), [x,y]) = 0 for all (x,y) in g X g. Let d be the S(g X g)-derivation of the algebra
S(g X g) & A(g) such that for v in g, dv is the function on g X g: (x,y) — (v, [x,y]). Thend is a
structure of complex on S(g X g) ® /A (g) and the ideal of S(g X g) ®, /\ (g) generated by /\bﬂ (B,)
is a subcomplex. The usual gradation of A (g) induces a gradation of S(g X g)®x A (g). Denote by
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C.(g) the graded subcomplex of S(g X g)®; /\ (¢) such that C;,, (8) := S(g X g;()<8>1[§/\"(g;()/\/\bg (By).
Then Theorem 1.1 is a consequence of the following theorem:

Theorem 1.2. The complex C,(g) has no homology of degree bigger than b, and 1, is isomorphic
to the space of boundaries of degree b,.

By standard results of homological algebra (see appendix), Theorem 1.2 is a consequence of
the key theorem of this note:

Theorem 1.3. Fori=1,...,b, —{, Ci\p, (8) has projective dimension at most i.

As a matter of fact, it is easy to see that the support of the homology of C,(g) is contained
in C(g). Then, by Theorem 1.3, C,(g) has no homology of degree bigger than b, and I, has
projective dimension at most 2(b, — ¢) — 1. So, by Auslander-Buchsbaum’s theorem, 8(g) is
Cohen-Macaulay.

For the proof of Theorem 1.3, we consider the algebra S(g) ®: /\ (g) and the A (g)-derivation d
such that

dvea=vAa with veg, ae A(g).
Then (S(g) @ A(g),d) is a complex and the usual gradation of /\ (g) induces on this complex a
structure of graded cohomology complex denoted by D*(g). For k nonnegative integer, denote
by D;(g) the graded subcomplex of D*(g) such that

Di(g) := $""(9) & N'(9)
and D;(g, B,) the graded subcomplex of S(g X g) ® D*(g) such that

D;‘:bg (0, B,) 1= S(g) @ Ni(g) A \™(B,).

Definition 1.4. Letn :=b, — ¢ and j = 1,...,n. We say that g has Property (P;) if D;(g, B,) has
no cohomology of degree different from b, fork=1,..., j.
We say that g has Property (P) if it has Property (P,).

By an induction argument, Theorem 1.3 is a consequence of the following Theorem:
Theorem 1.5. All simple Lie algebra has Property (P).
As a matter of fact, the proof of this theorem is the main part of this note.

1.3. Sketch of proofs. We suppose g simple and we prove Theorem 1.5 by induction on the
rank of g. For k = 1,...,n, we denote by S the support in g X g of the cohomology of D} (g, B,)
of degree different from b,. This subset of g X g is invariant under the diagonal action of G and
the canonical action of GL,(k) since B, is a relatively equivariant module under these actions.
As a result, the image of S by the first projection

@)
gXg——mm>g
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is a G-invariant closed subset of g. In particular, if @ (S ;) does not contain semisimple elements
different from 0, @,(S) is contained in the nilpotent cone i, of g and S is contained in the
so-called nilpotent bicone N, of g. By definition, N, is the subset of elements (x, y) of g X g such
that the subspace of g, generated by x and y, is contained in 9t,. By [CMo08, Theorem 1.2], N,
has codimension b, + £ in g X g. So, when @;(S) is contained in N, for k = 1,...,j, g has
Property (P;) by Corollary B.3 and an induction argument on ;.

As a result, the main step of the proof of Theorem 1.5 is the equality @(S;) N h = {0} for
k =1,...,n. Fix a Borel subalgebra b of g and }) a Cartan subalgebra of g, contained in b. Let z
be in ). Denote by g° the centralizer of z in g. The orbit of z under the Weyl group contains an
element 7’ such that g + b is a parabolic subalgbera. So, we can suppose that p := g% + b is an
algebra. Then [ := g7 is the reductive factor of p containing ). Denote by d the derived algebra
of [ and 1, the subset of elements x of [ such that g* is contained in [. Then I, is a principal open
subset of I. Let dy, ..., Dd, be the simple factors of d, 3 the center of I, p.., the sum of root spaces
with respect to b, not contained in [ and d the half dimension of p.,. When z is regular, n = 0.
When n is positive, for i = 1,...,n, denote by ¢, the rank of d;, b,, the dimension of the Borel
subalgebras of d; and set n; := b,, — ¢;,. For j nonnegative integer, set:

Lic=AG g, ..o i) ENY iy Sy, oenydn SRy, Do+ 40y =

and fork = 1,...,nand ¢ = (i_y,...,i,) in [}, denote by D,:’L’#(g) the simple complex deduced
from the multicomplex

D7 (p+u) ® D}, (3) ® Dj (d)) ® - - - ® D; (dy)

and set:

D} 4(0) = () D}, 4().

LE]Ik

Let B be the restriction of B, to [, X g and B the k[G]®:k[1, X g]-submodule of k[G]® K[, X g]® g
generated by the maps

(9, x,y) — g.o(x,y) with ¢ € B.

Then B and B are free modules of rank b,. Denote by D,'(’#(g, B) and D,'(’#(g, E) the graded
subcomplexes of k[I, X g] ® D*(g) and k[G] ®; k[L. X g] ® D*(g),

D; (6, B) 1= Di,(@)[-b,] A A*(B) and  Dj,(s,B) := D} 4(@)[-by] A \™(B).
An important step of the proof of Theorem 1.5 is the following proposition:

Proposition 1.6. Suppose that the simple factors of | have Property (P). Then, fork =1,...,n,
Dy (3, B) has no cohomology of degree different from b,.
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When n = 0, z is regular and when n = 1, d is simple. In this case, Proposition 1.6 is given
by Proposition 12.12. When n > 2, Proposition 1.6 is given by Proposition 13.8. Denote by
D; (g, B) the graded complex

D;(g,B) := D}(g)[-by] A A*(B).

Then, from Proposition 1.6, Proposition D.6 and [C20, Theorem 1.1], we deduce that D,:(g,ﬁ)
has no cohomology of degree different from b,. As a matter of fact, [C20, Theorem 1.1] is only
true for simple Lie algebras. The complex D} (g, E) is a subcomplex of k[G] ®; k(L. X g] ®: D;(g)
and the morphism

Gxl,xg

gaxg, (g, x,y) — (9(x),9(y))

is a flat morphism whose image is the cartesian product of an open neighborhood of z and g,
whence the following corollary:

Corollary 1.7. Suppose that the simple factors of | have Property (P). Then, fork =1,...,n, z
is not in @ (S y).

Corollary 1.7 is given by Proposition 6.5.

As aresult, one of the main step to prove Theorem 1.5 is the proof of Proposition 1.6. For that
purpose, denote by B the restriction of B to [, X p and B, the restriction of B; to I, x . Then B
and B, are free modules of rank b, and b, respectively. Denoting by p, the nilpotent radical of p
and p_, the complement to p, in p. ,, invariant under the adjoint action of b,

g=p_,®p and p=I1&p,

so that k[I, x ] and k[I, X p] are subalgebras of k[I. X g]. Let B, be the submodule of k[I, X p]®; g
generated by B; and p,. Then B, is a free module of rank b, and B is a submodule of B,. For
M free submodule of rank b, of k[I, X p] ®; g, denote by D,:’#(g, M) the graded subcomplex of
k[L, X p] ® D*(g),
D} (9, M) := D} y(@)[=by] A A® (M),

By Property (P) for the simple factors of 1, for k = 1,...,n — d, the complex D; ,(D[-bi] A
A" (B)) has no cohomology of degree different from b, since 1, is a principal open subset of
and the center of [ is contained in B;. Then, fork = 1,...,n, D,:’#(g, §+) and D,:’#(g, E) have no
cohomology of degree different from b,.

Let O be the local ring of G at the identity and O the completion of O with respect to the
m-adic topology with m the maximal ideal of O. Let B be the O & kI, X g]-submodule of
O ®x k[1. X g] ® g generated by B and Dy . (g, §) the subcomplex of o) ® k[1, X g] & D(g),

Dy (8, B) := Dys(8) A A(Pu) A A*(B).
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The space Dy .(g, E) is a module over the algebra

O ®, k[l X a] @ APu).

Denoting by J the ideal of definition of [, X p in k[l X g], let J be the ideal of this algebra
generated by m, J and p,. When n < 1, the subspace ka,*(g, B) is the kernel of the restriction
morphism

Dy..(6,B) Dy#(a,B) .

This important result comes from the invertibility of some square matrices (see Subsection 9.2).
As a matter of fact, the powers of J induce a filtration of Dy..(g, B) and the graded space associate
to this filtration is isomorphic to

A @iy Dis(,B) with A =P J/J"
leN

Then, by the above result on the cohomology of Dk,#(g,E) and the acyclicity of the complex
D3 (pu), Dk,#(g,ﬁ) has no cohomology of degree different from b,, whence Proposition 1.6 for
the case n < 1 since O is a faithfully flat extension of O and Dy x(g, ﬁ) is G-equivariant.

Suppose n > 2. Denote by E the k[I. X []-submodule of k[I. X [] ® p generated by p, and the
generators of the modules By, j=1,...,n which are not in k[1] & 1. Let f+ be the ideal of the
algebra

O @ K[, X 8] xxy A(E)
generated by m, J, E. Let Dk,*(g,ﬁ) be the subcomplex of O e k[1, X g] & D(g),
Dy..(9,B) := Dia(9) A NE) A A™(B).
Then Dy .(g, §) is a module over the algebra
O @ KL, X g] ®uqr.x A(E).

The subspace f+Dk,*(g, E) is the kernel of the restriction morphism

Dy..(6,B) Dy#(a,B) .

As a matter of fact, the powers of J, induce a filtration of Dk,*(g,ﬁ) and the graded space asso-
ciate to this filtration is isomorphic to

A @iy Dis(0,B) with A= I/7.
leN
Then, by the above result on the cohomology of Dy 4(g, B) and the acyclicity of the complexD; ,(E),

Dy (g, B) has no cohomology of degree different from by, whence Proposition 1.6 for the case
n > 2 since O is a faithfully flat extension of O and Dy 4(g, B) is G-equivariant.
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1.4. Notations. e As usual k* := k \ {0}. For m positive integer and for i = (iy,...,i,) in N,
set:

il :== 114 +ip
and for d in N, denote by N’} the subset of N":
N ={ie N"|]i| = d}

The set N is ordered by the lexicographic order induced by the usual order of N. As a result, all
subset of N is well ordered.

e For V a module over a k-algebra, its dual is denoted by V* and its symmetric and exterior
algebras are denoted by S(V) and A (V) respectively. For all integer i, S'(V) and /\i(V) are
the spaces of degree i of S(V) and A (V) with respect to the usual gradation. In particular, for i
negative, S'(V) and A\'(V) are equal to {0}. If E is a subset of V, the submodule of V generated by
E is denoted by span(E). When V is a vector space over k, the grassmannian of all d-dimensional
subspaces of V is denoted by Gry(V).

e All topological terms refer to the Zariski topology. If Y is a subset of a topological space
X, denote by Y the closure of ¥ in X. For Y an open subset of the algebraic variety X, Y is
called a big open subset if the codimension of X \ Y in X is at least 2. For Y a closed subset of
an algebraic variety X, its dimension is the biggest dimension of its irreducible components and
its codimension in X is the smallest codimension in X of its irreducible components. For X an
algebraic variety, k[ X] is the algebra of regular functions on X, Oy is its structural sheaf and for
x in X, Oy, is the local ring of X at x.

e All the complexes considered in this note are graded complexes over Z of vector spaces
and their differentials are homogeneous of degree +1 and they are denoted by d. As usual, the
gradation of the complex is denoted by C, if the degree of d is —1 and C* otherwise.

For E a graded space over Z and for i integer, E[{] is the graded space over Z whose subspace
of degree n is the subspace of degree n + i of E.

e The dimension of the Borel subalgebras of g is denoted by b,. Set n := b, — ¢ so that

dimg = 2b, — £, = 2n + £,

Denote by b a Borel subalgebra of g and ) a Cartan subalgebra of g, contained in b.

e The dual g* of g identifies with g by a given non degenerate, invariant, symmetric bilinear
form (., .) on g X g extending the Killing form of [g, g].

e Let R be the root system of f) in g and R, the positive root system of R defined by b. The
Weyl group of R is denoted by W(XR) and the basis of R, is denoted by II. For @ in R, its coroot
is denoted by H,, the corresponding root subspace is denoted by g* and a generator x, of g is
chosen so that {x,, x_,) = 1.
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e Let P(R) be the set of weights of the root system R and P,(R) the subset of dominant
weights with respect to R,. For 4 in P, (R), denote by V, a simple g-module of highest weight
A.

e Let e be the sum of the xz’s, B in I1, and & the element of h N [g, g] such that B(h) = 2 for
all B in I1. Then there exists a unique f in [g, g] such that (e, A, f) is a principal sl,-triple. The
one parameter subgroup of G generated by ad#/ is denoted by ¢ — p(¢). The Borel subalgebra
containing f is denoted by b_ and its nilpotent radical is denoted by u_. Let B and B_ be the
normalizers of b and b_ in G, U and U_ the unipotent radicals of B and B_ respectively.

Lemma 1.8. Let O be a principal open subset of &) and T an irreducible hypersurface of O +
. Suppose that X is invariant under the one-parameter subgroup t — p(t) of G. Then O is
containedinX orX=>XNhH+ 1.

Proof. As O is a principal open subset of ), k[O +u1] is a factorial ring. Hence X is the nullvariety
in O + u of an element of k[O + u]. As aresult, O is contained in X or £ N [ is an hypersurface
of O. Suppose that O is not contained in Z. For (x,y) in § X u,

lirgl pH).(x+y) = x.
—

Hence £ N b is the image of Z by the canonical projection O + u —— O and X is contained in
> Nbh+u Moreover, £ N D is an irreducible hypersurface of O as the image of an irreducible
subset. Then £ N b + u is an irreducible hypersurface of O, whence the lemma. O

e For « a positive root, let || be its height so that a(h) = 2|a|.
e For x € g, denote by x; its semisimple component, x, its nilpotent component and g* its
centralizer in g. The set of regular elements of g is

Oreg = {Xx € g|dimg" = £}.

We denote by gy s the set of regular semisimple elements of g. Then g, and gyee s are G-
invariant dense open subsets of g. According to [V72], g\ gy, is equidimensional of codimension
3.

e Let by, be the subset of elements x of Iy such that g* + b is a subalgebra of g. The orbits of
W(R) in b have a nonempty intersection with by.

e Denote by S(g)? the algebra of g-invariant elements of S(g). Let py,..., p, be homogeneous
generators of S(g)°® of degree d,, .. .,d, respectively. Choose the polynomials py,..., p, so that
di<---<d,. Fori=1,...,¢and (x,y) € g X g, consider a shift of p; in direction y: p;,(x + ty)
with ¢ € k. Expanding p;(x + ty) as a polynomial in ¢, one obtains

d;
(1) pix+1y) =Y pCeyr”, Vit xy) ekxgxg
m=0
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where y — (m!) pgm)(x, y) is the derivative at x of p; at the order m in the direction y. The elements
pgm) defined by (1) are invariant elements of S(g) ®. S(g) under the diagonal action of G in g X g.
Remark that pgo)(x, y) = pi(x) while pgd")(x, y) = pi(y) for all (x,y) in g X g. Set:

Iy ={@m)yef{l,.... 0} xN|0<m<d;—1} and Lg:=1N{l,....,¢} x(N\{0}).
According to our notations, I, is totally ordered.

Remark 1.9. The family P, := {p!"(x,.); 1 < i < £,0 < m < d;} for x € g, is a Poisson-
commutative family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family P, is
constructed by the argument shift method.

eletie{l,...,f}. For xin g, denote by &;(x) the element of g given by

d
(&i(x),y) = 51%(36 + 1Y) |i=o

for all y in g. Thereby, &; is an invariant element of S(g) ®; g under the canonical action of G.
According to [Ko63, Theorem 9], for x in g, x is in gy, if and only if &;(x), ..., £,(x) are linearly
independent. In this case, &(x), ..., &/(x) is a basis of g*.

Denote by egm), for 0 < m < d; — 1, the elements of S(g X g) ®; g defined by the equality:

di-1
2) sx+1y)= Y &"yr",  V(txy) ekxgxg
m=0
and set:
Ve = span({&"(x, y), (i,m) € Ip})
for (x,y) in g X g.

e Let 9N, be the nilpotent cone of g. For (x,y) in g X g, denote by P,, the subspace of g
generated by x and y. Let N, be the nilpotent bicone of g. By definition, N, is the subset of
elements (x, y) of g X g such that P, is contained in %,. In particular, N, is invariant under the
diagonal action of G in g X g and the canonical action of GL,(k) in g X g.

1.5. Organization of the note. In Section 2, the characteristic submodule B, is introduced and
some of its properties are given. In particular, its restrictions to parabolic subalgebras are consid-
ered. In Section 3, we prove that the main theorem and Theorem 1.2 results from Theorem 1.3.
In Section 4, we prove that Theorem 1.3 results from Theorem 1.5 so that we suppose that g
is simple in the following sections. In Section 5, we consider the support S, in g X g of the
cohomology of degree different from b, of the complex D} (g, B,) and we prove that under some
hypothesis on @;(S;) the codimension of S; in g X g is at least k + 2 so that g has Property
(Py) if it has Property (P;—;). In Section 6, we recall a result of flatness and prove that @,(S;)
does not contain z fori = 1,...,k if D,-,#(g,g) has no cohomology of degree different from b,
fori = 1,...,k. In Section 7, we study the restriction B of B, to I, X p. In particular, B has a
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good decomposition with respect to the decomposition of p = [ + p, (see Proposition 7.6). Some
other results are given so that the decomposition is more precise. This decomposition introduces
some functions in k[l, X p] and their restrictions to [, X p N h X b are considered in Section 8
(see Proposition 8.5). In Section 9, we study the generator & of A™(B). In particular, some of
its coordinates in the canonical basis of /\b*‘(g) are considered. In Subsection 9.2, some square
matrices whose the coefficients depend on these coordinates are considered and we prove that
their determinant are different from O (see Corollary 9.4). In Section 10, Proposition 10.3 is a
key result for proving Corollary 12.7 under the hypothesis n < 1 and in Section 11, Proposi-
tion 11.2 is a key result for proving Corollary 13.3 in the general case. In Section 12, we prove
Proposition 1.6 for the case n < 1 and in Section 13, we prove Proposition 1.6 for the general
case. Then we can complete the proof of Theorem 1.5.

The appendix has four sections. In Section A, we give some general results on some com-
plexes. In Section B, we recall some well known results of cohomology. In Section C, we intro-
duce some rational numbers and we prove that some of them are different from 0. In Section D,
we prove the equalities of two g-submodules of a rational g-module under certain hypothesis.
This result is used to prove Proposition 6.5.

2. CHARACTERISTIC MODULE

’r ax+by
Viy = Z g .

(a,b)ek?\{0}
By definition, the characteristic module B, of g is the submodule of elements ¢ of S(g X g) ® g
such that ¢(x, y) is in V)’C’y for all (x, y) in a dense subset of g X g. In this section, some properties
of B, are given.

For (x,y) in g X g, set:

2.1. First properties of B;. Denote by €, the subset of elements (x,y) of g X g such that P,
has dimension 2 and P, \ {0} is contained in g,,. According to [CMo08, Corollary 10], €, is a
big open subset of g X g.

Proposition 2.1. Let (x,y) be in g X g such that Py, N e IS not empty.

(i) Let O be an open subset of k* such that ax + by is in g, for all (a, b) in O. Then V., is the
sum of the g***"’s, (a, b) € O.

(i1) The spaces [x, V] and [y, V] are equal.

(ii1) The space V., has dimension at most b, and the equality holds if and only if (x,y) is in
Q,.
(iv) The space [x, V] is orthogonal to V. Furthermore, (x,y) is in L if and only if [x, V]
is the orthogonal complement to V., in g.

(v) The space Vy, is contained in Vy . Moreover, V., = V{ if (x,y) is in Q.

(vi) For (i,m) in I, ng) is a G-equivariant map.
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Proof. (1) For z in Qree, £1(2),...,&¢(2) is a basis of g° by [Ko63, Theorem 9]. Hence qex+by
is contained in V,, for all (a,b) in O since the maps &i,...,&; are homogeneous. For pair-
wise different elements t;p,...,t;4-1, 1 = 1,...,¢ of k, egm)(x, y) is a linear combination of
gx+ty), j=20,....,di—1form = 0,...,d; — 1. We can choose t;p,...,%4-1 so that
(ai, aitip), . .., (a;,aitig—1)) are in O for some a; in k*, whence the assertion since the maps
£1,...,& are homogeneous.

(i1) Let O be an open subset of k*? such that ax + by is in gy, for all (a, b) in O. For all (a, b)
in O, [x, g™™] = [y, g***?] since [ax + by, g****] = 0 and ab # 0, whence the assertion by (i).

(ii1) According to [Bou02, Ch. V, §5, Proposition 3],

di+--+d; = b,

So V., has dimension at most by. By [Bol91, Theorem 2.1], V., has dimension b, if and only if
(x,y) is in Q.
(iv) According to [Bol91, Theorem 2.1], V., is a totally isotropic subspace with respect to the
skew bilinear form on g
(v, w) — (ax + by, [v, w])
for all (a, b) in k?. As a result, by invariance of (.,.), V,y 1s orthogonal to [x, V1. If (x,y) is in
€, g" has dimension ¢ and it is contained in V. ,. Hence, by (iii),

dim[x, V,,] = b, — £ = dimg — dim V.,

so that [x, V,,] is the orthogonal complement to V., in g. Conversely, if [x, V] is the orhogonal
complement to V., in g, then

dimV,, + dim[x, V,,] = dimg.

Since P, N gy, 1 NOt empty, gex+by N V., has dimension ¢ for all (a, b) in a dense open subset
of k?. By continuity, g* N V., has dimension at least ¢ so that

2dimV,, — ¢ > dimg.

Hence, by (iii), (x, y) is in Q.

(v) By (i), Vi, € V. Suppose that (x,y) is in Q. According to [Ko63, Theorem 9], for all
(a,b) ink*\ {0}, &1(ax+by), ..., &(ax +by) is a basis of ¢****. Hence ¢**** is contained in V,,
whence the assertion.

(vi) Leti be in {1,...,£}. Since p; is G-invariant, g; is a G-equivariant map. As a result, its

0 gfdi_l)

2-polarizations €; ", .. ., & are G-equivariant under the diagonal action of G in g X g. O

Theorem 2.2. (i) The module B, is a free module of rank b, whose a basis is the sequence
&™, (i,m) € I

(i1) For ¢ in S(g X ) ® g, ¢ is in B, if and only if pp € B, for some p in S(g X g) \ {0}.

(ii1) For all ¢ in B, and for all (x,y) in g X g, ¢(x,y) is orthogonal to [x, y].
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Proof. (i) and (i1) According to Proposition 2.1(v), ng) is in B, for all (i, m). Moreover, according
to Proposition 2.1(iii), these elements are linearly independent over S(g X g). Let ¢ be an element
of S(g X g) ® g such that py is in B, for some p in S(g X g) \ {0}. Then ¢(x,y) is in V,, for all
(x,y) in a dense open subset of €, by Proposition 2.1(v). According to Proposition 2.1(iii), the
map

Qg Grbg (g) s (-x’ .1/) — Vx,y

is regular. So ¢(x,y) is in V., for all (x,y) in , and for some regular functions g ,,, (i, m) € I
on Q,
Py = D au(xye(xy)
(i,m)ely

for all (x,y) in Q,. Since €, is a big open subset of g X g and g X g is normal, the a;,’s have
a regular extension to g X g. Hence ¢ is a linear combination of the ng),
S(gxg). As aresult, the sequence sgm), (i,m) € Iy is a basis of the module B, and B, is the subset
of elements ¢ of S(g X g) ® g such that pp € B, for some p in S(g X g) \ {0}.

(iii) Let ¢ be in B,. According to (i) and Proposition 2.1(iv), for all (x, y) in Q, [x, ¢(x, y)] is
orthogonal to V,,. Then, since y is in V., [x, ¢(x, y)] is orthogonal to y and {¢(x, y), [x, y]) = 0,
whence the assertion. O

s with coefficients in

2.2. Orthogonal of B,. Denote again by (.,.) the canonical extension of (.,.) to the module
S(g X g) ® g.

Proposition 2.3. Let C, be the orthogonal complement to B, in S(g X g) ® g.

(1) For ¢ in S(g X §)® g, @ is in Cg if and only if o(x, y) is in [x, V] for all (x,y) in a nonempty
open subset of g X g.

(i1) The module C, is free of rank by — {. Furthermore, the sequence of maps

(x,y) = [x,e™(x, )], G,m) € L

is a basis of C,.
(ii1) The orthogonal complement to C, in S(g X g) ® g is equal to B,.

Proof. (i) Let ¢ be in S(g X g) ® g. If ¢ is in C,, then ¢(x,y) is orthogonal to V., for all
(x,y) in 4. Then, according to Proposition 2.1(iv), ¢(x,y) is in [x, V,,] for all (x,y) in Q.
Conversely, suppose that ¢(x, y) is in [x, V] for all (x, y) in a nonempty open subset O of g X g.
By Proposition 2.1(iv) again, for all (x,y) in O N g, ¢(x,y) is orthogonal to sg'")(x, y) for all
(i,m) in Iy, whence the assertion by Theorem 2.2(i).

(i1) Let C be the submodule of S(g X g) ®y g generated by the maps

(X, y) = [x, 8", ], (,m) € L.
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According to (i), C is a submodule of C,. This module is free of rank b, — £ since [x, V,,] has
dimension by — ¢ for all (x, y) in €, by Proposition 2.1, (iii) and (iv). According to (i), for ¢ in
C,, for all (x, y) in Q,
ey = Y atnylxe"(x,y)
(im)el. o

with the a,,,’s regular on Q, and uniquely defined by this equality. Since €, is a big open subset
of g X g and g X g is normal, the a;,,’s have a regular extension to g X g. As a result, ¢ is in C,
whence the assertion.

(1i1) Let ¢ be in the orthogonal complement to C, in S(g X g) ® g. According to (ii), for all
(x,y) in Qg, ¢(x, y) is orthogonal to [x, V,,]. Hence by Proposition 2.1(iv), ¢(x, y) is in V,, for
all (x,y) in Q. So, by Theorem 2.2, ¢ is in B;, whence the assertion. O

2.3. Restriction to a parabolic subalgebra. For a subalgebra of g, set ae 1= a N grep.

Lemma 2.4. Let a be an algebraic subalgebra of g.

(1) Suppose that a contains g* for all x in a dense open subset of a and suppose that 0., is not
empty. Then V., is contained in a for all (x,y) in a X a.

(i1) Suppose that a contains a Cartan subalgebra of 3. Then V., is contained in a for all (x, y)
inaxa.

Proof. (1) By hypothesis, for all x in a dense open subset of a, x is a regular element and g* is
contained in a. So by [Ko63, Theorem 9], £1(x), ..., &,(x) are in a for all x in a dense open subset
of a. Then, so is it for all x in a by continuity. As a result, for all (x, y) in axa, sgm)(x, y), (i,m) € I
is in a, whence the assertion.

(i1) Let ¢ be a Cartan subalgebra of g contained in a. Since a is an algebraic subalgebra of g,
all semisimple element of a is conjugate under the adjoint group of a to an element of ¢. Hence
for all x in gree s N @, g* is contained in a, whence the assertion by (i) since gregss N a is a dense
open subset of a. O

Let p be a parabolic subalgebra of g containing b. Denote by [ its reductive factor containing
b, py its nilpotent radical and @ the canonical projection p —— 1.

Corollary 2.5. For all (x,y) in p X p, Vy, is contained in p. In particular, for all (x,y) in a dense
open subset of b xb, V., = b.

Proof. Since b is contained in p, for all (x,y) in p X p, V., is contained in p by Lemma 2.4(ii).
Since (h,e) is in 4, Q, N'b X b is a dense open subset of b X b, whence the corollary by
Proposition 2.1(iii). O

Let [, be the subset of regular elements of [ and € the subset of elements (x, y) of [ X [ such
that P, , \ {0} is contained in [,,. For (x, y) in [ X [, the image of B by the evaluation map at (x, y)
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is denoted by V . Set:
Rp = w_l(lreg) N Oreg-

Lemma 2.6. Let R, be the subset of elements x of R, such that g* N p, = {0}.
(1) The sets g N p and R, are big open subsets of p.
(1) For all x in R, w(g*) = P9 if and only if g* N p, = {0}.
(iii) The set Ry, is a dense open subset of p.
(iv) For all (x,y) in p X p, V,, is contained in V! W T Pu

. ’ _ 1 “
(v) For all (x,y) in R, X p, @(V,,) = Vw(x)’w(y).

Proof. (1) According to [V72], [, is a big open subset of [. Hence w‘l(lreg) is a big open subset
of p. As aresult, it remains to prove that g, N p is a big open subset of p. Suppose that p \ gre,
has an irreducible component X of codimension 1 in p. A contradiction is expected. As greo NP is
a cone invariant under B, X is a closed cone invariant under B. Since k[p] is a factorial ring, for
some p in k[p], homogeneous and relatively invariant under B, the nullvariety of p in p is equal
to X. As aresult, X N b is an equidimensional closed cone of codimension 1 of b since b N gy, 18
not empty. So, by Lemma 1.8, X = £ N ) + 1 and u is contained in X since 0 is in £ N b, whence
a contradiction since grg N 1t is NOt empty.

(i1) Let x be in R,. By Lemma 2.4(ii), g* is contained in p. As @ is a surjective morphism of
Lie algebra, w(g") is contained in [, Furthermore, dim @ (g*) = ¢ if and only if g* N p, = {0}
since [ has rank ¢.

(iii) For x regular semisimple in a Cartan subalgebra, contained in I, x is in R} since the
elements of g* are semisimple. So R}, is not empty. The map x - g* from R, to Gr,(g) is regular.
So R} is an open subset of R, and p by (1).

(iv) Let L; be the submodule of elements ¢ of S(I) ®, [ such that [¢(x), x] = O for all x in L.
Then L is a free module of rank £ according to [Di79]. Denote by ¢, ..., ¢, a basis of L;. For x
inR, and fori=1,...,¢, @wog,(x) is in [7W, So there exists a unique element (a; ;(x), . .. ,a;/(x))
of k¢ such that

wogi(x) = a;1(X)p1ew(x) + -+ - + a; ((X)prew(X).

The functions a; 4, . . ., a;, so defined on R, have a regular extension to p since they are regular, p
is normal and R, is a big open subset of p by (i). As aresult, for all (x, y) in p X p and for all (a, b)
in k?, wog;(ax + by) is a linear combination of the elements ¢, (@w(ax + by)), . .., p(w(ax + by)).
Hence @w(V,,) is contained in va(x),w( " for all (x,y) in p X p, whence the assertion.

(v) Let (x,y) be in R}, X p. By (iii), for all z in a dense open subset of P, ,, z is in R;. So by
(ii), I"@ is contained in @(V,,) for all z in a dense open subset of P, ,. As a result, according to

Proposition 2.1(1), Vfg(x) o) is contained in @w(V,,), whence the assertion by (iv). O

Corollary 2.7. Forall (x,y)inQ,Npxp, V., = V! oo T P

w
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Proof. As (h,e)isin pXp, Q;NpXp is a dense open subset of p X p. Let (x, y) be in Q;NR X p.
By Lemma 2.6(v), @(V,,) = V; Furthermore, dimV,, = b, since (x, y) is in €,. Hence
pu is contained in V., and dim V;(x)’w(y) = by since b, = b; +dimp,. According to Lemma 2.4(ii),
the map (x, y) — V., is aregular map from Q;Npxp to Gr, (p). So, forall (x,y) in Q;NpXp, p,
is contained in V., and dimw@(V,,) = b;, whence the assertion by Lemma 2.6(iv) since V;(x)’w(y)

has dimension at most by. m|

(). @(y)’

3. PROOF OF THE MAIN THEOREM

In this section, we prove that Theorem 1.1 and Theorem 1.2 results from Theorem 1.3. So
we suppose that Theorem 1.3 is true for g. By Definition, C.(g) is the graded submodule of
S(g x g) ® /(@) such that Ciyp, (9) := A'@) A /\b“ (By) fori =0,...,n. Let d be the S(g X g)-
derivation of the algebra S(g X g) ® A(g) such that for v in g, dv is the function on g X g,
(x, y) > (v, [x, y).

Lemma 3.1. (i) The graded module C,(g) is a graded subcomplex of S(g X g) @ /A (9).
(i1) The ideal 1, is isomorphic to the space of boundaries of degree by of C.(g).
(ii1) The support of the homology of C.(g) is contained in C(g).

Proof. (1) Set:

3) € = Nimely ng),

where the order of the product is induced by the order of 1,. Then C,(g) is the ideal of S(g X g) ®,
/\(g) generated by & since egm), (i,m) € I is a basis of B; by Theorem 2.2(1). According to
Theorem 2.2(iii), for (i, m) in I, sgm) is a cycle of the complex S(g X g) ® /A (g). Hence so is &
and C,(g) is a subcomplex of S(g X g) ® /A (g) as an ideal generated by a cycle.

(i1) As for vin g, dv is in I, I,& is the space of boundaries of degree b, of C.(g).

(iii) Let (xg, yo) be in g X g \ C(g) and v in g such that (v, [xy, yo]) # 0. For some affine open
subset O of g X g, containing (xo, Yo), (v, [x,y]) # O for all (x,y) in O. Then dv is an invertible
element of k[O]. For c a cycle of k[O] ®s(gxq) Ce(9),

d(v A ¢) = (dv)c
so that ¢ is a boundary of k[O] ®s(gxq) C.(3), whence the assertion. O
Theorem 3.2. (i) The complex C.(g) has no homology of degree bigger than b,.
(11) The ideal 1, has projective dimension 2n — 1.

(ii1) The algebra S(g X g)/1, is Cohen-Macaulay.
(iv) The projective dimension of the module \"(g) A \™ (B,) is equal to n.

Proof. (1) Let Z be the space of cycles of degree b, + 1 of C.(g), whence a graded subcomplex
Of CO(g)’

00— Copie(g) — -+ —= Cyyp2(g) —=Z ——=0.
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According to Lemma 3.1(iii), the support of its homology is contained in C,. In particular, its
codimension in g X g is at least

4n+20-2n+20)=2n=n+n-1+1

According to Theorem 1.3, fori = n+ € + 2,...,2n + ¢, Cip, (g) has projective dimension at
most n. Hence, by Corollary B.3, this complex is acyclic and Z has projective dimension at most
2n — 2, whence the assertion.

(i1) and (ii1) Since B, is a free module of rank b, AP (B,) is a free module of rank 1. By
definition, the short sequence

0——=Z—=gAA"By) —= A" (By) —0
is exact, whence the short exact sequence
0 —=Z—gAA®By) —I, —=0.

Moreover, by Theorem 1.3, g A A™ (B,) has projective dimension at most 1. Then, by (i) and
Lemma B.5, [, has projective dimension at most 2n—1. As aresult the S(gxg)-module S(gxg)/I,
has projective dimension at most 2n. Then by Auslander-Buchsbaum’s theorem [Bou98, §3, n°3,
Théoreme 1], the depth of the graded S(g X g)-module S(g X g)/1, is at least

4b, — 20 — 2n = 2b,

so that, according to [Bou98, §1, n°3, Proposition 4], the depth of the graded algebra S(gxg)/1, is
at least 2b,. In other words, S(gxg)/1, is Cohen-Macaulay since it has dimension 2b,. Moreover,
since the graded algebra S(g X g)/I, has depth 2b,, the graded S(g X g)-module S(g X g)/I, has
projective dimension 2n. Hence I, has projective dimension 2n — 1.

(iv) As I, has projective dimension 2n — 1, A"(g) A /\bg (B,) has projective dimension n by (i),
Lemma B.5 and Theorem 1.3. O

Theorem 1.2 is given by Theorem 3.2(i) and Lemma 3.1(ii) and Theorem 1.1 is a corollary of
Theorem 3.2.

Corollary 3.3. The subscheme of g X g defined by 1, is Cohen-Macaulay and normal. Further-
more, I, is a prime ideal.

Proof. According to Theorem 3.2(iii), the subscheme of g X g defined by I, is Cohen-Macaulay.
According to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre’s normality crite-
rion [Bou98, §1, n°10, Théoreme 4], it is normal. In particular, it is reduced and I, is radical.
According to [Ri79], C(g) is irreducible. Hence I, is a prime ideal. O
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4. ProoF oF THEOREM 1.3

In this section we prove that Theorem 1.3 results from Theorem 1.5. Moreover, we prove
that sl (k) has Property (P). For k nonnegative integer, the complex D} (g, B,) is given by Defini-
tion A.l withV =gand L = Byandfori=1,...,n,Ciy, (9) := /\"(g)/\/\bﬂ (B,y). The embedding
of S¥(B,) ®s(gxa) Abs (By) in DE“ (8, By) is an augmentation of D} (g, B;). Denote by 5,:(9, B,) this
augmented complex.

Proposition 4.1. Let k be a nonnegative integer.

(1) The complex 5,:(9, B,) has no cohomology of degree smaller than b, + 1.

(ii) Fork = 0,1, 5,:(9, B,) is acyclic. In particular, sly(k) has Property (P).

(ii1) If g is simple and has Property (P), then fori = 1, ...,n, Ciy, () has projective dimension
at most i.

Proof. (i) By definition, 5/:(9, B,) has no cohomology of degree smaller than by. According to
Theorem 2.2, B, is a free module of rank b,. Since €, is a big open subset of g X g and g X g is
normal, 5,:(9, B,) has no cohomology of degree b, for all positive integer k by Lemma A.4(iii).

(ii) By definition 5(.)(9, B,) is acyclic. As Bz(g, B,) has no cohomology of degree bigger than
b, by definition, Bz(g, b,) is acyclic by (i). For g = sly(k), b, = 2 and ¢ = 1. Hence sl,(k) has
Property (P).

(iii) Prove the proposition by induction on i. By (i), C.p, (g) has projective dimension at most
1. Suppose that Cj,1, (9) has projective dimension at most j for j < i. By (i) and Property (P),
the complex 5;(9, B,) is acyclic. Then, by induction hypothesis and Corollary B.4, C;,y, (g) has
projective dimension at most i. O

Corollary 4.2. Suppose that all simple factors of ¢ have Property (P). Then, fori = 1,...,n,
Cisb, (8) has projective dimension at most i.

Proof. Let 3 be the center of g and d the derived algebra of g. Denote by ¢, the rank of d. As 31is
contained in By, fori =1, ..., n, we have an isomorphism

SG) ®: AU™(3) & Ciyp, (D)

Ci+bg (g)

Hence the proposition for g results from the proposition for g = d since b, — £, = n.

Denote by dy, ..., D, the simple factors of g = d and prove the proposition by induction on n.
For n = 1, the proposition results from the hypothesis by Proposition 4.1(iii). Suppose n > 2 and
the proposition true for n — 1. Let a be the direct product of dy, ..., d,_ ;. From the equalities:

APBy) = A*Bo) A AP (By,)
N(@) = Dy AN AN ()
by—f=  by—{,+by — b
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we deduce an isomorphism

@;:0 Cj+ba(a) ®k (ji—j+bgn (bn) Ci*’bs\ (Q)

fori = 1,...,n. By induction hypothesis, Cj.;, (a) has projective dimension at most j. By the
hypothesis and Proposition 4.1(iii), C;_j.p, (d,) has projective dimension at most i — j. Hence
Civ, (9) has projective dimension at most i. O

LetD, 3, dy,...,D, be as in the proof of Corollary 4.2. Set:
nyi=by = Cyyeo iy i=by = by 1= {0, .. in) € N i) <y, oo i < 1),
I":=TN{0}xN", T :=N'nNnl, I/:=TNI"

for k nonnegative integer. The sets I” and I’ identify with subsets of N". For I subset of I and
i=0,...,k, let I; be the subset of elements ¢ of I’ such that (k —i,¢) isin /. Fork = 0,...,n and
I subset of I/, denote by Dy, ,(b) the simple complex deduced from the multicomplex

D ;o0& @ D o).

(1sms Jn)€l

Then D,:’ 1’#(b) is a graded subcomplex of D;(d). For k = 0,...,n and I subset of I, the simple
complex D,:’ 1’#(9) deduced from the double complex

k
P i) & D}, 40)
i=0

is a graded subcomplex of D;(g) and
D149, Bg) 1= Dp 1 4()[=by] A A" (By)
is a graded subcomplex of D} (g, B,). For simplicity, we set:
D; 4(g) = D,:’H,k’#(g) and Dj4(g,By) := D,:’H;(’#(g, B,).

Lemma 4.3. Suppose that dy,...,0, have Property (P). Then for k = 0,...,n and I subset of I,
Dy, 4+(g, By) has no cohomology of degree different from b,.

Proof. As B, is the S(d X d)-submodule of S(d X d) ® d generated by the direct sum
By, ®---®B,,,
the S(d X b)-module /\bb (B,) is isomorphic to

AP (By,) ®; - - ® AP (By,).
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As aresult, for j = 0,...,n and J subset of I[;.’, the complex D ;4(d, By) is isomorphic to the
simple complex deduced from the multicomplex

B D @1,By,) @ - & D} (0, By,).
(i1 5eees In)EJ

Then D;’ j’#(b, B,) has no cohomology of degree different from b, since dy, ..., d, have Property
(P). As 3 1s contained in B,

k
D}, 4(0.By) = 5 $*() & D}, (0, By)[—dim3] A AT™(3).

i=0

As aresult, D,:’ 1’#(9, B,) has no cohomology of degree different from b, since b, = b, +dim3. O

For I subset of I" and j = 0,...,n, let /;, be the subset of elements i of / such thati; > 0 and
I;_ the image of /;, by the map

Nn+l

+l . . . . . .
N N A (TS PN PR U PR TR A

Denote by I_ the union of I_,...,I,-. Fork = 0,...,n, let K,:J(g, B,) be the kernel of the
morphism

S(a % 9) & Dy ,(9) Dy ;1 4(a,Bg)lbg] . pr—@Ae.

In particular, K,: ,(g,By) is a graded subcomplex of S(g X g) ® D,:’ 1’#(9).

Proposition 4.4. Suppose that y,...,0d, have Property (P). Letk = 1,...,nand I C I). Then
K3 (8,Bg) is equal to S(g X g) Dy 4(9) N D,:_I’I_’#(g)[—l] A Bg.

Proof. Since S(g X g) ®x D@ N D;_, w(9)[-1]1 A By is clearly contained in K3 (8, By), it is
sufficient to prove that K,: ;(g,By) is contained in D,:_L 1_’#(9)[—1] A By. Prove the assertion by
induction on k. For k = 1, it is true by Proposition 4.1(i). Suppose k > 1 and Kj’ ,(g,B,) contained
in D;_uﬂ#(g)[—l] A B, for j<kand J C I[;..

Let j=1,...,k—1.Forv = (ip,...,iy) inNijl., set:

V, = SP(3) @ S" (D)) @ - - - ® S™(Dy)
L= {Uo,.... L) e N (ig+ lo,....0n + 1)) € I},

In particular, /, is contained in I, when it is not empty. Then

Dil#(g) = @ Vi @ Dj]y#(g)

n+1
UENkij

So, by induction hypothesis, K,i ;(g,By) is contained in Dij’ 1_’#(9) A By.
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We have a commutative diagram

k+by

0 — Ky (0. By) — S(a X 9) & Dy, ,(9) — D;}

g’Bg) —0

d d d

k—1+bg

0 —= Ki7'(3,By) — S(8 X 8) & Dy4(9) — Dy

L # (6,By) —=0

d d d

k—2+b

0 —= K}7%(a,By) — S(8 X 8) & Dy 3(0) — Dy,

A k3 "(9,By) —=0

By definition, the rows are exact, by Lemma 4.3, the right column is exact and by Lemma A.2(ii),
the middle column is exact. Denoting by ¢ the horizontal arrows, for a in K,’j’ /(8,By), a = db

for some b in S(g X g) ® D*7.(g), b = dc for ¢ in Dk_2+b“‘(g, B,) and ¢ = ¢c¢’ for some ¢’

k1 # k1#
in S(g X 8) ® D} %(a), whence b — d¢’ = 6b’ for some b’ in K{;'(g,B,) and a = db’. As
dDi:i,_,#(g) A By = D’,jj’l_’#(g) A By, a is in D’,:%J_’#(g) A B, since K,’j}l(g,Bg) is contained in
D71, ,(@) A By, whence the proposition. 0

As it remains to prove Theorem 1.5, we suppose g simple of rank at least 2 in the following
sections.

5. FIRST STEP TO THE PROOF OF THEOREM 1.5

Let @, be the first projection g X g —— g . For k = 1,...,n, denote by S the support in
g X g of the cohomology of D;(g, B,) of degree different from b,.

Lemma 5.1. Letk=1,...,n.
(1) The set S is a closed subset of g X g invariant under the actions of G and GL,(k) in g X g.
(i1) The subset @ (S ) of g is closed and G-invariant.
(i1) If @ (Sy) N'H = {0}, then S has codimension at leastn + 2 in g X g.

Proof. (1) According to Proposition 2.1(vi), B, is a free module generated by a basis of G-
invariant elements. Moreover, by definition, B, is invariant under the action of GL,(k). Hence
/\bﬂ (B,) is generated by a GXGL,(k)-semi-invariant element. Then, as the differential of D*(g) is
GxGL,(k)-equivariant, so is the differential of D} (g, B,). Hence S is invariant under GXGL, (k).

(i1) As Sy is invariant under k* X k*, @ (S;) X {0} = S, N g X {0} so that @ (S;) is a closed
subset of g. As S is G-invariant so is @ (S).

(1i1) Suppose @ (Sx) NH = {0}. By (i1), @;(Sk) is contained in the nilpotent cone I, of g.
Then S is contained in the nilpotent bicone N, since S is invariant under the action of GL,(k).
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As result, S has codimension at least n + 2 in g X g since N, has dimension 3n by [CMo08,
Theorem 1.2]. |

Proposition 5.2. Let k = 2,...,n. Suppose that g has Property (P,_;) and @(S;) N H = {0}.
Then g has Property (Py).

Proof. According to Proposition 4.1(i), fori = 1,...,k — 1, the augmented complex 5;(9, B,) s
acyclic since g has Property (P;_;). So, by Corollary B.4, fori =1,...,k—1, Ai(@) A /\b“ (B,)
has projective dimension at most i. Again by Proposition 4.1(i), S is the support in g X g of the
cohomology of 5,:(9, B,). By hypothesis and Lemma 5.1(iii), S has codimension at least k + 2
in g X g. So, by Corollary B.4, 51:(9, B,) is acyclic, whence the proposition. O

Remark 5.3. By Proposition 4.1(ii), g has Property (P;). So, by Proposition 5.2 and an induction
argument, g has Property (P) if fori =2,...,n, @(S;)Nh ={0}.
6. AT THE NEIGHBORHOOD OF A SEMISIMPLE ELEMENT

Let z be in by \ {0} and p := g° + b. Then [ := g° is the reductive factor of p containing b.
Denoting by 3 the center of [, d the derived algebra of [ and ¢ the function on I,

x — 8(x) = det(adx|j;)),
let [, be the complement in [ to the nullvariety of 6.
6.1. A smooth morphism. Let 6 be the morphism:
GxLxg—Gl)xg (g,xy) — (9(x),9(y)) .

Lemma 6.1. Ser Q, :=Q, NI Xg.
(1) The subset G(1,) of g is open and 9 is a faithfully flat morphism.
(11) The subset Q. of 1, X g is a big open subset.

Proof. (i) Since the map (g, x) — g(x) from G X, to g is a submersion, G(I,) is an open subset of
g and this map is a smooth surjective morphism from G X I, to G(I,). As a result, 0 is a faithfully
flat morphism from G X 1, X g onto the open subset G(1,) X g of g X g since the endomorphism of
G x 1. xg,(g,x,y) — (g, x,9(y)) is an isomorphism.

(i1) By (i), the fibers of 0 are equidimensional of dimension diml. Hence €, is a big open
subset of [, X g since €, is a G-invariant big open subset of g X g. |

For any S(g X g)-module M, denote by M the restriction to G(I,) X g of the localization of M
on g x g and M the space of global sections of 8*()V).

Corollary 6.2. Let M be a S(g X g)-module and N a submodule of M. The modules M and N
are equal if and only if G(1,) X g has an empty intersection with the support of M/N.
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Proof. Denote by M’ the restriction to G(I.) X g of the localization on g X g of M/N. As the
localization functor is exact, we have a short exact sequence

0 N M M 0.

By Lemma 6.1(i), 0 is a faithfully flat morphism from G X I, X g to G(I,) X g. Hence the short
sequence

0—60*(N) —0"(M) —=O0*(M") —=0
is exact and M’ = 0 if and only if 6*(M’) = 0. Moreover, 8*(M’) = 0 if and only if M = N since

G x I, x g is an affine variety. Hence M = N if and only if the support of M/N in g x g has an
empty intersection with G(I,) X g. O

6.2. AsI+Dbis a parabolic subalgebra of g, sois p_ :=[+b_. Let dy, ..., d, be the simple factors
of d. Denote by p., the complement to I in g, invariant under ad}) and p_, the nilpotent radical
of p_. Set:

lo =34 Pens lo-:=3+P-u, ni:=by —boensnyi=by, =6,

Li=AGii1,.-orin) EN"2 iy <myyoeyin <mp), L= NN

for k nonnegative integer. The sets I’ and I of Section 4 identify with IN {0} x N1 and I, N {0} x
Nn+l respectively. According to the notations of Section 4, for k = 1,...,n, denote by D,;’#(g)
the simple complex deduced from the double complexe

k
@ D i(p+u) @ Djy(D).
i=0

Then Dy 4(9) is a graded subcomplex of D} (g).
Denoting bl B the localization on g X g of By, let B be the space of global section of 6*(B).
In particular, B is a free submodule of rank b, of k[G X I, X g] ® g. Fork =1, ...,n, set:
B:= k[l* X g] ®S(g><g) Bg
C:= k[l* X g] ®S(g><g) Cg
D; (8,B) ;== D} (9)[-bg] A \**(B)
D;4(8,By) := Dy u(9)[=by] A A™(By).
Lemma 6.3. Letk=1,...,n.
(1) The orthogonal complement to B in k[1. X g] ®y g is equal to C and the orthogonal comple-
ment to C in k[, X g] ® g is equal to B.

(i1) The set @ (S ) does not contain z if and only if D;(g, E) has no cohomology of degree
different from by.
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Proof. (i) By Proposition 2.3, C is orthogonal to B. Let ¢ and ¢ be in k[, X g] ® g orthogonal
to B and C respectively. For (x, y) in Q,, the orthogonal complement to V,, is equal to [x, V]
by Proposition 2.1(iv). Then, for some regular functions a;,, (i, m) € L.y and b;,,, (i, m) € Iy,

ey = Y amtoplnea” @yl and Yoy = Y bl e (xy)
(i;m)el. g (im)ely
for all (x,y) in Q.. By Lemma 6.1(ii), Q. is a big open subset of [, X g. So, the regular functions
aim (i,m) € 1o and b;,,, (i, m) € I have a regular extension to [, X g since [, X g is a normal variety.
As aresult, ¢ and y are in C and B respectively, whence the assertion.
(i1) For j integer, denote by Z,f and Bi the spaces of cocycles and coboundaries of degree j of
D;(g,B,). By Lemma 6.1(i), from the short exact sequence

0 —= 7/ —= Dl(3,B,) B/ 0

for j integer, we deduce the short exact sequence

0 — Z/ —— Dl(g,B,) B/ 0

since G X I, X g is an affine variety. As B is the space of global sections of 0*(B), Di(g,g) =
Di(g, B,). Hence Z,{ and Bi are the spaces of cocycles and coboundaries of degree j of D} (g, ﬁ).

By Corollary 6.2, z ¢ @;(S) if and only Z,{ = Bi for j # b,, whence the assertion. O
Denote by O the localization at the identity of k[G].

Lemma 6.4. Letk = 1,...,n. Suppose that fori = 1,.. .,k O®c) Dj,(g, E) has no cohomology
of degree different from by. Then, fori=1,...,kand ¢ in O Qg k[l X g] ® Di#(g)

¢ A A\ (B) = {0} = ¢ € 0 @5 Dl (9) AB.

Proof. Let & be a generator of /™ (B). Prove the lemma by induction on i. By Proposition A.7,
it is true for i = 1. Suppose that it is true for i — 1. For some  in O ®yq) k(L x g] & Di,!(g),

¢ = dy. Then Y A &is a cocycle of degree i — 1 of O ®y ) D] 4(9, E). So, by hypothesis, for some
Y’ in O g D;Z(g), Y A& =dy’ A E. Then, by induction hypothesis,

¥ —dy’ € O ®ue DIy (9) A B,
whence the lemma. O

Proposition 6.5. Let k = 1,...,n. Suppose that the following condition is satisfied: for i =
L,....k O ®xe) D40, E) has no cohomology of degree different from b,.

() Fori=1,...,k D:(g, E) has no cohomology of degree different from by.

(1) Fori=1,...,k zisnotin @ (S)).
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Proof. (i) We consider the action of G in k[G X I, X g] ® g given by
k.asv(g, x,y) 1= a(k‘lg, X, y)k.v.

This action has a natural extension to k[G X I, X g] & D(g) and D (g, ﬁ) is invariant under this
action fori =1, ..., k since B, is a G-invariant submodule of S(g X g)®x g by Proposition 2.1(vi).
This action induces an action of g in O ®, k[, X g] ® D(g) and O &g D} (g, E) is invariant under
this action.

Prove the assertion by induction on i. By Proposition 4.1(ii) and Lemma 6.3(ii), it is true for
i = 1. Suppose i > 1 and the assertion true for the integers smaller than i. Set:

E' := 0@kl x o] & Diy(g), Nj:=08&ys A'(9)AB and

N; = {p e 0@ KL x gl & \'(®) | (9, %,y) € G XL X3 = ¢(g, x,y) A &(g(x), g(y)) = 0}.
By the hypothesis, Proposition A.7 and Lemma 6.4, N; N E’ C N{ N E’. Moreover, N| and N;
are g-submodules of O ®, k[I, X g] ® /\i(g).

Set:

M :=X[G] @, kL X 61® \'(@), M’ :=k[G1®. Kl xg]® Di,0), N,;:=N,nM

for j = 1,2. Then M is a rational g-module since so is k[G], M’ is a [-submodule of M, N, and
N, are g-submodules of M such that N; is contained in N> and N> N M’ is contained in N; N M’.
By [C20, Theorem 1.1], Dﬁ’#(g) generates the G-module of A'(g). So M’ generates the G-module
M since k[G] @ k[, X g] is a G-module. Then, by Proposition D.6, N; = N,.

For a in N}, pa is in N, for some p in k[G] such that p(1,) # 0. Hence pa is in N; and a is
in N{. As aresult, N| = N since Nj is contained in NJ. Then, again by Proposition A.7 and
the induction hypothesis, the complex O ®yg D; (g, E) has no cohomology of degree different
from b,. As a result, the support in G X I, X g of the cohomology of degree different from b, of
D;(g,g) does not contain {1} X [, X g. As D;(g,g) is a G-equivariant complex, this support is
invariant under G. Hence it is empty and D? (g, B) has no cohomology of degree different from
b,.

(i1) By (i) and Lemma 6.3(ii), fori = 1,...,k, zis not in @ (S ;). O

Definition 6.6. For k = 1,...,n and z in by, we say that g has Property (P,;) if D;#(g, ﬁ) has no
cohomology of degree different from b, fori =1,...,k.

Remark 6.7. Suppose that g has Property (P,,) for all z in by \ {0}. Then g has Property (P) by
Proposition 6.5(ii) and Remark 5.3.
7. RESTRICTION TO A PARABOLIC SUBALGEBRA

Let p be a parabolic subalgebra of g containing b, I the reductive factor of p containing b, d
the derived algebra of [, 3 the center of [ and P the normalizer of p in G. Denote by R, the set of
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roots « such that g% is contained in [ and set:

dy:=dim3, o= (P ", d:i=dimp,
a€R\Ry

so that p, is the nilpotent radical of p. Let L be the centralizer of 3 in G. According to [Ko63,
§3.2, Lemma 5], L is connected. When b is strictly contained in p, we denote by dy,...,Dd, the
simple factors of d. Let z be in 3 such that 8(z) = 1 for all 8in IT \ R, and ¢ — () the one
parameter subgroup of G generated by adz.

Let [, be the open subset of [ as in Section 6. The usual gradation of k[p] induces a gradation
of the polynomial algebra k[1. X p] over k[l.]. Let @ be the canonical projection p —— [ and
set:

B := k[L X p] ®s(gxq) Bgs B, := K[L X [] ®suxiy Bi, By := B NK[L X p] ®, p,.

As (h,e) isin Qg4 Q, N1, X pis a dense open subset of [, X p so that B is a free submodule of rank
b, of k[l X p] ® p by Proposition 2.1(iii) and Corollary 2.7. Again by Proposition 2.1(iii), B, is
a free k[I, X [J-module of rank b;. From the direct sum

p=10 py,
we deduce the inclusions

k[1] c k[p] and k][I, x ] C k[L, X p].
(m)

In this section, for (i, m) in I, the restriction of sgm) to [, X p is again denoted by &;. According
to this convention, £ is a generator of the k[I, X p]-module Abs (B) (see Equality 3). As in
Subsection 2.3, for (x,y) in [ X [, the image of B; by the evaluation map at (x, y) is denoted by

|
Vi

7.1. Elementary properties of the module B. Denote by f3i, ..., B, the simple roots in IT\ R,
and hy,...,hy, the basis of 3 dual of By,...,B4. Let qi,...,q, be homogeneous generators of
S(D* and d,...,d,; their respective degrees, chosen so that

(D) di<---<d,

(2) fori=1,...,¢,g; € SG)US®)FU---US(d,),

(3) fori=1,...,dy, q; = h;.
Fori=1,...,¢, denote by n; the differential of ¢;.

Lemma 7.1. (i) Fori =1, ...,{, there exists a unique sequence c; ;, j = 1,...,C ink[l] such that

4

£i(0) = ) ci(xm()

J=1

for all x in .. Moreover, c; ; is invariant under L and homogeneous of degree d; — d’.
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(i1) For x in 1, the matrix
(Ci,j(x)’ 1 < l’] < f)

is invertible.

Proof. (1) Leti =1,...,¢. For xin l,g, 1(x), ..., n.(x) is a basis of I by [Ko63, Theorem 9]. By
Lemma 2.4(1), for all x in [, &;(x) is in [*. Then there exists a unique sequence ¢;j, j=1,...,{1in

k[lee] such that
¢

£i(0) = ) ci(xm()
j=1
for all x in l.s. By [V72], [, is a big open subset of [. Then ¢; 1, ..., ;¢ have a regular extension

to I since [ is normal, whence
¢

£ix) = ) €, (0m;(x)
=1
for all xin I. As & and 7, are invariant under L and homogeneous of degree d; — 1 and d’; — 1
respectively, ¢; ; is invariant under L and homogeneous of degree d; — d’.
(i) For x in [, g is contained in [. Then [, NI, is contained in g,,. As aresult, fori =1,...,¢,
there exists a unique sequence c;’j, Jj=1,...,¢ink[L N ] such that

ni(x) =

J

¢
c; (X)g;(x)

=1

for all x in [, N [, since €1(x), ..., &.(x) is a basis of g* fo x in g,,; by [Ko63, Theorem 9]. As

[, N1 is a big open subset of [, c;,l, e, C;,e have a regular extension to [,. Then, fori=1,...,¢

and x in [,

Y

ni(x) = ) ¢ (0e;(x),
J
whence the assertion. O

Il
—_

For a homogeneous of degree d, in k[[] and fork = 0, ..., d,, denote by a¥’ the 2-polarization
of bidegree (d, — k, k) of a. Set:
I ={Gmef{l,....00 xN|0<m<d -1}, I,:=1)\I.
Then |[j| = b; and |I,| = d. For (i,m) in I, let ngm) be the 2-polarization of 7; of bidegree
(d; = 1 —m,m). For (i,m) in I, and (j, m’) in I}, set ¢ jw = cg?_m’). In particular, ¢;,, j» = 0 if
m >morm—m >d; — d;. since ¢; ; is homogeneous of degree d; — a’}.

Lemma 7.2. (i) For (i,m) in I,

ng)(x, y) = Z Cim, jm’ (x, y)ﬂém/)(x, y)

(jom" el
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forall (x,y) in1x1.

(i1) For (i,m) in Iy and (j,m’) in I}, the function c;,, ;, is invariant under the diagonal action
of LinlxL
(ii1) For (x,y) inh X (uN1) and (i,m) in I},

& (x,y) =
J

‘
¢i,(0n" (x, ).
=1
@v) For (i,m) in Iy and y' in p,,
zUosl(.m)(x, y+y)= ggm)(x, Y)
forall (x,y) in1x1.

Proof. (i) By Lemma 7.1(i), for (x,y) in I X [,

¢
eilx+ sy) = cij(x + syni(x + sy)
=1
for all s in k, whence
di~d' d/~ inf{m.d’~1}
Z & (x,y) = Z Z s O e ) = Z Z 0y ().
m=0 =0 k=0

As aresult,

ng)(x, y) = Z Cim,jm (x, y)ﬂém/)(x, y)

(el
for all (x,y)inIx1L.

(i1) By Lemma 7.1(i), ¢jm,j» 1s invariant under the diagonal action of Lin I X [.
(iii) Let (x,y) be in h X (u N 1). By (i),

ng)(x, y) = Z Ciym, jm (X, y)n?" (x, ).

(el
By (i1), for r ink* and (j,m’) in I},
Cim, jm’ (X, y) = Cim,jm (X, P(t)y),
whence
Ci,m,j,m’ ()C, y) = Ci,m,j,m’ (X, O) since 1[1_1)1()1P(l)y = O

As aresult, ¢, jw(x,y) = 0 for m # m’" and c;, ;m(x, y) = ¢; j(x), whence the assertion.
(iv) According to Corollary 2.5, for all x in p, &;(x) is in p. For x in [ and y in p,,

Imf(A(x+y)=x whence pi(x+y)=pix) and (&x),v) = (&(x+y).v)
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for all vin I. As a result, for all x in [ and for all y in p,, &;(x) — &(x + y) is in p, since p, is the
orthogonal complement to p in g, whence the assertion. O

The order of [, induces an order of /j and we get a square matrix of order |/j],
Mo := Cimjors (Gm), (om')) € Iy X 1),
with coefficients in k[, X I].
Corollary 7.3. Forall (x,y) in 1, X [, det My(x, y) # O.

Proof. Set:

(m)

— ! )
€0 = Nimyel,€;

and o = /\(j,m’)EI(')nE"n .

In these equalities, the order of the products is induced by the order of . Let &j be the restriction
of gy to I, X I. By Lemma 7.2(i), gy is in k[, X [] ®; AP(1) and

8_() = det M()T]().

As gy and 7y are homogeneous of degree

Zf: d(d - 1)
i=1 2
det M, is in k[L,].
Denote by X the nullvariety of det M, in [,. Suppose that ¥ is nonempty. A contradiction is
expected. As the maps sgm) and ngm) are homogeneous and invariant under L for all (i, m) in [}, ¥

is a closed cone of 1., invariant under L.
Claim 7.4. For some x in (I, N D), x + w(e) is in X.

Proof. [Proof of Claim 7.4] As ;N 1, X [ contains (h, w(e)), for all ¢t in k, h + tw(e) is a regular
element of g and I, whence a sequence p; ;, 1 < i, j < € of polynomials such that

ni(h + tw(e)) = pi1(Hei(h + tm(e)) + -+ - + pi(De(h + tw(e)

foralltrinkandi=1,...,¢{. Asaresult, forall (i,m)in I, ngm)(h, w(e)) is a linear combination
of .95.'"/)(h, w(e). Hence h N 1, is not contained in X. Let ¥’ be an irreducible component of £ N b.
Then ¥’ is an hypersurface of b as an irreducible component of the nullvariety of det M, in bN1,.
Then, by lemma 1.8,

Y =YNh+unl

since L, Nb=1LNh+unland X and ¥’ are invariant under the one parameter subgroup ¢ — p()
of G. As aresult, for xin £’ Nh, x + w(e) is in X', whence the claim. O
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From the equality
lim £ 2p(f).(x + w(e)) = w(e),
t—oo

we deduce that x + @(e) is a regular element of [ since so is @w(e). Hence x + w(e) is a regular
element of g since it is in [,. Then, from the equalities

ltirglp(t).(h +e—w(e)) =h and

tlgg 20(t).(x + w(e) + a(h + e — w(e))) = w(e) + ale — w(e)),
for a in k, we deduce
h+e—w(e) €, and x+w@(e)+alh+e—@(e)) € G
for all a in k* since w(e) + a(e — w(e)) is a regular element of g. Hence
(x+w@(e),h+e—w(e)) € Q.
As aresult, by Corollary 2.7 and Lemma 7.2(iv), the elements
" (x + @(e), h), (i,m) € I

are linearly independent, whence the contradiction. O

7.2. Decomposition of B. Let By be the submodule of B generated by &, (i,m) € I. For

(m) (m)

I,m)1n I, denote by & the restriction of €; " to , X . By Lemma 2.4(11), &; " 1s In K[, X 1] & L.
(i,m) in I}, denote by " th iction of &/ to I, x I. By L 2.4(i), &™ is in k[L, X [ [

Lemma 7.5. (i) The k[1, X p]-modules B and B are free of rank b, and b, respectively.
(i1) The module By is the image of Bg by the restriction map from 1, X p to 1, X I. In particular,

m . . =
g™, (i,m) € I} is a basis of B,.

Proof. (1) As QN [, X p is not empty and B is generated by sgm), (i,m) € Iy, the assertion results
from Proposition 2.1(iii) since |Io| = b, and |Ij| = b;.

(i1) By Lemma 7.2(i), the restriction of By to I, x [ is contained in B;. By Corollary 7.3,
the matrix My(x, y) is invertible for all (x,y) in I, X . Then, for all (i,m) in I}, ngm) is a linear

combination with coefficients in k[I, X I] of .95.'"'), (j,m’) € I, whence the assertion. O

Set:
Py = @ g% and p_:=1@®p_,
arEJh\fR[

so that p_ is a parabolic subalgebra of g. Let J_ be the ideal of definition of I, X [ in k[I, X p]. As
k[p] identifies with S(p_), k[L. X p] = k[[.] ® S(p-) and J_ is the ideal generated by lep_,,.
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Proposition 7.6. (i) For (i, m) in I, & — & is in J_ ®, p,.

(i1) For (i, m) in 1, for a well defined sequence a;, j,w, (j,m’) € I in k[L, X 1%,

(m) ._ (m) (m")
v/ =" - Z Qim, j,m/ejm € J_ ® pu.
el

(iii) The moduleE is the direct sum of By and B,. _
(iv) The module B, is free of rank d and vgm), (i,m) € I, is a basis of B,.

Proof. (i) According to Lemma 7.2(iv), sgm) - ng) is in k[I, X p] & p,. By Proposition 2.1(vi),
(m)

) is invariant under the one parameter subgroup ¢ > (7). Then so is & — &, whence the

assertion since the elements of k[I, X p] ® p,, invariant under ¢t — ((¢), are in J_ ®y py.

&

(i1) According to Corollary 2.7, ™ is in B, Then, by Lemma 7.5(ii), for a well defined

i

sequence a, > (J,m’) € Iy in k[, x 1],

(m) _ (m’)
& = Z Aim,jm €; "

(el

For all (j,m’) in I, ej.m’) is invariant under L by Proposition 2.1(vi). Hence a;,, j,» 1s invariant
under L for all (j, m’) in 1. Moreover, by (i), ng) isin J_ & py.
(iii) By (ii), B is the sum of B, and B, since B is generated by the SE’")’S. Suppose BoNB, # {0}.

A contradiction is expected. Let ¢ be a non zero element of By N B,. Then

@Y= Z ‘Pi,mr‘?,(-m)

(i.m)el)

with ¢;,, in k[l, X p]. As ¢ is in B., wop = 0. For some linearly independent homogeneous
elements ry,...,r; of S(p_y),
!

Qim = Z ViQim,j
=1
with @; 1, .« ., @im In K[1, X 1] for all (i, m). By (i), denoting by I..,;, the set of indices j such that
r; has minimal degree and ¢, ; # 0 for some (i, m),

Z ”j( Z QDi,m,j@) =0

J€Imin (i,m)EI(’)

since ¢ is in k[[, X p] & py. As a result, for j in Iyin, ¢im; = O for all (i, m), whence the
contradiction and the assertion.
(iv) By (ii1), B, has rank d since By and B have rank b, and b, respectively. Set:

= /\(i,m)elo ng) (m) )

i

and V= AgmernV
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In these equalities, the order of the products is induced by the order of ;. By (i1),
Eg NV = xg,

with g as in the proof of f Corollary 7.3. Again by (iii), A% (B) is isomorphic to A”(By) @1, xp]
A4(B,). So, for ¢ in AY(B.), £y A ¢ = ae for some a in k[I, X p] since € is a generator of A" (B).
As a result,

e N(@Fav)y=0

Denoting by g the restriction of & to [, X I,

g0 — 8o € K[L X pl @ py A AP ()

by (i). Hence 5 A (¢ ¥ av) = 0 and ¢ = +av. As aresult, v is a generator of /\d(ﬁu).
Let u be in B,. Then
p= > "
(imel,
for some sequence ¢, ,,, (i, m) € I, in k(I X p) since B, has rank d and vgm), (i,m) € I, are linearly
independent over k[I, X p]. For (i, m) in I, set:
Vim 2= NGm)el,\(@m)Y

In this equality, the order of the product is induced by the order of /. As v is a generator of
/\d(Bu), for some c;,m in k[1, X p],

Cl mY =M A Vim = £CimV,

whence c;,, is in k[l X p]. As a result, B, is a free module generated by vgm), (i,m) € I,. Then,
by (ii), B, is contained in J_ ®; p,. |

As 1, is a principal open subset of [, containing by, b, := I, N b is a nonempty principal open
susbet of b.

Lemma 7.7. Let (i, m) be in I,.

(1) For (j,m') in I, a; jw is bihomogeneous of bidegree (d;—dj+m’—m,m—m’). In particular,
Qi i = 0 when m’ > m.

(1) For (j,m') in I, (x,x") in b, X bhand (y,y’) in u X, Qjpjmw (X + Yy, X +Yy') = Qi jw (X, X")
and a; y j (X, Y) = Qi jr (X, 0). In particular, a;m, ;w(x,y) = 0 when m # m'.

(ii1) For (j,m’') in Iy and (¢, x,v) ink X g X g,

(m)(xtx+v :Z( )m k(k)(xv)

k=0
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Proof. (i) By Proposition 7.6(i1),

ng)_ Z almjm/s EJ— ®x Pu-
(jm’ el

As ng/) is bihomogeneous of bidegree (d; — 1 —m’, m’) for all (j,m’) in Iy, a;,, ;» is bihomoge-
neous of bidegree (d; — d; + m" — m,m —m’) for all (j,m’) in I|. Again, by Proposition 7.6(ii),
Qi m,jm 18 iIN K[1, X [] so that the second degree of a;,, j, 1s nonnegative. Hence a;,, j,» = 0 when
m’ > m.

(ii) By Proposition 7.6(ii), @;m, ;. is invariant under the one parameter subgroup ¢ — p(t) of
G, whence

i, jor XY, X' +Y') = Qi jow (X+p(0) .y, X' +p(0).y)  and @ (X, Y) = in je (X, p(1).y), YVt €K
As aresult, @y jmw (X + Yy, X" +Y) = Qi jwr (X, X') and a; e (X, Y) = Qi jr(x, 0) since

limp(t).y = limp(t).y’ = 0.

t—0 t—0

Then, by (1), @ m, jmw(x,y) = 0 when m’ # m.
(ii1) For s in k,

&j(x + s(tx +0)) = T seR + sox,v)
= DS+ sty B (x, )
Zm':o " Sk (d - k)tm * (k)(x v),
whence the equality. O

For k, [ positive integers such that k < [, set:

k-1 i
rwm=2ew0.
=0 J

Corollary 7.8. Let (i,m) be in I, and x in })..
(i) For j=0,....d/—landlin{l,..., 0} \{i},

d -1 d -1
di-1-}\ Sfdi-1- C (d—1—
( m— ] ]) - Z ( m — ] J)ai,m,i,m’ ()C, X) =0 and Z ( lm, _ j])ai,m,l,m’ ()C, X) =0.

m'=j m'=j

(i) Form’ =0,...,d -1,

d—1—m)!
(di =1 =m)!(m— H'm’ = !’

ml

y

Qi (%, 2) = Y (=1
=0
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(i11) If d > 2 then
-1

rm,di = 1) = ) (1" 1 di = ety (x, %) # 0.

m’'=1
Proof. (i) Let (t,y) be in k X (u N 1). By Proposition 7.6(ii),
eV Y = Y Gy (611 + ) (@ 1+ y)
¥ el
since 85.m’)(x, tx+y)isin I for all (j,m") in Iy by Lemma 2.4(i). Then, by Lemma 7.7,(ii) and (iii),

m’

- dp —1-
Z ( . ) m jg(])(x y) Z Z ai,m,l/,m’(xa X)( lm, _ ] ]) m js(j)(x y)
J=

(el j=0
whence, for j =0,...,m,

d,-1

(d ) (j)(x y) — Z Z Aiml m' (X, X)( , i;])gglj)(x’ y) =

>]m =J

For x in a dense open subset of b., (x, @w(e)) is in € since w(e) is a nilpotent element of a
principal sly-triple of I. Then sl,'" (x,@(e)), (I',m') € I; are linearly independent by Proposi-
tion 2.1(iii) and Lemma 7.5(ii). As a result, for j =0, .. .,dl —land j=0,...,d/ -

-1

di—l—j) (di—l ) (dl—l— )
. - ai,m,i,m’(-x’ .X) , 0 and Qi m,im' (.X .X) ., =0.
()2 wej mZ, j
(i) For xinh, and m’ = 0,...,d] — 1, set:
. di—1-m)!
Y (X) 1= Qi (X, X)m-

By (1), the sequence ¢, (x),m’ = 0,...,d] — 1 is a solution of the linear system

1
Z‘”’"(x) —j)! RCEN

m'=j

The inverse of the matrix of this system is equal to

=pm- : ’ .
) ) = if m >
(aw;,0<m',j<d;—1) with a, ;=3 -D' ] ,
0 if m <j

whence the equality of the assertion.
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(iii) For e, k, [ integers such that 2 < e < k < [, set:

k i e—1 .
(1) i o w =D
k1) := —_— d kD) = rk, D) — 1) e(j, k- N .
c(k.]) ;ﬂ(lﬂ)! and  y(e, k. 1) = r(k, 1) ;( Ik = D DG,
By (ii),
di—1-m)!
Qi (X, X) = HC(WL’, m—m').
Then
-1
¥(d;,m,d; - 1) = r(m,d; - 1) - Z(—l)m‘m/r(m’, di = 1)@ i (%, X),
m'=1
whence the assertion by Proposition C.3. O

7.3. An invariance property. In this subsection, sl(.'"), (i,m) € I, is a sequence in S(g X g) ® g.
Set:

[:= (0NN @) X (BNT).
Then I' is an affine variety invariant under B N L since [, and g s are principal open subsets of
[ and g respectively, invariant under B N L. We identify I' with the subset {15} X I' of G X I by
the map x — (lg, x). Let X be the quotient of G X I' under the right action of B N L given by
(9, x,y).k := (gk, k™' (x), k"' (y)) and v the quotient map. Denote by 7 the canonical morphism

X gxg suchthat tou(g,x,y) = (g(x), gy)).

Lemma 7.9. Set Qr := Gt {( QN and Y := X\ Qr.
(1) The restriction of v to T is a closed embedding.
(i1) The subset Y of X is closed and G-invariant.

Proof. (i) Let (g, x,y) be in G X I such that (g(x), g(y)) is in I". As x is regular semisimple, for
some b in BN L, g(x) = b(x), whence b~'g is in BN L since the centralizer of x in G is contained
in BN L. As aresult, 77!(I") = v(I'), whence the assertion since the restriction of 7ov to I' is the
identity.

(i) By (i), 7 '(@; N T) is equal to (& N T) since & N T is invariant under B N L. Hence
Qr =Gu(;NI). Asaresult, Y = GuI \ ).

The variety X is a fiber bundle over G/(B N L). Denote by o the bundle projection

o

X G/(BNL).

Let O be a trivializing affine open subset of G/(B N L). Then we have a commutative diagram,

o 1(0) OxT

e

]
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with @ an isomorphism. As Y is G-invariant, ®(Y N o~(0)) = O x (I'\ ;). Then Y is closed
since G/(B N L) has a cover by trivializing affine open subsets. O

We identify I with (') by v.

Lemma 7.10. Let (i, m) be in 1.
(1) The maps 85.'" )
(i1) For a well defined sequence a;,, im

o1, (j,m’) € I are linearly independent over k(X).
. (Jom') € I[N ink[X \ Y],

egm)or(x) = Z Zr— (x)si.’"/)or(x)
(e
forall xin X \Y.
(ii1) For (j,m’) in I, the rational function a

i, U8 invariant under G.
(iv) For (j,m') in I}, @i jmw and a

’

Lt have the same restrictions toI’ N Q.

Proof. (i) For all xin Q;NT, ng.m/)(x), (j,m") € Ij are linearly independent. Then, for all x in

I'nQ, ej.m’)(x), (J,m’) € Ij are linearly independent by Lemma 7.5(ii). As a result, the maps

85.’"’)01, (j,m") € Ij are linearly independent over k(X) since sg.m’), (j,m’) € I are G-equivariant

by Proposition 2.1(vi).

(i1) Let & be as in the proof of Corollary 7.8. By Proposition 7.6(ii), the restriction to I" of
) A & is equal to 0. Then, by G-equivariance of the 85.'"/)’
for a well defined sequence a,. o (j,m’) € I} in k(X),

(m) . .
£ s, & Ae&pet 1s equal to 0. So, by (1),

(m) /
gMor(x) = § @}y i (OES" T ()
(Jom eI

for all x in a dense open subset of X. As for x in X \ Y, sg.m’)or(x), (j,m") € Ij are linearly
independent, the functions a;,, i (j,m’) € I are regular on X \ Y, whence the assertion.

(iii) By unicity of the sequence a;,, ;. (jym') € Ij and the G-equivariance of the maps
s,(f), (k, 1) € Iy, the rational functions al’.’m, s (j,m’) € I are G-invariant.

(iv) By (ii) and (iii), for all (x,y) in ' N €,

ng)(x’ y) = Z a;,m,j,m/(x’ y)eg'm,)()@ y)
(jom )l
By Proposition 7.6(ii), for all (x,y) in [, X [,
e"(x,y) = Z i, i (X, y)sy"/)(x, Y),

(jom )l

whence the assertion since .95.'"/)(x, y), (j,m’) € I are linearly independent for all (x,y) in ' N
by Lemma 7.5(ii). O
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b= ] 900,

geW(R)
Then b is a dense principal open subset of ), invariant under the Weyl group W(R) of R.

Let b.. be the open subset of b,

Proposition 7.11. Let (i,m) be in I,. For (j,m’) in I, the restriction of G jw 10 De X b is
invariant under W(R).

Proof. Let n be the canonical projection b —— b . According to Lemma 7.7(i1),

i, jore (X, Y) = Qi je (T(X), T(y))  V(x,y) €T
Hence the function on G X T,
(s X, Y) ¥ i jw (X, Y)
is constant on the B N L-orbits. As a result, a;,, j,» defines through the quotient a G-invariant
regular function on X. Denote it by @, . By Lemma 7.10(ii), a;,,, ; ,, 18 a G-invariant rational
function on X. Then, by Lemma 7.10(iv), a;,m’ i = Qjm,jm SINCE Qjy ;e 1S G-invariant. In
particular, al’.’m, i is regular on X and its restriction to I' N b, X b is invariant under W(R). As a

result, again by Lemma 7.10(iv), the restriction of a; , ;» to b.. X b is invariant under W(XR) since
I' N b, X his dense in b, X b. O

8. EXPANSION ALONG A PARABOLIC SUBALGEBRA
Let p be a parabolic subalgebra containing b and
I7 pu, b7 3’ Rla L’ d9 d09 I*a Z9 {7 107 (,)7 Iu

as in Section 7. Set:
Py = @ and p_:=1@p_,.

aeRN\R;
8.1. Some results about the expansion along p. Denote by a4, ..., a, the positive roots which
are not in R; and ordered so that |a;| < |aj| fori < j. Fori=1,...,d, set:

Ui '= Xg;» Wi = X_g;.

Then vy, ...,v; and wy, ..., w, are basis of p, and p_, respectively. As usual, for r := (r,...,ry)
in N9,

r'_ rlo;; rd r'_ rl--- rd
v i=w)e) and W' oi=w) w;'.

Lemma 8.1. Leti=1,...,¢.

(1) For all x in a dense open subset of V), €;(x) is a regular element of . In particular, for x in
a dense open subset of 1., £;(x) has a non zero component on all simple factor of d.

(1) Fork = 1,...,d, for some homogeneous element p;; of degree d; — 2 in S(),

Qo€ = Ak Pik-
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(i) Fork =1,...,d and (t, x) ink X b,
gi(x + twy) = £i(x) + 1p;r(X)wy.

Proof. (i) Suppose that &;(x) is not regular for all x in f). A contradiction is expected. Then, for
some root @, acg;(x) = 0 for all x in b. In particular, for x in h and g in W(R), acg;(g(x)) = 0. As
&; is G-equivariant, &;(x) is in the kernel of g~!(@). As g is simple, b is a simple W(R)-module so
that the orthogonal complement in b to g(a), g € W(R) is equal to {0}, whence a contradiction
since for x in by, &;(x) # 0 as an element of a basis of h by [Ko63, Theorem 9].

As a result, for all x in a dense open subset of L., €;(x) is a regular element of g and [. Let x
be in I, such that &;(x) is a regular element of g and [, and d; a simple factor of I. As g®™ is a
commutative algebra, d; is not contained in g%, Hence the component of &;(x) on b, is different
from 0 since [6® = &,

(i1) Let x be in b such that a;(x) = 0. Then v; and wy are in g*. As g; is a G equivariant map,
£;(x) is in the center of g* so that

0 = [&i(x), ] = agogi(X)uy.

As a result, the nullvariety of a; in ) is contained in the nullvariety of @;-g;. Hence «; divides
aieog; in S(h) since S(h) is a factorial ring and «; is a prime element. As &; is homogeneous of
degree d; — 1, the quotient a,o€;/a; is homogeneous of degree d; — 2.
(ii1) Let x be in }) such that a(x) # 0. Then
t

ai(x)

exp( adwy)(x) = x + twy.

As ¢; is G-equivariant,

gi(x + twy) = exp( adwy)og;(x),

a(x)
whence
&i(x + twy) = £i(x) + 1p;p(X)wy
by (ii). O
Fori=1,...,¢and x in g, denote by &; _(x) the element of p_, such that &;(x) — &; _(x) is in p.

Lemma 8.2. Leti=1,...,¢.
(1) For uniquely defined functions a; ji, 1 < j, k < d ink[p], the polynomial map
t— g _(x+1ty) - Z Kvj, y)a; j(xX)wy
1<jk<d
is divisible by * in k[t] ® p_ for all (x,y) in p X p_,.
(ii) For 1 < j,k < d, a; ji is homogeneous of degree d; — 2.

(i) For 1 £ j, k < d, the function a; j has weight a; — a;j with respect to the adjoint action of
b in k[p].
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Proof. (1) Let (x,y) be in p X p_,. According to Corollary 2.5, &(x) is in p. Moreover, &;
is homogeneous of degree d; — 1. Hence the polynomial map ¢ — ¢&;_(x + ty) has a unique

expansion
di-1

gi-(x+1y) = Z Z Z tlrlvr(y)ai,r,k(x)wk

d
k=1 =1 renvd
with the a;,, ink[p]. For j = 1,...,d and r in Nf such that r; = O for [ # j, set a; jx := @i
Then the polynomial map

t— g _(x+1ty) — Z Kvj, y)a; j(xX)wy
1<jksd

is divisible by 7% in k[f] ® oy
(i1) As &; is homogeneous of degree d; — 1, so is g;_ and for (s,x,y) in k* X p X p_,, the
polynomial map

t—eg_(x+1ty) - sl Z Kvj, sy)a; jr(sx)wy
1<jk<d

is divisible by #* in k[#] ®; p_,. Hence the a; i s are homogeneous of degree d; — 2.
(ii1) Let g be in H. As g; is a G-equivariant map and p_, is invariant under H, ¢;_ is H-
equivariant. Then, for (x,y,#) in p X p_, Xk,

g.ci—(x+1ty)— Z Kvj, ya; jx(x)g.wi = &;-(g(x) + tg(y)) — Z Kvj, y)a; i (X)g.wy.
1<jk<d 1<jk<d

By (i), the polynomial map

to & (g0 +1g@) = D Koy gW)ai jxg(x)uw
1<jk<d

is divisible by 7% in k[#] ® p_,. Then
<Uj’ g(y»ai,j,k(g(x))wk = <Uj’ y>ai,j,k(x)g-wk
for all (x,y) in p X p,. As aresult,for1 < j,k <dand xinb,
aj(X)a; jx + [x, a; ;1] = ax(X)a; ji,
whence the assertion. O
Denote by m;< - -- <my the strictly increasing sequence of the values of the map
R \ Ry

For j=1,...,d’, let I; be the set of indices i such that @;(z) = m; and set:

N, a — a(z).

d/
j k
0, = span(luy [ ke I, powy = P %
k=
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Corollary 8.3. Let j=1,...,d andi=1,...,¢.

(1) The space 1+ p_,, ; is a subalgebra of g and [y_, j, V-, ] is contained in p_, j.1 with
J" = sup{j, j’}.

(ii) For j’ > jand (k, k') in I; X I, ajxp = 0, and for (k, k) in 1; X I;, a;x is in k[I].

(iii) Let j = 1,...,d". For x in a dense open subset of V), the matrix (a;x (x), (k,k") € I; X I;)
is diagonal and invertible fori =1,...,¢.

Proof. (i) For ji, jo=1,....d" and (k,k') in I;, X I,,

[z, [wi, we]] = —(mj, + mj,)[wy, wy]

(1), ,(2)
s that [pZ p-y ] i
is contained in p(_jlz for all j'.

(i1) For 1 < k, k' < d, the function a; 4 on p has an expansion

]is contained in p_, j,+1 with j3 := sup{jj, j»}, whence the assertion since [I, p(_’jg]

Aijp = Z w'ayixe With  a, . € k[I].

ueNd
For (s, x) in k* X [ and
Yy =yop + -+ Yalg € Py,

d

é/(s)'gi(x + y + twk) = 8,‘()(,' + Z sa’(z)ylvl + tS_ak(Z)wk)
=1

since &; is G-equivariant and z is in 3. Then, by Lemma 8.2(i), for k in [;,

d d
20 25 O Wi G = ), ) ST g (e

k=1 yend k=1 yeNd
whence
Aipe () #0 = m; — ap(z) = wa (2) + - - - + gy (2).
For j > jand k" in I;, ap(z) > m;. Hence a,;x = 0 for all u in N since the integers
a1(2), . ..,a4(z) are positive. Moreover, for k" in I, a,;; = 0 if u is different from 0, whence

the assertion.
(iii) Let k be in I;. By Lemma 8.1(iii),

L) if k=K
“““”:{pg) i kK

By Lemma 8.1(1), for all x in a dense open subset of o, pir(x) # O fori =1,...,¢. As aresult,
for such x, the matrix (a;xx (x), (k,k") in I; X I;) is diagonal and invertible. O
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8.2. Some functions different from 0. With the notations of Lemma 8.2(i), fori = 1,...,{
and 1 < j,k < d, denote by af’}’)k the 2-polarization of a; ;; of bidegree (d; — 2 — m, m) for
m=0,...,d;—2. For (i, m) in Iy, let y;,,, be the map

hxph— > Sm+1(b) , (x,y) —> Z(_l)m—jxjym—jggj)(x, y).
=0

Lemma84. Letk=1,...,d,i=1,...,0andm =0,...,d; —2. For (x,y)inh XD,

ak(x)m+1 z(’Z)k(x y) m+1 (wt m ()C y))

Proof. According to Lemma 8.1,(i1) and (iii),

ai(gi(x) = ax(X)aipi(x) and  a;(x) = pir(x)

for all xin f. As aresult, for all (x,y) in b X b,

di—-1 di-2

di—1
D s"apes!" (x,y) = an(x + sy)aipalx + sy) = Y s"ap)al (xy) + ) s"a)aly(xy)

m=0 m=0 m=1
for all s in k, whence

a(aly, (x,y) + eyaly(x y) = aes!™ (x, )

form =1,...,d; — 2. Then, by induction on m,
()" (x.y) = Z( D) )" Tanes? (x, ) = & Win(x,y)

Jj=0

form=0,...,d,—2. O
For (i,m)in I, and 1 < j,k < d, set:

1 1 -l
G W LR UBELY
(Lm")ell

and a; jw, ((i,m), (j,m")) € I, X I§ as in Proposition 7.6. For (i, m) in I,, denote by ¢; ,, the map

Pim

b, X h —————= S™(h) , (X y) — Yim-1(x,y) — Z i o (6, X" W -1 (X, ).
(j,m’)EI;,0
Proposition 8.5. Let (i,m) beinl, andk = 1,...,d.
(1) For jin{l,...,d} \ {k}, the restriction ofbg,mj;) to b, X b is equal to 0.
(11) The restriction of bg:;{l) to b, X b is different from 0.
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Proof. (i) According to Lemma 8.2(iii), the functions agﬁz, (I,m’) € Iy have weight a; — a; with
respect to the adjoint action of h in k[I, X p]. As the functions a; 1w, (i,m) € I, (I,m’") € I are
invariant under L, the function b(m Y has weight a; — ;. Then the restriction of b(m Yto b, XD
is equal to O since a; # a.

(i1) According to Lemma 8.4, for (x, y) in b, X b,

LB (xy) = @ (@im(x, ).

By definition, ¢; ,(x, y) has an expansion
Gim(X,y) = S (1Y yle ) (x, ) —
Sametry Lo (<1 i O )Xyl " (x, ).

Then ¢; ,,(x, x) = xm‘l‘p;,m(x) with ¢} in k[D.] ® b defined by the following equality:

@1 (X = 2 (=D, i) -
Saamrery Zimo (<150 )aim i ( )E(2)

by Lemma 7.7(iii). Hence gog,m is in the free submodule of k[b.] ®. ) generated by &y, ...,&,.
Moreover, by Proposition 7.11, its restriction to b.. is equivariant under W(XR) since so are
El1y,...,E¢.

Denote by ¢; , ; the coordinate of ¢;  at &;. With the notations of Subsection 7.2,

a-
-nH™ 190:"“()6) =r(m,d;— 1) — Z( D" v, d; — D)a; i (X, X)
m'=1
for all x in b.. Then, by Corollary 7.8(iii), ¢;,, # 0. Suppose akogo;,m(x) =0 forall xin},.,. A
contradiction is expected. Then g.ao;, (x) = 0 for all (g, x) in W(R) X b... As g is simple, so is
the W(R)-module b*. As a result, h* is generated by g.ay, g € W(R) and ¢], (x) = 0 for all x in
b.., whence the contradiction. Then the function x — a7} M+l (i m(x, x)) on b, is different from O
since a;(x) # 0 for x regular in b, whence the assertion. O

9. AT THE NEIGHBOROOD OF A SEMI-SIMPLE ELEMENT [l
Let p be a parabolic subalgebra of g containing b. We then use the notations
I’ Pu, b9 35 :R'I’ L9 da d()s I*a s §9 109 I(/)3 Iu’ p-, p—,u

of Section 8. For (i, m) in I, the restriction of egm) to [, X g is again denoted by egm). The usual
gradation of k[g] induces a gradation of the polynomial algebra k[l. X g] over k[I.]. From the
direct sum

g=pOdPp_y,
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we deduce the inclusions
k[p] ck[g] and K[l x p] C k[l X g].

Moreover, k[I, X [] is a subalgebra of k[I, X g]. Set B := k[, X g] ®g(4xq) Bq-

9.1. Decomposition of B. As k[l xp] is contained in k[[.Xg], the sequence a; , j,w, ((i, m), (j,m’)) €
I, X I} of Proposition 7.6(ii) is contained in k[l X g]. For (i,m) in I, let vgm) be the element of
k[l x ¢] ® g,

ng) = 8Em) _ Z i jmr 8§m’).

(jm")el

Denote by By and B, the submodules of B generated by the sequences sgm), (i,m) € I and
vgm), (i,m) € I, respectively. Let J and J_ be the ideals of k[l X g] generated by 1ep, and lep_,
respectively.

Proposition 9.1. For (i, m) in Iy, let & be the restriction of £ to 1, X L

(1) The modules By and B, are free of rank b, and d respectively. Moreover B is the direct sum
of By and B,.

(i1) The sequence sgm), (i,m) € I is a basis of B.

(ii1) For (i,m) in I,

8(.m) _ S(m)

i i

€J®kp_,u+J_®kpu+JJ_®kI.

@iv) For (i,m) € I,

VW e T @ p_y+J_ @y Py +JJ_ @ L.

Proof. (1) By Lemma 6.1(i1) and Theorem 2.2(1), B is a free module of rank b, generated by
sg"’), (i,m) € Iy. Then By and B, are free of rank b, and d respectively since |I{| = b and |1,| = d.
Moreover, B, is a submodule of B and B is the direct sum of By and B,.

(i1) The assertion results of Lemma 7.5(i1).

(i11) Let (i, m) be in 1. As J is the ideal of definition of I, X p in k[I, X g],

ng) — ng) eJ X p+J g
by Proposition 7.6(i). Moreover, & and &!™ are invariant under L, whence the assertion since
an element of J®j g, invariant under the one parameter subgroup ¢ — (), is in J®, p_, +JJ_& L.

(iv) As ng) is a linear combination with coefficients in k[I, X [] of sg'") and eg.m )\ (,m') €I,

the assertion results from (iii) and Proposition 7.6(ii). O



COMMUTING VARIETY 43

9.2. Some expansions and invertible matrices. Letv,,..., vy, wy,...,w, be asin Subsection 8.1.
Let 3 be the union of {0} and the set of strictly increasing sequences in {1,...,d} and for
L=10<---<i;inJ, set:

{¢d :=Hir, ..., 05 le| = J, v =0 A A, W, = wy A Awg;
By definition, v, and w, are in A\"(p,) and /\"'(p_,u). Fort =0, |t := 0and v, := w, := 1, and for
lt| = d, uy :=v, is a generator of /\d(pu). For j=0,...,d, set:

o~

I:={teI =, and A;:={rx)eN xJ||r =l =j.
Let 1., I;,o’ Iy be the sets:
I*,O = {(l’ m) € IO | m > 0}3 I;’() = I(’) N I*,()’ IO,* = {(l’ m, k) | (l’ m) € I*,()’ k € {19 .o 9m}}'

Denote by /), and /. the inverse images of I/ , and /, by the canonical projection lo, — Lo .
Set:

—_ —_ —_ (m) — (m)
&o = /\(i,m)el(’)ggm), 00 = EIN - NEy, e, = /\(i,m)e1;’08,-m I /\(i,m)eIuV,-m

For some ¢, in {—1, +1},
&y = €& N 8];’0.

In these equalities, the order of the products is induced by the order of ;. Then &, and v, are
generators of /\b‘ (Bp) and /\d(Bu) respectively. Moreover, the restriction g; of g to I, X [ is a
generator of A" (B and e =gy Av,isa generator of A (B) by Proposition 9.1(i).

By Proposition 9.1(iii), for (x, y,y’) in [, X pXp_, and (i, m) in [] and (j, [) in I,,, the polynomial
maps

t— sgm)(x, y+ty') and t+— vg.l)(x, y+ty')

have an expansion

m m m
k k k
&y +1y) = &0 y) + Y P 6y y) + D @iy y) + D P ooy, y)
k=1 k=1 k=1

m m m
) ’ ) ’ ’ ’
V;)(X, Yy + IU ) = VE')(-x’ .1/) + Z tkwj,l,k,—(-x’ Uy ) + Z tkwj,l,k,+(-xa Yy ) + Z tkwj,l,k,O(-x’ .y )
k=1 k=1 k=1
with
Wi m k,— € k[I* X p] B Sk(pu) ®x P Wi mk,+ € k[l* X p] B Sk(pu) B Pus
wi,m,k,() € k[I* X p] ®k Sk(pu) ®k [
for (i, m) in I. For I subset of I, , K subset of I, and I’ subset of [ ., set:
g = /\(i,m)elggm), Vg = /\(i,m)eKV,(-m)s Sp = Z k,
(i,mk)el’

Wy = Nimbel Wimpk,—>  Or 1+ = Nimbel Wimkrs  Oro = Nimkel Wimk,0-
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In these equalities, the order of the products are induced by the orders of I, and /.. For K subset
of Iy.., denote by K* the image of K by the projection (i, m, k) — (i,m). When Sk = |K|, we
identify K and K*.

FortinJand j=0,...,d, set:

g:=uANe and K;:={KcCl,|IKl=d-j}.

Lemma 9.2. Let j = 0,...,d, v in J; and (x,y,y’) in I, X p X p_,. Denote by c,(x,y,y’) the
coefficient of t’ of the polynomial map t — &,(x,y + ty’).

(i) The polynomial map t — &,(x,y + ty’) is divisible by t/ in k[t] ® A\ (g).

(i1) For a well defined map

€

JC] {_1’1} s

06y, y) =y, ) € D we A NTHO AZ ) Ap

x|<j
with

Ay, y) = Y €(K)o ABs(x, ) A vi(x,y) A ik (%Y, ).
KEij

(i11) For K in X, for well defined functions a,, k,, (r,k) € A; ink[l, X p],

e(K) v, A Eo(x, y) Avi(x, y) A wizk-(x,y,y) = Z V(Y )ik (X YW A Eo(X, Y) A .
(r,EN

Proof. As & = &) A v,, the cofficient of #* of the polynomial functions t — &(x,y + ty’) is the
sum of the value at (x, y, y’) of products

el,K,I_,K_,I.,K,,I.,K.)soo Nt NVk ANw - Nwg - ANwy, + N Wk, + AW, 0 AWk, 0
with
Icl,, Kcl, I.clk, K chl. I.cl, K.Cl. I.Cl
el,K,I_.,K_,I,,K,,I.,K.)e{-1,1}

Ki - Iu,*9

,*,

such that
ivrfrvrfrur =1urfurur, Kkuk'uktuK'=KuK* UK LKE,
U+ 1+ |+ 1 =n—d, |K|+ K"+ |KE| + K| =d,
S +S8, +S.+Sk +Sk, +Sk. =k.
For |K| + || + |K}| > d — j,
LAEOANEINVEKANW - NWk - ANWp, 4+ NWk, + AW, o AWk, 0=0
since vg(x, y) is in /\'K'(pu), whence

K|+ + K| <d-j, j<I|K'|+|KE -1,
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|+ ||+ 18] + |K®| + |KH )+ | KE < k
since
I+ 1)+ 1 + K+ K+ K <8 +S;, +S, +Sk +Sk, +Sk,.

As a result, the coefficient of #* of the polynomial map 7 — &,(x, y + ty’) is equal to O when k < j
and for k = j, it is the sum of the value at (x, y, y’) of the products

el,K,I_,K_,I.,K;,I.,K.))v, Ngoo Nt ANvg ANwy - ANwg_ - ANwy, - A\ Wk, o

with
K|+ ||+ K <d-j, j<I|K*|+|K! - I,
=1 =8, LI=If=S,, |LI=If=S,,
K |=1K*|=Sk, |K=IK'=Sk, IK=IK|=Sk.,
whence

Ll ==L =K =0, I=IL, |Kl=d-j |K|+|Ksl=].
For K in X, set:
€(K) = e.e(l}, K, 0,1, \ K,0,0,0,0).

Then, by Proposition 9.1,
clxy.y) = D €(K)v ABG(x, 1) A v, y) A wik (54, 5) € D we A NTHO) ABGCx ) A g

KeX; IKl<j
since

v A £00(X) Aep (X, y) Avk = € A Ey(x, y) A vg(X, y)

and |[K.| > 0 when K_ C I, \ K. Moreover, for K in X, for well defined functions a4, k,, (r,«) €
Ajink[l, X p],

e(K)v, AEo(x, y) Avi(x, y) A wiyk-(x,y,y) = Z V(Y )i (X Y)we A E(X, Y) A fhos

(rEN
whence the lemma. O
For (i,m)in Iy and k = 1,...,d, denote by bg”,:_l) the coordinate of w;,, ;- at w;. Then bg”,:_l)
has an expansion
d
(m—1) _ (m—1)
b = Z vieb;
=1
with bg’l",:D homogeneous of degree m — 1 ink[l. X p]. For j=1,...,dand r = (ry,...,ry) in Nj?,

define an increasing sequence j;< - - - < j; by the following conditions:

e ji is the smallest integer such that r;, # 0,
e j. is the smallest integer bigger than j,_, such that r;, # 0.

and denote by r/,...,r; and uy, ..., u; the sequences defined by the following conditions:
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/ / /
o =r andr), = o

e u,=jform=1,...,r,

+ rjm’

o u,=jiforr_+1<m<r,.

For (1,k) in 3; X 3; and K in X, let B, x be the element of k[I, X p]:

Bk i=det®@™ D 1 <LI'<j) with I\K=((G,m)<-<(@;m), k=ky... .k

ipupkp?

and ak, the function in k[I, X p] such that
U ANE) A VK = agEo N s

Lemma93. Let j=1,...,d,tinJ;, KinX; K_:=1,\ K.
(1) The map wg_ - has an expansion

— r
Wk - = Z Z V' B,y gWy-

rEN;? KET;
(ii) For k = ky,...,k; in3; and r in N? suchthatry, = 1forl=1,...,j, Bxx # 0.
(1) For all (r, k) in A},

ib
Ary Ky = (_ 1)J ! G(K) aK,LBr,K,K'

Proof. (i) Let (x,y,y’) be in [, X p X p_,. Denote by (i;,m,), ..., (i;,m;) the elements of K_,
ordered so that the sequence is increasing. For « in J;, let wg__ , be the coordinate of wg _ at
wy. By definition, for x = ki< - -- <k;j,

WK -y = det(bg"z;l), 1<LI'<j) whence wg _,= Z V' B,y k-
reN?
J
(i) Let (x,y,y’ ) bein [, X pX p_,. By Lemma 8.1(i), for/ = 1, ..., and s in k, the polynomial
map

t— g _(x+ sy +sty') - Z st(uy,, Y dag, (X + sy)wy
1<l k<d

is divisible by #? in k[f] ® p_,. Hence the polynomial map
t— sgf/)(x, y+ty')— Z Koy, y’)a%;l)(x, Y)wy
1<1y k<d
is divisible by 7% in k[¢] ® p_, form’ = 0,...,d; — 1. By definition, for (i, m) in I,

(m) _ _(m) (m’) (m) ._ (m) (m’)
v, =g — Qi €, and v;_ =g - Aimim €,

(m")el] (Lm")el]

&

with a; .1 ,» homogeneous and L-invariant element of k[L. X []. So, the polynomial map

(m-1 —1
to Pyt = Y Koy @ @y = Y G ydal o )
1<l k<d (m")el



COMMUTING VARIETY

is divisible by 7% in k[¢] ®, p_,. As aresult, foru,u’ = 1,..., j,
u 1 ” 1 '_1
bl(;nk k)/ (x y) = af:nku ku)/ (x’ y) - Z a;, my,lm’ (x’ y)ag”zu’ku/) (x’ y)
(m")el]

so that b(m“ o is the element of k[I, X p] defined in Subsection 8.2. By definition,

Bk = det(b" ) 1 <u,u’ < j),

According to Proposition 8.5, the restriction to . X b of the matrix

u 1 s
B < <)

is diagonal and all its diagonal entries are different from 0, whence the assertion.
(i) By (i),
LAEAVE AWk - = Z U'B kU NEgANVK AW, = Z U By x k@K, €0 A s A Wy,
(rk)EN (r,)EN

whence the assertion by Lemma 9.2(iii).

Forj=1,...,d, (1,k)inJ; x J;, K in K, set:

. r o r
BK,K D § 1% Br,K,K’ aK,L - E E % ar,K,K,L?

reN? reNd KeX;
J J
Pj = det(a,(,t, (t,k) € Sj X Sj)’ Qj = det(BK,K, (k,K) € Sj X g(:j)

Corollary 94. Let j=1,...,d.
(i) For some (x,y,y") in . x pX p_y, Qi(x,y,y") # 0.
(i) For some (x,y,y") in L, X p X p_y, Pi(x,y,y’) # 0.

47

Proof. (i) Prove the assertion by induction on j. By Lemma 9.3, the assertion is true for j = 1.
Suppose that it is true for j — 1. By induction hypothesis and Lemma 9.3(i1), for all (x,y,y’) in a
dense open subset of [, X p X p_, Qj-1(x,y,y") # 0 and B, x(x,y,y") # Ofor[ =1, ...,d and for
all (k, K) in 3; X X;. Let (x, y,y’) be in this open subset of [, X p X p_, and ¢, « € J; in k such

that
Z CKBK,K(-xa Y, y’) = 0, VK € :Kj.

'~
KE\S]

ForKinX;and/=1,...,j,set:
K_ =L\ K :={G1,m),....Gm)} and K := K U{Gi,m)),
and for  in 3, denote by " the element of J;_; such that {«} = {k} \ {k;}. Since

Bux = ety 1< LI < ),
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forl=1,...,],
J
' (=1
BK,K = Z(—l)l+l bg:zy )BK(I’),K(I),
r=1
whence
J
Z Cx Z(_l)l bl('l’tlkl[jl)BK(V),K(’)(x7 y,y') =0.
Kked; =1
For (i,m) in 1, let X;_,(i, m) be the set of elements K of X;_;, containing (i, m), and for K in

X -1(i, m) denote by K™ the element K \ {(i, m)} of Xj. Fork = ky,...,kj—1 in J3;_;, denote by I,
the subset of {1, ..., j} defined by the following conditions:

=1 and 2<k
l €I, if and only if =] and kin<d-1
1<l<j and ki1 +2<k

For /in I, let a,; and b,; be in {1, ..., d} defined by the following conditions:

. 1 it I=1 d if =]
T ke +1 if 2< TV k-1 i I<j-1

and for k in [a,, b, ], denote by k** the element of J; such that {«} is contained in {«**} and k is
the I-th element of the sequence «*/. Setting

€=k, Lk)yeJj i x{1,....,jyx{1,....,d} |l €l and k€ [ay,bl},
the map
& ———=3;x{l,...,j}, (k, 1, k) — (", 1)
is bijective.
For (i,m) in I, and for k in J;_;, set:

bK.l
Cim= D > (Dleablt ™ (x.y.y).

IEIK k=a,<’]

Then, for K in X;_;,

Z C;,i,mBK,K(x’ Y, !/) = Z (_1)lckl'kb§,r:_1)(x’ Y, y,)BK,K(x’ Y, !/) =

KESj-] (K,l,k)eél

J
D D Dby y B k(% y, ).

KESJ' =1

As aresult, by the above equalities,

Z CrimBex(x,y,y') =0, VK € K (i, m).

KESj_l
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For Kin X;; \ X;_;(i,m) and k in J;,

J
S U B =0
I=1
as the determinant of a matrix having two equal lines. Hence
Z CrimBex(x,y,y') =0, VK € K.
KGSj,l
Since Q;_1(x,y,y") # 0, for all k in J;_; and for all (i, m)in I, c,; = 0.

K,i,m

Let k be in J;_;. Denote by N, the cardinality of the union

U [aw1s Dr.l,

lel,

and k. the element of Jy, equal to the ordered sequence of this union. As for K in Ky,
B k(x,y,y’) # 0, cax = 0 for all / in [, and all k in [a,,, b, ] since c;’i’m = 0 for all (i, m) in
I,. As aresult, ¢, = 0 for all k in J;, whence Q;(x,y,y’) # 0.

(i1) As the vgm), (i,m) € I, are linearly independent over k[l X p], so are the vk, K € X;. So,
by (1), for all (x, y, y’) in a dense open subset of [, X p X p_, Q(x,y,y") # 0, &y(x,y) # 0 and the
vk(x,y), K € X; are linearly independent. Let (x, y, y’) be in this open subset of [, X p X p_, and
Cx, kK € J;in k such that

Z ek, (x,y,y) =0, Vied,
KE;
By Lemma 9.3,(iii), for all (¢, k) in J; X J;,
a = ) (=)™ e(K) a, By,
KeX;

whence
Z e(K)ag, (x,y) Z cBex(x,y,y") =0, Yiesd,.

KeX; KE;
Then, setting:
C}( = Z Ckf(K) BK,K(xa Y, y,)

KESJ'
for K in X,
0= Z Cxak. (X, YEo(X, y) Ay = Z cxU A Eo(x, y) A vi(X, y), Vies,.
KEKJ KEKJ
As aresult, for all ¢ in J;,

Z v, A vi(x,y) = 0.

KEij
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Since v, ¢ € J; is a basis of /\j(pu),

Z C,KVK(X’ y) = 0

KeX;
so that
> ce(K) Bek(x,y,y) = 0
KET;
for all K in X; since the vg(x, y), K € X; are linearly independent. As a result, the ¢,, k € J; are
all equal to O since Q;(x,y,y") # 0, whence P;(x,y,y’) # 0. m]

9.3. An other expansion. Let dy,...,d, be the simple factors of d when 3 is strictly contained
in [. Set:
nyi=by =y, o.oo, Ny i=by — by,
so that
n—d=ni+---+n,.
As g is the direct sum of 3, dy,...,d,, Py, Py, fori = 1,...,n, k[d;] is a subalgebra of k[I] and
k[g] and k[I, X d;] is a subalgebra of k[I. X g]. Set B; := k[l X g] ®xjv,x»,] Bo,. Then B; is a free
submodule of rank b, of k[I, X g] ® d;. According to Lemma 7.1(ii), for some A;, ..., d;, in
B,,, the k[I, X g]-module B; is contained in the submodule generated 4, 1, ..., 4;,, and P , 8;0)
so that B; A €1s generated by 4;; A€, ..., iy, A E.
Let J be the union of {0} and the set of strictly increasing sequences in

1>

{G,pli=1,...,n, j=1,...,n}.
Forvin3,i=1,...,nand j=1,...,n—d, set:
vy ={ir,....0i}, =k, Ayi=A4,A AN,
= el @D, .Gl Jj=weI k=g 3 =303,
Forv=0,|v|:=0and 4, =1. ForvinJand j=0,...,n—d, set:
g = ANe and J;:={ICLg|lll=n-j and [INI>n~-d-j}
For (x,y,y’) in I, X p X p_, and (i, m) in [, the polynomial map
t— egm)(x, y+ty)

has an expansion

m m m
k k k
& (xy +1y) = & (x,y) + Z P Wik~ y,y) + Z P Wimk (XY, y) + Z F Wimk (%4, Y')
k=1 k=1 k=1

with
wi,m,k,— € k[I* X p] ®k Sk(pu) ®k p—,ua wi,m,k,+ € k[l* X p] ®k Sk(pu) ®k Pu,
Wimko € K[L X p] @ S¥(py) @ L.
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For I’ subset of [, set:

Wy = Nimbel Wimpk,—>  Or 1+ = Nimbel Wimkrs  Oro = Nimkel Qimk,0-

In these equalities, the order of the products are induced by the orders of [ and I...

Lemma 9.5. Let j=0,...,n—d, vinJ;and (x,y,y’) in |, X p X p_,. Denote by c,(x,y,y’) the
coefficient of t’ of the polynomial map t — &,(x,y + ty’).

(i) The polynomial map t — &,(x,y + ty’) is divisible by t/ in k[f] ®,. \**/(g).

(11) For a well defined map

oy, ) = x5y, y) € P we A AT A B0 p) A s

kl<j
with

Xy, y) = > €) A (x ) A 800(X) A E1(XY) A wp 1065 Y).
IEHJ'

(iii) For I in g, for well defined functions a,.1,, (r,k) € A in k[l X p],

e(1) Ay (%, ) A £00(X) A 8106 1) A @i (6 y) = D 0 Y )06 YW A B ) A s
(r,EN

Proof. (i) As already observed in the proof of Lemma 9.2, the cofficient of #* of the polynomial
function t — &(x, y + ty’) is the sum of the value at (x, y, y") of products
€, 1,1, 1) €00 N ET AWy - AWy, + AW, o
with
Icly, I-cly.,, I.,Cl, I.Ccly. €elI.,I,I)e{-1,1}
such that
[vrtvrturf =1urfurfurlt, |+ +|F+|IF =n,
S -|'SIJr '|‘S]i =k.
According to Corollary 2.7,

d
/lU A £0,0 NErE @ /\|I|+j+€_m(BI) A /\m(pu)

m=0

Then
I +|f|<n—j whence j<|I*|+|If|<k.

As a result, the coefficient of #* of the polynomial map ¢ — &,(x, y + ty’) is equal to O when k < j
and for k = j, it is the sum of the value at (x, y, y") of the products

e, I_,1,,I.)A, Nggp Ner ANwp - AN wy, -
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with
J=1E+IE, =0, |L|=fl=S,, ILI=If=S5,.
So, in any case,
(X, y) A £00(x) A &1(x, y) € To(x, ) A N(p0).
For I'in J;, set:
e€l) =€ee(l,1.o\1,0,0).
Then
(XY, ) = ) €D A (x,y) A Bop(x) A &1, ) A wr, (X, y) €

Iegj

D we A NI A B ) A g

|kl<j
since || > O when |I_| < j. Moreover, for I in {;, for well defined functions a,;,, (r,k) € A; in
k(L. x p],

€(1) A,(x,y) A £00(x) A £106 1) A wr (5 y) = D 0@ )% e AT(X Y) A s,
(rKEN;

whence the lemma. O

10. SOME SPACES RELATED TO PARABOLIC SUBALGEBRAS
Let p be a parabolic subalgebra of g containing b. We then use the notations
Lope, b 3 Ry L, d dy, L, z, ¢ L, I, L, »., p_y
of Section 8.

10.1. An equivalence. For ¢ in k[l X g] ® A(g), ¢ has a unique expansion
¢ = Z o Av, with ¢ € k[l X g] & A(p-)
€3
and for ¢ in 3, ¢, has a unique expansion
Y = Z o ANw, with ¢, € k[l x gl ® A().
IGN
For all (1,«) in I X 3, ¢, has a unique expansion
Gui = Z Ur(Pr,L,K with Prox € k[l* X p] B /\(I)
reNd

For [ nonnegative integer, let P; be the subspace of k[I, X g] ® A (g) defined by the following
condition:

peP=(rl+ll#]= ¢...=0).
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By Proposition 2.3 and Lemma 6.3(i), C is a free submodule of rank n of k[l X g] ® g,
generated by the maps

(X, y) — [x, &, ), (G,m) € L.

For v in C, denote by ¢, the k[I, X g]-derivation of the algebra k[I, X g] ® A (g) such that ¢,(v) =
(v,v) for all v in g.

Lemma 10.1. Let V be a subspace of g such that V is contained in a complement to V., in g for
all (x,y) in a dense open subset of Q. N1, X p.

(1) Forvin p, and w in p_,, ,(v) and v,(w) are in J and J_ respectively for all v in C.

(i) Fork =1,...,dimV and ¢ in k[1, X p] @ /\k(V), if t,() = 0 forall v in C, then y = 0.

Proof. (i) By Proposition 9.1(iii), for all (i, m) in I,
[x, &1 € K[L X 8] @ [+ J @ p_y + J_ @ Py,

whence the assertion.

(i1) Suppose that ¢, () = 0 for all v in C and prove the assertion by induction on dimV. As V
is contained in a complement to V., in g for all (x, y) in a dense open subset of Q. N [, X p, for
vin V,v = 0 if and only if ¢,(v) = O for all v in C since V., is the orthogonal complement to
[x, V.,] for all (x, y) in Q, by Proposition 2.1(iv). As a result, the assertion is true for dimV = 1.
Suppose dimV > 1 and the assertion true for the subspaces of V. Let V' be an hyperplane of V
andvin V \ V'. Then

Y=vAY +io
with ¢/ in k[I, x p] @ A*'(V’) and v in k[1, X p] ® AX(V). As 1,() = 0 for all v in C,
L@) =0 and Y +uWh) =0,
whence ' = 0 and ¥y = 0 by induction hypothesis, and ¢ = 0. |
For [ nonnegative integer, denote by M, the subspace of elements ¢ of k[l X g] ® A (g) such

that ¢ A gisin J'® A(g). Fork = 1,...,n, denote by P, the intersection of P; and k[L, X g] ®;
/\k(g). For ¢ in M; and v in C, ¢,(¢) is in M, since ¢,(g) = 0.

Lemma 10.2. Let k = 1,...,n, l a positive integer and ¢ in P.
(1) The element ¢ is in M,.
1) If ¢rix N €0 = 0 for all (1,1, k), then ¢ is in My,,.
(ii1) Suppose that ¢ is in k[1, X g] ® /\k(p). If pisin My then ¢,, o A €y = 0 for all (r,0).

Proof. (i) Let (x,y,y’) be in [, X p X p_,. According to lemma 9.2 and the notations of Subsec-
tion 9.2, for j=1,...,d and ¢ in J;, the polynomial map

t— o Aelx,y+ty)
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is divisible by #/ in k[f] ® A (g) and the coefficient ¢,(x, y, y’) of ¢/ satisfies the relation

Q6 y) = D ey, y e A (%, y) Aty €

/ .
K€

D we A N0 A ZG ) A g

k1< j

Hence the polynomial map
t— o(x,y+ty') ANelx,y +ty')

is divivisble by # in k[f] ®; /\k(g) since ¢ is in P;;. As aresult, ¢ is in M,.
(i1) Suppose that ¢, A €y = 0 for all (r, ¢, k). By the above relation, the polynomial map

t— o,y +ty') Ne(x,y+ty')

is divivisble by #*! in k[f] ® /\k(g) forall (x,y,y")in . X p X p_,. Hence ¢ is in My,,.

(i) As ¢ is in k[I, X g] ® /\k(p), ¢r.x = 0 for k # 0. Suppose ¢,, o0 A g # 0 for some (r,¢). A
contradiction is expected. Denote by A(¢) the biggest integer j such that ¢, o A €y # O for some
(r,t) in Nj’_j x 3;. By (ii), we can suppose ¢,, o = 0 for [¢| > A(¢). As the polynomial map

t— o,y +ty') Nelx,y +ty')

is divivisble by #*!,

Z Ay Z UrQDr,L,() ANey =0, Y. € S,l(‘p),

d
KEJ A(p) reN )

by maximality of A(¢). By Corollary 9.4(ii), for all (x, y, y") in a dense open subset of [, X pXp_,,
the matrix

(aK,L(x’ y7 y,)’ (L’ K) € SJ(QD) X S/1(90))

d

is invertible. Hence ¢, 0 A €y = 0 for all (r,¢) in N7_ Ae)

X 3> Whence the contradiction. m|

Proposition 10.3. Let k = 1,...,n, [ a positive integer and ¢ in P ;. Then ¢ is in M, if and
only if ¢« N €y = 0 for all (r,, k).

Proof. By Lemma 10.2(ii), the condition is sufficient. Suppose that ¢ is in M;,;. By Lemma 10.1(i),

D VL) AW AT+ D U G A (W) A, € My
(k) (riK)
for v in C since ¢,(g) = 0. Prove the assertion by induction on k.

Suppose k > 1, the assertion true for kK — 1 and the proposition not true for k. A contradiction
is expected. Denote by j the biggest integer such that for some « in J;, ¢« A g # 0. By
Lemma 10.2(i1), we can suppose

k| > j = ¢x = 0.
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By Lemma 10.2(ii1), j > 0. By the above relation and the induction hypothesis,
W) A =0, YO, e CAN'XI X,

by maximality of j.

Let (r,t, k) be in N¢ x 3 x 3. Set k' := k— j—|u. Then ¢,(¢,.«) A &(x,y) = 0 forall (v, x,y) in
C x I, X p by Corollary 2.7. For some principal open subset O of Q. N1, X p and some subspace
V of g, V is the complement to V., for all (x,y) in O. Then

Grclo =¢ +¢” with ¢ €k[O]® A¥(V) and ¢"(x,y) € A* (@) AV,,

for all (x,y) in O, whence ¢,(¢’) = 0 for all v in C. As a result, ¢ = 0 by Lemma 10.1(ii)
and ¢, A g = 0 by Corollary 2.7 since ¢, is in k[l X p] ®x /\k/(I) by definition, whence the
contradiction.
Fork =1,
@r00 EK[L X Pl ® I,  @ro; €kl XD, o0 €K[l X p]
for j=1,...,d, whence

d
L(@roo + Z prowj) A e(x,y) =0
j=1
for all (r,v) in Nf x C and all (x,y) in I, X p by Lemma 10.1(i). Then, arguing as above, by
Lemma 10.1(ii), for all r in N¥, ¢, 09 A& = 0 and ¢,o,; = 0 for j = 1,...,d. As a result, by
Lemma 10.2,(ii) and (iii), ¢, ;o = O for all (7, j) in Nf x {1,...,d}, whence the proposition. O

10.2. On the G-action. Let O be the local ring of G at the identity and m its maximal ideal.
Denote by O the completion of O for the m-adic topology and again by m its maximal ideal.
Let zy,...,2,4¢ be a system of coordinates of O. Then O = k[lz1,--.,2m+¢]]. As usual for
§=(S1,..., Some) in N set:
=g

Let J be the ideal of k[I, X g] ® A(».) generated by Jel and 1ep, and J the ideal of O ®x
k[, X g] ® A(py) generated by mel and leJ. Denote by B and B the submodules of O ®x
k[l X g] ® g and O ®x k[1. X g] ® g generated by the maps

(g, %, y) — £ (g(x), g(y)), (i,m) € I,

respectively. Then the map

GXLXg——"—= A",  (GX9) > Aamens; " (G). 9®))
is a generator of A\ (ﬁ) and A" (ﬁ). As usual, the order of the product is induced by the order
of I().
Set:

N, o= N* O NI xS, (s, 0] = sl + [rl + ],
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L= {p e k[l xg]® A()'" | IN, e N suchthat || >N, = ¢,,, =0},
K@) = D 2V A,
(s.70EN,
for (s,7,1) in N, and ¢ in £. For k = 1,...,n, denote by L™ the subspace of elements ¢ of £
such that
k(p) € O @, K[L x 8] @ \(a).
and set:

L* = {QO el | s#0= Py = O}, Lik) = L* N L(k), Gro = D0,res |(l", L)| = |(0, r, L)|
for ¢ in £, and (r,¢) in N x 3. For [ nonnegative integer, denote by A, the subset of elements
(r,0) of N¢ x 3 such that |(r, )| = L.

Lemma 104. Letk = 1,...,n, [ a positive integer and ¢ in LY such that K(p) is in M. If ¢,

isin 7H(m)l/\(g) Sfor all (r,v), then ¢,, is in My i_.y for all (r, ).

Proof. According to the hypothesis, ¢, = 0 for all (r, ¢) such that |(r,¢)| > [. For (r{,1;) in N¥ x 3,
denote by I'(r1, ¢;) the subset of elements (7, ) of N¢ x I such that

ri—reN? and {Jc{y).
For (r,¢) in I'(ry, ¢1), denote by ¢, \ ¢ the element of J and €(¢;, ¢) the element of {—1, +1} such that
{Ll \ L} = {Ll} \ {L} and Ui\ Ay, = E(Ll’ l’)vt.]'

Let j be the smallest integer such that ¢,, # O for some (r,¢) such that |(r,¢)] = j and i the
biggest integer such that ¢,», # 0 for some (#,¢") such that |[(#,¢")| = i. Then j < i < [. Prove the
lemma by induction on (/ — j, 7). For j = [, by Proposition 10.3, for all (r,¢), ¢,, A€y = 0. As a
result, again by Proposition 10.3, ¢, is in M,. Suppose j < [ and the lemma true for all (/- j',i")

smaller than (/ — j, i).
(a) Suppose j = i. For (r,1) in A}, ¢,, has an expansion
, ) —i-j-1
Pry = Z v Bror A vy with Crory € J /\(g)
(r')eA;
For (ri,1) in Aj,y, set:

wrl o= Z E(Ll s L)‘Pr,t,rl —rur\ee

(rOel(ry,t)

r r
Z UV AU = Z v ll/’rl,tl AU,.

(r,0)eENIx T (ri,t1)€A 11
By induction hypothesis, for all (r1,¢;) in Aj,q, ¥, ,, isin M_;.
Prove by induction on m := |¢| that ¢, is in M},,_;. For k nonnegative integer, set:

Ni:={(rr) eN{xNi,, [r.—reNY} and Ng(r):={reNj|(r)e N}
k k+1 k

Then
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- Nyd
for 7, in N7,

Claim 10.5. Let a,,,, (r,1.) € Ny in k such that

d
a,., =0, Vr. € Ni,,.
reNk(ry)

Then a,,, = 0 for all (r,r.).

Proof. [Proof of Claim 10.5] Prove the claim by induction on k. For k = 0, there is nothing to
prove. Suppose k > 0 and the claim true for k — 1. Let  be in NZ such that the first component r;
of r is positive. Denote by N, ; the subset of elements (x, x.) of N, such that the first component
of x is positive. For x in N¢, denote by x* the element of Z¢ such that

x‘f::xl—l, xf::xs for s=2,...,d.

Then the map
N1

is bijective. As a result, setting, b+ # := a,,, for (x, x,) in Ny,

Niot,  (nx) — (0

d
by. =0, Vx, € Ny.
XEN-1(x)
So, by induction hypothesis, a,,, = 0 for all (x,x,) in N;;. Then, after permutation of the
indices, a,,, = 0 for all (r, r,) in N; since for some indice s, r, is positive, whence the claim. O

By Claim 10.5, for (r, 1) in N}, ¢,.0.,-r0 18 in M;_;. Hence ¢, is in M,;_;. Suppose m > 0
and ¢, € My,,_; for all (r,¢) such that |¢] < m. Then we can suppose ¢,, = 0 for all (,¢) such

that |¢| < m. Let ¢t be in J,,. For all r; in N?+1—m’

Z ‘pr,t,rl—r,t € Ml—j-
(r)el(r,0)
By Claim 10.5, ¢, -, i1s in M;_; for all (r,r;) in N;_,,. Then ¢,, is in M,,,_; for all (r,¢) such
that |¢| = m, whence the assertion in this case.
(b) Suppose j < i. For (r,t) in N x J such that |(r, 1)| < i, ¢,, has an expansion

, . —l-i
QDV,L = Z Ur Sor,t,r’,t’ A Uy Wlth ‘Pr,t,r’,t’ € J ®k /\(g)
(' )EA (1)

For (rq, ;) in A;, set:

wrl o= Z E(Ll s L)‘Pr,t,rl —rui\ee

(r)el(ri,e)

r _ rl
E Ve, NV, = E U AU

(r,0)eNIxS (r1,01)€A;

—l-i
By (a), for all (r1, ;) in A;, ¥y, ,, 1810 My since ¢, ,, isinJ  A\(g).

Then
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Let A be the subset of elements (7, ¢) of A; such that ¢,, # 0. For (r,¢) in A,
reo\iemore | 1o,
(' )EAN(r0)
whence ¢,, = ,, is in M;,;_;. Denote by ¢’ the element of £, such that ¢;, = ¢, for (r,¢) not in
A and 0 otherwise. Denoting by i’ the biggest integer such that ¢, # 0 for some (r,¢) in Ay, i’ is
smaller than i. So, by induction hypothesis, ¢, is in My, since K(¢) is in M1, whence the
lemma. =

Proposition 10.6. Let k = 1,...,n, [ a positive integer and ¢ in L® such that k() A & is in
A —I—|(s,rt ..
TN, I priisinT " NK) for all (s, r,0), then g, is in My oy for all (s, 1,0).

Proof. By Proposition 2.1(vi), for (g, x,y) in G X I, X g,

&g(x0),9() = g.e(x, y).
Then
E-eem@ kL xgle \"(@) and 20, Av As—8) €T A®),
whence
K@) e e ().
As a result, from the equality

I+1

A : —l+1-i
N @ =Pmie T N,
i=0

we deduce s
—l+1-i
DD ewneel TAW@
seNl.z”“” (r)eIx3I
fori=0,...,l+ 1. Then, by Lemma 10.4, ¢, 1s in M}, |y, for all (s, 7,¢). O

11. SOME SPACES RELATED TO PARABOLIC SUBALGEBRAS II

Let p be a parabolic subalgebra of g containing b. We then use the notations of Section 10 and
Subsection 9.3. Set:

Q = (K[l x ] ® Ap-))
and denote by 0 the map

00— —KLxg®&A®), (G VveEI— D e AL,

Ve
For v in J, ¢, has a unique expansion

Yy = Z Qi N\ Wy, with Qi € k[l* X g] B /\(I)

keI
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For [/ nonnegative integer, let Q; be the subspace of Q defined by the following condition:
peQ = (rl+#l= ¢, =0).

Fork = 1,...,n, denote by Q,, the subspace of elements ¢ of Q; such that 6(y) is in k[, X g] ®
A (po).
Lemma 11.1. Let k = 1,...,n, [ a positive integer and ¢ in Q.

(1) The element O(yp) is in M,.
(1) If @ryx A€o = 0 for all (r,v, k), then 0(p) is in My,,.

Proof. Let (x,y,y’)bein [, X p X p_,. According to Lemma 9.5, for j =1,...,n—d, vin Jj, the
polynomial map

t— A, ANe(x,y +ty')
is divisible by #/ in k[f] ® A (g) and the coefficient ¢, (x, y, y’) of / satisfies the relation
(X, y,y') - Z (X Y, Y )W A E0(X, ) Ay €

~
KES

D we A NI ABCey) Apry with

lkl<j
. r
Ay = U Qi lu-

I€j; reNj
Then the polynomial map
t— 0(p) Ae(x,y+1ty)
is divisible by 7 in k[f] ® A (g) since ¢, = 0 when |r| + [v| < I. Hence 0(p) is in M;. Moreover,

the coefficient of # of this polynomial map is equal to 0 if ¢, . A g5 = 0 for all (r, v, k), whence
the lemma. O

Proposition 11.2. Let k = 1,...,n, [ a positive integer and ¢ in Q. Then 0(p) is in M, if and
only if ¢, ,« N €y = 0 for all (r,v, k).

Proof. By Lemma 11.1(ii), the condition is sufficient. Suppose that 0(¢) is in M;,;. For all v in
C,

Z Urtv(gar,u,/() A Wy + Z Urgar,u,K A LV(wK) € M1+1

(r,u,k) (ru,x)
since ¢,(g) = 0. Prove the proposition by induction on k.

Suppose k > 1, the assertion true for kK — 1 and the proposition not true for k. A contradiction

is expected. Denote by j the biggest integer such that for some « in 3, ¢,,« A &9 # 0. By
Lemma 11.1(i1), we can suppose

|K| > ] = Qryx = 0.
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By the above relation and the induction hypothesis,
L) ANE =0,  Y,ru,) e CANXJIXJ;

by maximality of j. Then, arguing as in the proof of Proposition 10.3, ¢,,, A g = 0 for all
(r, v, k) such that x| = j, whence the contradiction.
Fork =1,
¢0ro00 EK[LXpl@ I and ¢, € k[l X p] ® p_,

for j=1,...,d, whence

d
(@ro0+ ) @rojw)) A (x,y) = 0
j=1

for all r in N¢ and all (x,y) in I, X p. Then, for all 7 in NY, ¢,o; = 0 for j = 1,...,d and
@00 A€ = 0 since &(x,y) is colinear with gy(x,y) A p, for all (x,y) in [, X p, whence the
proposition. O

SetN,, := N/ x Ix3J.
Corollary 11.3. Letk = 1,...,n, [ a positive integer and ¢ in (k[1, X p] & A(p)'"* such that
Oros €KL X Pl @& A and (v, 0l #1 = ¢,,, = 0.

Set:
U= Z U'Qrys AN Ay AU,

(ru,L)

If Y is in My, then ¢,,, N €y = 0 for all (r,v,1).

Proof. For (r,1) in N¥ x 3, set:

By hypothesis, for all (r,¢), ¥, is in J /\k_l‘l(l). So, by Lemma 10.4, ¥, 1s in M,y
Hence, by Proposition 11.2, ¢,,,, A €y = 0 for all (r, v, ). O

12. InpucTtioN. CAasen < 1

Let p be a parabolic subalgebra of g containing b. Then we use the notations of Section 9. In
particular, [ is the reductive factor of p containing ), d is its derived algebra and n is the number
of simple factors of d. We suppose that the simple factors of d have Property (P). Let O, 6, m,
J, J be as in Subsection 10.2. Denote by J; the ideal of O ®k k[l. X g] generated by m and J. In
Subsections 12.2 and 12.3, we suppose n < 1.
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12.1. Some complexes. Recall that dy,...,d, are the simple factors of I. Set: p., 1= P, ® p_.
Let I and T be as in Subsection 6.2, I, I as in Section 4. With the notations of Subsection 6.2,
fork =0,...,n, denote by Dy 4(9) and Dy 4(p-) the graded subcomplexes of D} (g) deduced from
the double complexes

k k
P pi (rew) @ D) and  EP) D} (v & D}
i=0 i=0

respectively. N
Let B, B, B, £ be as in Section 7, By, €y as in Subsection 7.2, B, B, & as in Subsection 10.2.
For k =0,...,n, denote by D,:,#(g, B) the graded subcomplex of D; (g, B):

D; 4(a,B) := D} ,(a)[-by] A A™(B).
The graded subcomplexes D,'(’#(g, E) and D,:,#(g,ﬁ) of O ® D;(g) are equal to
D} (@)[-by] A A" (B) and D} ,(a)[by] A A\™(B)

respectively.
Fork=0,...,nand[=0,...,n—d, set:

B,:= Boo®k[L X pl&n,
D; (V,B,) := Dj (V)[-b] A A*(B.)
D;,(1,B.) ;== D;,(D[-by] A A*(B.)

with V = p_ or V = g. Then B, is a free module of rank b, containing B, Dy 4(V, B,)isa graded
subcomplex of D;(V, B.), D; #(L B,)isa graded subcomplex of D; (I, B.).

Lemma 12.1. (i) Fork = 0,...,n—d, D; ,(1, B.) has no cohomology of degree different from b,.
@i1) Fork =0,...,n, D,;’#(p_, E) has no cohomology of degree different from b.
(ii1) Fork = 0,...,n, Dy ,(p-, B.) has no cohomology of degree different from b,.
(iv) Fork =0, ...,n, Dy (g, B.) has no cohomology of degree different from b,.

Proof. (i) According to Lemma 4.3, the complex D; (1, By) has no cohomology of degree differ-
ent from by since dy, ..., d, have Property (P). By restriction to the principal open susbet [, X [ of
[ X I, the subcomplex Dy (1, B)) of D:(1, B)) has no cohomology of degree different from b;. As
k[1,xp] = k[p,]®k[L, xI], B, is the direct sum of k[p,]®,B; and k[I, X p]®; p, by Lemma 7.5(ii).
As aresult,

D; 4(,B.) = k[py] ®: D} (L, Bo[=dl A \“(pu),

whence an isomorphism of graded compexes

A’ (Pu) ® k[py] @ Dy (1, By[—d]

D[;’#(I’ §+) ’
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and the assertion.

(ii) and (iii) As p_ is the direct sum of I and p_,, D} ,(p—, B) and D} ,(p_, B.,) are isomorphic
to the simple complexes deduced from the double complexes:

k . k .
B pieweD By and P Do) @ Di (LB
Jj=sup{0,k—n+d} Jj=sup{0,k—n+d}

respectively. By Lemma A.2(ii), for j positive integer, D5(p-,) is an acyclic complex, whence
the assertion by (i) and its proof.

(iv) As p, is contained in B,

k
D; 4(.B.) = P $*/(pu) & D}_,(»_.B.)

=0
since
I
P sy e s w)=5"@)
J=r
for 0 < " < I. So, by (ii1), Dy (g, B.) has no cohomology of degree different from b,. O

For k=0,...,n, denote by D,:’#(g, §) the graded subcomplex of k[I, X p] & D;(g),
D} 4(8,B) := D} (@)[-by] A A\™(B).
Corollary 12.2. Fork =0,...,n, D; ,(g, B) has no cohomology of degree different from b,.

Proof. As the modules B, and B are free modules of rank b, and B is contained in B, for some
p ink[L, x p] \ {0}, /\bﬂ B) = p/\bﬂ (B,). As aresult, the map

S(g) & A\(8) A A™(By) S@ & AN@AA®B), ¢+ py

is an isomorphism of graded complexes such that
(D} 4(3,B,)) = Di4(a, B).

So, by Lemma 12.1(iv), Dy (g, B) has no cohomology of degree different from b,. O

T

For j, k integers such that 0 < j < k < n, denote by D; 4(9) the graded subspace of Dy ,(g),
Dy 14(8) == S/ (p)Dy_4(p-)
and D,:, j’#(g, §) the graded subspace of Dy (g, E),
D} ;4(8.B) := D} 4(@)[~b] A A™(B).

In particular,
Dy0#(9,B) = Dys(p-, B) := D} ,(p_)[=by] A \™(B).
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Since p, A /\b“ (E) = {0}, D,;’j’#(g, E) is a graded subcomplex of D,:’#(g, E).

Lemma 12.3. Letk=1,...,n.
(i) For ¢ in DZ“#(p_, B), ¢ is a cocycle of Dy, ,(a,B) if and only if ¢ is in SKBY) i, AP (B).
(1) ForO0 < j<kand pin DZj“j’#(g, B), ¢ is a cocycle of D (s, B) if and only if

@ € S7(p)S*(B)) @y A (B).

Proof. Denote again by ¢ the restriction of € to [, x p. Then ¢ is a generator of A*(B).
(i) As usual, for r = (ry,...,r,) in N¢, set:

r'_ rl--- rd r'_ rl--- rd
w' = w, w, and v :=v, v,/

Let ¢ be in k[, X p] ® Dg’#(p_). Then ¢ has an expansion

k
y=> > wy, with g, €kll xp] & DY (0.

J=0 rend
J

With the notations of Subsection 9.2, since A (B) is a submodule of A\ (B,), ¥ Aeis a cocycle
of Dy (g, B) if and only if ¥ A &5 A . is a cocycle of Dy (s, B.). In particular, the condition of
the assertion is sufficient.

Suppose that i A € is a cocycle of Dz,#(g,ﬁ). Denote by v(i) the biggest element (||, r) of
N x N“ such that i, # 0. Suppose that v(y) is different from (0, 0). A contradiction is expected.
Let j be the smallest indice such that ; # 0. Denote by 7 the element of Nl‘ﬁl_l such that 7, = r;
for [ # j and R, ; the subset of elements 7" of Nl‘ﬁ | such that w’ divides w” . For r in R, let k. be
the indice such that w” = w, w'. As ¥ A g s a cocycle, by maximality of v() and minimality of
J>

Z s wewy, = 0.

FER,
In particular, ¢, = 0, whence the contradition. As a result, = ¢. As a matter of fact, y = 0
when k > n — d. Otherwise, ¥ A g 1s a cocycle of k[p,] ®x D,:’#(I, El). So, by Lemma A.4(iii), ¢
is in k[ p,] ®x Sk(ﬁl), whence the assertion.

(i1) Let ¢ be in k[I, X p] ®, Dg’j’#(g). Since ¢ A g is a cocycle if and only if y A gy A u, is a
cocycle of degree b, of Dy (g, B), the condition is sufficient. Suppose that ¢ A € is a cocycle of
D,:’#(g, B). The element Y has an expansion

y= ) vy, with g, k[l x Pl D ,(p.).

d
reN¢
NY

Since p, A /\bﬂ (E) = {0}, for all r, ¥, A €1is a cocycle of D;_ j,#(p_,ﬁ), whence the assertion by
). m|
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12.2. Quasi-regularity. Letk =0,...,n and set:
Dy#(8,B) := Dis(9) A\ (B).
Let N, be as in Subsection 10.2. For j = 0,...,n, set:
M; := {p € (k[L, x g] ® D(g))'* | AN, € N such that || >N, = ¢,,, =0 and
@5, €KL, X gl ® Dj_y#(g)} and

k() := Z]fﬂ%NAmAé
(s,r)EN],
for ¢ in M. For / nonnegative integer, denote by M, the subspace of elements ¢ of M; such
that
(s, Ol # 1 = @5, =0

and M;;, the sumof M;;, i=11+1,....
Lemma 12.4. Let [ be a positive integer. Suppose k > 0.

(1) Form = 1,...,n—d and ¢ in k[l X p] ® D,,#(1) such that ¢(x,y) A €o(x,y) = 0 for all
(xx,y)in L, X p, ¢ isin Dy 14(1) A By

(1) For ¢ in k[1. X p] ® Dy#(p-), if the restriction of ¢ A g to 1, X p is equal to 0, then

¢ € k[L X P] @1, Dic14(p-) A By,
(iii) For ¢ in k[, X g] ® Dy x(9), the restriction of ¢ A € to 1, X p is equal to O if and only if
¢ € Di14(8) A B + JDy4(g) + K[L X g] ® Di_1.4(8) A py.

Moreover, in this case, ¢ A & is in k(M +).

Proof. (i) As d = {0} or b has Property P, for some ¥, ..., ¥, in By,

o= @Ay with @ €KL X P] & Dyt (1)
j=1
for j =1,...,s by Proposition 4.4 since k[l. X p] = k[p,] ® k[l. X [], whence the assertion.
(i1) Let ¢ be in k[I, X p] ® Dy 4(p-) such that ¢(x,y) A &(x,y) = 0 for all (x,y) in [, X p. The
element ¢ has an expansion

inf{n—d,k}
o= g Aw, with g ekl xpler () S u) & DyualD.
KEJ m=0

For (x,y) in [, X p,
e(x,y) € Eo(x,y) A N(pa)
by Proposition 7.6(i), whence
@(X, y) A go(x,y) =0
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for all k in J and all (x, y) in [, X p. So, by (i),

inf{n—d k} .
gec D (o) & Dy A By,

m=1
for all kx, whence the assertion.
(iii) Since k[I, x g] = k[l X p] + J, we can suppose that ¢ is in k[l X p] ® Dy 4(g). As g is the
direct sum of p_ and p,,

k
A@ = AGIS A A vy and  Dis(9) = D S" () & Dicns(p-) ® Dic14(9) A .

m=0
Then ¢ = ¢ + ¢, with
k
@1 € K[l X p] & () $"(0) & Dips(p) and s € K[L X p] @ Di1.4(8) A Pu.

m=0
As py Ae(x, y) = {0} for all (x, y) in [, X p, the restriction of ¢, A e to [, X p is equal to 0. Moreover,
the restriction of ¢ A e to [, X pis equal to O if

% € Di—14(8) AB + JD#(0) + Di-1.4(9) A Pu.
Conversely, by (i1),
¢1 € K[l X p] ® Dy-14(»-) A By,
By Proposition 9.1(i1),
BiICB+J& p_y+J @ py+JI &L
Hence
@1 € Di14(p-) A B + IDy(0) + Di—1.4(8) A Py,
since d is simple or equal to {0}. Indeed, ¢, has an expansion

inf{k—1,n—d} inf{m,n—d-1}

pr="D D @imj With @€kl X Pl @i Dim(p-o) ® DD A B
m=0 j=0

For (i, m) in Iy, the map
GXxLxg———a, (gxy) — &"gx),91) - &"(xy)

is in m & k[1, X g] & g since 85’") is a G-equivariant by Proposition 2.1(vi), whence
@1m,j € Di—1,4(8) A B+J®, Dy #(8) + K[L, X g] ® Dy_14(8) A py + m ® K[1, X g] ® Dy 4(3)
for all (m, j). As aresult, ¢ A &isin k(M 4). O

Remark 12.5. Assertion (i) and Assertion (ii) are true when d is not simple.
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Proposition 12.6. Let [ be a positive integer and ¢ in My;. Then k(p) is in k(My 41 +) if and only
if Q50 N E s in kK(NMyy14) for all (s, r,0).

Proof. The condition is clearly sufficient. Suppose that «(¢) is in k(M 141 +). As g is the direct
sum of p_ and p, and k[I, X g] is the direct sum of k[I, X p] and J,

_ ’” .
SDSJ,L - Sox,r,t + Sox,r,t Wlth

@, €KL X Pl @ Diys(p-) and ¢, € J & Dyiy#(a) + K[L X 6] ® Diyy-1.4(8) A Py

for all (s, r,0). Setting ¢’ := (¢, (s,7,0) € N), ¢ is in My, and «(¢") is in k(M. 11.1.+) since the
condition is sufficient.
Let (s,r,¢) be in N, such that |(s, r,¢)| = [. By Proposition 10.6,

@ . € KL X g] ® Dis(p-) N S(g) ® M.

Then the restriction of ¢, A € to I, X p is equal to 0. So, by Lemma 12.4(iii), the restriction of
@5 ANetol, X pisequal to0and ¢;,, A &is in k(M1 ) for all (s,r,0). |

Forl = 0,1,..., let F; be the subspace k(M) of Dk,#(g,ﬁ). Then the sequence F;, | =
0, 1,...1s a decreasing filtration of Dy x(g, E). Denote by gr Dy #(g, E) the associate graded space
to this filtration and gr le,#(g,E) the subspace of degree [ of ger,#(g,E). For j =0,...,k, let
D;’#(g, §) be the graded subcomplex of k[I, X p] & D*(g),

D54(,B) := D3y(@)[-by] A \" (B),
and A the algebra
A =K[z1,...,22040] O S(Pu) @ A (Pu)-
This algebra has a bigradation A; such that

A" =K[z1, . Zonre] ® S(Pu) ® A'(Py)  and

A= @ Kz .z, @S 00) @ AP
(1:J2:J3)EN;
with k[zj,...,22.+¢]; the space of homogeneous polynomials of degree j of k[zi,..., 2]
Consider on k[l X p] & A ® D(g) the simple gradation deduced from the double gradation
k[l X p] ® A®* ® D*(g). The trivial structure of complex on A and the structure of complex
on D(g) induce a structure of graded complex on k[l X p] ® A & D(g). Forl = 0,1,...and i
nonnegative integer, set:

C= B a2y & S"(pa) & AV(pa) & D (3, B).

J=0 (ll,lz)Ele_j

Denoting by C;} the sum Cf, i=0,1,..., C} is a graded subcomplex of k[L. X p] ® A & D(g).
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Corollary 12.7. (i) For [ = 0,1, ..., F} is a graded subcomplex of the graded complex D; ,(g, E).
(ii) The graded complex groDy, ,(9, E) is isomorphic to the graded complex D; (g, B).
(ii1) For I = 1,2, ..., the graded complex gr,D; ,(g, §) is isomorphic to C;.

Proof. (i) For all [, k(My,) is a graded subspace of Dy x(g, §). For ¢ in M,

dk(p) = Z Zv'dgs,, Ao, A E.
(s,r,L)EN,

Hence F| is a graded subcomplex of Dy (g, E).
(i1) Let r,,, be the quotient morphism

O @, K[, X g] ——= = K[I, X p] .

Then r,, induces a morphism

Fg,p

O ®, k[1, x g] & D(g) k[L, X p] ® D(g) .

AsB = rg,p(/B:), we have a surjective morphism

Tg,p

D} (a. B) D} (a.B) .

and F is its kernel by Proposition 12.6, whence the assertion.
(iii) Let / be a nonnegative integer. Denote by vy, the morphism of k[l X p]-modules

k[T, X p] ® A; & D(g) -

k[L, x g] ® D(g) Yeasv,ep — Yasp A,
and J\/[,’c , the subspace of elements ¢ of M ; such that
@s.ra € Yik[L X p] @ A; @, D(9)), Y(s,r,1) € N,
Then F; = K(M;{J) + F), since
J =KL xpl@ A @,

’

By Proposition 12.6, for ¢ in Mk,l’ k(p) 1s in Fyy; if and only if 7y (¢, A €) = 0 for all (s, 7, 0).
Then, by (i1), the restriction of r,, to F; defines through the quotient an isomorphism of k[I, X p]-
modules,

gr Dy 4(g, B)

Moreover, this isomorphism is an isomorphism of graded complex. O

C .
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12.3. Annulation of cohomology. Let k = 1,...,n. For i integer, denote by Z' and B’ the
spaces of cocycles and coboundaries of degree i of D,:’#(g, B). Forl = 1,...,n, denote by Dzu

the graded subcomplex of Dl"#(g, ﬁ),
D}, = D}(p)[=by] A \™(B).
Lemma 12.8. Let [ = 1,...,n. The morphism

D.

ku °

O @, kL x g] ® D}(p,)[~b,]

P QANE
is an isomorphism of graded complexes. In particular, D] is acyclic.
Proof. Denote by Dl.,u the graded subcomplex of Dj (g, E),

D}, = D}(p)[-bg] A \™(B).

By Corollary 2.7, for all (x,y) in a dense open subset of I, X p_, V,, is contained in p_. So, for
(g, x,y) in a dense open subset of G X I, X g, V) 40) N Pu = {0}. As a result, the morphism
Do

Lu °

O @ k[l X g] & Dj (pu)[—b,]

P QANE

is an isomorphism of graded complexes since it is surjective. By Lemma A.2(i1), D;(p,) is an
acyclic complex since [ is positive. Hence so is D'u, whence the lemma since O is a faithfully
flat extension of O. O

For j nonnegative integer, denote by SQ(E) the intersection of S/(B;) and k[1, X 1] ®, D?,#(I)-

For i =b,, ...,k + b, and [ nonnegative integer, set:
k—i+bg
K':= > SiB)D,;, and
=0
k—i+bg
; i = ~i-b N
Ki= P K.zl @S2 G0) @ Y SIBID () A 2.
( ,lz)eNIZ_Hb“ J=0
Lemma 12.9. Leti=b, + 1,...,k + by and | a nonnegative integer.

(i) The subspace Z' N Fi of F! is contained in dFI™' + K' + F}_,.
(ii) The space K' N Ff is contained in Kli + Ff+1.

) , ) o ivbosl
(iii) The intersection of F}, | and K' is equal to J,| b+ i

Proof. (i) Let ¢ be in Z'N F} and @ its image in gr,D; (g, B). By Corollary 12.7, g is a cocycle of
degree i of the graded complex C7. By Corollary 12.2, for j = 0,...,k, the complex D;_, (g, B)
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has no cohomolgy of degree different from b,. Then, for some ¢ in C f‘l,

g-die P K.z ® S (0) & AT (p) @ D)y (0. B).

2
(LR)EN

Then, by Lemma 12.3(ii),
g-dye @ klz1, . .. Zonselsy ®x S2(Pu) @ AT (Py) @

2
(LD)EN

k—i+by
D SIBODL () A AP (B).
=0
So, for a representative ¢ of ¢ in F f‘l ,
p—dy e K' +F),|.

(ii) By definition, K] is contained in Fj. Prove by induction on [ that K’ N F} is contained in
K} + F} . For | = 0, there is nothing to prove. Suppose the assertion true for / — 1. By definition,

I+1°
+00
K=Y K,
s=0
so by induction hypothesis,

K'nF, = K.
s=I-1
The image of K;_l in ger,#(g,ﬁ) is contained in gr ,_1Dk,#(g,’]§). Then, by Corollary 12.7(ii),
K' N F}is contained in K; + F)_,.
(iii) By definition J; ™' K is contained F,
Corollary 12.7(iii), the quotient of K' by K' N F', +i-p, 18 €qual to the subspace of gr;_p, Di4(a, B),

N K. Prove the assertion by induction on /. By

k—i+bg
A ® Y SIBIDY .y, () A AP (B).
=0
Moreover, by Lemma 12.8, the quotient of K by J;K' is equal to
k—i+bg
> SIBID N (pu) A &
=0
In particular, the k[I, X p]-module K’/J,K" is free. Again by Lemma 12.8, the three k[I, X p]-

modules,
k—i+b, k—i+by

D SIBID ) AE D SIBID (b,

J=0 J=0
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k—i+bg
NP @ Y SIBIDY .y (Pu) A AP (B)
=0
are three free modules of the same finite rank. Hence for some p in k[I, x p] \ {0}, pKI N F l’.'_bq »
is contained J;K'. As a result, K' N Fl’.'_b“Jrl is equal to J; K’ since the k[l, x p]-module K'/J,K!
is torsion free. ‘
Suppose [ > i —b, and the assertion true for /— 1. By induction hypothesis, it remains to prove

that Ji_Hb“HKi is the intersection of Ji_Hb“‘ K" and F; . By Corollary 12.7(iii), the quotient of
Ji_Hb“ K' by Ji_Hb“ K' N F}, is equal to the subspace of gr;Di4(g, B),
k—i+b,

D Kz 2o, S P) @ AT G @ D SIBIDL 1y (B) A A™(B).

2 .:
(1)EN] =0

Moreover, by Lemma 12.8, the quotient of Ji_Hb“ K' by Ji_Hb“HK " is equal to
k—i+bg

B Kz ey @S0 > SIBID () A,

(ll,lz)EN,z,Hbg j=0

In particular, the k[, X p]-module J i_Hb

k[1, X p]-modules

"K'/ Ji_Hb“HK" is free. Again by Lemma 12.8, the three

k—i+b,
B Kz 2o, @ S @ ATGD & D SIBIDY (k) A A™(B),
& ’lz)ENIZ—H—bg J=0
k—i+bg
o
B vy @ SPRI O ) SIBID (),
¢ ,zz)el\rl{imﬂ J=0
k—i+bg
i T\ ~i—b A
B Kz @ S p) @ > SIBIDN (k) A S,
(l1,h)eN? J=0

I-i+bg

are three free modules of the same finite rank. Hence for some p in k[I, x p]\ {0}, pK'NF ; ticby 1

is contained Ji_Hb“HK i Asaresult, KN F l‘.'_bq . isequal to J i_Hb“HK " since the k[I, X p]-module
Ji_Hb“ K/ Ji_Hb“‘HKi is torsion free. | m]
Let d; and d, be the morphisms from K7 to F} such that
diaewy A & = (=1)aev(dw) A &, dyaswv A & = aswdy A & with

ac @ K[Z1s - -+ Zonsel, ® SP(Pu),

(RAET .
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P = i—b, . . .
weS)B), veDN(p), i=by....k+by, j=0,....k—i+b.

Lemma 12.10. Let i = by, ...,k + b, and | a nonnegative integer.
(1) For i nonnegative integer and j > 0,

dK; c d,K] + FH.

(ii) If i > by then Z' N F} is contained in dF™" + F_ .

Proof. (i) By definitiond = d; + d,. Let a, w, v be as in the above definition. Then

daswv A & € dyasw A € + a®S£_l(§1)DZ__t;?‘ (p) A & A B

By Corollary 12.7,

asS " (B)D, " () A & A B C Fif]

since the image of & by the restriction morphism r,, is a generator of A" (B), whence the asser-
tion.

(ii) Let ¢ be in Z' N Fi. By Lemma 12.9(i), for some ¢ in Fi™!,
p-dy e K' +F),,.
As a matter of fact, by Lemma 12.9(ii),
o—dy e K, +F),|.

By Lemma 12.9(iii) and Lemma 12.8, for i’ = i,i + 1, the sum K;’ + Ff+1 is direct. Let ¢; be the
component of ¢ — dy on K. Then, by (i), dx¢; = 0 since dog; is in K**! and dF? | is contained

in Fifl. As aresult, by Lemma 12.8, for some ¢/ in K|™', ¢; = dy¢}. Then, by (i),

Y+ eF' and @-dy—dg) € Fj,,
whence the assertion. O

Corollary 12.11. Leti=b, +1,...,by + k.

(i) For all nonnegative integer I, Z' is contained in B' + F.

(ii) For some p in m &, k[L.], (1 + p)Z' is contained in B'.
Proof. (i) By Lemma 12.10(i1), for / nonnegative integer,

Z'NF,cdF ' +F},,.
Then, by induction on /, Z' is contained in B + F|.

(i1) The natural gradation of k[g] induces a gradation of O k[l X g]®x D(g). As B is a graded
submodule of O ®; k[L x g] ® D(g) so are D; ,(a,B), D}, F;, 1 =0,1,.... Then Z' and B' are
graded submodules of D;;’#(g, E) since the differential of D,:(g,ﬁ) is homogeneous of degree 0
with respect to this gradation.



72 J-Y CHARBONNEL
Let / be a nonnegative integer. Denote by
O & kll.xgl®, DI (aB) Zz" B
the subspaces of degree [/ of
O @ k[l xgl, Di,(a,B), Z, B

respectively. In particular, these spaces are finitely generated O ®, k[l.]-modules. Then, by
[MAS86, Ch. 3, Theorem 8.9], for some p; in m ®; k[L.],

(1+p) [ )(B™ +m/D}/(a, B)) c B,
JjeN
By (i),
7" c B + ' @, D}'(g, B)
for all integer j bigger than [ since F' is graded for all nonnegative integer s and J is generated
by elements of positive degree. As a result,

(1 + p)Z+ c B".

Then, for some p in m &, k[L,],
(1+pZ cB

since Z' is a finitely generated module over O & k[, X g]. O

Proposition 12.12. For k = 0,...,n, D,:’#(g, §) and D,:’#(g, E) have no cohomology of degree
different from b,.

Proof. As Oisa faithfully flat extension of O, it is sufficient to prove that Dy (g, ﬁ) has no
cohomology of degree different from b,. For i < by ori > k + b, DZ’#(g, E) = {0}. By definition,
D,:’#(g, E) has no cohomology of degree k + b,. So, itis true for k = 0,1. Letk = 2,...,n and
i=by+1,....k—1+b,. Denote by T; the support of Z'/B' in Spec(® ®, k[, x g]). As Z'/B
is finitely generated, 7; is a closed subset of Spec(@ & k[I, X g]). Since m is contained in all
maximal ideal of © ®x k(1. X g], T; does not contain a maximal ideal by Corollary 12.11. Then
T; is empty and Z' = B’, whence the proposition. i

13. InpuctioN. CASEn > 2

Let p be a parabolic subalgebra of g containing b. Then we use the notations of Section 9 and
some notations of Section 12. In particular, [ is the reductive factor of p containing ), d is its
derived algebra, n is the number of simple factors of d. We suppose that n is bigger than 1 and
the simple factors dy, ..., 0, of d have Property (P). Fori = 1,...,n, let E! be the submodule of
k[I, X I] ® I generated by the elements A;,. .., 4;, defined in Subsection 9.3. Denote by E the
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k([L. X []-submodule of k[, X [] ® g generated by p, and E|, ... ,E;. Let J., be the ideal of the
algebra k[I, X g] ®.xy /A (E’) generated by Jel and 1<E. Denote by J, and J, the ideals of

O & k[l X ] ®upxq AE) and O & k[L X g] ®upr,xq A (E)
generated by me1 and J.. Let J; be the ideal of O ®x k[l X g] generated by m and J.
13.1. Quasi-regularity. LetIbe as in Subsection 6.2. According to notations of Subsection 6.2

and Section 4, for I subset of I and (j;, j») in N? such that j, + j, < k, let / i1.j» be the subset of

elements ¢ of I} i such that (ji, j,¢) is in 1. Then, for I subset of I, and V = p_ or g, denote

by Dy ;#(V) the graded subcomplex of D}(V) deduced from the triple complex
k
@ @ D5, (V') & D3, (3) ® Dy, ;, #(D),
=0 (jy,j2)eN?
with V/ = p_, when V = p_and V' = p,, when V = g. For j = (ji,..., j,) In I/, set:

IV =Gy, .. i) €110 S0y = iy in < B — Jaubs
Dy 4 (V) = Diyjizo s (V=11 A AYED A A NE,

Dl:,#,j,*(v) = /\jl(E’l) AR /\j"(EQ) Rk D/:_UL]I(/),#(V)[—UH'
Then Dy, (V) is a graded subcomplex of k[l X I'] & Dj ,(V).
For k = 0,...,n and j non negative integer, denote by D;, .(V) the graded submodule of
k[L X 1] @ Di#(V),

and D,:,#, j’x(g) the graded submodule of k[, X [] ®, /\j (E) ® D,:_j’ +(9),
J

Dy ix(9) = @ @ A'(py) A D i G jmx(9)-

=0 (1o j)ENT,
Letk=0,...,n. Set:
Ny, =N x NI x I3, |(s,r,0,0)] = |s| + 7] + |v] + ],
for (s,r,v,0)inN,,. For j =0,...,n, set:
M. :={p € (k[ X g] ® D(g))'** | AN, € N such that || >N, = ¢,,,, =0 and
Gsrwa N Ay €EK[L X @ Dy s101(8)},
k(p) := Z 0 Qs rva NAy AU A E

(s, Uu,L)ENY, |
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for ¢ in M ;.. For / nonnegative integer, denote by M, ; the subspace of elements ¢ of M ;, such
that

(s, v, 0| #1 = @50, =0
and M, ;. thesumof M, ;, i=/[1+1,....

Recall that Eo,o is the submodule of B generated by P ©

R

Lemma 13.1. For ¢ in k[l X g] ® Dy #(g), the restriction of ¢ A € to 1, X p is equal to 0 if and
only if
¢ € K[l X 8] ®xpxay Di1(8) + Dyt #(8) A Bog + IDy(g) + K[ X g] ® Dy—1.4(8) A Py.

Moreover, in this case ¢ A & is in k(M .1 +).

Proof. Since k[, X g] = k[l X p] + J, we can suppose that ¢ is in k[, X p] ® Dy #(g). As g is the
direct sum of p_ and p,,

k
A@ = AGIS A A vy and  Dia(9) = D S" () & Dics(p-) ® Dic14(9) A .

m=0
Then ¢ = ¢ + ¢, with
k
g1 €KL x Pl & D) S"(0) & Dins(p) and @ € KL X ] @ Di1.4(9) A Po.

m=0
By Lemma 12.4(i1) and Remark 12.5, the restriction of ¢, A £ to I, X p is equal to O and the
condition is sufficient.
Conversely, suppose that the restriction of ¢ A £ to [, X p is equal to 0. Since the condition is
sufficient, the restrictions of ¢, A € and ¢; A g to I, X p are equal to 0. By Proposition 4.4, setting:
I ={(-- ) ENF 1S =1,..., ja<ny— 1},

and arguing as in the proof of Lemma 12.4(i1),

¢
Q1=+ Z P1,j A 850) with ¢ € k[p] ® Diy1(p-) and
=

k
¢1,j € @ K[l X p] & Diyy #(p-)
i=0
for j = 1,...,¢ since gj(x) has a nonzero component on d; for / = 1,...,n for all x in a dense
open subset of [, by Lemma 8.1(i). As a result,

@ € Di_14(9) A B+J®, Dy 4(a) + K[1, X g] ®xpi.xq Dis1(9) + m & K[, X g] @ Dy 4(g)
since for j = 1,...,¢, the map

GXl,xg—g, (9, x) — g;(g(x)) — €;(x)
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is in m &y k[1,] ® g, whence the lemma. O
Proposition 13.2. Let [ be a positive integer and ¢ in My..;. Then k() is in kK(My.j11.+) if and
only if sy N € is in KMy_py—y...1.+) for all (s, r,v, ). Moreover, in this case,
Gsrwa N Ay N E € KNV ey jof+1.+)

forall (s,r,v,1).
Proof. The condition is clearly sufficient. Suppose that k(¢) is in k(M .;41.+). As g is the direct
sum of p_ and p, and k[, X g] is the direct sum of k[I, X p] and J,

Psrva = P T Porpy With  @f A A, €K[L X ] & Dy sy (p2) and

O rwi N Ay € J O Dy (8) + K[L. X g] ® Dyy-14(8) A Py

for all (s, r,v,0). Setting ¢” := (¢} ., (5,1, v,0) €Ny ), ¢ is in My ., and k(¢") i8 in k(M. z41,4)
since the condition is sufficient.
For (s,r,¢) in N,, set:

l//S,V,L = Z QO;,V,U,L A /111 and %0 = (l/’s,r,u (S, r, L) € Np)

vey’
Then
[ < |(S, r, L)l — lﬁs’m =0 and K(lﬁ) ANEE€ K(Mk,*,l+1,+)o
As a result, by Proposition 10.6, ¥, is in M, for all (s,r,¢). Then by Proposition 11.2, the
restrictions of o NEand g, A gtol, X p are equal to 0 since &(x, y) and gy(x, y) A u, are
colinear for all (x, y) in [, X p by Corollary 2.7. So, by Lemma 13.1(ii),
Ps,ruu A é € K(Mk—ltl—lvl,*,l,+) and Ps,ruu A /lu A é € K(Mk—|L|,*,|U|+1,+)
for all (s, r,v,0). O
Forl = 0,1,..., let F; be the subspace K(Ms+) of Dy, #(q,B) Then the sequence F, [ =
0,1,...1sa decreasmg filtration of Dy x(g, B) Denote by gr Dy 4(g, B) the associate graded space
to thls filtration and gr;Dy (g, B) the subspace of degree / of gr Dy 4(g, B). For j =0,...,k and
i=0,...,7]let D;’#’i’x(g, B) be the graded subcomplex of k(L. X p] Qi xy /\ (E) & D*(9),
DS, x(0,B) 1= D3y, (@)[-by] A A™(B),
and A the algebra
A=Kz, ..., 2200¢] & S(pu) @ A(E).
This algebra has a bigradation A; such that
A=Kz, ., Zonee) ® S(Py) @ A\'(E)  and

A= P Han..zaed), © ") @ N(E).

(J1,42,j3)EN;
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Consider on k[I, X p] &, < A ® D(g) the simple gradation deduced from the double gradation
k[I, X p] ®xji.x A® & D*(g). The trivial structure of complex on A and the structure of complex
on D(g) induce a structure of graded complex on k[I, X p] i, A & D(g). For/ =0,1,... and
i nonnegative integer, set:

C = @ @ K21, . - Zaneely ®x SP(Pu) @ D;;{;j’x(g,ﬁ).

J=0 (l1.h)eN}
Denoting by C} the sum Cj, i=0,1,..., C; is a graded subcomplex of k[L, X p] ®y1,x1 A ®x D(g).
Corollary 13.3. (i) For =0, 1,..., F} is a graded subcomplex of Dy (g, §).
(i1) The graded complex gr oDy, ,(a, B) is isomorphic to the graded complex Dy ,(g, B).
(ii1) For 1 = 1,2, ..., the graded complex gr Dy ,(g,B) is isomorphic to Cj.

Proof. (i) The proof is the same as the proof of Corollary 12.7(i).
(i1) The proof is the same as the proof of Corollary 12.7(ii) and results from Proposition 13.2.
(ii1) Let / be a nonnegative integer. Denote by vy, the morphism of k[l X p]-modules

k[l X p] ® A; & D(g) -

and M;{,l the subspace of elements ¢ of M, such that
Ds,run € ’)/l(k[l* X p] ®k Al ®k D(g))
Then F; = K(M;(J) + F), since

k[L. x g] ® D(g) yeasd, A vep — yasp A 4, Ay,

J =Kk[l, xp]l QA @ S

’

By Proposition 13.2, for ¢ in Jvtk’,, k(p) 1s in Fpy if and only if 74 (¢, A €) = 0 for all
(s, r,u,0). Then, by (i), the restriction of r,, toF; defines through the quotient an isomorphism
of k[, X p]-modules,

gr Dy 4(g, B) C .

Moreover, this isomorphism is an isomorphism of graded complex. O

13.2. Annulation of cohomology. Let k = 1,...,n. For i integer, denote by Z' and B’ the
spaces of cocycles and coboundaries of degree i of D,:,#(g, B). Forj=1,...,nandiin I[;.’, denote
by D;’#(E’) the graded the submodule of k[I, X [] ® D;(I) deduced from the multigraded module

D i ED A - A DLE.

iel”
J

Forl=1,...,n,let Dz#(E) be the graded submodule of D} (E) deduced from the bigraded module

l
P D v & DiEN.
j=0
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Set:
D;, := Dj,(E)[-b,] A A*(B) and Dj, := D},(E)[-by] A \"(B).
Then D] is a graded subcomplex of D] (g, B).

Lemma 134. Letl=1,...,n.
(1) The morphisms

o

k[L, X g] ®xpi.xq Dj (BE)[—b,] D;(g,B) , pr—@oAe and
n f e~ ~
O ®, k[L, X §] ®i.xy DI (E)[=b,] ’ D!(,B), ¢@r—opAd

are injective.
(i1) The complexes D} (E), D? D;, are acyclic.

Lw

Proof. (i) For ¢ in M, set:
K(‘/’) = Z strws,r,v,t A Ay A v,

(8,1, U,L)EN, 4

Let € be the subset of elements ¢ of M, such that
s#20= Y, =0 and Yy, €KL X ] ®qxy S'(E).
For m nonnegative integer, denote by &, the subspace of elements i of € such that
l(r,v, )| <m = Yo,,, =0.

For ¢ in k[1, X g] ®yp1,xq D] (E), ¢ = k() for some ¢ in €. Denote by A(p) the biggest integer m
such that ¢ = k() for some ¢ in &,, \ €,,41.

Suppose that 6, is not injective. A contradiction is expected. Let ¢ be in its kernel such
that A(p) is minimal. For some ¢ in €,,), ¢ = k(). By Corollary 11.3, for (r,v,t) such that
|(r, v, 0 = Ae),

Yorv. € JS(E),
since S(E) is a free module, whence the contradiction since ¢ is not in & y,)+1.

Suppose that 8, is not injective. A contradiction is expected. Let ¢ be a nonzero element of

degree i of its kernel. The element ¢ has an expansion

p= Y ¢, with @ €KL X g] ®uxg S'(B) ®rxg A'(E)
SEN2n+
for all 5. Denote by o the smallest integer such that ¢ # 0 for some s in N>**/, By minimality
of o, o, AN e =0 for all sin N%,”*f since & — g is in m @ k[, X g] ® g as already observed. Then,
by the injectivity of 6, ¢, = 0 for all s in N2**¢| whence the contradiction.
(ii) As E is a free module, D;(E) is an acyclic complex by Lemma A.2(ii) since [ is positive.
Then D7 4(E) is acyclic since Dj4(E) is a direct factor of D;(E). By (i), the restriction of 6; to
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k[L, X g] ®xqixq DZ#(E)[—bg] is an isomorphism of graded complexes onto l~)zu. Hence 51.,u is
acyclic. Again by (i), the restriction of 0, to O ® k[L. X g ®xp1,x1 Dz#(E)[—bg] is an isomorphism
of graded complexes onto D7, . Hence Dj  is acyclic. O

For j = 0,...,k, denote by Dy m the intersection of k[I, X [] ® D,:,#(g) and S/ (§0,0)D,:_j(E).
For i =b,,...,k+ b, and [ nonnegative integer, set:

k—i+bg
[ ._bl bl e
K':= Y Ds AA"B) and
=0
k—i+by
, l i—b, A
Ki= P Kzozmds @S ()@ > Dy A
& ,zz)ele_Mq J=0
. i~by A . . =
Denote by Dg_j’i_bg #x the image of D;’j’;/\s by the quotient morphism F;_, — gr; Dr#(3,B) .

Lemma 13.5. Leti=b, + 1,...,k + by and | a nonnegative integer.
(i) The subspace Z' N F} of Fl is contained in dF™' + K' + F},.
(ii) The space K' N F} is contained in K} + F}, .

. . , . - Lisbsl
(i1) The intersection of F;,, and K' is equal to J,| b+ i

Proof. (i) Let ¢ be in Z'N F} and @ its image in gr;D; (s, B). By Corollary 13.3, g is a cocycle of
degree i of the graded complex C;. By Corollary 12.2, for j = 0,...,k, the complex D,:_j’#(g, B)
has no cohomolgy of degree different from b,. Then, for some ¢ in C™!,
g-die P K.z, &SP & DY, . (0.B).
t ,zz)el\rfﬂ.ﬂ,g
Then, by Lemma 12.3(i1),

k—i+b,

g-dge P Kzl ® ST RI @ D Dijinax.

2 .=
LLR)EN =0

So, for a representative y of ¢ in Fi™',
p-dy e K' +F),,.
(i1) The proof is analogous to the proof of Lemma 12.9(ii).

(iii) By definition J; *™*' K is contained Fi , N K'. Prove the assertion by induction on /. By

Corollary 13.3(iii), the quotient of K' by K' N F', +i-p, 18 €qual to the subspace of gr;_p, Di4(a, B),

k—i+by

§ 0
Dk_jai_bg s#sX -

J=0
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Moreover, by Lemma 13.4(i), the quotient of K’ by J,K' is equal to
k—i+bg
i~by . A
Z Dk’j’# A E.
=0

In particular, the k[, X p]-module K*/J, K" is free. Again by Lemma 13.4(i), the three k[I, X p]-
modules,

k—i+bg k—i+bg
i—bg ~ i—bg
E Dk,j’#/\s, E Dk,j’#,
=0 =0
k—i+bg
0
2 ks
J=0

are three free modules of the same finite rank. Hence for some p in k[I, x p] \ {0}, pKI N F l’.'_bg »
is contained J,K'. As aresult, K' N F!_, _ is equal to J;K' since the k[l X p]-module K'/J, K]
is torsion free. g

Suppose [ > i —b, and the assertion true for /— 1. By induction hypothesis, it remains to prove

that Ji_Hb“HKi is the intersection of Ji_Hb“‘ K' and Fi . By Corollary 13.3(iii), the quotient of
I-i+b I-i+b

J, "K' by J; K N Fy, | is equal to the subspace of grDis(s, B),
k—i+b,
@ K[Z15 - -+ Zonsel, ® S2(y) @ Z Dg_j,,'_bg,#,x-
(I )eN? =0

I-i+bg

Moreover, by Lemma 12.8, the quotient of Ji_Hb“ K' by Ji_Hb“HK " is equal to

k—i+by
I iby . A
@ klz1, ..., 22n4eli, ® S7(Pu) O Z D, s NE
A ’lz)ENIZ—H—bg Jj=0

In particular, the k[, X p]-module J i_Hb

k[1, X p]-modules

"K'/ Ji_Hb“HKi is free. Again by Lemma 12.8, the three

k—i+b,
I 0
@ klzi, ..., 20n+el, ® S?(Pu) Bk Z Do, 50
(i ,lz)eN,z_Hbq J=0
k—i+bg
1 i-by
B Kz, @ S"G0 @ Y D
(h Jz)Ele_Hbq =0
k—i+by

by .
@ klz1, - . ., 22nee], ®x S(Py) @k D;{,j,; N E,

(Iy,1)eN? Jj=0

I~i+bg
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are three free modules of the same finite rank. Hence for some p in k[, X p] \ {0}, pK' N F!

I+i-bg +1
. . I=i+bg+1 o ; - . I=i+bg+1 i
is contained J| K As aresult, K'N Fl?_bq+1 is equal to J| " * K since the k[I, X p]-module
I=i+by 1rj / ql—itby+] 1 ) ‘
JUTK IR s torsion free. o

Let d; and d, be the morphisms from K} to F} such that
diaswv A & = (=1)™)asv(dw) A &, dyaswv A & = aswdv A & with

ac @ K[Z1s - -+ Zonsel, ® SP(PW),

2
(L 2)ENT

(), aswv D], i=by... k+by, j=0,....k=i+b,.

w € Sj(g()’()), VS Dk—j
Lemma 13.6. Leti=b,, ...,k + b, and | a nonnegative integer.
(i) For i nonnegative integer and j > 0, the subspace dK| of D}, (a,B) is contained in d,K; +
i1
Fiiy- o , .
(ii) If i > by then Z' N F} is contained in dF™" + F_|.

Proof. (i) By definition d = d; + d,. Let a, w, v be as in the definition of d,. Then

_bg

daswv A & € drasw N € + a@D;j_1 + N & A Boy.

By Corollary 13.3, asvdw A & is in F!!| since the image of & by the restriction morphism r, is a
generator of A (B) and By is a submodule of B, whence the assertion.
(ii) Let ¢ be in Z' N FI . By Lemma 13.5(i), for some ¢ in Fi ™',

+1°
p—dy e K' +F},,.
As a matter of fact, by Lemma 13.5(ii),
¢—dy e K|+ Fj,,.

By Lemma 13.5(iii) and Lemma 13.4(i), for i’ = i,i+ 1, the sum K} + F'_ | is direct. Let ¢; be the
component of ¢ — dy on K. Then, by (i), dog; = 0 since dag; is in K*! and dF}_ | is contained
in Fif1. As aresult, by Lemma 13.4(ii), for some ¢} in K™, ¢; = dy¢’. Then, by (i),

+1°
Y+¢)eF and ¢-dy-dy| € F,,,
whence the assertion. O

Arguing as in the proof of Corollary 12.11, we deduce the following corollary from Lemma 13.6(i1).

Corollary 13.7. Leti =by + 1,...,b, + k and | a natural integer.
(i) For all nonnegative integer I, Z' is contained in B' + F.
(ii) For some p in m @, k[L.], (1 + p)Z' is contained in B'.

Arguing as in the proof of Proposition 12.12, we deduce the following proposition from Corol-
lary 13.7.
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Proposition 13.8. For k = 0,...,n, Dy (g, E) and D,:’#(g,g) have no cohomology of degree
different from by.

13.3. End of the proof of Theorem 1.5. We can now complete the proof of Theorem 1.5.

We prove the theorem by induction on the dimension of g. By Proposition 4.1(ii), the theorem
is true for £ = 1. Suppose € > 1 and the theorem true for the simple algebras of rank smaller than
¢. By Proposition 12.12, Proposition 13.8 and the induction hypothesis, for k = 1,...,n and z
in by \ {0}, D,:’#(g, ﬁ) has no cohomology of degree different from b,. Then, by Proposition 6.5,
@1(Sx) N'h ={0}. As aresult, by remark 6.7, g has Property (P), whence the theorem.

APPENDIX
APPENDIX A. SOME COMPLEXES

Let X be an affine irreducible variety. The canonical injection from V into A (V) has a unique
extension as a derivation of the algebra S(V) ® A (V) which is equal to 0 on the subalgebra
1 ® A(V). Then S(V)®, A (V) is a graded cohomology complex whose gradation is induced by
the natural gradation of A (V). We denote this complex by D*(V) and its derivation by d.

A.1. General facts. For k nonnegative integer, set:

k
Dy(V) = P Sy e N(V),
i=0

so that D7 (V) is a graded subcomplex of D*(V).

Definition A.1. Let L be a free submodule of positive rank r of k[X] ®, V. For k nonnegative
integer, denote by D;(V, L) the graded subcomplex of k[X] &, D*(V):

D;(V.L) := Dy(V, L)[~r] A \'(D).

The restriction to D;(V, L) of the derivation of k[X] ®, D*(V) is also denoted by d.
For W subspace of V, let D} (W, L) be the graded subspace of D;(V, L) such that

DT(W, L) := S (W) @ \'(W) A N'(L).
Then D (W, L) is a graded subcomplex of D;(V, L).

The embedding of S*(L) ®, A"(L) into S¥(V)®, A’(L) is an augmentation of D;(V, L). Denote
by 5,:(‘/, L) this augmented complex. In particular, 5(.)(‘/, L) is acyclic.

Lemma A.2. Let k be a positive integer.
(1) The cohomology of D*(V) is equal to k.
(i1) The complex D; (V) is acyclic.
(iii) For any subspace E of V, 5,:(‘/, E) is an acyclic complex.
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Proof. (i) We prove the statement by induction on the dimension of V. For V equal to zero,
D*(V)is equal to k and its differential is equal to 0. We suppose the statement true for any vector
space whose dimension is strictly smaller than dim V. Let W be an hyperplane of V and let v be
in V\W. Let a be a homogeneous cocycle of degree d of D*(V). Then a has a unique expansion

a=v"a,+--+a,
with ag, . ..,a, in S(W) @, A(V). If d = 0, then
m" ' a,ev + -+ ajev = 0
so thata = ag 1s in k. Suppose d > 0. Then fori =0,...,m,
a;=a,+d’ Ao,
with a’ and a!” in S(W) ®, /\d(W) and S(W) ® /\‘H(W) respectively. From the equality
O:iv’da +Z( ! '/\U+Zvdal’-'/\v,
i=0 i=1

we deduce that ay, . . ., a,, are cocycles. So, by the induction hypothesis, fori = 0, ...,m, a; = db;
for some b; in S(W) @, A“"1(W). Then

a—d(Zvibi)—vm "/\U+ZU(( DG+ Dby +d)) Av.

Hence a” and (=1)%(i + 1)bjy; + a! are cocycles of degreed — 1 fori=0,...,m—-1.1fd =1,

m

w |
a= d(Z b+ —— " a, Z —V D+ Dbia +a)

For d bigger than 1, by induction hypothesis, a/, is the coboundary of an element c,, in S(W) &
/\d_z(W) and fori = 0,...,m— 1, (=D + Db, + a! is the coboundary of an element ¢; in

S(W) ® A“2(W) so that
a= d(Z v'b; + Z vic; A ).
i=0 i=0

(i1) As D*(V) is the direct sum of D?(V),i € N, the assertion results from (i).
(iii) Let F be a complement to E in V and d the dimension of E. Fori =0, ...k,

k—i

DIV, E) = D SR @, SU(E) @ N'(F) A N(E),

J=0
whence

Dy(V,E) = @SJ(E) & D}_(F)[~d] A \(E).

j=0
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By (ii), for j < k, D;_,(F) is acyclic. As aresult D;(V, E) has no cohomology of degree different
from d, whence the assertion since forvin V, v A /\d(E) = {0} if and only if vis in E. O

For 7 automorphism of X, denote by 7* the automorphism of the algebra k[X]®, S(V)&, A (V)
induced by the comorphism of 7. Let L be a free submodule of rank r of k[X] ®, V.

Lemma A.3. Let k be a positive integer and m an automorphism of X.

(i) The restriction of n* to D;(V, L) is an isomorphism from D;(V, L) onto D;(V, m*(L)).

(ii) For any positive integer j, the image by n~! of the support in X of the cohomology of degree
J of Di(V, L) is the support in X of the cohomology of degree j of Di(V, *(L)).

Proof. (i) For i positive integer, (D% (V, L)) is equal to D'(V, 7*(L)). Hence 7*(D}(V, L)) is equal
to Dy(V,n*(L)). As " is an automorphism of the complex k[X] ®, D*(V), the restriction of 7% to
D;(V, L) is an isomorphism of the complex D;(V, L) onto the complex D;(V, *(L)).

(i1) Let j be a positive integer, J; and J;, the ideals of definition in k[X] of the supports
of the cohomology of degree j of D;(V, L) and D;(V, a*(L)). If a is a cocycle of degree j of
D;(V,L) and p is in J;, for m sufficiently big positive integer, p™a is a coboundary of D;(V, L).
Hence by (i), 7*(p)"n*(a) is a coboundary of D(V,7*(L)). So J;, contains 7*(J;). By the same
argument, J; contains 7t(J ;») since m is an automorphism. Hence J, is equal to n(J ;), whence
the assertion. O

For any x in X, denote by L(x) the image of L by the map ¢ — ¢(x).

Lemma A.4. Let X’ be the subset of elements x of X such that L(x) has dimension r and £ the
localization of L on X.

(1) The subset X' of X is open and nonempty. Moreover, X' has a finite cover by affine open
subsets Y which have the following property:

e there exists a subspace E of V which is a complement to L(x) in 'V forall xin'Y.

(i1) For all positive integer k, the support in X of the cohomology of 5,:(‘/, L) has an empty
intersection with X'.

(ii1) Suppose that X is normal and X' is a big open subset of X. Then 5,:(‘/, L) has no coho-
mology of degree r.

Proof. (i) Let iy, ...,n, be a basis of L. For all x in X, L(x) is the subspace of V generated by
n1(x),...,n.(x). Then X’ is a nonempty open subset of X. Let x be in X’. Let E be a complement
to L(x) in V. Then, for all y in an open neighborhood Y, of x in X, L(y) has dimension r and E
is a complement to L(y) in V. In particular, Y, is contained in X’.

(i1) Let k be a positive integer and Y an affine open subset of X" which satisfies the condition
of (i). Denoting by Ly the space of sections of £ above Y, we have to prove that 5;:(‘/, Ly) is
acyclic.
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Let xy be in Y. For x in Y, denote by 7(x) the linear automorphism of V such that 7(x)(v) = v
for all v in E and for w in L(x), 7(x)(w) is the element of L(xy) such that w — 7(x)(w) is in E. Let
7 be the automorphism of the algebra k[ Y] ®. S(V) & A (V) such that T(¢) is the map

SWyex A(V),  xr—= 1(x0)(eX)).

The images of Ly and 5,:(\/, Ly) by T are equal to k[Y] ® Ly(xp) and k[Y] ®; 5,:(\/, Ly(xp))
respectively. Moreover, the map

Y

T

D.(V,Ly) K[Y]® Dy(V, Ly(xo))

is an isomorphism of graded complexes. Hence by lemma A.2(iii), Dy (V, Ly) is acyclic.

(iii) Let a be a cocycle of degree r of 5,:(‘/, L). By (ii), the restriction of a to Y is the image
by d of a unique element ¢ of S¥(Ly) Qyy; N\ (Ly). So, by (i), the restriction of a to X’ is the
image by d of a section above X’ of the localization on X of S*(L) Rix; A'(L). As L is a free
module, S¥(L) ®Ryx; /\'(L) is a free module and any section above X’ of its localization on X is
the restriction to X’ of an element of S¥(L) ®, A’(L) since X’ is a big open subset of the normal
variety X. Hence a is a coboundary. O

A.2. Some equivalence. Let L be a free submodule of rank r of k[ X]®, V such that 2r > dim V..
For k = 0,...,dimV - r, denote by K;(V, L) the graded subcomplex of k[X] ®& D*(V) whose
subspace of degree i is

K(V,L) := N'(V) @ S'(L)
fori=0,...,k. Denote by ¢ the restriction of d to K7 (V, L). The map

Ok

Ki(V. L)

Dﬁ”(V,L), e oAn

with 7 a generator of A\"(L), is an augmentation of K} (V, L). Denote by E,:(V, L) the augemented
complex so defined.

Lemma A.5. Let X’ be the subset of elements x of X such that L(x) has dimension r.
(1) Fork =1,...,dimV —r, the support of the cohomology off,:(V, L) is contained in X \ X'.
(i1) The complex K;(V, L) has no cohomology of degree 0.

Proof. (i) Let Y be an affine open subset of X" and E a subspace of V satisfying the condition of
Lemma A.4(i) and set

LY = k[Y] ®k[X] L.

The complex K} (V, Ly) is isomorphic to

k
P N & Dy (L= 1.
j=0
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Then K7 (V, Ly) has no cohomology of degree different from k by Lemma A.2(ii) since Ly is a
free module. Moreover, the space of cocycles of degree k of E,:(V, Ly) is equal to

k
B NE) A N,
j=1

Hence E;(V, Ly) is acyclic and the support of the cohomology of E;:(V, L) is contained in X \ X’
since X’ has a cover by affine open subsets satisfying the condition of Lemma A.4(1).
(i1) By (i), K7 (V, L) has no cohomology of degree 0 since SK(L) is a torsion free module. O

Denote by 7y, ...,7n, a basis of L. Let J be the union of {0} and the set of strictly increasing
sequences in{1,...,r}and for¢ =i;< --- <i;in 3, set:
{ef = Hir, ..., 05, | = J, No=ni AN A1y

For j=0,...,rand s = (sq,...,s,) in N, set:

o~

J;j={e3|ld=j} and n' =gy -7
Fork=1,...,dimV-rand j =1,...,k, denote by K,:’j(V, L) the graded subcomplex of K} (V, L)
whose subspace of degree i is
Kj (V.L) :== N7I(V) A N(L) & S*(D),

Z; and B; the space of cocycles and coboundaries of degree i of E,:(V, L) respectively.
Lemma A.6. Letk = 1,...,dimV—r. Suppose that /\H(V)/\L is the kernel of 6; fori =1, ... k.

(i) Suppose 2 < k. Fori=1,...,k— 1, Z, is contained in B} + K;;J.(V, L).

(i1) The complex E,:(V, L) is acyclic.

Proof. (i)For j=0,...,i, set Z,i’j =ZiN K,’;’j(V, L) and prove that Z,’;’j is contained in Bj + Zli,j+1
for j <i. Let ¢ be in Z,’;’j. Then ¢ has an expansion

p= D D nAguen with g, ek[X]o, NTIV).

r o~
SEN}_; €3

For s’ in N/,

keie1> set

I :={(s,) e Nj_, x {1,...,r} [ 7" = "),
As ¢ 1s a cocycle,
Z Z Z smiAn A ggen’ =0  whence Z Z s AT A s, =0
S'ENy . | (s.Dely €3 (s,Dely 1€3;

forall s inN_, .
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Let Y be an affine open subset of X’ and E a subspace of V satisfying the condition of

Lemma A.4(iii). For (s,0) inNj_, X 3,
Oy = @i+ oy, with ¢l €Ly ANTTUV), g e kY@ ATV(E).
For (,1) in {1,...,7r} X J; such that [ ¢ {}, denote by v(/, ) the element of J,_;_; and €(/,¢) the
element of {—1, 1} such that
{BHulguful,yy={1,....r} and 1 A Ay = €l 0n.
Fors"inN; . ,and/=1,...,r, set:
Iy :={seN,_ |(s,]) ey}

For ' in N} _. , and for (/,¢) in {1,...,r} X J; such that [ ¢ {c}, by the above equality, after

multiplication by 1,,),

> el osgl, An=0 whence > (s, = 0.

SG]S/J A‘EIS/,I

Since for (s, 1) in Iy, ° = nin*, Iy, = 1. Hence ¢, = 0 for all (s,¢) in N}_, X J; such that s; # 0
for some [ ¢ {¢}. As aresult for such (s, [), ¢, A is equal to O since so is its restriction to Y. So,
by hypothesis, for such (s, ), ¢, isin L A A"/7'(V) and

nA @en’ €K (VL)
Let (s,¢) be in N;_. X J; such that
s;#0=1e{.

Then, for / in {¢} such that s; # 0,
tnen’ = d;m/ Anm’ and £ Aggen = d;ny Agsenm’ with {} = {\ {1},
s+ 1 s;+ 1
whence the assertion.
(ii) By hypothesis, E,:(V, L) has no cohomology of degree k and by Lemma A.5(ii), it has no
cohomology of degree 0. Leti =1,...,k— 1. By (i),

Z, C By + K, (V,L) = B + \'(L) ®x) S(L).
As L is a free module, K7 (V, L) has no cohomology of degree i by Lemma A.2(ii). Hence
Z, = B,. O
Proposition A.7. L_e.t k=1,...,dimV —r.
(1) The complex K, (V, L) is acyclic if D}(V, L) has no cohomology of degree different from r.

(ii) The complex D;(V, L) has no cohomolgy of degree different from r if f;(V, L) is acyclic for
i=1,...,k
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(iii) Suppose that \'"'(V) A L is the kernel of 6; for i
cohomology of degree different from r.

l,....k. Then D;(V,L) has no

Proof. (1) and (ii) For i = 1, ..., k, denote by ¢ the restriction to K (V, L) of the derivation d of
k[X] ® D*(V). Setting

- V)@ N(V) @ ST(L) if j<i<k
E) =1 SHiWvye NN(V) A N'(L) if i=j-1<k ,
0 otherwise

we have the equalities

E[Y =D|(V,L), E/=D, (V)& ST(L)=S""(V)& K/(V,L)

k—i+
for j <i < k. Denoting again by ¢ the map

5 1
E,ij E,i I pr— QAD,

we have the double complex

Along a line, i — j is constant and a line corresponding to a nonnegative constant is acyclic
by Lemma A.2(ii). Then K (V,L) has no cohomology of positive degree if D;(V,L) has no
cohomology of degree different from r since the maps

0 d

kJ
Ek

oy Y
E}’ E and E
are surjective, whence Assertion (i) by Lemma A.5(ii). As E,i" = SFi(V) & K> (V.L), D;(V,L)
has no cohomology of degree different from r if E:(V, L)isacyclicfori=1,...,k.

(ii1)) By Lemma A.6(ii), K..(V, L) is acyclic for i = 1,..., k, whence the assertion by (ii). O

APPENDIX B. PROJECTIVE DIMENSION AND COHOMOLOGY

Recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic
variety and S a closed subset of codimension p of X. Let P, be a complex of finitely generated
projective k[X]-modules whose length [ is finite and let £ be an augmentation morphism of P,
whose image is R, whence an augmented complex of k[X]-modules,

£

0 P, P XX Py R 0.
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Denote by P,, R, K, the localizations on X of P,, R, the kernel of & respectively and denote by
XK the kernel of the morphism P; —— P,_; for i positive integer.

Lemma B.1. Suppose that S contains the support of the homology of the augmented complex
P..

(i) For all positive integer i < p — 1 and for all projective Ox-module P, H'(X \ S, P) is equal
to 0.

(11) For all nonnegative integer j < | and for all positive integer i < p — j, the cohomology
group H(X \ S, K,_) is equal to zero.

Proof. (i) Leti < p — 1 be a positive integer. Since the functor H(X \ S, ) commutes with the
direct sum, it suffices to prove H(X \ S, Ox) = 0. Since S is a closed subset of X, we have the
relative cohomology long exact sequence

o HfS'(X3 OX) I Hi(X, OX) - Hl(X \ S, Ox) —_— H?'I(X, OX) - = ...

Since X is affine, H'(X, Ox) is equal to zero and H'(X \ S, Ox) is isomorphic to H{' (X, Ox). Since
X is Cohen-Macaulay, the codimension p of S in X is equal to the depth of its ideal of definition
in k[X] [MAS86, Ch. 6, Theorem 17.4]. Hence, according to [Gro67, Theorem 3.8], H?I(X, Ox)
and H'(X \ S, Oy) are equal to O since i + 1 < p.

(ii) Let j be a nonnegative integer. Since S contains the support of the homology of the
complex P,, for all nonnegative integer j, we have the short exact sequence of Ox\s-modules

00— Kjilxs —= Pisilys —= Kjlxg —=0

whence the long exact sequence of cohomology

= H(X\ S, Ppy) —= HI(X\ S, %K) — H* (X \ S, K1) — HH (X \ S, Pjpp) —> -+

Then, by (i), for 0 < i < p — 2, the cohomology groups H'(X \ §,%;) and H*'(X \ S, K ,) are
isomorphic since P, is a projective module. Since P; = 0 fori > [, X;_; and P, have isomorphic
restrictions to X \ S. In particular, by (i), for 0 <i < p — 1, H(X \ S, X,_;) equal zero. Then, by
induction on j, for 0 <i < p — j, H(X \ S, X,-;) is equal to zero. O

Proposition B.2. Let R’ be a k[X]|-module containing R. Suppose that the following conditions
are satisfied:

(1) pisatleastl + 2,
(2) X is normal,
(3) S contains the support of the homology of the augmented complex P,.

(1) The complex P, is a projective resolution of R of length .
(i1) Suppose that R’ is torsion free and that S contains the support in X of R'/R. Then R’ = R.
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Proof. (i) Let j be a positive integer. We have to prove that H'(X, X)) is the image of P;,;. By
Condition (3), the short sequence of Ox\s-modules

0 — K|

— P Ixns — JCj| —0

X\S X\S

is exact, whence the cohomology long exact sequence
0 —= HX \ S, K1) —= HAX\ S, Pjp1) —= H(X\ S, %)) — H'(X\ 8, K}u)) — -+

By Lemma B.1(ii), H'(X \ S, Xj:1) equals O since 1 < p — [+ j+ 1, whence the short exact
sequence

0 — H(X \ 8, K1) —> HYX \ §,P) —= HUX\ S,%;) — 0 .

As the codimension of S in X is at least 2 and X is irreducible and normal, the restriction mor-
phism from P, to HO(X\ S, P j+1) 1s an isomorphism. Let ¢ be in HO(X, K ;7). Then there exists
an element ¢ of P;,; whose image ¢’ in H'(X, X ;) has the same restriction to X \ S as ¢. Since
Pj is a projective module and X is irreducible, P; is torsion free. Then ¢ = ¢’ since ¢ — ¢’ is a
torsion element of P;, whence the assertion.

(i1) Let R’ be the localization of R” on X. Arguing as in (i), since S contains the support of
R’'/R and 1 < p — [, the short sequence

0 —= H(X\ §,%o) —= H(X\ S,Pp) —= H'(X\§,R) —=0

is exact. Moreover, the restriction morphism from P, to H’(X/S, P,) is an isomorphism since
the codimension of S in X is at least 2 and X is irreductible and normal. Let ¢ be in R’. Then for
some ¥ in Py, ¢ — (i) is a torsion element of R’. So ¢ = &(i) since R’ is torsion free, whence
the assertion. O

Corollary B.3. Let C, be a homology complex of finitely generated k[ X]-modules whose length [
is finite and positive. For j = 0,...,1, denote by Z; the space of cycles of degree j of C,. Suppose
that the following conditions are satisfied:

(1) S contains the support of the homology of the complex C,,
(2) for all'i, C; is a submodule of a free module,
B)fori=1,...,1, C; has projective dimension at most d,

(4) X isnormal andl +d < p — 1.

Then C, is acyclic and for j = 0,...,1, Z; has projective dimension at most [ +d — j— 1.
Proof. Prove by induction on / — j that the complex

O Cl Cj+1—>Zj—>O

is acyclic and Z; has projective dimension at most /[+d — j— 1. For j = [, Z; is equal to zero since
C, is torsion free by Condition (2) and Z; is a submodule of C;, supported by S by Condition
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(1). Suppose j < I -1 and the statement true for j + 1. By Condition (3), C;;; has a projective
resolution P, whose length is at most d and whose terms are finitely generated. By induction
hypothesis, Z;,; has a projective resolution Q, whose length is at most / + d — j — 2 and whose
terms are finitely generated, whence an augmented complex R, of projective modules whose
lengthisl+d—j—1,

0 —01aj20Pugj1——=0Q®P Py Z; 0.

Denoting by d the differentials of Q. and P,, the restriction to Q; ® P, of the differential of R,
is the map
(x, ) = (dx, dy + (=1)'6(x)),

with 6 the map which results from the injection of Z;,, into Cj,. Since P, and Q, are projective
resolutions, the complex R, is a complex of projective modules having no homology of positive
degree. Hence the support of the homology of the augmented complex R, is contained in S by
Condition (1). Then, by Proposition B.2 and Condition (4), R, is a projective resolution of Z;
of length [ + d — j — 1 since Z; is a submodule of a free module by Condition (2), whence the
corollary since Zy = C, by definition. O

Corollary B.4. Let

0 E_, Ey e E, 0
be a complex of finitely generated C[X]-modules. Suppose that the following conditions are
satisfied:
(1) E_y is projective and fori = 0, ..., — 1, E; has projective dimension at most i,
(2) S contains the support of the cohomology of this complex,

3) fori=0,...,1, E; is a submodule of a free module,
4) Xisnormaland p > 1 + 2.

Then the complex is acyclic and E; has projective dimension at most L.
Proof. Prove the corollary by induction on /. For [ = 0, by Conditions (2), (3), (4), the arrow
E_; —— E, is an isomorphism. Suppose the corollary true for the integers smaller than /. Let

Z,, be the kernel of the arrow E;_; —— E; , whence the two complexes

0 E_1 E() ce El—2 Z[_1 0

0— 27, Ei E; 0.

By Condition (2), the support of the cohomology of these two complexes is contained in S . Then,
by induction hypothesis, the first complex is acyclic and Z;_; has projective dimension at most
[ — 1. As aresult, arguing as in the proof of Corollary B.3, we have a complex of k[X]-modules

0 P, P XX Py E; 0
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such that P, . .., P; are projective, the image of P in E, is the image of the arrow E;_; — E;
and the support of its homology is contained in §. Then, by Condition (4) and Proposition B.2,
it is acyclic so that E; has projective dimension at most / and the complex

0 E, E, . E 0

is acyclic. o

Let
0 M, M, M, 0

be a short exact sequence of k[X]-modules.

Lemma B.S. Suppose that fori = 0, 1,2, M; has a finite projective dimension d;. Then we have
the inequalities

dr <supldy + 1,d;} and dy <sup{d, —1,d,}.

Proof. Let N be a k[X]-module. We have to prove Ext/(M,, N) = 0 for j bigger than {d, + 1,d,}
and Ext/(M,, N) = 0 for j bigger than {d, — 1, d,}. From the short exact sequence, we deduce the
long exact sequence

.. — Ext/(M,, N) — Ext/(My, N) — Ext/*!(M,, N) — Ext/*'(M|,N) — - - - .
For j+ 1 > sup{dy + 1,d,}, Ext/*'(M,, N) = 0 and Ext/(M,, N) = 0, whence Ext/*!(M,, N) = 0.
For j > sup{d> — 1,d,}, Ext/(M;, N) = 0 and Ext/*'(M,, N) = 0, whence Ext/(My,N) =0. O

APPENDIX C. SOME COMPUTATIONS

For k, [ positive integers such that k < [, set:

k-1 i
rk, ) = Z(—l)f'( )
770 J

and for k, [ nonnegative integers, set:
k

1y
k1) := —_—.
D= s gy

For e, k, [ integers such that 2 < e < k < [, set:
e—1

wie, kD) = r(k, D) = Y (=1 TGk = r(i.D

J=1

(=)
(k)

Let pi, k =0, ... be the sequence of polynomials defined by the induction relations:

po=1, pi(¥):=x,  pux) = k(x = pi_i(x) + (=1),
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Lemma C.1. Let k, [ be positive integers.

(1) Fork < 1,
(=D = 1)!
(k=D -k
(i1) The rational number c(k, 1) is equal to p;(l)/(k!(l + k)!).
(iii) For k > 2, pi(D) is in kZ + 1.

r(k,1) :=

Proof. (i) Prove the assertion by induction on k. For k = 1, r(k,l) = 1. Suppose k > 1 and the
assertion true for k — 1. Then

121 - 1)! - 121 - 1)!
op - _CDPa=D D __eua-nt oo
k=21 -k+1)! *k-DW-k+1! *k-DII-k+1)!
whence the assertion.
(i1) Prove the assertion by induction on k. For k = 1, c(k,l) = [/(l + 1)!. Suppose k > 1 and

the assertion true for k — 1. Then

Pi-1(D) (-DF 1 x
k1) = + = k(I — &) pr—1(D) + (=1)%),
D= T —k+ D T Rar R Rax o T PPa @+ D)
whence the assertion.
(iii) Prove the assertion by induction on k. For k = 2, there is nothing to prove. Suppose k > 2

and the assertion true for k — 1. From the equality

(D) = k(I = )pr-i (D) + (-1

and the induction hypothesis, we deduce the assertion. O

For e, k positive integers such that 2 < e <k, set:

Corollary C.2. Let e, k, [ be positive integers such that2 < e < k < l. Then
k(I - k)!
—1)! e, k1) = k
(Dt kD = e, k)

Proof. By Lemma C.1,

kL G-DId- ) ad-k!

(D=1 Zl pik— ) (== D (= !

ek D= o

(=Dta=1! 621( i = Dpjtk = j)
(k—l)'(l k)! D2k - k)! ’

j=
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whence
e K= K)!

ey =D

= dle.k D) =k - Z(,)zp] - J).

Proposition C.3. Let e, k, [ be positive integers such that 2 < e < k < 1. Then ¥ (e, k,l) # 0
Proof. By Corollary C.2, it is equivalent to prove ¢(e, k) # 0. By definition,
e2,k)=k—-k+1 and ¢Q3,k)=¢2,k) - %pz(k—Z) €Z+ %,
whence the proposition for e = 2 and e = 3. Suppose e > 4 and prove by induction on e,
(e = 2))’p(e, k) € Z + ﬁ

From the equality

3
@4, k) = (3, k) - (3!)2193(/6 - 3),

we deduce the assertion by Lemma C.1(iii) and the relation for ¢(3, k). Suppose e > 4 and the
assertion true for e — 1. By definition,

-1
(e, k) = (e — 1,k) - ((;_Wpe_l(k _e+1) whence

1
(e = 2))ple, k) = (e = 2)1)ple — 1,k) + —1Pe—1(k —e+1).
e —_—
By induction hypothesis,
(e =2)!Y’¢p(e - 1,k) € Z,

and by Lemma C.1(1),

1 1
—peitk—e+1)eZ+ ,
e—1 e—1

whence the assertion and the proposition. O

APPENDIX D. SOME REMARKS ABOUT REPRESENTATIONS

In this section, g is a semisimple Lie algebra, p is a parabolic subalgebra of g, containing b, |
is the reductive factor of p, containing I, and d is the derived algebra of I. Let R, the set of roots
a such that g% is contained in [ and R, the intersection of R; and R,. Denote by Px the subset
of elements of P(R) whose restriction to ) N d is a dominant weight of the root system R; with
respect to the positive root system R, .

Let M be a rational g-module. For A in P, (RR), denote by M, the isotypic component of type
V, of the g-module M. Let P, be the subset of dominant weights A such that M, # 0.

Lemma D.1. The space M is the direct sum of M, A € Py,.



94 J-Y CHARBONNEL

Proof. As M is arational g-module, M is a union of g-modules of finite dimension. In particular,
all simple g-module contained in M has finite dimension. Hence M,, 1 € Py, is the set of
isotypic components of M. Moreover, M is the direct sum of M,, 1 € P,. O

For A in P, denote by @, the canonical projection M —— M, . Let N; and N, be two
g-submodules of M such that N, is contained in N,. For A in P, denote by M, . the subspace of
highest weight vectors of M,. For the trivial action of G on M, ,, V, ® M, is a g-module. For
Jj=1,2,setN;,, := N;A M, and for vin M, ., denote by M, the g-submodule of M, generated
by v.

Lemma D.2. Let A be in Py,.

(i) For j = 1,2, N is the direct sum of N; N\ M,, y € Py.

(i1) Forvin M, ,, the g-modules V, and M, are isomorphic.

(1i1) There exists a basis v;, i € I of M, .. satisfying the following condition: for some subsets
Liyand Ly of Iy, Iy C Lo, v;, 1 € 1y and v, 1 € I, are basis of Ny 5+ and N, , , respectively.

(iv) For i in I,, denote by 7,; an isomorphism of g-modules V, —— M, . Then the linear
map

T2

Vi@ M) .

M, , vev; > T,,;(v)

is an isomorphism of g-modules such that T.(V; ® N;,.) = N;N M, for j =1,2.

Proof. (i) As N; is a g-submodule of M, it is rational. So, by Lemma D.1(i), N; is the direct sum
of its isotypic components, whence the assertion since an isotypic component of N, is contained
in the isotypic component of M of the same type.

(i) Asvisin M, ,, M, is a module of highest weight 4 and the space of highest weight vectors
in M, is generated by v. Hence M, is simple and isomorphic to V.

(i11) 1s straightforward. Moreover, if N; N M, = {0} then I, ; is empty.

(iv) By (i1), the isomorphisms 7,; does exist. As v;, i € I, is a basis of M, ,, M, is the direct
sum of the subspaces M,,, i € I,. Hence 7, is an isomorphism of g-modules. Moreover, for
J = 1,2, foriin I, 7,(V,=v;) is contained in N; if and only if i is in I, ;, whence the assertion
since N; is a g-module. O

Let M’ be a [-submodule of M. For u in Py, denote by V/, a simple [-module of highest weight
p and Mj, the isotypic component of type V; of M. Denote by P, the subset of elements p of Py
such that M}, # {0} and Py the subset of elements (4, u) of Py X Py such that @ (M) # {0}.

Lemma D.3. (i) The space M’ is the direct sum of M, u € P .
(ii) For (A, p) in Py, V}, is isomorphic to a l-submodule of V.

Proof. (i) As M’ is a [-submodule of the rational g-module M, M’ is a rational [-module, whence
the assertion by Lemma D.1(1).
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(iii) Let (A, w) in Py 5 and V,y a simple [-module contained in @ (M. ). According to Lemma D.2,(ii)

and (iii),
M, =P m,.

i€l

For i in I,, denote by x; the projection

M/l MU,-

corresponding to this decomposition. For some i, the restriction to V is different from 0. As V,
is a simple [-module, this restriction is an embedding of Vj, into M,,, whence the assertion since
M,, is isomorphic to V. O

For A in Py, denote by V/I1 the subspace of elements of V,, annihilated by u N [, and for (4, )
in Py, let V), be the subspace of weight u of V.
Lemma D.4. Let (A, u) be in Py pp.

(1) There exists an isomorphism of l-modules

Ty,

V. ®x Viy U(I).Vj’# .

(i1) For a well defined subspace E,,, of Vi -2 M,,,

@i(M,,) = T0(t,81dp, )V, @ Eny)-
(i) For j = 1,2, let E, , j be the intersection of E , and V, ® Nja.+. Then
WA(NJ' N M;:) = TAO(T#,,l®idMA’+)(V/: Ry E/L,u,j)-

Proof. (i) Let wy,...,w,, be a basis of Vj’#. Fori = 1,...,m, denote by V! the [-submodule of
V, generated by w;. As w; is weight vector of weight u of Vi » Vi 1s amodule of highest weight
w1 and the space of highest weight vectors in V! is generated by w; so that V is a simple module
isomorphic to VI;. Moreover, U(I).V/IL# is the direct sum of V!, i = 1,...,m since wy,...,w, is a
basis of V/IL#, whence an isomorphism

Tu,d

’ [
Vi, ®x Vﬂ,u

um.vy, .

(i1) For v in T}l(zm(M/’l)), v has an expansion
v= Z viev;
i€l
with v/, i € I; in V. As 7,(v) is in w,l(M/’l), foriin Iy, u.v}isin Vi# for some uin UuNTI). Asa
result, T}l(w 1(M)) is a subspace of U(I).Viﬂ ®x M, ., whence the assertion by (1).
(iii) Let v be in E, ,. By Lemma D.2(ii), 7 o(ta,®idy,, )(v) is in N; if and only if 7, ,eidy, , (v)
isin V& Nj .. Then, by (i), 7o(74,21dp, , )(v) 1s In @ (N;N M;z) ifandonlyifvisinE,,; 0O
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For A 1in P, let 8, be the linear map

0a

Viex V, k, vevr— @, 0v)

given by the duality. The kernel K, of 6, is a G-submodule of V} & V, so that
Vi Vide My, =M, . &K, ®& M.
Corollary D.5. Suppose that M’ generates the g-module M. Let A be in Py, Then
My, =Opidy, ( D VieEy) with Pyra = {1 € Par | (Ap1) € Pasar)

HEP M 2
and for j = 1,2,
Nias = Oeidy,, ( 5 Vi E).

HEP M7 2

Proof. As E,, 1s contained in V; . Bk M, the sums

Z E,, and Z My, NVy& Eyy

yeﬂ’v’v/,/l yefPV’V/,A
are direct. By the hypothesis, M, is the g-submodule of M generated by @w,;(M’). The map
0,21dy, . is a morphism of g-modules for the trivial action of g in M, .. Hence

Oisidy, ( P Vi & 7' (@aM)) = M,

HEPy M 2

by Lemma D.3(i). Then, by Lemma D.4(ii),
Oreidy, ( (P Vi@ E) = My,

HEPy M 2
and by Lemma D .4(iii),
Orsidu, ( D Vi@ Eapj) = Nyas

HEP 7 2

Proposition D.6. Suppose that the following conditions are satisfied:
(1) M’ generates the G-module M,
(2) NN M’ is contained in Ny N M’.

Then N; = N,.

Proof. By Lemma D.3(i), for j = 1,2, N; " M’ is the direct sum of N; N M/’l since N; N M" is
a l-submodule of M’. So, by Condition (2), for all (1, ) in Ppspr, Eay» is contained in £, ;.
Then, by Condition (1) and Corollary D.5, N, ,, is contained in N; , , for A in Py,. As a result,
by Lemma D.2(iii), Ny N M, = N, N M, for all A in P, since N; is contained in N,, whence the
proposition by Lemma D.2(i). O
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