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PROJECTIVE DIMENSION AND COMMUTING VARIETY OF A REDUCTIVE LIE

ALGEBRA

JEAN-YVES CHARBONNEL

Abstract. The commuting variety of a reductive Lie algebra g is the underlying variety of a well defined

subscheme of g × g. In this note, it is proved that this scheme is normal and Cohen-Macaulay. In particular,

its ideal of definition is a prime ideal. As a matter of fact, this theorem results from a so called Property (P)

for a simple Lie algebra. This property says that some cohomology complexes are exact.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie

algebra of finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. The dual of g identifies with g by a non degenerate symmetric bilinear form on g extending

the Killing form of the derived algebra of g. Denote by (v, w) 7→ 〈v, w〉 this bilinear form and

Ig the ideal of k[g × g] generated by the functions (x, y) 7→ 〈v, [x, y]〉, v ∈ g. The commuting

variety C(g) of g is the subvariety of elements (x, y) of g × g such that [x, y] = 0. It is the

underlying variety of the subscheme S(g) of g × g defined by Ig. It is a well known and long

standing open question whether or not this scheme is reduced, that is C(g) = S(g). According to

Richardson [Ri79], C(g) is irreducible and according to Popov [Po08, Theorem 1], the singular

locus of S(g) has codimension at least 2 in C(g). Then, according to Serre’s normality criterion,

arises the question to know whether or not C(g) is normal. There are many results about the

commuting variety. A result of Dixmier [Di79] proves that Ig contains all the elements of the

radical of Ig, of degree 1 in the second variable. In [Ga-Gi06], Gan and Ginzburg prove that for

g simple of type A, the invariant elements under G of Ig is a radical ideal of the algebra k[g × g]G

of invariant elements of k[g × g] under G. In [Gi12], Ginzburg proves that the normalization of

C(g) is Cohen-Macaulay.

1.2. Main results. According to the identification of g and its dual, k[g × g] is equal to the

symmetric algebra S(g × g) of g × g. The main result of this note is the following theorem:

Theorem 1.1. The subscheme of g × g defined by Ig is Cohen-Macaulay and normal. Further-

more, Ig is a prime ideal of S(g × g).

According to Richardson’s result and Popov’s result, it suffices to prove that the scheme S(g)

is Cohen-Macaulay. The main idea of the proof in the theorem uses the main argument of the

Dixmier’s proof: for a finitely generated module M over S(g × g), M = 0 if the codimension of

its support is at least l + 2 with l the projective dimension of M (see Appendix B).

All the complexes considered in this note are localizations of submodules of the algebra

S(g × g) ⊗k S(g) ⊗k
∧

(g). We introduce the characteristic submodule of g, denoted by Bg . By

definition, Bg is a submodule of S(g × g) ⊗k g and an element ϕ of S(g × g) ⊗k g is in Bg if and

only if for all (x, y) in a dense subset of g × g, ϕ(x, y) is in the sum of the subspaces gax+by with

(a, b) in k2 \ {0} and gax+by the centralizer of ax + by in g. According to a Bolsinov’s result, Bg

is a free S(g × g)-module of rank bg , the dimension of the Borel subalgebras of g. Moreover, the

orthogonal complement to Bg in S(g × g) ⊗k g is a free S(g × g)-module of rank bg − ℓ and for ϕ

in Bg , 〈ϕ(x, y), [x, y]〉 = 0 for all (x, y) in g × g. Let d be the S(g × g)-derivation of the algebra

S(g × g) ⊗k
∧

(g) such that for v in g, dv is the function on g × g: (x, y) 7→ 〈v, [x, y]〉. Then d is a

structure of complex on S(g × g)⊗k
∧

(g) and the ideal of S(g × g)⊗k
∧

(g) generated by
∧bg (Bg)

is a subcomplex. The usual gradation of
∧

(g) induces a gradation of S(g × g)⊗k
∧

(g). Denote by
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C•(g) the graded subcomplex of S(g × g)⊗k
∧

(g) such that Ci+bg (g) := S(g × g)⊗k
∧i(g)∧

∧bg (Bg).

Then Theorem 1.1 is a consequence of the following theorem:

Theorem 1.2. The complex C•(g) has no homology of degree bigger than bg and Ig is isomorphic

to the space of boundaries of degree bg .

By standard results of homological algebra (see appendix), Theorem 1.2 is a consequence of

the key theorem of this note:

Theorem 1.3. For i = 1, . . . , bg − ℓ, Ci+bg (g) has projective dimension at most i.

As a matter of fact, it is easy to see that the support of the homology of C•(g) is contained

in C(g). Then, by Theorem 1.3, C•(g) has no homology of degree bigger than bg and Ig has

projective dimension at most 2(bg − ℓ) − 1. So, by Auslander-Buchsbaum’s theorem, S(g) is

Cohen-Macaulay.

For the proof of Theorem 1.3, we consider the algebra S(g)⊗k
∧

(g) and the
∧

(g)-derivation d

such that

dv⊗a = v ∧ a with v ∈ g, a ∈
∧

(g).

Then (S(g) ⊗k
∧

(g), d) is a complex and the usual gradation of
∧

(g) induces on this complex a

structure of graded cohomology complex denoted by D•(g). For k nonnegative integer, denote

by D•
k
(g) the graded subcomplex of D•(g) such that

Di
k(g) := Sk−i(g) ⊗k

∧i(g)

and D•
k
(g,Bg) the graded subcomplex of S(g × g) ⊗k D•(g) such that

D
i+bg
k

(g,Bg) := Sk−i(g) ⊗k
∧i(g) ∧

∧bg (Bg).

Definition 1.4. Let n := bg − ℓ and j = 1, . . . , n. We say that g has Property (P j) if D•
k
(g,Bg) has

no cohomology of degree different from bg for k = 1, . . . , j.

We say that g has Property (P) if it has Property (Pn).

By an induction argument, Theorem 1.3 is a consequence of the following Theorem:

Theorem 1.5. All simple Lie algebra has Property (P).

As a matter of fact, the proof of this theorem is the main part of this note.

1.3. Sketch of proofs. We suppose g simple and we prove Theorem 1.5 by induction on the

rank of g. For k = 1, . . . , n, we denote by S k the support in g × g of the cohomology of D•
k
(g,Bg)

of degree different from bg . This subset of g × g is invariant under the diagonal action of G and

the canonical action of GL2(k) since Bg is a relatively equivariant module under these actions.

As a result, the image of S k by the first projection

g × g
̟1 // g
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is a G-invariant closed subset of g. In particular, if ̟1(S k) does not contain semisimple elements

different from 0, ̟1(S k) is contained in the nilpotent cone Ng of g and S k is contained in the

so-called nilpotent bicone Ng of g. By definition, Ng is the subset of elements (x, y) of g × g such

that the subspace of g, generated by x and y, is contained in Ng. By [CMo08, Theorem 1.2], Ng

has codimension bg + ℓ in g × g. So, when ̟1(S k) is contained in Ng for k = 1, . . . , j, g has

Property (P j) by Corollary B.3 and an induction argument on j.

As a result, the main step of the proof of Theorem 1.5 is the equality ̟1(S k) ∩ h = {0} for

k = 1, . . . , n. Fix a Borel subalgebra b of g and h a Cartan subalgebra of g, contained in b. Let z

be in h. Denote by gz the centralizer of z in g. The orbit of z under the Weyl group contains an

element z′ such that gz
′

+ b is a parabolic subalgbera. So, we can suppose that p := gz + b is an

algebra. Then l := gz is the reductive factor of p containing h. Denote by d the derived algebra

of l and l∗ the subset of elements x of l such that gx is contained in l. Then l∗ is a principal open

subset of l. Let d1, . . . , dn be the simple factors of d, z the center of l, p±,u the sum of root spaces

with respect to h, not contained in l and d the half dimension of p±,u. When z is regular, n = 0.

When n is positive, for i = 1, . . . , n, denote by ℓdi the rank of di, bdi the dimension of the Borel

subalgebras of di and set ni := bdi − ℓdi . For j nonnegative integer, set:

I j := {(i−1, . . . , in) ∈ Nn+2 | i1 ≤ n1, . . . , in ≤ nn, i−1+ · · ·+ in = j},

and for k = 1, . . . , n and ι = (i−1, . . . , in) in Ik, denote by D•
k,ι,#

(g) the simple complex deduced

from the multicomplex

D•i−1
(p±,u) ⊗k D•i0(z) ⊗k D•i1(d1) ⊗k · · · ⊗k D•in(dn)

and set:

D•k,#(g) :=
⊕

ι∈Ik

D•k,ι,#(g).

Let B be the restriction of Bg to l∗×g and B̃ the k[G]⊗kk[l∗×g]-submodule of k[G]⊗kk[l∗ × g]⊗kg

generated by the maps

(g, x, y) 7−→ g.ϕ(x, y) with ϕ ∈ B.

Then B and B̃ are free modules of rank bg . Denote by D•
k,#

(g,B) and D•
k,#

(g, B̃) the graded

subcomplexes of k[l∗ × g] ⊗k D•(g) and k[G] ⊗k k[l∗ × g] ⊗k D•(g),

D•k,#(g,B) := D•k,#(g)[−bg] ∧
∧bg (B) and D•k,#(g, B̃) := D•k,#(g)[−bg] ∧

∧bg (B̃).

An important step of the proof of Theorem 1.5 is the following proposition:

Proposition 1.6. Suppose that the simple factors of l have Property (P). Then, for k = 1, . . . , n,

D•
k,#

(g, B̃) has no cohomology of degree different from bg .
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When n = 0, z is regular and when n = 1, d is simple. In this case, Proposition 1.6 is given

by Proposition 12.12. When n ≥ 2, Proposition 1.6 is given by Proposition 13.8. Denote by

D•
k
(g, B̃) the graded complex

D•k(g, B̃) := D•k(g)[−bg] ∧
∧bg (B̃).

Then, from Proposition 1.6, Proposition D.6 and [C20, Theorem 1.1], we deduce that D•
k
(g, B̃)

has no cohomology of degree different from bg . As a matter of fact, [C20, Theorem 1.1] is only

true for simple Lie algebras. The complex D•
k
(g, B̃) is a subcomplex of k[G]⊗k k[l∗ × g]⊗k D•

k
(g)

and the morphism

G × l∗ × g // g × g , (g, x, y) 7−→ (g(x), g(y))

is a flat morphism whose image is the cartesian product of an open neighborhood of z and g,

whence the following corollary:

Corollary 1.7. Suppose that the simple factors of l have Property (P). Then, for k = 1, . . . , n, z

is not in ̟1(S k).

Corollary 1.7 is given by Proposition 6.5.

As a result, one of the main step to prove Theorem 1.5 is the proof of Proposition 1.6. For that

purpose, denote by B the restriction of B to l∗ × p and Bl the restriction of Bl to l∗ × l. Then B

and Bl are free modules of rank bg and bl respectively. Denoting by pu the nilpotent radical of p

and p−,u the complement to pu in p±,u, invariant under the adjoint action of h,

g = p−,u ⊕ p and p = l ⊕ pu

so that k[l∗× l] and k[l∗×p] are subalgebras of k[l∗×g]. Let B+ be the submodule of k[l∗ × p]⊗k g

generated by Bl and pu. Then B+ is a free module of rank bg and B is a submodule of B+. For

M free submodule of rank bg of k[l∗ × p] ⊗k g, denote by D•
k,#

(g, M) the graded subcomplex of

k[l∗ × p] ⊗k D•(g),

D•k,#(g, M) := D•k,#(g)[−bg] ∧
∧bg (M).

By Property (P) for the simple factors of l, for k = 1, . . . , n − d, the complex D•
k,#

(l)[−bl] ∧∧bl (Bl) has no cohomology of degree different from bl since l∗ is a principal open subset of l

and the center of l is contained in Bl. Then, for k = 1, . . . , n, D•
k,#

(g,B+) and D•
k,#

(g,B) have no

cohomology of degree different from bg .

Let O be the local ring of G at the identity and Ô the completion of O with respect to the

m-adic topology with m the maximal ideal of O. Let B̂ be the Ô ⊗k k[l∗ × g]-submodule of

Ô ⊗k k[l∗ × g] ⊗k g generated by B̃ and Dk,∗(g, B̂) the subcomplex of Ô ⊗k k[l∗ × g] ⊗k D(g),

Dk,∗(g, B̂) := Dk,#(g) ∧
∧

(pu) ∧
∧bg (B̂).
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The space Dk,∗(g, B̂) is a module over the algebra

Ô ⊗k k[l∗ × g] ⊗k
∧

(pu).

Denoting by J the ideal of definition of l∗ × p in k[l∗ × g], let Ĵ be the ideal of this algebra

generated by m, J and pu. When n ≤ 1, the subspace ĴDk,∗(g, B̂) is the kernel of the restriction

morphism

Dk,∗(g, B̂) // Dk,#(g,B) .

This important result comes from the invertibility of some square matrices (see Subsection 9.2).

As a matter of fact, the powers of Ĵ induce a filtration of Dk,∗(g, B̂) and the graded space associate

to this filtration is isomorphic to

A ⊗k[l∗×p] Dk,#(g,B) with A =
⊕

l∈N

Ĵl/Ĵl+1.

Then, by the above result on the cohomology of Dk,#(g,B) and the acyclicity of the complex

D•
k
(pu), Dk,#(g, B̂) has no cohomology of degree different from bg , whence Proposition 1.6 for

the case n ≤ 1 since Ô is a faithfully flat extension of O and Dk,#(g, B̃) is G-equivariant.

Suppose n ≥ 2. Denote by E the k[l∗ × l]-submodule of k[l∗ × l] ⊗k p generated by pu and the

generators of the modules Bd j
, j = 1, . . . , n which are not in k[l] ⊗k l. Let Ĵ+ be the ideal of the

algebra

Ô ⊗k k[l∗ × g] ⊗k[l∗×l]
∧

(E)

generated by m, J, E. Let Dk,∗(g, B̂) be the subcomplex of Ô ⊗k k[l∗ × g] ⊗k D(g),

Dk,∗(g, B̂) := Dk,#(g) ∧
∧

(E) ∧
∧bg (B̂).

Then Dk,∗(g, B̂) is a module over the algebra

Ô ⊗k k[l∗ × g] ⊗k[l∗×l]
∧

(E).

The subspace Ĵ+Dk,∗(g, B̂) is the kernel of the restriction morphism

Dk,∗(g, B̂) // Dk,#(g,B) .

As a matter of fact, the powers of Ĵ+ induce a filtration of Dk,∗(g, B̂) and the graded space asso-

ciate to this filtration is isomorphic to

A ⊗k[l∗×p] Dk,#(g,B) with A =
⊕

l∈N

Ĵl
+
/Ĵl+1
+
.

Then, by the above result on the cohomology of Dk,#(g,B) and the acyclicity of the complexD•
k,#

(E),

Dk,#(g, B̂) has no cohomology of degree different from bg , whence Proposition 1.6 for the case

n ≥ 2 since Ô is a faithfully flat extension of O and Dk,#(g, B̃) is G-equivariant.
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1.4. Notations. • As usual k∗ := k \ {0}. For m positive integer and for i = (i1, . . . , im) in Nm,

set:

|i| := i1+ · · ·+ im

and for d in N, denote by Nm
d

the subset of Nm:

N
m
d := {i ∈ Nm | |i| = d}

The set Nm is ordered by the lexicographic order induced by the usual order of N. As a result, all

subset of Nm is well ordered.

• For V a module over a k-algebra, its dual is denoted by V∗ and its symmetric and exterior

algebras are denoted by S(V) and
∧

(V) respectively. For all integer i, Si(V) and
∧i(V) are

the spaces of degree i of S(V) and
∧

(V) with respect to the usual gradation. In particular, for i

negative, Si(V) and
∧i(V) are equal to {0}. If E is a subset of V , the submodule of V generated by

E is denoted by span(E). When V is a vector space over k, the grassmannian of all d-dimensional

subspaces of V is denoted by Grd(V).

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space

X, denote by Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is

called a big open subset if the codimension of X \ Y in X is at least 2. For Y a closed subset of

an algebraic variety X, its dimension is the biggest dimension of its irreducible components and

its codimension in X is the smallest codimension in X of its irreducible components. For X an

algebraic variety, k[X] is the algebra of regular functions on X, OX is its structural sheaf and for

x in X, OX,x is the local ring of X at x.

• All the complexes considered in this note are graded complexes over Z of vector spaces

and their differentials are homogeneous of degree ±1 and they are denoted by d. As usual, the

gradation of the complex is denoted by C• if the degree of d is −1 and C• otherwise.

For E a graded space over Z and for i integer, E[i] is the graded space over Z whose subspace

of degree n is the subspace of degree n + i of E.

• The dimension of the Borel subalgebras of g is denoted by bg . Set n := bg − ℓ so that

dimg = 2bg − ℓg = 2n + ℓ.

Denote by b a Borel subalgebra of g and h a Cartan subalgebra of g, contained in b.

• The dual g∗ of g identifies with g by a given non degenerate, invariant, symmetric bilinear

form 〈., .〉 on g × g extending the Killing form of [g, g].

• Let R be the root system of h in g and R+ the positive root system of R defined by b. The

Weyl group of R is denoted by W(R) and the basis of R+ is denoted by Π. For α in R, its coroot

is denoted by Hα, the corresponding root subspace is denoted by gα and a generator xα of gα is

chosen so that 〈xα, x−α〉 = 1.
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• Let P(R) be the set of weights of the root system R and P+(R) the subset of dominant

weights with respect to R+. For λ in P+(R), denote by Vλ a simple g-module of highest weight

λ.

• Let e be the sum of the xβ’s, β in Π, and h the element of h ∩ [g, g] such that β(h) = 2 for

all β in Π. Then there exists a unique f in [g, g] such that (e, h, f ) is a principal sl2-triple. The

one parameter subgroup of G generated by adh is denoted by t 7→ ρ(t). The Borel subalgebra

containing f is denoted by b− and its nilpotent radical is denoted by u−. Let B and B− be the

normalizers of b and b− in G, U and U− the unipotent radicals of B and B− respectively.

Lemma 1.8. Let O be a principal open subset of h and Σ an irreducible hypersurface of O +

u. Suppose that Σ is invariant under the one-parameter subgroup t 7→ ρ(t) of G. Then O is

contained in Σ or Σ = Σ ∩ h + u.

Proof. As O is a principal open subset of h, k[O+u] is a factorial ring. Hence Σ is the nullvariety

in O + u of an element of k[O + u]. As a result, O is contained in Σ or Σ ∩ h is an hypersurface

of O. Suppose that O is not contained in Σ. For (x, y) in h × u,

lim
t→0

ρ(t).(x + y) = x.

Hence Σ ∩ h is the image of Σ by the canonical projection O + u // O and Σ is contained in

Σ ∩ h + u. Moreover, Σ ∩ h is an irreducible hypersurface of O as the image of an irreducible

subset. Then Σ ∩ h + u is an irreducible hypersurface of O, whence the lemma. �

• For α a positive root, let |α| be its height so that α(h) = 2|α|.

• For x ∈ g, denote by xs its semisimple component, xn its nilpotent component and gx its

centralizer in g. The set of regular elements of g is

greg := {x ∈ g | dimgx
= ℓ}.

We denote by greg,ss the set of regular semisimple elements of g. Then greg and greg,ss are G-

invariant dense open subsets of g. According to [V72], g\greg is equidimensional of codimension

3.

• Let hb be the subset of elements x of h such that gx
+ b is a subalgebra of g. The orbits of

W(R) in h have a nonempty intersection with hb.

• Denote by S(g)g the algebra of g-invariant elements of S(g). Let p1, . . . , pℓ be homogeneous

generators of S(g)g of degree d1, . . . , dℓ respectively. Choose the polynomials p1, . . . , pℓ so that

d1≤ · · · ≤dℓ. For i = 1, . . . , ℓ and (x, y) ∈ g × g, consider a shift of pi in direction y: pi(x + ty)

with t ∈ k. Expanding pi(x + ty) as a polynomial in t, one obtains

pi(x + ty) =

di∑

m=0

p
(m)

i
(x, y)tm, ∀(t, x, y) ∈ k × g × g(1)
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where y 7→ (m!)p
(m)

i
(x, y) is the derivative at x of pi at the order m in the direction y. The elements

p
(m)

i
defined by (1) are invariant elements of S(g)⊗k S(g) under the diagonal action of G in g × g.

Remark that p
(0)

i
(x, y) = pi(x) while p

(di)

i
(x, y) = pi(y) for all (x, y) in g × g. Set:

I0 := {(i,m) ∈ {1, . . . , ℓ} × N | 0 ≤ m ≤ di − 1} and I∗,0 := I0 ∩ {1, . . . , ℓ} × (N \ {0}).

According to our notations, I0 is totally ordered.

Remark 1.9. The family Px := {p
(m)

i
(x, .); 1 ≤ i ≤ ℓ, 0 ≤ m ≤ di} for x ∈ g, is a Poisson-

commutative family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family Px is

constructed by the argument shift method.

• Let i ∈ {1, . . . , ℓ}. For x in g, denote by εi(x) the element of g given by

〈εi(x), y〉 =
d

dt
pi(x + ty) |t=0

for all y in g. Thereby, εi is an invariant element of S(g) ⊗k g under the canonical action of G.

According to [Ko63, Theorem 9], for x in g, x is in greg if and only if ε1(x), . . . , εℓ(x) are linearly

independent. In this case, ε1(x), . . . , εℓ(x) is a basis of gx.

Denote by ε
(m)

i
, for 0 ≤ m ≤ di − 1, the elements of S(g × g) ⊗k g defined by the equality:

εi(x + ty) =

di−1∑

m=0

ε
(m)

i
(x, y)tm, ∀(t, x, y) ∈ k × g × g(2)

and set:

Vx,y := span({ε
(m)

i
(x, y), (i,m) ∈ I0})

for (x, y) in g × g.

• Let Ng be the nilpotent cone of g. For (x, y) in g × g, denote by Px,y the subspace of g

generated by x and y. Let Ng be the nilpotent bicone of g. By definition, Ng is the subset of

elements (x, y) of g × g such that Px,y is contained in Ng. In particular, Ng is invariant under the

diagonal action of G in g × g and the canonical action of GL2(k) in g × g.

1.5. Organization of the note. In Section 2, the characteristic submodule Bg is introduced and

some of its properties are given. In particular, its restrictions to parabolic subalgebras are consid-

ered. In Section 3, we prove that the main theorem and Theorem 1.2 results from Theorem 1.3.

In Section 4, we prove that Theorem 1.3 results from Theorem 1.5 so that we suppose that g

is simple in the following sections. In Section 5, we consider the support S k in g × g of the

cohomology of degree different from bg of the complex D•
k
(g,Bg) and we prove that under some

hypothesis on ̟1(S k) the codimension of S k in g × g is at least k + 2 so that g has Property

(Pk) if it has Property (Pk−1). In Section 6, we recall a result of flatness and prove that ̟1(S i)

does not contain z for i = 1, . . . , k if Di,#(g, B̃) has no cohomology of degree different from bg

for i = 1, . . . , k. In Section 7, we study the restriction B of Bg to l∗ × p. In particular, B has a
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good decomposition with respect to the decomposition of p = l+ pu (see Proposition 7.6). Some

other results are given so that the decomposition is more precise. This decomposition introduces

some functions in k[l∗ × p] and their restrictions to l∗ × p ∩ h × h are considered in Section 8

(see Proposition 8.5). In Section 9, we study the generator ε of
∧bg (B). In particular, some of

its coordinates in the canonical basis of
∧bg (g) are considered. In Subsection 9.2, some square

matrices whose the coefficients depend on these coordinates are considered and we prove that

their determinant are different from 0 (see Corollary 9.4). In Section 10, Proposition 10.3 is a

key result for proving Corollary 12.7 under the hypothesis n ≤ 1 and in Section 11, Proposi-

tion 11.2 is a key result for proving Corollary 13.3 in the general case. In Section 12, we prove

Proposition 1.6 for the case n ≤ 1 and in Section 13, we prove Proposition 1.6 for the general

case. Then we can complete the proof of Theorem 1.5.

The appendix has four sections. In Section A, we give some general results on some com-

plexes. In Section B, we recall some well known results of cohomology. In Section C, we intro-

duce some rational numbers and we prove that some of them are different from 0. In Section D,

we prove the equalities of two g-submodules of a rational g-module under certain hypothesis.

This result is used to prove Proposition 6.5.

2. Characteristic module

For (x, y) in g × g, set:

V ′x,y =
∑

(a,b)∈k2\{0}

gax+by.

By definition, the characteristic module Bg of g is the submodule of elements ϕ of S(g × g) ⊗k g

such that ϕ(x, y) is in V ′x,y for all (x, y) in a dense subset of g × g. In this section, some properties

of Bg are given.

2.1. First properties of Bg . Denote by Ωg the subset of elements (x, y) of g × g such that Px,y

has dimension 2 and Px,y \ {0} is contained in greg. According to [CMo08, Corollary 10], Ωg is a

big open subset of g × g.

Proposition 2.1. Let (x, y) be in g × g such that Px,y ∩ greg is not empty.

(i) Let O be an open subset of k2 such that ax + by is in greg for all (a, b) in O. Then Vx,y is the

sum of the gax+by’s, (a, b) ∈ O.

(ii) The spaces [x,Vx,y] and [y,Vx,y] are equal.

(iii) The space Vx,y has dimension at most bg and the equality holds if and only if (x, y) is in

Ωg.

(iv) The space [x,Vx,y] is orthogonal to Vx,y. Furthermore, (x, y) is in Ωg if and only if [x,Vx,y]

is the orthogonal complement to Vx,y in g.

(v) The space Vx,y is contained in V ′x,y. Moreover, Vx,y = V ′x,y if (x, y) is in Ωg.

(vi) For (i,m) in I0, ε
(m)

i
is a G-equivariant map.



COMMUTING VARIETY 11

Proof. (i) For z in greg, ε1(z), . . . , εℓ(z) is a basis of gz by [Ko63, Theorem 9]. Hence gax+by

is contained in Vx,y for all (a, b) in O since the maps ε1, . . . , εℓ are homogeneous. For pair-

wise different elements ti,0, . . . , ti,di−1, i = 1, . . . , ℓ of k, ε
(m)

i
(x, y) is a linear combination of

εi(x + ti, jy), j = 0, . . . , di − 1 for m = 0, . . . , di − 1. We can choose ti,0, . . . , ti,di−1 so that

(ai, aiti,0), . . . , (ai, aiti,di−1)) are in O for some ai in k∗, whence the assertion since the maps

ε1, . . . , εℓ are homogeneous.

(ii) Let O be an open subset of k∗2 such that ax + by is in greg for all (a, b) in O. For all (a, b)

in O, [x, gax+by] = [y, gax+by] since [ax + by, gax+by] = 0 and ab , 0, whence the assertion by (i).

(iii) According to [Bou02, Ch. V, §5, Proposition 3],

d1+ · · ·+ dℓ = bg .

So Vx,y has dimension at most bg . By [Bol91, Theorem 2.1], Vx,y has dimension bg if and only if

(x, y) is in Ωg.

(iv) According to [Bol91, Theorem 2.1], Vx,y is a totally isotropic subspace with respect to the

skew bilinear form on g

(v, w) 7−→ 〈ax + by, [v, w]〉

for all (a, b) in k2. As a result, by invariance of 〈., .〉, Vx,y is orthogonal to [x,Vx,y]. If (x, y) is in

Ωg, g
x has dimension ℓ and it is contained in Vx,y. Hence, by (iii),

dim[x,Vx,y] = bg − ℓ = dimg − dim Vx,y

so that [x,Vx,y] is the orthogonal complement to Vx,y in g. Conversely, if [x,Vx,y] is the orhogonal

complement to Vx,y in g, then

dim Vx,y + dim[x,Vx,y] = dimg.

Since Px,y ∩ greg is not empty, gax+by ∩ Vx,y has dimension ℓ for all (a, b) in a dense open subset

of k2. By continuity, gx ∩ Vx,y has dimension at least ℓ so that

2dimVx,y − ℓ ≥ dimg.

Hence, by (iii), (x, y) is in Ωg.

(v) By (i), Vx,y ⊂ V ′x,y. Suppose that (x, y) is in Ωg. According to [Ko63, Theorem 9], for all

(a, b) in k2 \ {0}, ε1(ax+by), . . . , εℓ(ax+by) is a basis of gax+by. Hence gax+by is contained in Vx,y,

whence the assertion.

(vi) Let i be in {1, . . . , ℓ}. Since pi is G-invariant, εi is a G-equivariant map. As a result, its

2-polarizations ε
(0)

i
, . . . , ε

(di−1)

i
are G-equivariant under the diagonal action of G in g × g. �

Theorem 2.2. (i) The module Bg is a free module of rank bg whose a basis is the sequence

ε
(m)

i
, (i,m) ∈ I0.

(ii) For ϕ in S(g × g) ⊗k g, ϕ is in Bg if and only if pϕ ∈ Bg for some p in S(g × g) \ {0}.

(iii) For all ϕ in Bg and for all (x, y) in g × g, ϕ(x, y) is orthogonal to [x, y].
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Proof. (i) and (ii) According to Proposition 2.1(v), ε
(m)

i
is in Bg for all (i,m). Moreover, according

to Proposition 2.1(iii), these elements are linearly independent over S(g×g). Let ϕ be an element

of S(g × g) ⊗k g such that pϕ is in Bg for some p in S(g × g) \ {0}. Then ϕ(x, y) is in Vx,y for all

(x, y) in a dense open subset of Ωg by Proposition 2.1(v). According to Proposition 2.1(iii), the

map

Ωg
// Grbg (g) , (x, y) 7−→ Vx,y

is regular. So ϕ(x, y) is in Vx,y for all (x, y) in Ωg and for some regular functions ai,m, (i,m) ∈ I0

on Ωg,

ϕ(x, y) =
∑

(i,m)∈I0

ai,m(x, y)ε
(m)

i
(x, y)

for all (x, y) in Ωg. Since Ωg is a big open subset of g × g and g × g is normal, the ai,m’s have

a regular extension to g × g. Hence ϕ is a linear combination of the ε
(m)

i
’s with coefficients in

S(g×g). As a result, the sequence ε
(m)

i
, (i,m) ∈ I0 is a basis of the module Bg and Bg is the subset

of elements ϕ of S(g × g) ⊗k g such that pϕ ∈ Bg for some p in S(g × g) \ {0}.

(iii) Let ϕ be in Bg . According to (i) and Proposition 2.1(iv), for all (x, y) in Ωg, [x, ϕ(x, y)] is

orthogonal to Vx,y. Then, since y is in Vx,y, [x, ϕ(x, y)] is orthogonal to y and 〈ϕ(x, y), [x, y]〉 = 0,

whence the assertion. �

2.2. Orthogonal of Bg . Denote again by 〈., .〉 the canonical extension of 〈., .〉 to the module

S(g × g) ⊗k g.

Proposition 2.3. Let Cg be the orthogonal complement to Bg in S(g × g) ⊗k g.

(i) For ϕ in S(g × g)⊗kg, ϕ is in Cg if and only if ϕ(x, y) is in [x,Vx,y] for all (x, y) in a nonempty

open subset of g × g.

(ii) The module Cg is free of rank bg − ℓ. Furthermore, the sequence of maps

(x, y) 7→ [x, ε
(m)

i
(x, y)], (i,m) ∈ I∗,0

is a basis of Cg .

(iii) The orthogonal complement to Cg in S(g × g) ⊗k g is equal to Bg .

Proof. (i) Let ϕ be in S(g × g) ⊗k g. If ϕ is in Cg , then ϕ(x, y) is orthogonal to Vx,y for all

(x, y) in Ωg. Then, according to Proposition 2.1(iv), ϕ(x, y) is in [x,Vx,y] for all (x, y) in Ωg.

Conversely, suppose that ϕ(x, y) is in [x,Vx,y] for all (x, y) in a nonempty open subset O of g × g.

By Proposition 2.1(iv) again, for all (x, y) in O ∩ Ωg, ϕ(x, y) is orthogonal to ε
(m)

i
(x, y) for all

(i,m) in I0, whence the assertion by Theorem 2.2(i).

(ii) Let C be the submodule of S(g × g) ⊗k g generated by the maps

(x, y) 7→ [x, ε
(m)

i
(x, y)], (i,m) ∈ I∗,0.
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According to (i), C is a submodule of Cg . This module is free of rank bg − ℓ since [x,Vx,y] has

dimension bg − ℓ for all (x, y) in Ωg by Proposition 2.1, (iii) and (iv). According to (i), for ϕ in

Cg , for all (x, y) in Ωg,

ϕ(x, y) =
∑

(i,m)∈I∗,0

ai,m(x, y)[x, ε
(m)

i
(x, y)]

with the ai,m’s regular on Ωg and uniquely defined by this equality. Since Ωg is a big open subset

of g × g and g × g is normal, the ai,m’s have a regular extension to g × g. As a result, ϕ is in C,

whence the assertion.

(iii) Let ϕ be in the orthogonal complement to Cg in S(g × g) ⊗k g. According to (ii), for all

(x, y) in Ωg, ϕ(x, y) is orthogonal to [x,Vx,y]. Hence by Proposition 2.1(iv), ϕ(x, y) is in Vx,y for

all (x, y) in Ωg. So, by Theorem 2.2, ϕ is in Bg , whence the assertion. �

2.3. Restriction to a parabolic subalgebra. For a subalgebra of g, set areg := a ∩ greg.

Lemma 2.4. Let a be an algebraic subalgebra of g.

(i) Suppose that a contains gx for all x in a dense open subset of a and suppose that areg is not

empty. Then Vx,y is contained in a for all (x, y) in a × a.

(ii) Suppose that a contains a Cartan subalgebra of g. Then Vx,y is contained in a for all (x, y)

in a × a.

Proof. (i) By hypothesis, for all x in a dense open subset of a, x is a regular element and gx is

contained in a. So by [Ko63, Theorem 9], ε1(x), . . . , εℓ(x) are in a for all x in a dense open subset

of a. Then, so is it for all x in a by continuity. As a result, for all (x, y) in a×a, ε
(m)

i
(x, y), (i,m) ∈ I0

is in a, whence the assertion.

(ii) Let c be a Cartan subalgebra of g contained in a. Since a is an algebraic subalgebra of g,

all semisimple element of a is conjugate under the adjoint group of a to an element of c. Hence

for all x in greg,ss ∩ a, g
x is contained in a, whence the assertion by (i) since greg,ss ∩ a is a dense

open subset of a. �

Let p be a parabolic subalgebra of g containing b. Denote by l its reductive factor containing

h, pu its nilpotent radical and ̟ the canonical projection p // l .

Corollary 2.5. For all (x, y) in p×p, Vx,y is contained in p. In particular, for all (x, y) in a dense

open subset of b × b, Vx,y = b.

Proof. Since h is contained in p, for all (x, y) in p × p, Vx,y is contained in p by Lemma 2.4(ii).

Since (h, e) is in Ωg, Ωg ∩ b × b is a dense open subset of b × b, whence the corollary by

Proposition 2.1(iii). �

Let lreg be the subset of regular elements of l and Ωl the subset of elements (x, y) of l × l such

that Px,y \ {0} is contained in lreg. For (x, y) in l × l, the image of Bl by the evaluation map at (x, y)
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is denoted by V lx,y. Set:

Rp := ̟−1(lreg) ∩ greg.

Lemma 2.6. Let R′p be the subset of elements x of Rp such that gx ∩ pu = {0}.

(i) The sets greg ∩ p and Rp are big open subsets of p.

(ii) For all x in Rp, ̟(gx) = l̟(x) if and only if gx ∩ pu = {0}.

(iii) The set R′p is a dense open subset of p.

(iv) For all (x, y) in p × p, Vx,y is contained in V l
̟(x),̟(y)

+ pu.

(v) For all (x, y) in R′p × p, ̟(Vx,y) = V l
̟(x),̟(y)

.

Proof. (i) According to [V72], lreg is a big open subset of l. Hence ̟−1(lreg) is a big open subset

of p. As a result, it remains to prove that greg ∩ p is a big open subset of p. Suppose that p \ greg

has an irreducible component Σ of codimension 1 in p. A contradiction is expected. As greg∩p is

a cone invariant under B, Σ is a closed cone invariant under B. Since k[p] is a factorial ring, for

some p in k[p], homogeneous and relatively invariant under B, the nullvariety of p in p is equal

to Σ. As a result, Σ ∩ b is an equidimensional closed cone of codimension 1 of b since b ∩ greg is

not empty. So, by Lemma 1.8, Σ = Σ ∩ h + u and u is contained in Σ since 0 is in Σ ∩ h, whence

a contradiction since greg ∩ u is not empty.

(ii) Let x be in Rp. By Lemma 2.4(ii), gx is contained in p. As ̟ is a surjective morphism of

Lie algebra, ̟(gx) is contained in l̟(x). Furthermore, dim̟(gx) = ℓ if and only if gx ∩ pu = {0}

since l has rank ℓ.

(iii) For x regular semisimple in a Cartan subalgebra, contained in l, x is in R′p since the

elements of gx are semisimple. So R′p is not empty. The map x 7→ gx from Rp to Grℓ(g) is regular.

So R′p is an open subset of Rp and p by (i).

(iv) Let Ll be the submodule of elements ϕ of S(l) ⊗k l such that [ϕ(x), x] = 0 for all x in l.

Then Ll is a free module of rank ℓ according to [Di79]. Denote by ϕ1, . . . , ϕℓ a basis of Ll. For x

in Rp and for i = 1, . . . , ℓ, ̟◦εi(x) is in l̟(x). So there exists a unique element (ai,1(x), . . . , ai,ℓ(x))

of kℓ such that

̟◦εi(x) = ai,1(x)ϕ1◦̟(x) + · · · + ai,ℓ(x)ϕℓ◦̟(x).

The functions ai,1, . . . , ai,ℓ so defined on Rp have a regular extension to p since they are regular, p

is normal and Rp is a big open subset of p by (i). As a result, for all (x, y) in p×p and for all (a, b)

in k2, ̟◦εi(ax + by) is a linear combination of the elements ϕ1(̟(ax + by)), . . . , ϕℓ(̟(ax + by)).

Hence ̟(Vx,y) is contained in V l
̟(x),̟(y)

for all (x, y) in p × p, whence the assertion.

(v) Let (x, y) be in R′p × p. By (iii), for all z in a dense open subset of Px,y, z is in R′p. So by

(ii), l̟(z) is contained in ̟(Vx,y) for all z in a dense open subset of Px,y. As a result, according to

Proposition 2.1(i), V l
̟(x),̟(y)

is contained in ̟(Vx,y), whence the assertion by (iv). �

Corollary 2.7. For all (x, y) in Ωg ∩ p × p, Vx,y = V l
̟(x),̟(y)

+ pu.
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Proof. As (h, e) is in p×p, Ωg∩p×p is a dense open subset of p×p. Let (x, y) be inΩg∩R′p×p.

By Lemma 2.6(v), ̟(Vx,y) = V l
̟(x),̟(y)

. Furthermore, dim Vx,y = bg since (x, y) is in Ωg. Hence

pu is contained in Vx,y and dim V l
̟(x),̟(y)

= bl since bg = bl +dimpu. According to Lemma 2.4(ii),

the map (x, y) 7→ Vx,y is a regular map fromΩg∩p×p to Grbg (p). So, for all (x, y) inΩg∩p×p, pu

is contained in Vx,y and dim̟(Vx,y) = bl , whence the assertion by Lemma 2.6(iv) since V l
̟(x),̟(y)

has dimension at most bl . �

3. Proof of the main theorem

In this section, we prove that Theorem 1.1 and Theorem 1.2 results from Theorem 1.3. So

we suppose that Theorem 1.3 is true for g. By Definition, C•(g) is the graded submodule of

S(g × g) ⊗k
∧

(g) such that Ci+bg (g) :=
∧i(g) ∧

∧bg (Bg) for i = 0, . . . , n. Let d be the S(g × g)-

derivation of the algebra S(g × g) ⊗k
∧

(g) such that for v in g, dv is the function on g × g,

(x, y) 7→ 〈v, [x, y]〉.

Lemma 3.1. (i) The graded module C•(g) is a graded subcomplex of S(g × g) ⊗k
∧

(g).

(ii) The ideal Ig is isomorphic to the space of boundaries of degree bg of C•(g).

(iii) The support of the homology of C•(g) is contained in C(g).

Proof. (i) Set:

ε := ∧(i,m)∈I0
ε

(m)

i
,(3)

where the order of the product is induced by the order of I0. Then C•(g) is the ideal of S(g × g)⊗k∧
(g) generated by ε since ε

(m)

i
, (i,m) ∈ I0 is a basis of Bg by Theorem 2.2(i). According to

Theorem 2.2(iii), for (i,m) in I0, ε
(m)

i
is a cycle of the complex S(g × g) ⊗k

∧
(g). Hence so is ε

and C•(g) is a subcomplex of S(g × g) ⊗k
∧

(g) as an ideal generated by a cycle.

(ii) As for v in g, dv is in Ig, Igε is the space of boundaries of degree bg of C•(g).

(iii) Let (x0, y0) be in g × g \ C(g) and v in g such that 〈v, [x0, y0]〉 , 0. For some affine open

subset O of g × g, containing (x0, y0), 〈v, [x, y]〉 , 0 for all (x, y) in O. Then dv is an invertible

element of k[O]. For c a cycle of k[O] ⊗S(g×g) C•(g),

d(v ∧ c) = (dv)c

so that c is a boundary of k[O] ⊗S(g×g) C•(g), whence the assertion. �

Theorem 3.2. (i) The complex C•(g) has no homology of degree bigger than bg .

(ii) The ideal Ig has projective dimension 2n − 1.

(iii) The algebra S(g × g)/Ig is Cohen-Macaulay.

(iv) The projective dimension of the module
∧n(g) ∧

∧bg (Bg) is equal to n.

Proof. (i) Let Z be the space of cycles of degree bg + 1 of C•(g), whence a graded subcomplex

of C•(g),

0 // C2n+ℓ(g) // · · · // Cn+ℓ+2(g) // Z // 0 .
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According to Lemma 3.1(iii), the support of its homology is contained in Cg. In particular, its

codimension in g × g is at least

4n + 2ℓ − (2n + 2ℓ) = 2n = n + n − 1 + 1

According to Theorem 1.3, for i = n + ℓ + 2, . . . , 2n + ℓ, Ci+bg (g) has projective dimension at

most n. Hence, by Corollary B.3, this complex is acyclic and Z has projective dimension at most

2n − 2, whence the assertion.

(ii) and (iii) Since Bg is a free module of rank bg ,
∧bg (Bg) is a free module of rank 1. By

definition, the short sequence

0 // Z // g ∧
∧bg (Bg) // Ig

∧bg (Bg) // 0

is exact, whence the short exact sequence

0 // Z // g ∧
∧bg (Bg) // Ig // 0 .

Moreover, by Theorem 1.3, g ∧
∧bg (Bg) has projective dimension at most 1. Then, by (i) and

Lemma B.5, Ig has projective dimension at most 2n−1. As a result the S(g×g)-module S(g×g)/Ig

has projective dimension at most 2n. Then by Auslander-Buchsbaum’s theorem [Bou98, §3, n◦3,

Théorème 1], the depth of the graded S(g × g)-module S(g × g)/Ig is at least

4bg − 2ℓ − 2n = 2bg

so that, according to [Bou98, §1, n◦3, Proposition 4], the depth of the graded algebra S(g×g)/Ig is

at least 2bg . In other words, S(g×g)/Ig is Cohen-Macaulay since it has dimension 2bg . Moreover,

since the graded algebra S(g × g)/Ig has depth 2bg , the graded S(g × g)-module S(g × g)/Ig has

projective dimension 2n. Hence Ig has projective dimension 2n − 1.

(iv) As Ig has projective dimension 2n− 1,
∧n(g)∧

∧bg (Bg) has projective dimension n by (i),

Lemma B.5 and Theorem 1.3. �

Theorem 1.2 is given by Theorem 3.2(i) and Lemma 3.1(ii) and Theorem 1.1 is a corollary of

Theorem 3.2.

Corollary 3.3. The subscheme of g × g defined by Ig is Cohen-Macaulay and normal. Further-

more, Ig is a prime ideal.

Proof. According to Theorem 3.2(iii), the subscheme of g × g defined by Ig is Cohen-Macaulay.

According to [Po08, Theorem 1], it is smooth in codimension 1. So by Serre’s normality crite-

rion [Bou98, §1, n◦10, Théorème 4], it is normal. In particular, it is reduced and Ig is radical.

According to [Ri79], C(g) is irreducible. Hence Ig is a prime ideal. �
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4. Proof of Theorem 1.3

In this section we prove that Theorem 1.3 results from Theorem 1.5. Moreover, we prove

that sl2(k) has Property (P). For k nonnegative integer, the complex D•
k
(g,Bg) is given by Defini-

tion A.1 with V = g and L = Bg and for i = 1, . . . , n, Ci+bg (g) :=
∧i(g)∧

∧bg (Bg). The embedding

of Sk(Bg)⊗S(g×g)

∧bg (Bg) in D
bg
k

(g,Bg) is an augmentation of D•
k
(g,Bg). Denote by D

•

k(g,Bg) this

augmented complex.

Proposition 4.1. Let k be a nonnegative integer.

(i) The complex D
•

k(g,Bg) has no cohomology of degree smaller than bg + 1.

(ii) For k = 0, 1, D
•

k(g,Bg) is acyclic. In particular, sl2(k) has Property (P).

(iii) If g is simple and has Property (P), then for i = 1, . . . , n, Ci+bg (g) has projective dimension

at most i.

Proof. (i) By definition, D
•

k(g,Bg) has no cohomology of degree smaller than bg . According to

Theorem 2.2, Bg is a free module of rank bg . Since Ωg is a big open subset of g × g and g × g is

normal, D
•

k(g,Bg) has no cohomology of degree bg for all positive integer k by Lemma A.4(iii).

(ii) By definition D
•

0(g,Bg) is acyclic. As D
•

1(g,Bg) has no cohomology of degree bigger than

bg by definition, D
•

1(g, bg) is acyclic by (i). For g = sl2(k), bg = 2 and ℓ = 1. Hence sl2(k) has

Property (P).

(iii) Prove the proposition by induction on i. By (i), C1+bg (g) has projective dimension at most

1. Suppose that C j+bg (g) has projective dimension at most j for j < i. By (i) and Property (P),

the complex D
•

i (g,Bg) is acyclic. Then, by induction hypothesis and Corollary B.4, Ci+bg (g) has

projective dimension at most i. �

Corollary 4.2. Suppose that all simple factors of g have Property (P). Then, for i = 1, . . . , n,

Ci+bg (g) has projective dimension at most i.

Proof. Let z be the center of g and d the derived algebra of g. Denote by ℓd the rank of d. As z is

contained in Bg , for i = 1, . . . , n, we have an isomorphism

S(z) ⊗k
∧dim z(z) ⊗k Ci+bd(d)

// Ci+bg (g).

Hence the proposition for g results from the proposition for g = d since bd − ℓd = n.

Denote by d1, . . . , dn the simple factors of g = d and prove the proposition by induction on n.

For n = 1, the proposition results from the hypothesis by Proposition 4.1(iii). Suppose n ≥ 2 and

the proposition true for n − 1. Let a be the direct product of d1, . . . , dn−1. From the equalities:

∧bg (Bg) =
∧ba (Ba) ∧

∧bgn (Bdn)∧i(g) =
⊕i

j=0

∧ j(a) ∧
∧i− j(dn)

bg − ℓ = ba − ℓa + bdn − ℓdn
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we deduce an isomorphism

⊕i

j=0
C j+ba (a) ⊗k Ci− j+bgn

(dn) // Ci+bg (g)

for i = 1, . . . , n. By induction hypothesis, C j+ba (a) has projective dimension at most j. By the

hypothesis and Proposition 4.1(iii), Ci− j+bgn
(dn) has projective dimension at most i − j. Hence

Ci+bg (g) has projective dimension at most i. �

Let d, z, d1, . . . , dn be as in the proof of Corollary 4.2. Set:

n1 := bd1 − ℓd1 , . . . , nn := bdn − ℓdn , I
′ := {(i0, . . . , in) ∈ Nn+1 | i1 ≤ n1, . . . , in ≤ nn},

I
′′ := I′ ∩ {0} × Nn, I

′
k := Nn+1

k ∩ I′, I
′′
k := I′k ∩ I

′′

for k nonnegative integer. The sets I′′ and I′′
k

identify with subsets of Nn. For I subset of I′
k

and

i = 0, . . . , k, let Ii be the subset of elements ι of I′′
i

such that (k − i, ι) is in I. For k = 0, . . . , n and

I subset of I′′
k

, denote by D•
k,I,#

(d) the simple complex deduced from the multicomplex

⊕

( j1,..., jn)∈I

D•j1(d1) ⊗k · · · ⊗k D•jn(dn).

Then D•
k,I,#

(d) is a graded subcomplex of D•
k
(d). For k = 0, . . . , n and I subset of I′

k
, the simple

complex D•
k,I,#

(g) deduced from the double complex

k⊕

i=0

D•k−i(z) ⊗k D•i,Ii,#
(d)

is a graded subcomplex of D•
k
(g) and

D•k,I,#(g,Bg) := D•k,I,#(g)[−bg] ∧
∧bg (Bg)

is a graded subcomplex of D•
k
(g,Bg). For simplicity, we set:

D•k,#(g) := D•k,I′
k
,#(g) and D•k,#(g,Bg) := D•k,I′

k
,#(g,Bg).

Lemma 4.3. Suppose that d1, . . . , dn have Property (P). Then for k = 0, . . . , n and I subset of I′
k
,

D•
k,I,#

(g,Bg) has no cohomology of degree different from bg .

Proof. As Bd is the S(d × d)-submodule of S(d × d) ⊗k d generated by the direct sum

Bd1 ⊕ · · · ⊕ Bdn ,

the S(d × d)-module
∧bd (Bd) is isomorphic to

∧bd1 (Bd1) ⊗k · · · ⊗k
∧bdn (Bdn).
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As a result, for j = 0, . . . , n and J subset of I′′
j
, the complex D j,J,#(d,Bd) is isomorphic to the

simple complex deduced from the multicomplex
⊕

(i1 ,..., in)∈J

D•i1(d1,Bd1) ⊗k · · · ⊗k D•in(dn,Bdn).

Then D•
j,J,#

(d,Bd) has no cohomology of degree different from bd since d1, . . . , dn have Property

(P). As z is contained in Bg ,

D•k,I,#(g,Bg) =

k⊕

i=0

Sk−i(z) ⊗k D•i,Ii,#
(d,Bd)[−dim z] ∧

∧dim z(z).

As a result, D•
k,I,#

(g,Bg) has no cohomology of degree different from bg since bg = bd+dim z. �

For I subset of I′ and j = 0, . . . , n, let I j,∗ be the subset of elements i of I such that i j > 0 and

I j,− the image of I j,∗ by the map

Nn+1 // Nn+1 , i 7−→ (i0, . . . , i j−1, i j − 1, i j+1, . . . , in).

Denote by I− the union of I0,−, . . . , In,−. For k = 0, . . . , n, let K•
k,I

(g,Bg) be the kernel of the

morphism

S(g × g) ⊗k D•
k,I,#

(g) // D•
k,I,#

(g,Bg)[bg] , ϕ 7−→ ϕ ∧ ε.

In particular, K•
k,I

(g,Bg) is a graded subcomplex of S(g × g) ⊗k D•
k,I,#

(g).

Proposition 4.4. Suppose that d1, . . . , dn have Property (P). Let k = 1, . . . , n and I ⊂ I′
k
. Then

K•
k,I

(g,Bg) is equal to S(g × g) ⊗k D•
k,I,#

(g) ∩ D•
k−1,I−,#

(g)[−1] ∧ Bg .

Proof. Since S(g × g) ⊗k D•
k,I,#

(g) ∩ D•
k−1,I−,#

(g)[−1] ∧ Bg is clearly contained in K•
k,I

(g,Bg), it is

sufficient to prove that K•
k,I

(g,Bg) is contained in D•
k−1,I− ,#

(g)[−1] ∧ Bg . Prove the assertion by

induction on k. For k = 1, it is true by Proposition 4.1(i). Suppose k > 1 and K•j,J(g,Bg) contained

in D•
j−1,J− ,#

(g)[−1] ∧ Bg for j < k and J ⊂ I′
j
.

Let j = 1, . . . , k − 1. For υ = (i0, . . . , in) in Nn+1
k− j

, set:

Vυ := Si0(z) ⊗k Si1(d1) ⊗k · · · ⊗k Sin(dn)

Iυ := {(l0, . . . , ln) ∈ Nn+1 | (i0 + l0, . . . , in + ln) ∈ I}.

In particular, Iυ is contained in I′j when it is not empty. Then

D
j

k,I,#
(g) =

⊕

υ∈Nn+1
k− j

Vυ ⊗k D
j

j,Iυ,#
(g).

So, by induction hypothesis, K
j

k,I
(g,Bg) is contained in D

j−1

k−1,I− ,#
(g) ∧ Bg .
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We have a commutative diagram

0 0

0 // Kk
k,I

(g,Bg) // S(g × g) ⊗k Dk
k,I,#

(g)

OO

// D
k+bg
k,I,#

(g,Bg)

OO

// 0

0 // Kk−1
k,I

(g,Bg)

d

OO

// S(g × g) ⊗k Dk−1
k,I,#

(g)

d

OO

// D
k−1+bg
k,I,#

(g,Bg)

d

OO

// 0

0 // Kk−2
k,I

(g,Bg)

d

OO

// S(g × g) ⊗k Dk−2
k,I,#

(g)

d

OO

// D
k−2+bg
k,I,#

(g,Bg)

d

OO

// 0

.

By definition, the rows are exact, by Lemma 4.3, the right column is exact and by Lemma A.2(ii),

the middle column is exact. Denoting by δ the horizontal arrows, for a in Kk
k,I

(g,Bg), a = db

for some b in S(g × g) ⊗k Dk−1
k,I,#

(g), δb = dc for c in D
k−2+bg
k,I,#

(g,Bg) and c = δc′ for some c′

in S(g × g) ⊗k Dk−2
k,I,#

(g), whence b − dc′ = δb′ for some b′ in Kk−1
k,I

(g,Bg) and a = db′. As

dDk−2
k−1,I− ,#

(g) ∧ Bg = Dk−1
k−1,I− ,#

(g) ∧ Bg , a is in Dk−1
k−1,I−,#

(g) ∧ Bg since Kk−1
k,I

(g,Bg) is contained in

Dk−2
k−1,I− ,#

(g) ∧ Bg , whence the proposition. �

As it remains to prove Theorem 1.5, we suppose g simple of rank at least 2 in the following

sections.

5. First step to the proof of Theorem 1.5

Let ̟1 be the first projection g × g // g . For k = 1, . . . , n, denote by S k the support in

g × g of the cohomology of D•
k
(g,Bg) of degree different from bg .

Lemma 5.1. Let k = 1, . . . , n.

(i) The set S k is a closed subset of g × g invariant under the actions of G and GL2(k) in g × g.

(ii) The subset ̟1(S k) of g is closed and G-invariant.

(iii) If ̟1(S k) ∩ h = {0}, then S k has codimension at least n + 2 in g × g.

Proof. (i) According to Proposition 2.1(vi), Bg is a free module generated by a basis of G-

invariant elements. Moreover, by definition, Bg is invariant under the action of GL2(k). Hence∧bg (Bg) is generated by a G×GL2(k)-semi-invariant element. Then, as the differential of D•(g) is

G×GL2(k)-equivariant, so is the differential of D•
k
(g,Bg). Hence S k is invariant under G×GL2(k).

(ii) As S k is invariant under k∗ × k∗, ̟1(S k) × {0} = S k ∩ g × {0} so that ̟1(S k) is a closed

subset of g. As S k is G-invariant so is ̟1(S k).

(iii) Suppose ̟1(S k) ∩ h = {0}. By (ii), ̟1(S k) is contained in the nilpotent cone Ng of g.

Then S k is contained in the nilpotent bicone Ng since S k is invariant under the action of GL2(k).
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As result, S k has codimension at least n + 2 in g × g since Ng has dimension 3n by [CMo08,

Theorem 1.2]. �

Proposition 5.2. Let k = 2, . . . , n. Suppose that g has Property (Pk−1) and ̟1(S k) ∩ h = {0}.

Then g has Property (Pk).

Proof. According to Proposition 4.1(i), for i = 1, . . . , k − 1, the augmented complex D
•

i (g,Bg) is

acyclic since g has Property (Pk−1). So, by Corollary B.4, for i = 1, . . . , k − 1,
∧i(g) ∧

∧bg (Bg)

has projective dimension at most i. Again by Proposition 4.1(i), S k is the support in g × g of the

cohomology of D
•

k(g,Bg). By hypothesis and Lemma 5.1(iii), S k has codimension at least k + 2

in g × g. So, by Corollary B.4, D
•

k(g,Bg) is acyclic, whence the proposition. �

Remark 5.3. By Proposition 4.1(ii), g has Property (P1). So, by Proposition 5.2 and an induction

argument, g has Property (P) if for i = 2, . . . , n, ̟1(S i) ∩ h = {0}.

6. At the neighborhood of a semisimple element

Let z be in hb \ {0} and p := gz + b. Then l := gz is the reductive factor of p containing h.

Denoting by z the center of l, d the derived algebra of l and δ the function on l,

x 7−→ δ(x) = det (ad x
∣∣∣[z,g] ),

let l∗ be the complement in l to the nullvariety of δ.

6.1. A smooth morphism. Let θ be the morphism:

G × l∗ × g −→ G(l∗) × g (g, x, y) 7−→ (g(x), g(y)) .

Lemma 6.1. Set Ω∗ := Ωg ∩ l∗ × g.

(i) The subset G(l∗) of g is open and θ is a faithfully flat morphism.

(ii) The subset Ω∗ of l∗ × g is a big open subset.

Proof. (i) Since the map (g, x) 7→ g(x) from G× l∗ to g is a submersion, G(l∗) is an open subset of

g and this map is a smooth surjective morphism from G × l∗ to G(l∗). As a result, θ is a faithfully

flat morphism from G × l∗ × g onto the open subset G(l∗)× g of g × g since the endomorphism of

G × l∗ × g, (g, x, y) 7→ (g, x, g(y)) is an isomorphism.

(ii) By (i), the fibers of θ are equidimensional of dimension dim l. Hence Ω∗ is a big open

subset of l∗ × g since Ωg is a G-invariant big open subset of g × g. �

For any S(g × g)-module M, denote by M the restriction to G(l∗) × g of the localization of M

on g × g and M the space of global sections of θ∗(M).

Corollary 6.2. Let M be a S(g × g)-module and N a submodule of M. The modules M and N

are equal if and only if G(l∗) × g has an empty intersection with the support of M/N.
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Proof. Denote by M′ the restriction to G(l∗) × g of the localization on g × g of M/N. As the

localization functor is exact, we have a short exact sequence

0 // N // M // M′ // 0 .

By Lemma 6.1(i), θ is a faithfully flat morphism from G × l∗ × g to G(l∗) × g. Hence the short

sequence

0 // θ∗(N) // θ∗(M) // θ∗(M′) // 0

is exact and M′
= 0 if and only if θ∗(M′) = 0. Moreover, θ∗(M′) = 0 if and only if M = N since

G × l∗ × g is an affine variety. Hence M = N if and only if the support of M/N in g × g has an

empty intersection with G(l∗) × g. �

6.2. As l+b is a parabolic subalgebra of g, so is p− := l+b−. Let d1, . . . , dn be the simple factors

of d. Denote by p±,u the complement to l in g, invariant under adh and p−,u the nilpotent radical

of p−. Set:

l0 := z + p±,u, l0,− := z + p−,u, n1 := bd1 − ℓd1 , . . . , nn := bdn − ℓdn ,

I := {(i−1, . . . , in) ∈ Nn+2 | i1 ≤ n1, . . . , in ≤ nn}, Ik := Nn+2
k ∩ I

for k nonnegative integer. The sets I′ and I′
k

of Section 4 identify with I∩{0}×Nn+1 and Ik∩{0}×

Nn+1 respectively. According to the notations of Section 4, for k = 1, . . . , n, denote by D•
k,#

(g)

the simple complex deduced from the double complexe

k⊕

i=0

D•k−i(p±,u) ⊗k D•i,#(l).

Then D•
k,#

(g) is a graded subcomplex of D•
k
(g).

Denoting by B the localization on g × g of Bg , let B̃ be the space of global section of θ∗(B).

In particular, B̃ is a free submodule of rank bg of k[G × l∗ × g] ⊗k g. For k = 1, . . . , n, set:

B := k[l∗ × g] ⊗S(g×g) Bg

C := k[l∗ × g] ⊗S(g×g) Cg

D•k,#(g, B̃) := D•
k,#

(g)[−bg] ∧
∧bg (B̃)

D•k,#(g,Bg) := D•
k,#

(g)[−bg] ∧
∧bg (Bg).

Lemma 6.3. Let k = 1, . . . , n.

(i) The orthogonal complement to B in k[l∗ × g]⊗k g is equal to C and the orthogonal comple-

ment to C in k[l∗ × g] ⊗k g is equal to B.

(ii) The set ̟1(S k) does not contain z if and only if D•
k
(g, B̃) has no cohomology of degree

different from bg .
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Proof. (i) By Proposition 2.3, C is orthogonal to B. Let ϕ and ψ be in k[l∗ × g] ⊗k g orthogonal

to B and C respectively. For (x, y) in Ω∗, the orthogonal complement to Vx,y is equal to [x,Vx,y]

by Proposition 2.1(iv). Then, for some regular functions ai,m, (i,m) ∈ I∗,0 and bi,m, (i,m) ∈ I0,

ϕ(x, y) =
∑

(i,m)∈I∗,0

ai,m(x, y)[x, ε
(m)

i
(x, y)] and ψ(x, y) =

∑

(i,m)∈I0

bi,m(x, y)ε
(m)

i
(x, y)

for all (x, y) in Ω∗. By Lemma 6.1(ii), Ω∗ is a big open subset of l∗ × g. So, the regular functions

ai,m (i,m) ∈ I∗,0 and bi,m (i,m) ∈ I0 have a regular extension to l∗×g since l∗×g is a normal variety.

As a result, ϕ and ψ are in C and B respectively, whence the assertion.

(ii) For j integer, denote by Z
j

k
and B

j

k
the spaces of cocycles and coboundaries of degree j of

D•
k
(g,Bg). By Lemma 6.1(i), from the short exact sequence

0 // Z
j

k
// D

j

k
(g,Bg) // B

j+1

k
// 0

for j integer, we deduce the short exact sequence

0 // Z
j

k
// D

j

k
(g,Bg) // B

j+1

k
// 0

since G × l∗ × g is an affine variety. As B̃ is the space of global sections of θ∗(B), D
j

k
(g, B̃) =

D
j

k
(g,Bg). Hence Z

j

k
and B

j

k
are the spaces of cocycles and coboundaries of degree j of D•

k
(g, B̃).

By Corollary 6.2, z < ̟1(S k) if and only Z
j

k
= B

j

k
for j , bg , whence the assertion. �

Denote by O the localization at the identity of k[G].

Lemma 6.4. Let k = 1, . . . , n. Suppose that for i = 1, . . . , k, O⊗k[G] D•
i,#

(g, B̃) has no cohomology

of degree different from bg . Then, for i = 1, . . . , k and ϕ in O ⊗k[G] k[l∗ × g] ⊗k Di
i,#

(g)

ϕ ∧
∧bg (B̃) = {0} =⇒ ϕ ∈ O ⊗k[G] Di−1

i,# (g) ∧ B̃.

Proof. Let ε̃ be a generator of
∧bg (B̃). Prove the lemma by induction on i. By Proposition A.7,

it is true for i = 1. Suppose that it is true for i − 1. For some ψ in O ⊗k[G] k[l∗ × g] ⊗k Di−1
i,#

(g),

ϕ = dψ. Then ψ∧ ε̃ is a cocycle of degree i− 1 of O⊗k[G] D•
i,#

(g, B̃). So, by hypothesis, for some

ψ′ in O ⊗k[G] Di−2
i,#

(g), ψ ∧ ε̃ = dψ′ ∧ ε̃. Then, by induction hypothesis,

ψ − dψ′ ∈ O ⊗k[G] Di−1
i,# (g) ∧ B̃,

whence the lemma. �

Proposition 6.5. Let k = 1, . . . , n. Suppose that the following condition is satisfied: for i =

1, . . . , k, O ⊗k[G] D•
i,#(g, B̃) has no cohomology of degree different from bg .

(i) For i = 1, . . . , k, D•i (g, B̃) has no cohomology of degree different from bg .

(ii) For i = 1, . . . , k, z is not in ̟1(S i).
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Proof. (i) We consider the action of G in k[G × l∗ × g] ⊗k g given by

k.a⊗v(g, x, y) := a(k−1g, x, y)k.v.

This action has a natural extension to k[G × l∗ × g] ⊗k D(g) and D•i (g, B̃) is invariant under this

action for i = 1, . . . , k since Bg is a G-invariant submodule of S(g × g)⊗kg by Proposition 2.1(vi).

This action induces an action of g in O⊗k k[l∗ × g]⊗kD(g) and O⊗k[G] D•i (g, B̃) is invariant under

this action.

Prove the assertion by induction on i. By Proposition 4.1(ii) and Lemma 6.3(ii), it is true for

i = 1. Suppose i > 1 and the assertion true for the integers smaller than i. Set:

E′ := O ⊗k k[l∗ × g] ⊗k Di
i,#(g), N′1 := O ⊗k[G]

∧i−1(g) ∧ B̃ and

N′2 := {ϕ ∈ O ⊗k k[l∗ × g] ⊗k
∧i(g) | (g, x, y) ∈ G × l∗ × g =⇒ ϕ(g, x, y) ∧ ε(g(x), g(y)) = 0}.

By the hypothesis, Proposition A.7 and Lemma 6.4, N′
2
∩ E′ ⊂ N′

1
∩ E′. Moreover, N′

1
and N′

2

are g-submodules of O ⊗k k[l∗ × g] ⊗k
∧i(g).

Set:

M := k[G] ⊗k k[l∗ × g] ⊗k
∧i(g), M′ := k[G] ⊗k k[l∗ × g] ⊗k Di

i,#(g), N j := N′j ∩ M

for j = 1, 2. Then M is a rational g-module since so is k[G], M′ is a l-submodule of M, N1 and

N2 are g-submodules of M such that N1 is contained in N2 and N2 ∩ M′ is contained in N1 ∩ M′.

By [C20, Theorem 1.1], Di
i,#

(g) generates the G-module of
∧i(g). So M′ generates the G-module

M since k[G] ⊗k k[l∗ × g] is a G-module. Then, by Proposition D.6, N1 = N2.

For a in N′
2
, pa is in N2 for some p in k[G] such that p(1g) , 0. Hence pa is in N1 and a is

in N′1. As a result, N′1 = N′2 since N′1 is contained in N′2. Then, again by Proposition A.7 and

the induction hypothesis, the complex O ⊗k[G] D•i (g, B̃) has no cohomology of degree different

from bg . As a result, the support in G × l∗ × g of the cohomology of degree different from bg of

D•
i
(g, B̃) does not contain {1g} × l∗ × g. As D•

i
(g, B̃) is a G-equivariant complex, this support is

invariant under G. Hence it is empty and D•
i
(g, B̃) has no cohomology of degree different from

bg .

(ii) By (i) and Lemma 6.3(ii), for i = 1, . . . , k, z is not in ̟1(S i). �

Definition 6.6. For k = 1, . . . , n and z in hb, we say that g has Property (Pz,k) if D•
i,#

(g, B̃) has no

cohomology of degree different from bg for i = 1, . . . , k.

Remark 6.7. Suppose that g has Property (Pz,n) for all z in hb \ {0}. Then g has Property (P) by

Proposition 6.5(ii) and Remark 5.3.

7. Restriction to a parabolic subalgebra

Let p be a parabolic subalgebra of g containing b, l the reductive factor of p containing h, d

the derived algebra of l, z the center of l and P the normalizer of p in G. Denote by Rl the set of
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roots α such that gα is contained in l and set:

d0 := dim z, pu :=
⊕

α∈R+\Rl

gα, d := dimpu

so that pu is the nilpotent radical of p. Let L be the centralizer of z in G. According to [Ko63,

§3.2, Lemma 5], L is connected. When b is strictly contained in p, we denote by d1, . . . , dn the

simple factors of d. Let z be in z such that β(z) = 1 for all β in Π \ Rl and t 7→ ζ(t) the one

parameter subgroup of G generated by adz.

Let l∗ be the open subset of l as in Section 6. The usual gradation of k[p] induces a gradation

of the polynomial algebra k[l∗ × p] over k[l∗]. Let ̟ be the canonical projection p // l and

set:

B := k[l∗ × p] ⊗S(g×g) Bg , Bl := k[l∗ × l] ⊗S(l×l) Bl , Bu := B ∩ k[l∗ × p] ⊗k pu.

As (h, e) is in Ωg, Ωg ∩ l∗×p is a dense open subset of l∗×p so that B is a free submodule of rank

bg of k[l∗ × p] ⊗k p by Proposition 2.1(iii) and Corollary 2.7. Again by Proposition 2.1(iii), Bl is

a free k[l∗ × l]-module of rank bl . From the direct sum

p = l ⊕ pu,

we deduce the inclusions

k[l] ⊂ k[p] and k[l∗ × l] ⊂ k[l∗ × p].

In this section, for (i,m) in I0, the restriction of ε
(m)

i
to l∗ × p is again denoted by ε

(m)

i
. According

to this convention, ε is a generator of the k[l∗ × p]-module
∧bg (B) (see Equality 3). As in

Subsection 2.3, for (x, y) in l × l, the image of Bl by the evaluation map at (x, y) is denoted by

V lx,y.

7.1. Elementary properties of the module B. Denote by β1, . . . , βd0
the simple roots in Π \ Rl

and h1, . . . , hd0
the basis of z dual of β1, . . . , βd0

. Let q1, . . . , qℓ be homogeneous generators of

S(l)L and d′
1
, . . . , d′

ℓ
their respective degrees, chosen so that

(1) d′
1
≤ · · · ≤d′

ℓ
,

(2) for i = 1, . . . , ℓ, qi ∈ S(z) ∪ S(d1)L ∪ · · · ∪ S(dn)L,

(3) for i = 1, . . . , d0, qi = hi.

For i = 1, . . . , ℓ, denote by ηi the differential of qi.

Lemma 7.1. (i) For i = 1, . . . , ℓ, there exists a unique sequence ci, j, j = 1, . . . , ℓ in k[l] such that

εi(x) =

ℓ∑

j=1

ci, j(x)η j(x)

for all x in l. Moreover, ci, j is invariant under L and homogeneous of degree di − d′j.
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(ii) For x in l∗, the matrix

(ci, j(x), 1 ≤ i, j ≤ ℓ)

is invertible.

Proof. (i) Let i = 1, . . . , ℓ. For x in lreg, η1(x), . . . , ηℓ(x) is a basis of lx by [Ko63, Theorem 9]. By

Lemma 2.4(i), for all x in l, εi(x) is in lx. Then there exists a unique sequence ci, j, j = 1, . . . , ℓ in

k[lreg] such that

εi(x) =

ℓ∑

j=1

ci, j(x)η j(x)

for all x in lreg. By [V72], lreg is a big open subset of l. Then ci,1, . . . , ci,ℓ have a regular extension

to l since l is normal, whence

εi(x) =

ℓ∑

j=1

ci, j(x)η j(x)

for all x in l. As εi and η j are invariant under L and homogeneous of degree di − 1 and d′j − 1

respectively, ci, j is invariant under L and homogeneous of degree di − d′j.

(ii) For x in l∗, g
x is contained in l. Then l∗∩ lreg is contained in greg. As a result, for i = 1, . . . , ℓ,

there exists a unique sequence c′
i, j
, j = 1, . . . , ℓ in k[l∗ ∩ lreg] such that

ηi(x) =

ℓ∑

j=1

c′i, j(x)ε j(x)

for all x in l∗ ∩ lreg since ε1(x), . . . , εℓ(x) is a basis of gx fo x in greg by [Ko63, Theorem 9]. As

l∗ ∩ lreg is a big open subset of l∗, c′
i,1
, . . . , c′

i,ℓ
have a regular extension to l∗. Then, for i = 1, . . . , ℓ

and x in l∗,

ηi(x) =

ℓ∑

j=1

c′i, j(x)ε j(x),

whence the assertion. �

For a homogeneous of degree da in k[l] and for k = 0, . . . , da, denote by a(k) the 2-polarization

of bidegree (da − k, k) of a. Set:

I′0 := {(i,m) ∈ {1, . . . , ℓ} × N | 0 ≤ m ≤ d′i − 1}, Iu := I0 \ I′0.

Then |I′
0
| = bl and |Iu| = d. For (i,m) in I′

0
, let η

(m)

i
be the 2-polarization of ηi of bidegree

(d′
i
− 1 − m,m). For (i,m) in I0 and ( j,m′) in I′

0
, set ci,m, j,m′ := c

(m−m′)

i, j
. In particular, ci,m, j,m′ = 0 if

m′ > m or m − m′ > di − d′
j
since ci, j is homogeneous of degree di − d′

j
.

Lemma 7.2. (i) For (i,m) in I0,

ε
(m)

i
(x, y) =

∑

( j,m′)∈I′
0

ci,m, j,m′(x, y)η
(m′)

j
(x, y)
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for all (x, y) in l × l.

(ii) For (i,m) in I0 and ( j,m′) in I′
0
, the function ci,m, j,m′ is invariant under the diagonal action

of L in l × l.

(iii) For (x, y) in h × (u ∩ l) and (i,m) in I′0,

ε
(m)

i
(x, y) =

ℓ∑

j=1

ci, j(x)η
(m)

j
(x, y).

(iv) For (i,m) in I0 and y′ in pu,

̟◦ε
(m)

i
(x, y + y′) = ε

(m)

i
(x, y)

for all (x, y) in l × l.

Proof. (i) By Lemma 7.1(i), for (x, y) in l × l,

εi(x + sy) =

ℓ∑

j=1

ci, j(x + sy)η j(x + sy)

for all s in k, whence

di−1∑

m=0

smε
(m)

i
(x, y) =

di−d′
j∑

l=0

d′
j
−1∑

k=0

sl+kc
(l)

i, j
(x, y)η

(k)

j
(x, y) =

di−1∑

m=0

sm

inf{m,d′
j
−1}∑

m′=0

c
(m−m′)

i, j
(x, y)η

(m′)

j
(x, y).

As a result,

ε
(m)

i
(x, y) =

∑

( j,m′)∈I′
0

ci,m, j,m′(x, y)η
(m′)

j
(x, y)

for all (x, y) in l × l.

(ii) By Lemma 7.1(i), ci,m, j,m′ is invariant under the diagonal action of L in l × l.

(iii) Let (x, y) be in h × (u ∩ l). By (i),

ε
(m)

i
(x, y) =

∑

( j,m′)∈I′
0

ci,m, j,m′(x, y)η
(m′)

j
(x, y).

By (ii), for t in k∗ and ( j,m′) in I′
0
,

ci,m, j,m′(x, y) = ci,m, j,m′(x, ρ(t).y),

whence

ci,m, j,m′(x, y) = ci,m, j,m′(x, 0) since lim
t→0

ρ(t).y = 0.

As a result, ci,m, j,m′(x, y) = 0 for m , m′ and ci,m, j,m(x, y) = ci, j(x), whence the assertion.

(iv) According to Corollary 2.5, for all x in p, εi(x) is in p. For x in l and y in pu,

lim
t→0

ζ(t)(x + y) = x whence pi(x + y) = pi(x) and 〈εi(x), v〉 = 〈εi(x + y), v〉
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for all v in l. As a result, for all x in l and for all y in pu, εi(x) − εi(x + y) is in pu since pu is the

orthogonal complement to p in g, whence the assertion. �

The order of I0 induces an order of I′
0

and we get a square matrix of order |I′
0
|,

M0 := (ci,m, j,m′ , ((i,m), ( j,m′)) ∈ I′0 × I′0),

with coefficients in k[l∗ × l].

Corollary 7.3. For all (x, y) in l∗ × l, det M0(x, y) , 0.

Proof. Set:

ε0 := ∧(i,m)∈I′
0
ε

(m)

i
and η0 := ∧( j,m′)∈I′

0
η

(m′)

j
.

In these equalities, the order of the products is induced by the order of I′
0
. Let ε0 be the restriction

of ε0 to l∗ × l. By Lemma 7.2(i), ε0 is in k[l∗ × l] ⊗k
∧bl (l) and

ε0 = det M0η0.

As ε0 and η0 are homogeneous of degree

ℓ∑

i=1

d′i (d
′
i − 1)

2
,

det M0 is in k[l∗].

Denote by Σ the nullvariety of det M0 in l∗. Suppose that Σ is nonempty. A contradiction is

expected. As the maps ε
(m)

i
and η

(m)

i
are homogeneous and invariant under L for all (i,m) in I′

0
, Σ

is a closed cone of l∗, invariant under L.

Claim 7.4. For some x in (l∗ ∩ h), x +̟(e) is in Σ.

Proof. [Proof of Claim 7.4] As Ωl ∩ l∗ × l contains (h, ̟(e)), for all t in k, h + t̟(e) is a regular

element of g and l, whence a sequence pi, j, 1 ≤ i, j ≤ ℓ of polynomials such that

ηi(h + t̟(e)) = pi,1(t)ε1(h + t̟(e)) + · · · + pi,ℓ(t)εℓ(h + t̟(e)

for all t in k and i = 1, . . . , ℓ. As a result, for all (i,m) in I′
0
, η

(m)

i
(h, ̟(e)) is a linear combination

of ε
(m′)

j
(h, ̟(e). Hence h ∩ l∗ is not contained in Σ. Let Σ′ be an irreducible component of Σ ∩ b.

Then Σ′ is an hypersurface of b as an irreducible component of the nullvariety of det M0 in b∩ l∗.

Then, by lemma 1.8,

Σ
′
= Σ

′ ∩ h + u ∩ l

since l∗ ∩ b = l∗ ∩ h+ u∩ l and Σ and Σ′ are invariant under the one parameter subgroup t 7→ ρ(t)

of G. As a result, for x in Σ′ ∩ h, x +̟(e) is in Σ′, whence the claim. �
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From the equality

lim
t→∞

t−2ρ(t).(x +̟(e)) = ̟(e),

we deduce that x + ̟(e) is a regular element of l since so is ̟(e). Hence x + ̟(e) is a regular

element of g since it is in l∗. Then, from the equalities

lim
t→0

ρ(t).(h + e −̟(e)) = h and

lim
t→∞

t−2ρ(t).(x +̟(e) + a(h + e −̟(e))) = ̟(e) + a(e −̟(e)),

for a in k, we deduce

h + e −̟(e) ∈ greg and x +̟(e) + a(h + e −̟(e)) ∈ greg

for all a in k∗ since ̟(e) + a(e −̟(e)) is a regular element of g. Hence

(x +̟(e), h + e −̟(e)) ∈ Ωg.

As a result, by Corollary 2.7 and Lemma 7.2(iv), the elements

ε
(m)

i
(x +̟(e), h), (i,m) ∈ I′0

are linearly independent, whence the contradiction. �

7.2. Decomposition of B. Let B0 be the submodule of B generated by ε
(m)

i
, (i,m) ∈ I′0. For

(i,m) in I′0, denote by ε
(m)

i
the restriction of ε

(m)

i
to l∗× l. By Lemma 2.4(ii), ε

(m)

i
is in k[l∗ × l]⊗k l.

Lemma 7.5. (i) The k[l∗ × p]-modules B and B0 are free of rank bg and bl respectively.

(ii) The module Bl is the image of B0 by the restriction map from l∗ × p to l∗ × l. In particular,

ε
(m)

i
, (i,m) ∈ I′0 is a basis of Bl.

Proof. (i) As Ωg ∩ l∗ × p is not empty and B is generated by ε
(m)

i
, (i,m) ∈ I0, the assertion results

from Proposition 2.1(iii) since |I0| = bg and |I′0| = bl .

(ii) By Lemma 7.2(i), the restriction of B0 to l∗ × l is contained in Bl. By Corollary 7.3,

the matrix M0(x, y) is invertible for all (x, y) in l∗ × l. Then, for all (i,m) in I′0, η
(m)

i
is a linear

combination with coefficients in k[l∗ × l] of ε
(m′)

j
, ( j,m′) ∈ I′0, whence the assertion. �

Set:

p−,u :=
⊕

α∈R+\Rl

g−α and p− := l ⊕ p−,u

so that p− is a parabolic subalgebra of g. Let J− be the ideal of definition of l∗ × l in k[l∗ × p]. As

k[p] identifies with S(p−), k[l∗ × p] = k[l∗] ⊗k S(p−) and J− is the ideal generated by 1⊗p−,u.
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Proposition 7.6. (i) For (i,m) in I0, ε
(m)

i
− ε

(m)

i
is in J− ⊗k pu.

(ii) For (i,m) in Iu, for a well defined sequence ai,m, j,m′ , ( j,m′) ∈ I′
0

in k[l∗ × l]
L,

ν
(m)

i
:= ε

(m)

i
−

∑

( j,m′)∈I′
0

ai,m, j,m′ε
(m′)

j
∈ J− ⊗k pu.

(iii) The module B is the direct sum of B0 and Bu.

(iv) The module Bu is free of rank d and ν
(m)

i
, (i,m) ∈ Iu is a basis of Bu.

Proof. (i) According to Lemma 7.2(iv), ε
(m)

i
− ε

(m)

i
is in k[l∗ × p] ⊗k pu. By Proposition 2.1(vi),

ε
(m)

i
is invariant under the one parameter subgroup t 7→ ζ(t). Then so is ε

(m)

i
− ε

(m)

i
, whence the

assertion since the elements of k[l∗ × p] ⊗k pu, invariant under t 7→ ζ(t), are in J− ⊗k pu.

(ii) According to Corollary 2.7, ε
(m)

i
is in Bl. Then, by Lemma 7.5(ii), for a well defined

sequence ai,m, j,m′ , ( j,m′) ∈ I′
0

in k[l∗ × l],

ε
(m)

i
=

∑

( j,m′)∈I′
0

ai,m, j,m′ε
(m′)

j
.

For all ( j,m′) in I0, ε
(m′)

j
is invariant under L by Proposition 2.1(vi). Hence ai,m, j,m′ is invariant

under L for all ( j,m′) in I′
0
. Moreover, by (i), ν

(m)

i
is in J− ⊗k pu.

(iii) By (ii), B is the sum of B0 and Bu since B is generated by the ε
(m)

i
’s. Suppose B0∩Bu , {0}.

A contradiction is expected. Let ϕ be a non zero element of B0 ∩ Bu. Then

ϕ =
∑

(i,m)∈I′
0

ϕi,mε
(m)

i

with ϕi,m in k[l∗ × p]. As ϕ is in Bu, ̟◦ϕ = 0. For some linearly independent homogeneous

elements r1, . . . , rl of S(p−,u),

ϕi,m =

l∑

j=1

r jϕi,m, j

with ϕi,m,1, . . . , ϕi,m,l in k[l∗ × l] for all (i,m). By (i), denoting by Imin the set of indices j such that

r j has minimal degree and ϕi,m, j , 0 for some (i,m),

∑

j∈Imin

r j(
∑

(i,m)∈I′
0

ϕi,m, jε
(m)

i
) = 0

since ϕ is in k[l∗ × p] ⊗k pu. As a result, for j in Imin, ϕi,m, j = 0 for all (i,m), whence the

contradiction and the assertion.

(iv) By (iii), Bu has rank d since B0 and B have rank bl and bg respectively. Set:

ε := ∧(i,m)∈I0
ε

(m)

i
and ν := ∧(i,m)∈Iu

ν
(m)

i
.
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In these equalities, the order of the products is induced by the order of I0. By (ii),

ε0 ∧ ν = ±ε,

with ε0 as in the proof of Corollary 7.3. Again by (iii),
∧bg (B) is isomorphic to

∧bl (B0) ⊗k[l∗×p]∧d(Bu). So, for ϕ in
∧d(Bu), ε0 ∧ϕ = aε for some a in k[l∗ × p] since ε is a generator of

∧bg (B).

As a result,

ε0 ∧ (ϕ ∓ aν) = 0.

Denoting by ε0 the restriction of ε0 to l∗ × l,

ε0 − ε0 ∈ k[l∗ × p] ⊗k pu ∧
∧bl−1(p)

by (i). Hence ε0 ∧ (ϕ ∓ aν) = 0 and ϕ = ±aν. As a result, ν is a generator of
∧d(Bu).

Let µ be in Bu. Then

µ =
∑

(i,m)∈Iu

ci,mν
(m)

i

for some sequence ci,m, (i,m) ∈ Iu in k(l∗×p) since Bu has rank d and ν
(m)

i
, (i,m) ∈ Iu are linearly

independent over k[l∗ × p]. For (i,m) in Iu, set:

νi,m := ∧( j,m′)∈Iu\{(i,m)}ν
(m′)

j
.

In this equality, the order of the product is induced by the order of I0. As ν is a generator of∧d(Bu), for some c′i,m in k[l∗ × p],

c′i,mν = µ ∧ νi,m = ±ci,mν,

whence ci,m is in k[l∗ × p]. As a result, Bu is a free module generated by ν
(m)

i
, (i,m) ∈ Iu. Then,

by (ii), Bu is contained in J− ⊗k pu. �

As l∗ is a principal open subset of l, containing hreg, h∗ := l∗ ∩ h is a nonempty principal open

susbet of h.

Lemma 7.7. Let (i,m) be in Iu.

(i) For ( j,m′) in I′
0
, ai,m, j,m′ is bihomogeneous of bidegree (di−d j+m′−m,m−m′). In particular,

ai,m, j,m′ = 0 when m′ > m.

(ii) For ( j,m′) in I′
0
, (x, x′) in h∗ × h and (y, y′) in u × u, ai,m, j,m′(x + y, x′ + y′) = ai,m, j,m′(x, x′)

and ai,m, j,m′(x, y) = ai,m, j,m′(x, 0). In particular, ai,m, j,m′(x, y) = 0 when m , m′.

(iii) For ( j,m′) in I0 and (t, x, v) in k × g × g,

ε
(m′)

j
(x, tx + v) =

m′∑

k=0

(
d j − 1 − k

m′ − k

)
tm′−kε

(k)

j
(x, v).
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Proof. (i) By Proposition 7.6(ii),

ε
(m)

i
−

∑

( j,m′)∈I′
0

ai,m, j,m′ε
(m′)

j
∈ J− ⊗k pu.

As ε
(m′)

j
is bihomogeneous of bidegree (d j − 1 − m′,m′) for all ( j,m′) in I0, ai,m, j,m′ is bihomoge-

neous of bidegree (di − d j + m′ − m,m − m′) for all ( j,m′) in I′
0
. Again, by Proposition 7.6(ii),

ai,m, j,m′ is in k[l∗ × l] so that the second degree of ai,m, j,m′ is nonnegative. Hence ai,m, j,m′ = 0 when

m′ > m.

(ii) By Proposition 7.6(ii), ai,m, j,m′ is invariant under the one parameter subgroup t 7→ ρ(t) of

G, whence

ai,m, j,m′(x+y, x′+y′) = ai,m, j,m′(x+ρ(t).y, x′+ρ(t).y) and ai,m, j,m′(x, y) = ai,m, j,m′(x, ρ(t).y), ∀t ∈ k∗.

As a result, ai,m, j,m′(x + y, x′ + y) = ai,m, j,m′(x, x′) and ai,m, j,m′(x, y) = ai,m, j,m′(x, 0) since

lim
t→0

ρ(t).y = lim
t→0

ρ(t).y′ = 0.

Then, by (i), ai,m, j,m′(x, y) = 0 when m′ , m.

(iii) For s in k,

ε j(x + s(tx + v)) =
∑d j−1

k=0
skε

(k)

j
((1 + st)x, v)

=
∑d j−1

k=0
sk(1 + st)d j−1−kε

(k)

i
(x, v)

=
∑d j−1

m′=0
sm′

∑m′

k=0

(
d j−1−k

m′−k

)
tm′−kε

(k)

j
(x, v),

whence the equality. �

For k, l positive integers such that k ≤ l, set:

r(k, l) :=

k−1∑

j=0

(−1) j

(
l

j

)
.

Corollary 7.8. Let (i,m) be in Iu and x in h∗.

(i) For j = 0, . . . , d′i − 1 and l in {1, . . . , ℓ} \ {i},

(
di − 1 − j

m − j

)
−

d′
i
−1∑

m′= j

(
di − 1 − j

m′ − j

)
ai,m,i,m′(x, x) = 0 and

d′
l
−1∑

m′= j

(
dl − 1 − j

m′ − j

)
ai,m,l,m′(x, x) = 0.

(ii) For m′ = 0, . . . , d′
i
− 1,

ai,m,i,m′(x, x) =

m′∑

j=0

(−1)m′− j (di − 1 − m′)!

(di − 1 − m)!(m − j)!(m′ − j)!
.
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(iii) If d′
i
≥ 2 then

r(m, di − 1) −

d′
i
−1∑

m′=1

(−1)m−m′r(m′, di − 1)ai,m,i,m′(x, x) , 0.

Proof. (i) Let (t, y) be in k × (u ∩ l). By Proposition 7.6(ii),

ε
(m)

i
(x, tx + y) =

∑

(l′ ,m′)∈I′
0

ai,m,l′,m′(x, tx + y)ε
(m′)

l′
(x, tx + y)

since ε
(m′)

j
(x, tx+y) is in l for all ( j,m′) in I0 by Lemma 2.4(i). Then, by Lemma 7.7,(ii) and (iii),

m∑

j=0

(
di − 1 − j

m − j

)
tm− jε

( j)

i
(x, y) −

∑

(l′,m′)∈I′
0

m′∑

j=0

ai,m,l′,m′(x, x)

(
dl′ − 1 − j

m′ − j

)
tm− jε

( j)

l′
(x, y) = 0,

whence, for j = 0, . . . ,m,

(
di − 1 − j

m − j

)
ε

( j)

i
(x, y) −

∑

d′
l′
> j

d′
l′
−1∑

m′= j

ai,m,l′,m′(x, x)

(
dl′ − 1 − j

m′ − j

)
ε

( j)

l′
(x, y) = 0.

For x in a dense open subset of h∗, (x, ̟(e)) is in Ωl since ̟(e) is a nilpotent element of a

principal sl2-triple of l. Then ε
(m′)

l′
(x, ̟(e)), (l′,m′) ∈ I′

0
are linearly independent by Proposi-

tion 2.1(iii) and Lemma 7.5(ii). As a result, for j = 0, . . . , d′
i
− 1 and j′ = 0, . . . , d′

l
− 1,

(
di − 1 − j

m − j

)
−

d′
i
−1∑

m′= j

ai,m,i,m′(x, x)

(
di − 1 − j

m′ − j

)
= 0 and

d′
l
−1∑

m′= j′

ai,m,l,m′(x, x)

(
dl − 1 − j′

m′ − j′

)
= 0.

(ii) For x in h∗ and m′ = 0, . . . , d′
i
− 1, set:

ψm′(x) := ai,m,i,m′(x, x)
(di − 1 − m)!

(di − 1 − m′)!
.

By (i), the sequence ψm′(x),m′ = 0, . . . , d′
i
− 1 is a solution of the linear system

d′
i
−1∑

m′= j

ψm′(x)
1

(m′ − j)!
=

1

(m − j)!
.

The inverse of the matrix of this system is equal to

(am′, j, 0 ≤ m′, j ≤ d′i − 1) with am′, j :=


(−1)m′− j

(m′− j)!
if m′ ≥ j

0 if m′ < j
,

whence the equality of the assertion.
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(iii) For e, k, l integers such that 2 ≤ e ≤ k ≤ l, set:

c(k, l) :=

k∑

j=0

(−1) j

j!(l + j)!
and ψ(e, k, l) := r(k, l) −

e−1∑

j=1

(−1)k− jc( j, k − j)r( j, l)
(l − j)!

(l − k)!
.

By (ii),

ai,m,i,m′(x, x) =
(di − 1 − m′)!

(di − 1 − m)!
c(m′,m − m′).

Then

ψ(d′i ,m, di − 1) = r(m, di − 1) −

d′
i
−1∑

m′=1

(−1)m−m′r(m′, di − 1)ai,m,i,m′(x, x),

whence the assertion by Proposition C.3. �

7.3. An invariance property. In this subsection, ε
(m)

i
, (i,m) ∈ I0 is a sequence in S(g × g)⊗k g.

Set:

Γ := (b ∩ l∗ ∩ greg,ss) × (b ∩ l).

Then Γ is an affine variety invariant under B ∩ L since l∗ and greg,ss are principal open subsets of

l and g respectively, invariant under B ∩ L. We identify Γ with the subset {1G} × Γ of G × Γ by

the map x 7→ (1G, x). Let X be the quotient of G × Γ under the right action of B ∩ L given by

(g, x, y).k := (gk, k−1(x), k−1(y)) and υ the quotient map. Denote by τ the canonical morphism

X
τ // g × g such that τ◦υ(g, x, y) = (g(x), g(y)).

Lemma 7.9. Set ΩΓ := G.τ−1(Ωl ∩ Γ) and Y := X \ΩΓ.

(i) The restriction of υ to Γ is a closed embedding.

(ii) The subset Y of X is closed and G-invariant.

Proof. (i) Let (g, x, y) be in G × Γ such that (g(x), g(y)) is in Γ. As x is regular semisimple, for

some b in B∩ L, g(x) = b(x), whence b−1g is in B∩ L since the centralizer of x in G is contained

in B ∩ L. As a result, τ−1(Γ) = υ(Γ), whence the assertion since the restriction of τ◦υ to Γ is the

identity.

(ii) By (i), τ−1(Ωl ∩ Γ) is equal to υ(Ωl ∩ Γ) since Ωl ∩ Γ is invariant under B ∩ L. Hence

ΩΓ = G.υ(Ωl ∩ Γ). As a result, Y = G.υ(Γ \Ωl).

The variety X is a fiber bundle over G/(B ∩ L). Denote by σ the bundle projection

X
σ // G/(B ∩ L) .

Let O be a trivializing affine open subset of G/(B ∩ L). Then we have a commutative diagram,

σ−1(O)
Φ //

σ

((◗◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

O × Γ

pr1

��
O
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with Φ an isomorphism. As Y is G-invariant, Φ(Y ∩ σ−1(O)) = O × (Γ \ Ωl). Then Y is closed

since G/(B ∩ L) has a cover by trivializing affine open subsets. �

We identify Γ with υ(Γ) by υ.

Lemma 7.10. Let (i,m) be in Iu.

(i) The maps ε
(m′)

j
◦τ, ( j,m′) ∈ I′

0
are linearly independent over k(X).

(ii) For a well defined sequence a′
i,m, j,m′

, ( j,m′) ∈ I′
0

in k[X \ Y],

ε
(m)

i
◦τ(x) =

∑

( j,m′)∈I′
0

a′i,m, j,m′(x)ε
(m′)

j
◦τ(x)

for all x in X \ Y.

(iii) For ( j,m′) in I′
0
, the rational function a′

i,m, j,m′
is invariant under G.

(iv) For ( j,m′) in I′
0
, ai,m, j,m′ and a′

i,m, j,m′
have the same restrictions to Γ ∩Ωl.

Proof. (i) For all x in Ωl ∩ Γ, η
(m′)

j
(x), ( j,m′) ∈ I′

0
are linearly independent. Then, for all x in

Γ ∩ Ωl, ε
(m′)

j
(x), ( j,m′) ∈ I′

0
are linearly independent by Lemma 7.5(ii). As a result, the maps

ε
(m′)

j
◦τ, ( j,m′) ∈ I′

0
are linearly independent over k(X) since ε

(m′)

j
, ( j,m′) ∈ I′

0
are G-equivariant

by Proposition 2.1(vi).

(ii) Let ε0 be as in the proof of Corollary 7.8. By Proposition 7.6(ii), the restriction to Γ of

ε
(m)

i
∧ ε0 is equal to 0. Then, by G-equivariance of the ε

(m′)

j
’s, ε

(m)

i
∧ ε0◦τ is equal to 0. So, by (i),

for a well defined sequence a′i,m, j,m′ , ( j,m′) ∈ I′0 in k(X),

ε
(m)

i
◦τ(x) =

∑

( j,m′)∈I′
0

a′i,m, j,m′(x)ε
(m′)

j
◦τ(x)

for all x in a dense open subset of X. As for x in X \ Y , ε
(m′)

j
◦τ(x), ( j,m′) ∈ I′

0
are linearly

independent, the functions a′
i,m, j,m′

, ( j,m′) ∈ I′
0

are regular on X \ Y , whence the assertion.

(iii) By unicity of the sequence a′
i,m, j,m′

, ( j,m′) ∈ I′
0

and the G-equivariance of the maps

ε
(l)

k
, (k, l) ∈ I0, the rational functions a′

i,m, j,m′
, ( j,m′) ∈ I′

0
are G-invariant.

(iv) By (ii) and (iii), for all (x, y) in Γ ∩ Ωl,

ε
(m)

i
(x, y) =

∑

( j,m′)∈I′
0

a′i,m, j,m′(x, y)ε
(m′)

j
(x, y).

By Proposition 7.6(ii), for all (x, y) in l∗ × l,

ε
(m)

i
(x, y) =

∑

( j,m′)∈I′
0

ai,m, j,m′(x, y)ε
(m′)

j
(x, y),

whence the assertion since ε
(m′)

j
(x, y), ( j,m′) ∈ I′0 are linearly independent for all (x, y) in Γ ∩ Ωl

by Lemma 7.5(ii). �
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Let h∗∗ be the open subset of h,

h∗∗ :=
⋂

g∈W(R)

g(h∗).

Then h∗∗ is a dense principal open subset of h, invariant under the Weyl group W(R) of R.

Proposition 7.11. Let (i,m) be in Iu. For ( j,m′) in I′
0
, the restriction of ai,m, j,m′ to h∗∗ × h is

invariant under W(R).

Proof. Let π be the canonical projection b // h . According to Lemma 7.7(ii),

ai,m, j,m′(x, y) = ai,m, j,m′(π(x), π(y)) ∀(x, y) ∈ Γ.

Hence the function on G × Γ,

(g, x, y) 7−→ ai,m, j,m′(x, y)

is constant on the B ∩ L-orbits. As a result, ai,m, j,m′ defines through the quotient a G-invariant

regular function on X. Denote it by ai,m, j,m′ . By Lemma 7.10(iii), a′i,m, j,m′ is a G-invariant rational

function on X. Then, by Lemma 7.10(iv), a′i,m, j,m′ = ai,m, j,m′ since ai,m, j,m′ is G-invariant. In

particular, a′
i,m, j,m′

is regular on X and its restriction to Γ ∩ h∗∗ × h is invariant under W(R). As a

result, again by Lemma 7.10(iv), the restriction of ai,m, j,m′ to h∗∗×h is invariant under W(R) since

Γ ∩ h∗∗ × h is dense in h∗∗ × h. �

8. Expansion along a parabolic subalgebra

Let p be a parabolic subalgebra containing b and

l, pu, d, z, Rl, L, d, d0, l∗, z, ζ, I0, I′0, Iu

as in Section 7. Set:

p−,u :=
⊕

α∈R+\Rl

and p− := l ⊕ p−,u.

8.1. Some results about the expansion along p. Denote by α1, . . . , αd the positive roots which

are not in Rl and ordered so that |αi| ≤ |α j| for i ≤ j. For i = 1, . . . , d, set:

vi := xαi
, wi := x−αi

.

Then v1, . . . , vd and w1, . . . , wd are basis of pu and p−,u respectively. As usual, for r := (r1, . . . , rd)

in Nd,

vr := vr1

1
· · · v

rd

d
and wr := wr1

1
· · ·w

rd

d
.

Lemma 8.1. Let i = 1, . . . , ℓ.

(i) For all x in a dense open subset of h, εi(x) is a regular element of g. In particular, for x in

a dense open subset of l∗, εi(x) has a non zero component on all simple factor of d.

(ii) For k = 1, . . . , d, for some homogeneous element pi,k of degree di − 2 in S(h),

αk◦εi = αk pi,k.
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(iii) For k = 1, . . . , d and (t, x) in k × h,

εi(x + twk) = εi(x) + tpi,k(x)wk.

Proof. (i) Suppose that εi(x) is not regular for all x in h. A contradiction is expected. Then, for

some root α, α◦εi(x) = 0 for all x in h. In particular, for x in h and g in W(R), α◦εi(g(x)) = 0. As

εi is G-equivariant, εi(x) is in the kernel of g−1(α). As g is simple, h is a simple W(R)-module so

that the orthogonal complement in h to g(α), g ∈ W(R) is equal to {0}, whence a contradiction

since for x in hreg, εi(x) , 0 as an element of a basis of h by [Ko63, Theorem 9].

As a result, for all x in a dense open subset of l∗, εi(x) is a regular element of g and l. Let x

be in l∗ such that εi(x) is a regular element of g and l, and d1 a simple factor of l. As gεi(x) is a

commutative algebra, d1 is not contained in gεi(x). Hence the component of εi(x) on d1 is different

from 0 since lεi(x)
= gεi(x).

(ii) Let x be in h such that αk(x) = 0. Then vk and wk are in gx. As εi is a G equivariant map,

εi(x) is in the center of gx so that

0 = [εi(x), vk] = αk◦εi(x)vk.

As a result, the nullvariety of αk in h is contained in the nullvariety of αk◦εi. Hence αk divides

αk◦εi in S(h) since S(h) is a factorial ring and αk is a prime element. As εi is homogeneous of

degree di − 1, the quotient αk◦εi/αk is homogeneous of degree di − 2.

(iii) Let x be in h such that αk(x) , 0. Then

exp(
t

αk(x)
adwk)(x) = x + twk.

As εi is G-equivariant,

εi(x + twk) = exp(
t

αk(x)
adwk)◦εi(x),

whence

εi(x + twk) = εi(x) + tpi,k(x)wk

by (ii). �

For i = 1, . . . , ℓ and x in g, denote by εi,−(x) the element of p−,u such that εi(x) − εi,−(x) is in p.

Lemma 8.2. Let i = 1, . . . , ℓ.

(i) For uniquely defined functions ai, j,k, 1 ≤ j, k ≤ d in k[p], the polynomial map

t 7−→ εi,−(x + ty) −
∑

1≤ j,k≤d

t〈v j, y〉ai, j,k(x)wk

is divisible by t2 in k[t] ⊗k p−,u for all (x, y) in p × p−,u.

(ii) For 1 ≤ j, k ≤ d, ai, j,k is homogeneous of degree di − 2.

(iii) For 1 ≤ j, k ≤ d, the function ai, j,k has weight αk − α j with respect to the adjoint action of

h in k[p].
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Proof. (i) Let (x, y) be in p × p−,u. According to Corollary 2.5, εi(x) is in p. Moreover, εi

is homogeneous of degree di − 1. Hence the polynomial map t 7→ εi,−(x + ty) has a unique

expansion

εi,−(x + ty) =

d∑

k=1

di−1∑

j=1

∑

r∈Nd
j

t|r|vr(y)ai,r,k(x)wk

with the ai,r,k in k[p]. For j = 1, . . . , d and r in Nd
1

such that rl = 0 for l , j, set ai, j,k := ai,r,k.

Then the polynomial map

t 7−→ εi,−(x + ty) −
∑

1≤ j,k≤d

t〈v j, y〉ai, j,k(x)wk

is divisible by t2 in k[t] ⊗k p−,u.

(ii) As εi is homogeneous of degree di − 1, so is εi,− and for (s, x, y) in k∗ × p × p−,u, the

polynomial map

t 7−→ εi,−(x + ty) − s1−di

∑

1≤ j,k≤d

t〈v j, sy〉ai, j,k(sx)wk

is divisible by t2 in k[t] ⊗k p−,u. Hence the ai, j,k’s are homogeneous of degree di − 2.

(iii) Let g be in H. As εi is a G-equivariant map and p−,u is invariant under H, εi,− is H-

equivariant. Then, for (x, y, t) in p × p−,u × k,

g.εi,−(x + ty) −
∑

1≤ j,k≤d

t〈v j, y〉ai, j,k(x)g.wk = εi,−(g(x) + tg(y)) −
∑

1≤ j,k≤d

t〈v j, y〉ai, j,k(x)g.wk.

By (i), the polynomial map

t 7−→ εi,−(g(x) + tg(y)) −
∑

1≤ j,k≤d

t〈v j, g(y)〉ai, j,k(g(x))wk

is divisible by t2 in k[t] ⊗k p−,u. Then

〈v j, g(y)〉ai, j,k(g(x))wk = 〈v j, y〉ai, j,k(x)g.wk

for all (x, y) in p × pu. As a result, for 1 ≤ j, k ≤ d and x in h,

α j(x)ai, j,k + [x, ai, j,k] = αk(x)ai, j,k,

whence the assertion. �

Denote by m1< · · · <md′ the strictly increasing sequence of the values of the map

R+ \ Rl // N , α 7−→ α(z).

For j = 1, . . . , d′, let I j be the set of indices i such that αi(z) = m j and set:

p
( j)
−,u := span({wk | k ∈ I j}, p−,u, j :=

d′⊕

k= j

p
(k)
−,u.
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Corollary 8.3. Let j = 1, . . . , d′ and i = 1, . . . , ℓ.

(i) The space l + p−,u, j is a subalgebra of g and [p−,u, j, p−,u, j′] is contained in p−,u, j′′+1 with

j′′ := sup{ j, j′}.

(ii) For j′ > j and (k, k′) in I j × I j′ , ai,k,k′ = 0, and for (k, k′) in I j × I j, ai,k,k′ is in k[l].

(iii) Let j = 1, . . . , d′. For x in a dense open subset of h, the matrix (ai,k,k′(x), (k, k′) ∈ I j × I j)

is diagonal and invertible for i = 1, . . . , ℓ.

Proof. (i) For j1, j2 = 1, . . . , d′ and (k, k′) in I j1 × I j2 ,

[z, [wk, wk′]] = −(m j1 +m j2)[wk, wk′]

so that [p
( j1),
−,u p

( j2)
−,u ] is contained in p−,u, j3+1 with j3 := sup{ j1, j2}, whence the assertion since [l, p

( j′)
−,u]

is contained in p
( j′)
−,u for all j′.

(ii) For 1 ≤ k, k′ ≤ d, the function ai,k,k′ on p has an expansion

ai,k,k′ =

∑

u∈Nd

wuau,i,k,k′ with au,i,k,k′ ∈ k[l].

For (s, x) in k∗ × l and

y := y1v1 + · · · + ydvd ∈ pu,

ζ(s).εi(x + y + twk) = εi(x +

d∑

l=1

sαl(z)ylvl + ts−αk(z)wk)

since εi is G-equivariant and z is in z. Then, by Lemma 8.2(i), for k in I j,

d∑

k′=1

∑

u∈Nd

s−αk′ (z)wu(y)au,i,k,k′(x)wk′ =

d∑

k′=1

∑

u∈Nd

su1α1(z)+···+udαd(z)−m jwu(y)au,i,k,k′(x)wk′ ,

whence

au,i,k,k′(x) , 0 =⇒ m j − αk′(z) = u1α1(z) + · · · + udαd(z).

For j′ > j and k′ in I j′ , αk′(z) > m j. Hence au,i,k,k′ = 0 for all u in Nd since the integers

α1(z), . . . , αd(z) are positive. Moreover, for k′ in I j, au,i,k,k′ = 0 if u is different from 0, whence

the assertion.

(iii) Let k be in I j. By Lemma 8.1(iii),

ai,k,k′(x) =

{
pi,k(x) if k = k′

0 if k , k′.
.

By Lemma 8.1(i), for all x in a dense open subset of hreg, pi,k(x) , 0 for i = 1, . . . , ℓ. As a result,

for such x, the matrix (ai,k,k′(x), (k, k′) in I j × I j) is diagonal and invertible. �
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8.2. Some functions different from 0. With the notations of Lemma 8.2(i), for i = 1, . . . , ℓ

and 1 ≤ j, k ≤ d, denote by a
(m)

i, j,k
the 2-polarization of ai, j,k of bidegree (di − 2 − m,m) for

m = 0, . . . , di − 2. For (i,m) in I0, let ψi,m be the map

h × h // Sm+1(h) , (x, y) 7−→

m∑

j=0

(−1)m− j x jym− jε
( j)

i
(x, y).

Lemma 8.4. Let k = 1, . . . , d, i = 1, . . . , ℓ and m = 0, . . . , di − 2. For (x, y) in h × h,

αk(x)m+1a
(m)

i,k,k
(x, y) = αm+1

k (ψi,m(x, y)).

Proof. According to Lemma 8.1,(ii) and (iii),

αk(εi(x)) = αk(x)ai,k,k(x) and ai,k,k(x) = pi,k(x)

for all x in h. As a result, for all (x, y) in h × h,

di−1∑

m=0

smαk◦ε
(m)

i
(x, y) = αk(x + sy)ai,k,k(x + sy) =

di−2∑

m=0

smαk(x)a
(m)

i,k,k
(x, y) +

di−1∑

m=1

smαk(y)a
(m−1)

i,k,k
(x, y)

for all s in k, whence

αk(x)a
(m)

i,k,k
(x, y) + αk(y)a

(m−1)

i,k,k
(x, y) = αk◦ε

(m)

i
(x, y)

for m = 1, . . . , di − 2. Then, by induction on m,

αk(x)m+1a
(m)

i,k,k
(x, y) =

m∑

j=0

(−1)m− jαk(x) jαk(y)m− jαk◦ε
( j)

i
(x, y) = αm+1

k (ψi,m(x, y))

for m = 0, . . . , di − 2. �

For (i,m) in Iu and 1 ≤ j, k ≤ d, set:

b
(m−1)

i, j,k
:= a

(m−1)

i, j,k
−

∑

(l,m′)∈I′
∗,0

ai,m,l,m′a
(m′−1)

l, j,k
with I′∗,0 := I′0 \ {1, . . . , ℓ} × {0}

and ai,m, j,m′ , ((i,m), ( j,m′)) ∈ Iu × I′
0

as in Proposition 7.6. For (i,m) in Iu, denote by ϕi,m the map

h∗ × h
ϕi,m // Sm(h) , (x, y) 7−→ ψi,m−1(x, y) −

∑

( j,m′)∈I′
∗,0

ai,m, j,m′(x, y)xm−m′ψ j,m′−1(x, y).

Proposition 8.5. Let (i,m) be in Iu and k = 1, . . . , d.

(i) For j in {1, . . . , d} \ {k}, the restriction of b
(m−1)

i, j,k
to h∗ × h is equal to 0.

(ii) The restriction of b
(m−1)

i,k,k
to h∗ × h is different from 0.
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Proof. (i) According to Lemma 8.2(iii), the functions a
(m′)

l, j,k
, (l,m′) ∈ I0 have weight αk − α j with

respect to the adjoint action of h in k[l∗ × p]. As the functions ai,m,l,m′ , (i,m) ∈ Iu, (l,m
′) ∈ I′

0
are

invariant under L, the function b
(m−1)

i, j,k
has weight αk − α j. Then the restriction of b

(m−1)

i, j,k
to h∗ × h

is equal to 0 since α j , αk.

(ii) According to Lemma 8.4, for (x, y) in h∗ × h,

αm
k (x)b

(m−1)

i,k,k
(x, y) = αm

k (ϕi,m(x, y)).

By definition, ϕi,m(x, y) has an expansion

ϕi,m(x, y) =
∑m−1

j=0 (−1) j xm−1− jy jε
(m−1− j)

i
(x, y) −

∑
(l,m′)∈I′

∗,0

∑m′−1
j=0 (−1) jai,m,l,m′(x, y)xm−1− jy jε

(m′−1− j)

l
(x, y).

Then ϕi,m(x, x) = xm−1ϕ′
i,m

(x) with ϕ′
i,m

in k[h∗] ⊗k h defined by the following equality:

ϕ′i,m(x) =
∑m−1

j=0 (−1) j
(

di−1

m−1− j

)
εi(x) −

∑
(l,m′)∈I′

∗,0

∑m′−1
j=0 (−1) j

(
dl−1

m′−1− j

)
ai,m,l,m′(x, x)εl(x)

by Lemma 7.7(iii). Hence ϕ′i,m is in the free submodule of k[h∗] ⊗k h generated by ε1, . . . , εℓ.

Moreover, by Proposition 7.11, its restriction to h∗∗ is equivariant under W(R) since so are

ε1, . . . , εℓ.

Denote by ϕ′
i,m,i

the coordinate of ϕ′
i,m

at εi. With the notations of Subsection 7.2,

(−1)m−1ϕ′i,m,i(x) = r(m, di − 1) −

d′
i
−1∑

m′=1

(−1)m−m′r(m′, di − 1)ai,m,i,m′(x, x)

for all x in h∗. Then, by Corollary 7.8(iii), ϕ′
i,m
, 0. Suppose αk◦ϕ

′
i,m

(x) = 0 for all x in h∗∗. A

contradiction is expected. Then g.αk◦ϕ
′
i,m

(x) = 0 for all (g, x) in W(R) × h∗∗. As g is simple, so is

the W(R)-module h∗. As a result, h∗ is generated by g.αk, g ∈ W(R) and ϕ′
i,m

(x) = 0 for all x in

h∗∗, whence the contradiction. Then the function x 7→ αm+1
k

(ϕi,m(x, x)) on h∗ is different from 0

since αk(x) , 0 for x regular in h, whence the assertion. �

9. At the neighborood of a semi-simple element II

Let p be a parabolic subalgebra of g containing b. We then use the notations

l, pu, d, z, Rl, L, d, d0, l∗, z, ζ, I0, I′0, Iu, p−, p−,u

of Section 8. For (i,m) in I0, the restriction of ε
(m)

i
to l∗ × g is again denoted by ε

(m)

i
. The usual

gradation of k[g] induces a gradation of the polynomial algebra k[l∗ × g] over k[l∗]. From the

direct sum

g = p ⊕ p−,u,
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we deduce the inclusions

k[p] ⊂ k[g] and k[l∗ × p] ⊂ k[l∗ × g].

Moreover, k[l∗ × l] is a subalgebra of k[l∗ × g]. Set B := k[l∗ × g] ⊗S(g×g) Bg .

9.1. Decomposition of B. As k[l∗×p] is contained in k[l∗×g], the sequence ai,m, j,m′ , ((i,m), ( j,m′)) ∈

Iu × I′
0

of Proposition 7.6(ii) is contained in k[l∗ × g]. For (i,m) in Iu, let ν
(m)

i
be the element of

k[l∗ × g] ⊗k g,

ν
(m)

i
:= ε

(m)

i
−

∑

( j,m′)∈I′
0

ai,m, j,m′ε
(m′)

j
.

Denote by B0 and Bu the submodules of B generated by the sequences ε
(m)

i
, (i,m) ∈ I′

0
and

ν
(m)

i
, (i,m) ∈ Iu respectively. Let J and J− be the ideals of k[l∗ × g] generated by 1⊗pu and 1⊗p−,u

respectively.

Proposition 9.1. For (i,m) in I0, let ε
(m)

i
be the restriction of ε

(m)

i
to l∗ × l.

(i) The modules B0 and Bu are free of rank bl and d respectively. Moreover B is the direct sum

of B0 and Bu.

(ii) The sequence ε
(m)

i
, (i,m) ∈ I′0 is a basis of Bl.

(iii) For (i,m) in I0,

ε
(m)

i
− ε

(m)

i
∈ J ⊗k p−,u + J− ⊗k pu + JJ− ⊗k l.

(iv) For (i,m) ∈ Iu,

ν
(m)

i
∈ J ⊗k p−,u + J− ⊗k pu + JJ− ⊗k l.

Proof. (i) By Lemma 6.1(ii) and Theorem 2.2(i), B is a free module of rank bg generated by

ε
(m)

i
, (i,m) ∈ I0. Then B0 and Bu are free of rank bl and d respectively since |I′

0
| = bl and |Iu| = d.

Moreover, Bu is a submodule of B and B is the direct sum of B0 and Bu.

(ii) The assertion results of Lemma 7.5(ii).

(iii) Let (i,m) be in I0. As J is the ideal of definition of l∗ × p in k[l∗ × g],

ε
(m)

i
− ε

(m)

i
∈ J− ⊗k pu + J ⊗k g

by Proposition 7.6(i). Moreover, ε
(m)

i
and ε

(m)

i
are invariant under L, whence the assertion since

an element of J⊗kg, invariant under the one parameter subgroup t 7→ ζ(t), is in J⊗kp−,u+JJ−⊗k l.

(iv) As ν
(m)

i
is a linear combination with coefficients in k[l∗ × l] of ε

(m)

i
and ε

(m′)

j
, ( j,m′) ∈ I′0,

the assertion results from (iii) and Proposition 7.6(ii). �
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9.2. Some expansions and invertible matrices. Let v1, . . . , vd, w1, . . . , wd be as in Subsection 8.1.

Let I be the union of {0} and the set of strictly increasing sequences in {1, . . . , d} and for

ι = i1< · · · < i j in I, set:

{ι} := {i1, . . . , i j}, |ι| = j, vι := vi1∧ · · · ∧ vi j
, wι := wi1∧ · · · ∧wi j

.

By definition, vι and wι are in
∧|ι|(pu) and

∧|ι|(p−,u). For ι = 0, |ι| := 0 and vι := wι := 1, and for

|ι| = d, µ+ := vι is a generator of
∧d(pu). For j = 0, . . . , d, set:

I j := {ι ∈ I | |ι| = j} and Λ j := {(r, κ) ∈ Nd × I | |r| = |κ| = j}.

Let I∗,0, I′
∗,0, I0,∗ be the sets:

I∗,0 := {(i,m) ∈ I0 | m > 0}, I′∗,0 := I′0 ∩ I∗,0, I0,∗ := {(i,m, k) | (i,m) ∈ I∗,0, k ∈ {1, . . . ,m}}.

Denote by I′0,∗ and Iu,∗ the inverse images of I′
∗,0 and Iu by the canonical projection I0,∗

// I∗,0 .

Set:

ε0 := ∧(i,m)∈I′
0
ε

(m)

i
, ε0,0 := ε1∧ · · · ∧ εℓ, εI′

∗,0
:= ∧(i,m)∈I′

∗,0
ε

(m)

i
, νu := ∧(i,m)∈Iu

ν
(m)

i
.

For some ǫ∗ in {−1,+1},

ε0 = ǫ∗ε0,0 ∧ εI′
∗,0
.

In these equalities, the order of the products is induced by the order of I0. Then ε0 and νu are

generators of
∧bl (B0) and

∧d(Bu) respectively. Moreover, the restriction ε0 of ε0 to l∗ × l is a

generator of
∧bl (Bl) and ε := ε0 ∧ νu is a generator of

∧bg (B) by Proposition 9.1(i).

By Proposition 9.1(iii), for (x, y, y′) in l∗×p×p−,u and (i,m) in I′
0

and ( j, l) in Iu, the polynomial

maps

t 7−→ ε
(m)

i
(x, y + ty′) and t 7−→ ν

(l)

j
(x, y + ty′)

have an expansion

ε
(m)

i
(x, y + ty′) = ε

(m)

i
(x, y) +

m∑

k=1

tkωi,m,k,−(x, y, y′) +

m∑

k=1

tkωi,m,k,+(x, y, y′) +

m∑

k=1

tkωi,m,k,0(x, y, y′)

ν
(l)

j
(x, y + ty′) = ν

(l)

j
(x, y) +

m∑

k=1

tkω j,l,k,−(x, y, y′) +

m∑

k=1

tkω j,l,k,+(x, y, y′) +

m∑

k=1

tkω j,l,k,0(x, y, y′)

with

ωi,m,k,− ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k p−,u, ωi,m,k,+ ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k pu,

ωi,m,k,0 ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k l

for (i,m) in I0. For I subset of I∗,0, K subset of Iu and I′ subset of I0,∗, set:

εI := ∧(i,m)∈Iε
(m)

i
, νK := ∧(i,m)∈Kν

(m)

i
, S I′ :=

∑

(i,m,k)∈I′

k,

ωI′,− := ∧(i,m,k)∈I′ωi,m,k,−, ωI′,+ := ∧(i,m,k)∈I′ωi,m,k,+, ωI′,0 := ∧(i,m,k)∈I′ωi,m,k,0.
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In these equalities, the order of the products are induced by the orders of I0 and I0,∗. For K subset

of I0,∗, denote by K# the image of K by the projection (i,m, k) 7→ (i,m). When S K = |K|, we

identify K and K#.

For ι in I and j = 0, . . . , d, set:

ει := vι ∧ ε and K j := {K ⊂ Iu | |K| = d − j}.

Lemma 9.2. Let j = 0, . . . , d, ι in I j and (x, y, y′) in l∗ × p × p−,u. Denote by cι(x, y, y′) the

coefficient of t j of the polynomial map t 7→ ει(x, y + ty′).

(i) The polynomial map t 7→ ει(x, y + ty′) is divisible by t j in k[t] ⊗k
∧bg+ j(g).

(ii) For a well defined map

K j
ǫ // {−1, 1} ,

cι(x, y, y′) − c′ι(x, y, y′) ∈
⊕

|κ|< j

wκ ∧
∧ j−|κ|(l) ∧ ε0(x, y) ∧ µ+

with

c′ι(x, y, y′) :=
∑

K∈K j

ǫ(K) vι ∧ ε0(x, y) ∧ νK(x, y) ∧ ωIu\K,−(x, y, y′).

(iii) For K in K j, for well defined functions ar,κ,K,ι, (r, κ) ∈ Λ j in k[l∗ × p],

ǫ(K) vι ∧ ε0(x, y) ∧ νK(x, y) ∧ ωIu\K,−(x, y, y′) =
∑

(r,κ)∈Λ j

vr(y′)ar,κ,K,ι(x, y)wκ ∧ ε0(x, y) ∧ µ+.

Proof. As ε = ε0 ∧ νu, the cofficient of tk of the polynomial functions t 7−→ ε(x, y + ty′) is the

sum of the value at (x, y, y′) of products

ǫ(I,K, I−,K−, I+,K+, I±,K±) ε0,0 ∧ εI ∧ νK ∧ ωI−,− ∧ ωK−,− ∧ ωI+,+ ∧ ωK+,+ ∧ ωI±,0 ∧ ωK±,0

with

I ⊂ I′∗,0, K ⊂ Iu, I− ⊂ I′0,∗, K− ⊂ Iu,∗, I+ ⊂ I′0,∗, K+ ⊂ Iu,∗, I± ⊂ I′0,∗, K± ⊂ Iu,∗,

ǫ(I,K, I−,K−, I+,K+, I±,K±) ∈ {−1, 1}

such that

I ∪ I#
− ∪ I#

+
∪ I#
± = I ⊔ I#

− ⊔ I#
+
⊔ I#
±, K ∪ K#

− ∪ K#
+
∪ K#

± = K ⊔ K#
− ⊔ K#

+
⊔ K#

±,

|I| + |I#
−| + |I

#
+
| + |I#

±| = n − d, |K| + |K#
−| + |K

#
+
| + |K#

±| = d,

S I− + S I+ + S I± + S K− + S K+ + S K± = k.

For |K| + |I#
+
| + |K#

+
| > d − j,

vι ∧ ε0,0 ∧ εI ∧ νK ∧ ωI−,− ∧ ωK−,− ∧ ωI+,+ ∧ ωK+,+ ∧ ωI±,0 ∧ ωK±,0 = 0

since νK(x, y) is in
∧|K|(pu), whence

|K| + |I#
+
| + |K#

+
| ≤ d − j, j ≤ |K#

−| + |K
#
±| − |I

#
+
|,
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|I#
−| + |I

#
+
| + |I#

±| + |K
#
−| + |K

#
+
| + |K#

±| ≤ k

since

|I#
−| + |I

#
+
| + |I#

±| + |K
#
−| + |K

#
+
| + |K#

±| ≤ S I− + S I+ + S I± + S K− + S K+ + S K± .

As a result, the coefficient of tk of the polynomial map t 7→ ει(x, y+ ty′) is equal to 0 when k < j

and for k = j, it is the sum of the value at (x, y, y′) of the products

ǫ(I,K, I−,K−, I+,K+, I±,K±) vι ∧ ε0,0 ∧ εI ∧ νK ∧ ωI−,− ∧ ωK−,− ∧ ωI±,− ∧ ωK±,0

with

|K| + |I#
+
| + |K#

+
| ≤ d − j, j ≤ |K#

−| + |K
#
±| − |I

#
+
|,

|I−| = |I
#
−| = S I− , |I+| = |I

#
+
| = S I+, |I±| = |I

#
±| = S I±,

|K−| = |K
#
−| = S K− , |K+| = |K

#
+
| = S K+ , |K±| = |K

#
±| = S K±,

whence

|I+| = |I−| = |I±| = |K+| = 0, I = I′∗,0, |K| = d − j, |K−| + |K±| = j.

For K in K j, set:

ǫ(K) := ǫ∗ǫ(I
′
∗,0,K, ∅, Iu \ K, ∅, ∅, ∅, ∅).

Then, by Proposition 9.1,

cι(x, y, y′)−
∑

K∈K j

ǫ(K) vι ∧ ε0(x, y)∧ νK(x, y)∧ωIu\K,−(x, y, y′) ∈
⊕

|κ|< j

wκ ∧
∧ j−|κ|(l)∧ ε0(x, y)∧ µ+

since

vι ∧ ε0,0(x) ∧ εI′
∗,0

(x, y) ∧ νK = ǫ∗vι ∧ ε0(x, y) ∧ νK(x, y)

and |K±| > 0 when K− ( Iu \ K. Moreover, for K in K j, for well defined functions ar,κ,K,ι, (r, κ) ∈

Λ j in k[l∗ × p],

ǫ(K) vι ∧ ε0(x, y) ∧ νK(x, y) ∧ ωIu\K,−(x, y, y′) =
∑

(r,κ)∈Λ j

vr(y′)ar,κ,K,ι(x, y)wκ ∧ ε0(x, y) ∧ µ+,

whence the lemma. �

For (i,m) in I0 and k = 1, . . . , d, denote by b
(m−1)

i,k
the coordinate of ωi,m,1,− at wk. Then b

(m−1)

i,k

has an expansion

b
(m−1)

i,k
=

d∑

l=1

vl⊗b
(m−1)

i,l,k

with b
(m−1)

i,l,k
homogeneous of degree m− 1 in k[l∗ × p]. For j = 1, . . . , d and r = (r1, . . . , rd) in Nd

j
,

define an increasing sequence j1< · · · < jl by the following conditions:

• j1 is the smallest integer such that r j1 , 0,

• jm is the smallest integer bigger than jm−1 such that r jm , 0.

and denote by r′1, . . . , r
′
l

and u1, . . . , u j the sequences defined by the following conditions:



46 J-Y CHARBONNEL

• r′
1
= r1 and r′m = r′

m−1
+ r jm ,

• um = j1 for m = 1, . . . , r1,

• um = jk for r′
k−1
+ 1 ≤ m ≤ r′

k
.

For (ι, κ) in I j × I j and K in K j, let Br,κ,K be the element of k[l∗ × p]:

Br,κ,K := det (b
(ml−1)

il ,ul,kl′
, 1 ≤ l, l′ ≤ j) with Iu \ K = ((i1,m1) ≺ · · · ≺ (i j,m j), κ = k1, . . . , k j

and aK,ι the function in k[l∗ × p] such that

vι ∧ ε0 ∧ νK = aK,ιε0 ∧ µ+.

Lemma 9.3. Let j = 1, . . . , d, ι in I j, K in K j, K− := Iu \ K.

(i) The map ωK−,− has an expansion

ωK−,− =

∑

r∈Nd
j

∑

κ∈I j

vrBr,κ,Kwκ.

(ii) For κ = k1, . . . , k j in I j and r in Nd
j

such that rkl
= 1 for l = 1, . . . , j, Br,κ,K , 0.

(iii) For all (r, κ) in Λ j,

ar,κ,K,ι = (−1) jbg ǫ(K) aK,ιBr,κ,K.

Proof. (i) Let (x, y, y′) be in l∗ × p × p−,u. Denote by (i1,m1), . . . , (i j,m j) the elements of K−,

ordered so that the sequence is increasing. For κ in I j, let ωK−,−,κ be the coordinate of ωK−,− at

wκ. By definition, for κ = k1< · · · < k j,

ωK−,−,κ := det (b
(ml−1)

il,kl′
, 1 ≤ l, l′ ≤ j) whence ωK−,−,κ =

∑

r∈Nd
j

vrBr,κ,K.

(ii) Let (x, y, y′) be in l∗×p×p−,u. By Lemma 8.1(i), for l = 1, . . . , ℓ and s in k, the polynomial

map

t 7−→ εl,−(x + sy + sty′) −
∑

1≤l1 ,k≤d

st〈vl1 , y
′〉al,l1 ,k(x + sy)wk

is divisible by t2 in k[t] ⊗k p−,u. Hence the polynomial map

t 7−→ ε
(m′)

l,−
(x, y + ty′) −

∑

1≤l1 ,k≤d

t〈vl1 , y
′〉a

(m′−1)

l,l1 ,k
(x, y)wk

is divisible by t2 in k[t] ⊗k p−,u for m′ = 0, . . . , dl − 1. By definition, for (i,m) in Iu,

ν
(m)

i
= ε

(m)

i
−

∑

(l,m′)∈I′
0

ai,m,l,m′ε
(m′)

l
and ν

(m)

i,−
:= ε

(m)

i,−
−

∑

(l,m′)∈I′
0

ai,m,l,m′ε
(m′)

l,−

with ai,m,l,m′ homogeneous and L-invariant element of k[l∗ × l]. So, the polynomial map

t 7−→ ν
(m)

i,−
(x, y + ty′) −

∑

1≤l1 ,k≤d

t〈vl1 , y
′〉(a

(m−1)

i,l1,k
(x, y) −

∑

(l,m′)∈I′
0

ai,m,l,m′(x, y)a
(m′−1)

l,l1 ,k
(x, y))wk
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is divisible by t2 in k[t] ⊗k p−,u. As a result, for u, u′ = 1, . . . , j,

b
(mu−1)

iu ,ku,ku′
(x, y) = a

(mu−1)

iu ,ku,ku′
(x, y) −

∑

(l,m′)∈I′
0

aiu,mu,l,m′(x, y)a
(m′−1)

l,ku ,ku′
(x, y)

so that b
(mu−1)

iu,ku ,ku′
is the element of k[l∗ × p] defined in Subsection 8.2. By definition,

Br,κ,K = det (b
(mu−1)

iu,ku ,ku′
, 1 ≤ u, u′ ≤ j).

According to Proposition 8.5, the restriction to h∗ × h of the matrix

(b
(mu−1)

iu ,ku,ku′
, 1 ≤ u, u′ ≤ j)

is diagonal and all its diagonal entries are different from 0, whence the assertion.

(iii) By (i),

vι ∧ ε0 ∧ νK ∧ ωK−,− =

∑

(r,κ)∈Λ j

vrBr,κ,Kvι ∧ ε0 ∧ νK ∧ wκ =
∑

(r,κ)∈Λ j

vrBr,κ,KaK,ιε0 ∧ µ+ ∧ wκ,

whence the assertion by Lemma 9.2(iii). �

For j = 1, . . . , d, (ι, κ) in I j × I j, K in K j, set:

Bκ,K :=
∑

r∈Nd
j

vrBr,κ,K, aκ,ι :=
∑

r∈Nd
j

∑

K∈K j

vrar,κ,K,ι,

P j := det (aκ,ι, (ι, κ) ∈ I j × I j), Q j := det (Bκ,K, (κ,K) ∈ I j ×K j).

Corollary 9.4. Let j = 1, . . . , d.

(i) For some (x, y, y′) in l∗ × p × p−,u, Q j(x, y, y′) , 0.

(ii) For some (x, y, y′) in l∗ × p × p−,u, P j(x, y, y′) , 0.

Proof. (i) Prove the assertion by induction on j. By Lemma 9.3, the assertion is true for j = 1.

Suppose that it is true for j − 1. By induction hypothesis and Lemma 9.3(ii), for all (x, y, y′) in a

dense open subset of l∗ × p × p−,u, Q j−1(x, y, y′) , 0 and Bκ,K(x, y, y′) , 0 for l = 1, . . . , d and for

all (κ,K) in Il ×Kl. Let (x, y, y′) be in this open subset of l∗ × p × p−,u and cκ, κ ∈ I j in k such

that ∑

κ∈I j

cκBκ,K(x, y, y′) = 0, ∀K ∈ K j.

For K in K j and l = 1, . . . , j, set:

K− := Iu \ K := {(i1,m1), . . . , (i j,m j)} and K(l) := K ∪ {(il,ml)},

and for κ in I j, denote by κ(l) the element of I j−1 such that {κ(l)} = {κ} \ {kl}. Since

Bκ,K = det (b
(ml−1)

il ,kl′
, 1 ≤ l, l′ ≤ j),
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for l = 1, . . . , j,

Bκ,K =

j∑

l′=1

(−1)l+l′b
(ml−1)

il ,kl′
Bκ(l′),K(l),

whence
∑

κ∈I j

cκ

j∑

l′=1

(−1)l′b
(ml−1)

il ,kl′
Bκ(l′),K(l)(x, y, y′) = 0.

For (i,m) in Iu, let K j−1(i,m) be the set of elements K of K j−1, containing (i,m), and for K in

K j−1(i,m) denote by Ki,m the element K \ {(i,m)} of K j. For κ = k1, . . . , k j−1 in I j−1, denote by Iκ

the subset of {1, . . . , j} defined by the following conditions:

l ∈ Iκ if and only if



l = 1 and 2 ≤ k1

l = j and k j−1 ≤ d − 1

1 < l < j and kl−1 + 2 ≤ kl

For l in Iκ, let aκ,l and bκ,l be in {1, . . . , d} defined by the following conditions:

aκ,l :=

{
1 if l = 1

kl−1 + 1 if 2 ≤ l
and bκ,l :=

{
d if l = j

kl+1 − 1 if l ≤ j − 1

and for k in [aκ,l, bκ,l], denote by κl,k the element of I j such that {κ} is contained in {κl,k} and k is

the l-th element of the sequence κk,l. Setting

E := {(κ, l, k) ∈ I j−1 × {1, . . . , j} × {1, . . . , d} | l ∈ Iκ and k ∈ [aκ,l, bκ,l]},

the map

E // I j × {1, . . . , j} , (κ, l, k) 7−→ (κl,k, l)

is bijective.

For (i,m) in Iu and for κ in I j−1, set:

c′κ,i,m =
∑

l∈Iκ

bκ,l∑

k=aκ,l

(−1)lcκl,k b
(m−1)

i,k
(x, y, y′).

Then, for K in K j−1,
∑

κ∈I j−1

c′κ,i,mBκ,K(x, y, y′) =
∑

(κ,l,k)∈E

(−1)lcκl,k b
(m−1)

i,k
(x, y, y′)Bκ,K(x, y, y′) =

∑

κ∈I j

j∑

l=1

(−1)lcκb
(m)

i,kl
(x, y, y′)Bκ(l),K(x, y, y′).

As a result, by the above equalities,
∑

κ∈I j−1

c′κ,i,mBκ,K(x, y, y′) = 0, ∀K ∈ K j−1(i,m).
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For K in K j−1 \K j−1(i,m) and κ in I j,

j∑

l=1

(−1)lb
(m−1)

i,kl
Bκ(l),K = 0

as the determinant of a matrix having two equal lines. Hence
∑

κ∈I j−1

c′κ,i,mBκ,K(x, y, y′) = 0, ∀K ∈ K j−1.

Since Q j−1(x, y, y′) , 0, for all κ in I j−1 and for all (i,m) in Iu, c′κ,i,m = 0.

Let κ be in I j−1. Denote by Nκ the cardinality of the union
⋃

l∈Iκ

[aκ,l, bk,l],

and κ∗ the element of INκ
equal to the ordered sequence of this union. As for K in KNκ

,

Bκ∗,K(x, y, y′) , 0, cκl,k = 0 for all l in Iκ and all k in [aκ,l, bκ,l] since c′
κ,i,m
= 0 for all (i,m) in

Iu. As a result, cκ = 0 for all κ in I j, whence Q j(x, y, y′) , 0.

(ii) As the ν
(m)

i
, (i,m) ∈ Iu are linearly independent over k[l∗ × p], so are the νK , K ∈ K j. So,

by (i), for all (x, y, y′) in a dense open subset of l∗ × p× p−,u, Q j(x, y, y′) , 0, ε0(x, y) , 0 and the

νK(x, y), K ∈ K j are linearly independent. Let (x, y, y′) be in this open subset of l∗ × p× p−,u and

cκ, κ ∈ I j in k such that ∑

κ∈I j

cκaκ,ι(x, y, y′) = 0, ∀ι ∈ I j.

By Lemma 9.3,(iii), for all (ι, κ) in I j × I j,

aκ,ι =
∑

K∈K j

(−1) jbg ǫ(K) aK,ιBκ,K,

whence ∑

K∈K j

ǫ(K) aK,ι(x, y)
∑

κ∈I j

cκBκ,K(x, y, y′) = 0, ∀ι ∈ I j.

Then, setting:

c′K :=
∑

κ∈I j

cκǫ(K) Bκ,K(x, y, y′)

for K in K j,

0 =
∑

K∈K j

c′KaK,ι(x, y)ε0(x, y) ∧ µ+ =
∑

K∈K j

c′Kvι ∧ ε0(x, y) ∧ νK(x, y), ∀ι ∈ I j.

As a result, for all ι in I j, ∑

K∈K j

c′Kvι ∧ νK(x, y) = 0.
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Since vι, ι ∈ I j is a basis of
∧ j(pu),

∑

K∈K j

c′KνK(x, y) = 0

so that ∑

κ∈I j

cκǫ(K) Bκ,K(x, y, y′) = 0

for all K in K j since the νK(x, y), K ∈ K j are linearly independent. As a result, the cκ, κ ∈ I j are

all equal to 0 since Q j(x, y, y′) , 0, whence P j(x, y, y′) , 0. �

9.3. An other expansion. Let d1, . . . , dn be the simple factors of d when z is strictly contained

in l. Set:

n1 := bd1 − ℓd1 , , . . . , nn := bdn − ℓdn

so that

n − d = n1+ · · ·+nn.

As g is the direct sum of z, d1, . . . , dn, pu, p−,u, for i = 1, . . . , n, k[di] is a subalgebra of k[l] and

k[g] and k[l∗ × di] is a subalgebra of k[l∗ × g]. Set Bi := k[l∗ × g] ⊗k[di×di] Bdi . Then Bi is a free

submodule of rank bdi of k[l∗ × g] ⊗k di. According to Lemma 7.1(ii), for some λi,1, . . . , λi,ni
in

Bdi , the k[l∗×g]-module Bi is contained in the submodule generated λi,1, . . . , λi,ni
and ε

(0)

1
, . . . , ε

(0)

ℓ

so that Bi ∧ ε is generated by λi,1 ∧ ε, . . . , λi,ni
∧ ε.

Let J be the union of {0} and the set of strictly increasing sequences in

{(i, j) | i = 1, . . . , n, j = 1, . . . , ni}.

For υ in J, i = 1, . . . , n and j = 1, . . . , n − d, set:

{υ} := {i1, . . . , ik}, |υ| := k, λυ := λi1∧ · · · ∧λik ,

J(i) := {υ ∈ J | {υ} ⊂ {(i, 1), . . . , (i, ni)}}, J j := {υ ∈ J | |υ| = j}, J
(i)

j
:= J(i) ∩ J j.

For υ = 0, |υ| := 0 and λυ = 1. For υ in J and j = 0, . . . , n − d, set:

ευ := λυ ∧ ε and J j := {I ⊂ I∗,0 | |I| = n − j and |I ∩ I′∗,0| ≥ n − d − j}.

For (x, y, y′) in l∗ × p × p−,u and (i,m) in I0, the polynomial map

t 7−→ ε
(m)

i
(x, y + ty′)

has an expansion

ε
(m)

i
(x, y + ty′) = ε

(m)

i
(x, y) +

m∑

k=1

tkωi,m,k,−(x, y, y′) +

m∑

k=1

tkωi,m,k,+(x, y, y′) +

m∑

k=1

tkωi,m,k,0(x, y, y′)

with

ωi,m,k,− ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k p−,u, ωi,m,k,+ ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k pu,

ωi,m,k,0 ∈ k[l∗ × p] ⊗k Sk(pu) ⊗k l.
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For I′ subset of I0,∗, set:

ωI′,− := ∧(i,m,k)∈I′ωi,m,k,−, ωI′,+ := ∧(i,m,k)∈I′ωi,m,k,+, ωI′,0 := ∧(i,m,k)∈I′ωi,m,k,0.

In these equalities, the order of the products are induced by the orders of I0 and I0,∗.

Lemma 9.5. Let j = 0, . . . , n − d, υ in J j and (x, y, y′) in l∗ × p × p−,u. Denote by cυ(x, y, y′) the

coefficient of t j of the polynomial map t 7→ ευ(x, y + ty′).

(i) The polynomial map t 7→ ευ(x, y + ty′) is divisible by t j in k[t] ⊗k
∧bg+ j(g).

(ii) For a well defined map

J j
ǫ // {−1, 1} ,

cυ(x, y, y′) − c′υ(x, y, y′) ∈
⊕

|κ|< j

wκ ∧
∧ j−|κ|(l) ∧ ε0(x, y) ∧ µ+

with

c′υ(x, y, y′) :=
∑

I∈J j

ǫ(I)λυ(x, y) ∧ ε0,0(x) ∧ εI(x, y) ∧ ωI′
∗,0
\I,−(x, y, y′).

(iii) For I in J j, for well defined functions ar,κ,I,υ, (r, κ) ∈ Λ j in k[l∗ × p],

ǫ(I)λυ(x, y) ∧ ε0,0(x) ∧ εI(x, y) ∧ ωI′
∗,0
\I,−(x, y, y′) =

∑

(r,κ)∈Λ j

vr(y′)ar,κ,I,υ(x, y)wκ ∧ ε0(x, y) ∧ µ+.

Proof. (i) As already observed in the proof of Lemma 9.2, the cofficient of tk of the polynomial

function t 7−→ ε(x, y + ty′) is the sum of the value at (x, y, y′) of products

ǫ(I, I−, I+, I±) ε0,0 ∧ εI ∧ ωI−,− ∧ ωI+,+ ∧ ωI±,0

with

I ⊂ I∗,0, I− ⊂ I0,∗, I+ ⊂ I0,∗, I± ⊂ I0,∗, ǫ(I, I−, I+, I±) ∈ {−1, 1}

such that

I ∪ I#
− ∪ I#

+
∪ I#
± = I ⊔ I#

− ⊔ I#
+
⊔ I#
±, |I| + |I#

−| + |I
#
+
| + |I#

±| = n,

S I− + S I+ + S I± = k.

According to Corollary 2.7,

λυ ∧ ε0,0 ∧ εI ∈

d⊕

m=0

∧|I|+ j+ℓ−m(Bl) ∧
∧m(pu).

Then

|I| + |I#
+
| ≤ n − j whence j ≤ |I#

−| + |I
#
±| ≤ k.

As a result, the coefficient of tk of the polynomial map t 7→ ευ(x, y+ ty′) is equal to 0 when k < j

and for k = j, it is the sum of the value at (x, y, y′) of the products

ǫ(I, I−, I+, I±)λυ ∧ ε0,0 ∧ εI ∧ ωI−,− ∧ ωI±,−
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with

j = |I#
−| + |I

#
±|, I+ = ∅, |I−| = |I

#
−| = S I− , |I±| = |I

#
±| = S I± .

So, in any case,

λυ(x, y) ∧ ε0,0(x) ∧ εI(x, y) ∈ ε0(x, y) ∧
∧d(pu).

For I in J j, set:

ǫ(I) := ǫ∗ǫ(I, I∗,0 \ I, ∅, ∅).

Then

cυ(x, y, y′) −
∑

I∈J j

ǫ(I)λυ(x, y) ∧ ε0,0(x) ∧ εI(x, y) ∧ ωI∗,0\I,−(x, y) ∈

⊕

|κ|< j

wκ ∧
∧ j−|κ|(l) ∧ ε0(x, y) ∧ µ+.

since |I±| > 0 when |I−| < j. Moreover, for I in J j, for well defined functions ar,κ,I,υ, (r, κ) ∈ Λ j in

k[l∗ × p],

ǫ(I)λυ(x, y) ∧ ε0,0(x) ∧ εI(x, y) ∧ ωI∗,0\I,−(x, y) =
∑

(r,κ)∈Λ j

vr(y′)ar,κ,I,υ(x, y)wκ ∧ ε0(x, y) ∧ µ+,

whence the lemma. �

10. Some spaces related to parabolic subalgebras

Let p be a parabolic subalgebra of g containing b. We then use the notations

l, pu, d, z, Rl, L, d, d0, l∗, z, ζ, I0, I′0, Iu, p−, p−,u

of Section 8.

10.1. An equivalence. For ϕ in k[l∗ × g] ⊗k
∧

(g), ϕ has a unique expansion

ϕ =
∑

ι∈I

ϕι ∧ vι with ϕι ∈ k[l∗ × g] ⊗k
∧

(p−)

and for ι in I, ϕι has a unique expansion

ϕι =
∑

κ∈I

ϕι,κ ∧ wκ with ϕι,κ ∈ k[l∗ × g] ⊗k
∧

(l).

For all (ι, κ) in I × I, ϕι,κ has a unique expansion

ϕι,κ :=
∑

r∈Nd

vrϕr,ι,κ with ϕr,ι,κ ∈ k[l∗ × p] ⊗k
∧

(l).

For l nonnegative integer, let Pl be the subspace of k[l∗ × g] ⊗k
∧

(g) defined by the following

condition:

ϕ ∈ Pl ⇐⇒ (|r| + |ι| , l =⇒ ϕr,ι,κ = 0).



COMMUTING VARIETY 53

By Proposition 2.3 and Lemma 6.3(i), C is a free submodule of rank n of k[l∗ × g] ⊗k g,

generated by the maps

(x, y) 7−→ [x, ε
(m)

i
(x, y)], (i,m) ∈ I∗,0.

For ν in C, denote by ιν the k[l∗ × g]-derivation of the algebra k[l∗ × g] ⊗k
∧

(g) such that ιν(v) =

〈ν, v〉 for all v in g.

Lemma 10.1. Let V be a subspace of g such that V is contained in a complement to Vx,y in g for

all (x, y) in a dense open subset of Ω∗ ∩ l∗ × p.

(i) For v in pu and w in p−,u, ιν(v) and ιν(w) are in J and J− respectively for all ν in C.

(ii) For k = 1, . . . , dimV and ψ in k[l∗ × p] ⊗k
∧k(V), if ιν(ψ) = 0 for all ν in C, then ψ = 0.

Proof. (i) By Proposition 9.1(iii), for all (i,m) in I0,

[x, ε
(m)

i
] ∈ k[l∗ × g] ⊗k l + J ⊗k p−,u + J− ⊗k pu,

whence the assertion.

(ii) Suppose that ιν(ψ) = 0 for all ν in C and prove the assertion by induction on dim V . As V

is contained in a complement to Vx,y in g for all (x, y) in a dense open subset of Ω∗ ∩ l∗ × p, for

v in V , v = 0 if and only if ιν(v) = 0 for all ν in C since Vx,y is the orthogonal complement to

[x,Vx,y] for all (x, y) in Ω∗ by Proposition 2.1(iv). As a result, the assertion is true for dim V = 1.

Suppose dimV > 1 and the assertion true for the subspaces of V . Let V ′ be an hyperplane of V

and v in V \ V ′. Then

ψ = v ∧ ψ′ + ψ0

with ψ′ in k[l∗ × p] ⊗k
∧k−1(V ′) and ψ0 in k[l∗ × p] ⊗k

∧k(V ′). As ιν(ψ) = 0 for all ν in C,

ιν(ψ
′) = 0 and ιν(v)ψ

′
+ ιν(ψ0) = 0,

whence ψ′ = 0 and ψ0 = 0 by induction hypothesis, and ψ = 0. �

For l nonnegative integer, denote by Ml the subspace of elements ϕ of k[l∗ × g] ⊗k
∧

(g) such

that ϕ ∧ ε is in Jl ⊗k
∧

(g). For k = 1, . . . , n, denote by Pl,k the intersection of Pl and k[l∗ × g] ⊗k∧k(g). For ϕ in Ml and ν in C, ιν(ϕ) is in Ml since ιν(ε) = 0.

Lemma 10.2. Let k = 1, . . . , n, l a positive integer and ϕ in Pl,k.

(i) The element ϕ is in Ml.

(ii) If ϕr,ι,κ ∧ ε0 = 0 for all (r, ι, κ), then ϕ is in Ml+1.

(iii) Suppose that ϕ is in k[l∗ × g] ⊗k
∧k(p). If ϕ is in Ml+1 then ϕr,ι,0 ∧ ε0 = 0 for all (r, ι).

Proof. (i) Let (x, y, y′) be in l∗ × p × p−,u. According to lemma 9.2 and the notations of Subsec-

tion 9.2, for j = 1, . . . , d and ι in I j, the polynomial map

t 7−→ vι ∧ ε(x, y + ty′)
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is divisible by t j in k[t] ⊗k
∧

(g) and the coefficient cι(x, y, y′) of t j satisfies the relation

cι(x, y, y′) −
∑

κ′∈I j

aκ′,ι(x, y, y′)wκ′ ∧ ε0(x, y) ∧ µ+ ∈

⊕

|κ′ |< j

wκ′ ∧
∧ j−|κ′ |(l) ∧ ε0(x, y) ∧ µ+.

Hence the polynomial map

t 7−→ ϕ(x, y + ty′) ∧ ε(x, y + ty′)

is divivisble by tl in k[t] ⊗k
∧k(g) since ϕ is in Pl,k. As a result, ϕ is in Ml.

(ii) Suppose that ϕr,ι,κ ∧ ε0 = 0 for all (r, ι, κ). By the above relation, the polynomial map

t 7−→ ϕ(x, y + ty′) ∧ ε(x, y + ty′)

is divivisble by tl+1 in k[t] ⊗k
∧k(g) for all (x, y, y′) in l∗ × p × p−,u. Hence ϕ is in Ml+1.

(iii) As ϕ is in k[l∗ × g] ⊗k
∧k(p), ϕr,ι,κ = 0 for κ , 0. Suppose ϕr,ι,0 ∧ ε0 , 0 for some (r, ι). A

contradiction is expected. Denote by λ(ϕ) the biggest integer j such that ϕr,ι,0 ∧ ε0 , 0 for some

(r, ι) in Nd
l− j
× I j. By (ii), we can suppose ϕr,ι,0 = 0 for |ι| > λ(ϕ). As the polynomial map

t 7−→ ϕ(x, y + ty′) ∧ ε(x, y + ty′)

is divivisble by tl+1,
∑

κ∈Iλ(ϕ)

aκ,ι

∑

r∈Nd
l−λ(ϕ)

vrϕr,ι,0 ∧ ε0 = 0, ∀ι ∈ Iλ(ϕ),

by maximality of λ(ϕ). By Corollary 9.4(ii), for all (x, y, y′) in a dense open subset of l∗×p×p−,u,

the matrix

(aκ,ι(x, y, y′), (ι, κ) ∈ Iλ(ϕ) × Iλ(ϕ))

is invertible. Hence ϕr,ι,0 ∧ ε0 = 0 for all (r, ι) in Nd
l−λ(ϕ)

× Iλ(ϕ), whence the contradiction. �

Proposition 10.3. Let k = 1, . . . , n, l a positive integer and ϕ in Pl,k. Then ϕ is in Ml+1 if and

only if ϕr,ι,κ ∧ ε0 = 0 for all (r, ι, κ).

Proof. By Lemma 10.2(ii), the condition is sufficient. Suppose that ϕ is in Ml+1. By Lemma 10.1(i),
∑

(r,ι,κ)

vrιν(ϕr,ι,κ) ∧ wκ ∧ vι +
∑

(r,ι,κ)

vrϕr,ι,κ ∧ ιν(wκ) ∧ vι ∈ Ml+1

for ν in C since ιν(ε) = 0. Prove the assertion by induction on k.

Suppose k > 1, the assertion true for k − 1 and the proposition not true for k. A contradiction

is expected. Denote by j the biggest integer such that for some κ in I j, ϕr,ι,κ ∧ ε0 , 0. By

Lemma 10.2(ii), we can suppose

|κ| > j =⇒ ϕr,ι,κ = 0.
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By Lemma 10.2(iii), j > 0. By the above relation and the induction hypothesis,

ιν(ϕr,ι,κ) ∧ ε0 = 0, ∀(ν, r, ι, κ) ∈ C ∧ Nd × I × I j

by maximality of j.

Let (r, ι, κ) be in Nd × I × I j. Set k′ := k − j − |ι|. Then ιν(ϕr,ι,κ) ∧ ε(x, y) = 0 for all (ν, x, y) in

C × l∗ × p by Corollary 2.7. For some principal open subset O of Ω∗ ∩ l∗ × p and some subspace

V of g, V is the complement to Vx,y for all (x, y) in O. Then

ϕr,ι,κ |O = ϕ
′
+ ϕ′′ with ϕ′ ∈ k[O] ⊗k

∧k′(V) and ϕ′′(x, y) ∈
∧k′−1(g) ∧ Vx,y

for all (x, y) in O, whence ιν(ϕ
′) = 0 for all ν in C. As a result, ϕ′ = 0 by Lemma 10.1(ii)

and ϕr,ι,κ ∧ ε0 = 0 by Corollary 2.7 since ϕr,ι,κ is in k[l∗ × p] ⊗k
∧k′(l) by definition, whence the

contradiction.

For k = 1,

ϕr,0,0 ∈ k[l∗ × p] ⊗k l, ϕr,0, j ∈ k[l∗ × p], ϕr, j,0 ∈ k[l∗ × p]

for j = 1, . . . , d, whence

ιν(ϕr,0,0 +

d∑

j=1

ϕr,0, jw j) ∧ ε(x, y) = 0

for all (r, ν) in Nd
l
× C and all (x, y) in l∗ × p by Lemma 10.1(i). Then, arguing as above, by

Lemma 10.1(ii), for all r in Nd
l
, ϕr,0,0 ∧ ε0 = 0 and ϕr,0, j = 0 for j = 1, . . . , d. As a result, by

Lemma 10.2,(ii) and (iii), ϕr, j,0 = 0 for all (r, j) in Nd
l
× {1, . . . , d}, whence the proposition. �

10.2. On the G-action. Let O be the local ring of G at the identity and m its maximal ideal.

Denote by Ô the completion of O for the m-adic topology and again by m its maximal ideal.

Let z1, . . . , z2n+ℓ be a system of coordinates of O. Then Ô = k[[z1, . . . , z2n+ℓ]]. As usual for

s = (s1, . . . , s2n+ℓ) in N2n+ℓ, set:

zs := z
s1

1
· · · z

s2n+ℓ

2n+ℓ
.

Let J be the ideal of k[l∗ × g] ⊗k
∧

(pu) generated by J⊗1 and 1⊗pu and Ĵ the ideal of Ô ⊗k

k[l∗ × g] ⊗k
∧

(pu) generated by m⊗1 and 1⊗J. Denote by B̃ and B̂ the submodules of O ⊗k

k[l∗ × g] ⊗k g and Ô ⊗k k[l∗ × g] ⊗k g generated by the maps

(g, x, y) 7−→ ε
(m)

i
(g(x), g(y)), (i,m) ∈ I0,

respectively. Then the map

G × l∗ × g
ε̂ // ∧bg (g) , (g, x, y) 7−→ ∧(i,m)∈I0

ε
(m)

i
(g(x), g(y))

is a generator of
∧bg (B̃) and

∧bg (B̂). As usual, the order of the product is induced by the order

of I0.

Set:

Np := N2n+ℓ × Nd × I, |(s, r, ι)| := |s| + |r| + |ι|,
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L := {ϕ ∈ (k[l∗ × g] ⊗k
∧

(g))Np | ∃Nϕ ∈ N such that |r| ≥ Nϕ =⇒ ϕs,r,ι = 0},

κ(ϕ) :=
∑

(s,r,ι)∈Np

zsvrϕs,r,ι ∧ vι

for (s, r, ι) in Np and ϕ in L. For k = 1, . . . , n, denote by L(k) the subspace of elements ϕ of L

such that

κ(ϕ) ∈ Ô ⊗k k[l∗ × g] ⊗k
∧k(g).

and set:

L∗ := {ϕ ∈ L | s , 0 =⇒ ϕs,r,ι = 0}, L(k)
∗ = L∗ ∩ L

(k), ϕr,ι := ϕ0,r,ι, |(r, ι)| := |(0, r, ι)|

for ϕ in L∗ and (r, ι) in Nd × I. For l nonnegative integer, denote by ∆l the subset of elements

(r, ι) of Nd × I such that |(r, ι)| = l.

Lemma 10.4. Let k = 1, . . . , n, l a positive integer and ϕ in L
(k)
∗ such that κ(ϕ) is in Ml+1. If ϕr,ι

is in J
l−|(r,ι)|∧

(g) for all (r, ι), then ϕr,ι is in Ml+1−|(r,ι)| for all (r, ι).

Proof. According to the hypothesis, ϕr,ι = 0 for all (r, ι) such that |(r, ι)| > l. For (r1, ι1) inNd×I,

denote by Γ(r1, ι1) the subset of elements (r, ι) of Nd × I such that

r1 − r ∈ Nd and {ι} ⊂ {ι1}.

For (r, ι) in Γ(r1, ι1), denote by ι1 \ ι the element of I and ǫ(ι1, ι) the element of {−1,+1} such that

{ι1 \ ι} = {ι1} \ {ι} and vι1\ι ∧ vι = ǫ(ι1, ι)vι1 .

Let j be the smallest integer such that ϕr,ι , 0 for some (r, ι) such that |(r, ι)| = j and i the

biggest integer such that ϕr′,ι′ , 0 for some (r′, ι′) such that |(r′, ι′)| = i. Then j ≤ i ≤ l. Prove the

lemma by induction on (l − j, i). For j = l, by Proposition 10.3, for all (r, ι), ϕr,ι ∧ ε0 = 0. As a

result, again by Proposition 10.3, ϕr,ι is in M1. Suppose j < l and the lemma true for all (l− j′, i′)

smaller than (l − j, i).

(a) Suppose j = i. For (r, ι) in ∆ j, ϕr,ι has an expansion

ϕr,ι =

∑

(r′,ι′)∈∆1

vr′ϕr,ι,r′,ι′ ∧ vι′ with ϕr,ι,r′,ι′ ∈ J
l− j−1∧

(g).

For (r1, ι1) in ∆ j+1, set:

ψr1 ,ι1 :=
∑

(r,ι)∈Γ(r1,ι1)

ǫ(ι1, ι)ϕr,ι,r1−r,ι1\ι.

Then ∑

(r,ι)∈Nd×I

vrϕr,ι ∧ vι =
∑

(r1,ι1)∈∆ j+1

vr1ψr1,ι1 ∧ vι1 .

By induction hypothesis, for all (r1, ι1) in ∆ j+1, ψr1,ι1 is in Ml− j.

Prove by induction on m := |ι| that ϕr,ι is in Ml+1− j. For k nonnegative integer, set:

Nk := {(r, r∗) ∈ N
d
k × N

d
k+1 | r∗ − r ∈ Nd} and Nk(r∗) := {r ∈ Nd

k | (r, r∗) ∈ Nk}
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for r∗ in Nd
k+1

.

Claim 10.5. Let ar,r∗ , (r, r∗) ∈ Nk in k such that
∑

r∈Nk(r∗)

ar,r∗ = 0, ∀r∗ ∈ N
d
k+1.

Then ar,r∗ = 0 for all (r, r∗).

Proof. [Proof of Claim 10.5] Prove the claim by induction on k. For k = 0, there is nothing to

prove. Suppose k > 0 and the claim true for k− 1. Let r be in Nd
k

such that the first component r1

of r is positive. Denote by Nk,1 the subset of elements (x, x∗) of Nk such that the first component

of x is positive. For x in Nd, denote by x# the element of Zd such that

x#
1 := x1 − 1, x#

s := xs for s = 2, . . . , d.

Then the map

Nk,1
// Nk−1 , (x, x∗) 7−→ (x#, x#

∗)

is bijective. As a result, setting, bx# ,x#
∗

:= ax,x∗ for (x, x∗) in Nk,1,
∑

x∈Nk−1(x∗)

bx,x∗ = 0, ∀x∗ ∈ N
d
k .

So, by induction hypothesis, ax,x∗ = 0 for all (x, x∗) in Nk,1. Then, after permutation of the

indices, ar,r∗ = 0 for all (r, r∗) in Nk since for some indice s, rs is positive, whence the claim. �

By Claim 10.5, for (r, r1) in N j, ϕr,0,r1−r,0 is in Ml− j. Hence ϕr,0 is in Ml+1− j. Suppose m > 0

and ϕr,ι ∈ Ml+1− j for all (r, ι) such that |ι| < m. Then we can suppose ϕr,ι = 0 for all (r, ι) such

that |ι| < m. Let ι be in Im. For all r1 in Nd
j+1−m

,
∑

(r,ι)∈Γ(r1,ι)

ϕr,ι,r1−r,ι ∈ Ml− j.

By Claim 10.5, ϕr,ι,r1−r,ι is in Ml− j for all (r, r1) in N j−m. Then ϕr,ι is in Ml+1− j for all (r, ι) such

that |ι| = m, whence the assertion in this case.

(b) Suppose j < i. For (r, ι) in Nd × I such that |(r, ι)| ≤ i, ϕr,ι has an expansion

ϕr,ι =

∑

(r′,ι′)∈∆i−|(r,ι)|

vr′ϕr,ι,r′,ι′ ∧ vι′ with ϕr,ι,r′,ι′ ∈ J
l−i
⊗k

∧
(g).

For (r1, ι1) in ∆i, set:

ψr1 ,ι1 :=
∑

(r,ι)∈Γ(r1,ι1)

ǫ(ι1, ι)ϕr,ι,r1−r,ι1\ι.

Then ∑

(r,ι)∈Nd×I

vrϕr,ι ∧ vι =
∑

(r1,ι1)∈∆i

vr1ψr1,ι1 ∧ vι1 .

By (a), for all (r1, ι1) in ∆i, ψr1,ι1 is in Ml+1−i since ψr1,ι1 is in J
l−i∧

(g).
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Let Λ be the subset of elements (r, ι) of ∆i such that ϕr,ι , 0. For (r, ι) in Λ,

Γ(r, ι) \ {(r, ι)} ⊂
⋃

(r′,ι′)∈∆i\{(r,ι)}

Γ(r′, ι′),

whence ϕr,ι = ψr,ι is in Ml+1−i. Denote by ϕ′ the element of L∗ such that ϕ′r,ι = ϕr,ι for (r, ι) not in

Λ and 0 otherwise. Denoting by i′ the biggest integer such that ϕ′r,ι , 0 for some (r, ι) in ∆i′ , i′ is

smaller than i. So, by induction hypothesis, ϕ′r,ι is in Ml+1−|(r,ι)| since κ(ϕ′) is in Ml+1, whence the

lemma. �

Proposition 10.6. Let k = 1, . . . , n, l a positive integer and ϕ in L(k) such that κ(ϕ) ∧ ε̂ is in

Ĵl+1
∧k(g). If ϕs,r,ι is in J

l−|(s,r,ι)|∧k(g) for all (s, r, ι), then ϕs,r,ι is in Ml+1−|(s,r,ι)| for all (s, r, ι).

Proof. By Proposition 2.1(vi), for (g, x, y) in G × l∗ × g,

ε̂(g(x), g(y)) = g.ε(x, y).

Then

ε̂ − ε ∈ m ⊗k k[l∗ × g] ⊗k
∧bg (g) and zsvrϕs,r,ι ∧ vι ∧ (ε − ε̂) ∈ Ĵl+1∧(g),

whence

κ(ϕ) ∧ ε ∈ Ĵl+1∧(g).

As a result, from the equality

Ĵl+1∧k(g) =

l+1⊕

i=0

mi ⊗k J
l+1−i∧k(g),

we deduce ∑

s∈N2n+ℓ
i

∑

(r,ι)∈I×I

ϕs,r,ι ∧ ε ∈ J
l+1−i∧k(g)

for i = 0, . . . , l + 1. Then, by Lemma 10.4, ϕs,r,ι is in Ml+1−|(s,r,ι)| for all (s, r, ι). �

11. Some spaces related to parabolic subalgebras II

Let p be a parabolic subalgebra of g containing b. We then use the notations of Section 10 and

Subsection 9.3. Set:

Q := (k[l∗ × g] ⊗k
∧

(p−))
J

and denote by θ the map

Q
θ // k[l∗ × g] ⊗k

∧
(p−) , (ϕυ, υ ∈ J) 7−→

∑

υ∈J

ϕυ ∧ λυ.

For υ in J, ϕυ has a unique expansion

ϕυ =
∑

κ∈I

ϕυ,κ ∧ wκ, with ϕυ,κ ∈ k[l∗ × g] ⊗k
∧

(l).
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For l nonnegative integer, let Ql be the subspace of Q defined by the following condition:

ϕ ∈ Ql ⇐⇒ (|r| + |υ| , l =⇒ ϕr,υ = 0).

For k = 1, . . . , n, denote by Ql,k the subspace of elements ϕ of Ql such that θ(ϕ) is in k[l∗ × g] ⊗k∧k(p−).

Lemma 11.1. Let k = 1, . . . , n, l a positive integer and ϕ in Ql,k.

(i) The element θ(ϕ) is in Ml.

(ii) If ϕr,υ,κ ∧ ε0 = 0 for all (r, υ, κ), then θ(ϕ) is in Ml+1.

Proof. Let (x, y, y′) be in l∗ × p× p−,u. According to Lemma 9.5, for j = 1, . . . , n− d, υ in J j, the

polynomial map

t 7−→ λυ ∧ ε(x, y + ty′)

is divisible by t j in k[t] ⊗k
∧

(g) and the coefficient cυ(x, y, y′) of t j satisfies the relation

cυ(x, y, y′) −
∑

κ∈I j

aκ,υ(x, y, y′)wκ ∧ ε0(x, y) ∧ µ+ ∈

⊕

|κ|< j

wκ ∧
∧ j−|κ|(l) ∧ ε0(x, y) ∧ µ+ with

aκ,υ :=
∑

I∈J j

∑

r∈Nd
j

vrar,κ,I,υ.

Then the polynomial map

t 7−→ θ(ϕ) ∧ ε(x, y + ty′)

is divisible by tl in k[t]⊗k
∧

(g) since ϕr,υ,κ = 0 when |r|+ |υ| < l. Hence θ(ϕ) is in Ml. Moreover,

the coefficient of tl of this polynomial map is equal to 0 if ϕr,υ,κ ∧ ε0 = 0 for all (r, υ, κ), whence

the lemma. �

Proposition 11.2. Let k = 1, . . . , n, l a positive integer and ϕ in Ql,k. Then θ(ϕ) is in Ml+1 if and

only if ϕr,υ,κ ∧ ε0 = 0 for all (r, υ, κ).

Proof. By Lemma 11.1(ii), the condition is sufficient. Suppose that θ(ϕ) is in Ml+1. For all ν in

C, ∑

(r,υ,κ)

vrιν(ϕr,υ,κ) ∧ wκ +
∑

(r,υ,κ)

vrϕr,υ,κ ∧ ιν(wκ) ∈ Ml+1

since ιν(ε) = 0. Prove the proposition by induction on k.

Suppose k > 1, the assertion true for k − 1 and the proposition not true for k. A contradiction

is expected. Denote by j the biggest integer such that for some κ in I j, ϕr,υ,κ ∧ ε0 , 0. By

Lemma 11.1(ii), we can suppose

|κ| > j =⇒ ϕr,υ,κ = 0.
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By the above relation and the induction hypothesis,

ιν(ϕr,υ,κ) ∧ ε0 = 0, ∀(ν, r, υ, κ) ∈ C ∧ Nd × J × I j

by maximality of j. Then, arguing as in the proof of Proposition 10.3, ϕr,υ,κ ∧ ε0 = 0 for all

(r, υ, κ) such that |κ| = j, whence the contradiction.

For k = 1,

ϕr,0,0 ∈ k[l∗ × p] ⊗k l and ϕr,0, j ∈ k[l∗ × p] ⊗k p−,u

for j = 1, . . . , d, whence

(ϕr,0,0 +

d∑

j=1

ϕr,0, jw j) ∧ ε(x, y) = 0

for all r in Nd
l

and all (x, y) in l∗ × p. Then, for all r in Nd
l
, ϕr,0, j = 0 for j = 1, . . . , d and

ϕr,0,0 ∧ ε0 = 0 since ε(x, y) is colinear with ε0(x, y) ∧ µ+ for all (x, y) in l∗ × p, whence the

proposition. �

Set Np,∗ := Nd × J × I.

Corollary 11.3. Let k = 1, . . . , n, l a positive integer and ϕ in (k[l∗ × p] ⊗k
∧

(p))Np,∗ such that

ϕr,υ,ι ∈ k[l∗ × p] ⊗k
∧k−|ι|(l) and |(r, υ, ι)| , l =⇒ ϕr,υ,ι = 0.

Set:

ψ =
∑

(r,υ,ι)

vrϕr,υ,ι ∧ λυ ∧ vι.

If ψ is in Ml+1 then ϕr,υ,ι ∧ ε0 = 0 for all (r, υ, ι).

Proof. For (r, ι) in Nd × I, set:

ψr,ι =

∑

υ∈J

ϕr,υ,ι ∧ λυ.

By hypothesis, for all (r, ι), ψr,ι is in J
l−|(r,ι)|∧k−|ι|(l). So, by Lemma 10.4, ψr,ι is in Ml+1−|(r,ι)|.

Hence, by Proposition 11.2, ϕr,υ,ι ∧ ε0 = 0 for all (r, υ, ι). �

12. Induction. Case n ≤ 1

Let p be a parabolic subalgebra of g containing b. Then we use the notations of Section 9. In

particular, l is the reductive factor of p containing h, d is its derived algebra and n is the number

of simple factors of d. We suppose that the simple factors of d have Property (P). Let O, Ô, m,

J, Ĵ be as in Subsection 10.2. Denote by J1 the ideal of Ô ⊗k k[l∗ × g] generated by m and J. In

Subsections 12.2 and 12.3, we suppose n ≤ 1.
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12.1. Some complexes. Recall that d1, . . . , dn are the simple factors of l. Set: p±,u := pu ⊕ p−,u.

Let I and Ik be as in Subsection 6.2, I′, I′
k

as in Section 4. With the notations of Subsection 6.2,

for k = 0, . . . , n, denote by D•
k,#

(g) and D•
k,#

(p−) the graded subcomplexes of D•
k
(g) deduced from

the double complexes

k⊕

i=0

D•k−i(p±,u) ⊗k D•i,#(l) and

k⊕

i=0

D•k−i(p−,u) ⊗k D•i,#(l)

respectively.

Let B, B, Bl, ε be as in Section 7, B0, ε0 as in Subsection 7.2, B̃, B̂, ε̂ as in Subsection 10.2.

For k = 0, . . . , n, denote by D•
k,#

(g,B) the graded subcomplex of D•
k
(g,B):

D•k,#(g,B) := D•k,#(g)[−bg] ∧
∧bg (B).

The graded subcomplexes D•
k,#

(g, B̃) and D•
k,#

(g, B̂) of Ô ⊗k D•
k
(g) are equal to

D•k,#(g)[−bg] ∧
∧bg (B̃) and D•k,#(g)[−bg] ∧

∧bg (B̂)

respectively.

For k = 0, . . . , n and l = 0, . . . , n − d, set:

B+ := B0 ⊕ k[l∗ × p] ⊗k pu

D•k,#(V,B+) := D•
k,#

(V)[−bg] ∧
∧bg (B+)

D•l,#(l,B+) := D•
l,#

(l)[−bg] ∧
∧bg (B+)

with V = p− or V = g. Then B+ is a free module of rank bg containing B, D•
k,#

(V,B+) is a graded

subcomplex of D•
k
(V,B+), D•

l,#
(l,B+) is a graded subcomplex of D•

l
(l,B+).

Lemma 12.1. (i) For k = 0, . . . , n−d, D•
k,#

(l,B+) has no cohomology of degree different from bg .

(ii) For k = 0, . . . , n, D•
k,#

(p−,Bl) has no cohomology of degree different from bl .

(iii) For k = 0, . . . , n, D•
k,#

(p−,B+) has no cohomology of degree different from bg .

(iv) For k = 0, . . . , n, D•
k,#

(g,B+) has no cohomology of degree different from bg .

Proof. (i) According to Lemma 4.3, the complex D•
k,#

(l,Bl) has no cohomology of degree differ-

ent from bl since d1, . . . , dn have Property (P). By restriction to the principal open susbet l∗ × l of

l × l, the subcomplex D•
k,#

(l,Bl) of D•
k
(l,Bl) has no cohomology of degree different from bl . As

k[l∗×p] = k[pu]⊗kk[l∗×l], B+ is the direct sum of k[pu]⊗kBl and k[l∗ × p]⊗kpu by Lemma 7.5(ii).

As a result,

D•k,#(l,B+) = k[pu] ⊗k D•k,#(l,Bl)[−d] ∧
∧d(pu),

whence an isomorphism of graded compexes

∧d(pu) ⊗k k[pu] ⊗k D•
k,#

(l,Bl)[−d] // D•
k,#

(l,B+) ,
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and the assertion.

(ii) and (iii) As p− is the direct sum of l and p−,u, D•
k,#

(p−,Bl) and D•
k,#

(p−,B+) are isomorphic

to the simple complexes deduced from the double complexes:

k⊕

j=sup{0,k−n+d}

D•j(p−,u) ⊗k D•k− j,#(l,Bl) and

k⊕

j=sup{0,k−n+d}

D•j(p−,u) ⊗k D•k− j,#(l,B+)

respectively. By Lemma A.2(ii), for j positive integer, D•
j
(p−,u) is an acyclic complex, whence

the assertion by (i) and its proof.

(iv) As pu is contained in B+,

D•k,#(g,B+) =

k⊕

j=0

Sk− j(pu) ⊗k D•k− j,#(p−,B+)

since
l⊕

j=l′

Sl− j(pu) ⊗k S j−l′(p−) = Sl−l′(g)

for 0 ≤ l′ ≤ l. So, by (iii), D•
k,#

(g,B+) has no cohomology of degree different from bg . �

For k = 0, . . . , n, denote by D•
k,#

(g,B) the graded subcomplex of k[l∗ × p] ⊗k D•
k
(g),

D•k,#(g,B) := D•k,#(g)[−bg] ∧
∧bg (B).

Corollary 12.2. For k = 0, . . . , n, D•
k,#

(g,B) has no cohomology of degree different from bg .

Proof. As the modules B+ and B are free modules of rank bg and B is contained in B+, for some

p in k[l∗ × p] \ {0},
∧bg (B) = p

∧bg (B+). As a result, the map

S(g) ⊗k
∧

(g) ∧
∧bg (B+)

τ // S(g) ⊗k
∧

(g) ∧
∧bg (B) , ϕ 7−→ pϕ

is an isomorphism of graded complexes such that

τ(D•k,#(g,B+)) = D•k,#(g,B).

So, by Lemma 12.1(iv), D•
k,#

(g,B) has no cohomology of degree different from bg . �

For j, k integers such that 0 ≤ j ≤ k ≤ n, denote by D•
k, j,#

(g) the graded subspace of D•
k,#

(g),

D•k, j,#(g) := S j(pu)D•k− j,#(p−)

and D•
k, j,#

(g,B) the graded subspace of Dk,#(g,B),

D•k, j,#(g,B) := D•k, j,#(g)[−bg] ∧
∧bg (B).

In particular,

Dk,0,#(g,B) = Dk,#(p−,B) := D•k,#(p−)[−bg] ∧
∧bg (B).
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Since pu ∧
∧bg (B) = {0}, D•

k, j,#
(g,B) is a graded subcomplex of D•

k,#
(g,B).

Lemma 12.3. Let k = 1, . . . , n.

(i) For ϕ in D
bg
k,#

(p−,B), ϕ is a cocycle of D•
k,#

(g,B) if and only if ϕ is in Sk(Bl) ⊗k[l∗×l]
∧bg (B).

(ii) For 0 ≤ j ≤ k and ϕ in D
bg
k, j,#

(g,B), ϕ is a cocycle of D•
k,#

(g,B) if and only if

ϕ ∈ S j(pu)Sk− j(Bl) ⊗k[l∗×l]
∧bg (B).

Proof. Denote again by ε the restriction of ε to l∗ × p. Then ε is a generator of
∧bg (B).

(i) As usual, for r = (r1, . . . , rd) in Nd, set:

wr := w
r1

1
· · ·w

rd

d
and vr := v

r1

1
· · · v

rd

d
.

Let ψ be in k[l∗ × p] ⊗k D0
k,#

(p−). Then ψ has an expansion

ψ =

k∑

j=0

∑

r∈Nd
j

wrψr with ψr ∈ k[l∗ × p] ⊗k D0
k−|r|,#(l).

With the notations of Subsection 9.2, since
∧bg (B) is a submodule of

∧bg (B+), ψ∧ ε is a cocycle

of D•
k,#

(g,B) if and only if ψ ∧ ε0 ∧ µ+ is a cocycle of D•
k,#

(g,B+). In particular, the condition of

the assertion is sufficient.

Suppose that ψ ∧ ε is a cocycle of D•
k,#

(g,B). Denote by ν(ψ) the biggest element (|r|, r) of

N × Nd such that ψr , 0. Suppose that ν(ψ) is different from (0, 0). A contradiction is expected.

Let j be the smallest indice such that r j , 0. Denote by r̃ the element of Nd
|r|−1

such that r̃l = rl

for l , j and Rr,r̃ the subset of elements r′ of Nd
|r|

such that wr̃ divides wr′ . For r′ in Rr,r′, let kr′ be

the indice such that wr′
= wkr′

wr̃. As ψ∧ ε is a cocycle, by maximality of ν(ψ) and minimality of

j, ∑

r′∈Rr,r′

r′kr′
wr̃ψr′⊗wkr′

= 0.

In particular, ψr = 0, whence the contradition. As a result, ψ = ψ0. As a matter of fact, ψ = 0

when k > n − d. Otherwise, ψ ∧ ε0 is a cocycle of k[pu] ⊗k D•
k,#

(l,Bl). So, by Lemma A.4(iii), ψ

is in k[pu] ⊗k Sk(Bl), whence the assertion.

(ii) Let ψ be in k[l∗ × p] ⊗k D0
k, j,#

(g). Since ψ ∧ ε is a cocycle if and only if ψ ∧ ε0 ∧ µ+ is a

cocycle of degree bg of D•
k,#

(g,B+), the condition is sufficient. Suppose that ψ∧ ε is a cocycle of

D•
k,#

(g,B). The element ψ has an expansion

ψ =
∑

r∈Nd
j

vrψr with ψr ∈ k[l∗ × p] ⊗k D0
k− j,#(p−).

Since pu ∧
∧bg (B) = {0}, for all r, ψr ∧ ε is a cocycle of Dk− j,#(p−,B), whence the assertion by

(i). �
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12.2. Quasi-regularity. Let k = 0, . . . , n and set:

Dk,#(g, B̂) := Dk,#(g) ∧
∧bg (B̂).

Let Np be as in Subsection 10.2. For j = 0, . . . , n, set:

M j := {ϕ ∈ (k[l∗ × g] ⊗k D(g))Np | ∃Nϕ ∈ N such that |r| ≥ Nϕ =⇒ ϕs,r,ι = 0 and

ϕs,r,ι ∈ k[l∗ × g] ⊗k D j−|ι|,#(g)} and

κ(ϕ) :=
∑

(s,r,ι)∈N′p

zsvrϕs,r,ι ∧ vι ∧ ε̂

for ϕ in M j. For l nonnegative integer, denote by M j,l the subspace of elements ϕ of M j such

that

|(s, r, ι)| , l =⇒ ϕs,r,ι = 0

and M j,l,+ the sum of M j,i, i = l, l + 1, . . ..

Lemma 12.4. Let l be a positive integer. Suppose k > 0.

(i) For m = 1, . . . , n − d and ϕ in k[l∗ × p] ⊗k Dm,#(l) such that ϕ(x, y) ∧ ε0(x, y) = 0 for all

(x, y) in l∗ × p, ϕ is in Dm−1,#(l) ∧ Bl.

(ii) For ϕ in k[l∗ × p] ⊗k Dk,#(p−), if the restriction of ϕ ∧ ε to l∗ × p is equal to 0, then

ϕ ∈ k[l∗ × p] ⊗k[l∗×l] Dk−1,#(p−) ∧ Bl.

(iii) For ϕ in k[l∗ × g] ⊗k Dk,#(g), the restriction of ϕ ∧ ε to l∗ × p is equal to 0 if and only if

ϕ ∈ Dk−1,#(g) ∧ B + JDk,#(g) + k[l∗ × g] ⊗k Dk−1,#(g) ∧ pu.

Moreover, in this case, ϕ ∧ ε̂ is in κ(Mk,1,+).

Proof. (i) As d = {0} or d has Property P, for some ψ1, . . . , ψs in Bl,

ϕ =

s∑

j=1

ϕ j ∧ ψ j with ϕ j ∈ k[l∗ × p] ⊗k Dm−1,#(l)

for j = 1, . . . , s by Proposition 4.4 since k[l∗ × p] = k[pu] ⊗k k[l∗ × l], whence the assertion.

(ii) Let ϕ be in k[l∗ × p] ⊗k Dk,#(p−) such that ϕ(x, y) ∧ ε(x, y) = 0 for all (x, y) in l∗ × p. The

element ϕ has an expansion

ϕ =
∑

κ∈I

ϕκ ∧ wκ with ϕκ ∈ k[l∗ × p] ⊗k

inf{n−d,k}⊕

m=0

Sk−m(p−,u) ⊗k Dm,#(l).

For (x, y) in l∗ × p,

ε(x, y) ∈ ε0(x, y) ∧
∧d(pu)

by Proposition 7.6(i), whence

ϕκ(x, y) ∧ ε0(x, y) = 0
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for all κ in I and all (x, y) in l∗ × p. So, by (i),

ϕκ ∈

inf{n−d,k}⊕

m=1

Sk−m(p−,u) ⊗k Dm−1,#(l) ∧ Bl,

for all κ, whence the assertion.

(iii) Since k[l∗ × g] = k[l∗ × p] + J, we can suppose that ϕ is in k[l∗ × p] ⊗k Dk,#(g). As g is the

direct sum of p− and pu,

∧
(g) =

∧
(p−) ⊕

∧
(g) ∧ pu and Dk,#(g) =

k⊕

m=0

Sm(pu) ⊗k Dk−m,#(p−) ⊕ Dk−1,#(g) ∧ pu.

Then ϕ = ϕ1 + ϕ2 with

ϕ1 ∈ k[l∗ × p] ⊗k

k⊕

m=0

Sm(pu) ⊗k Dk−m,#(p−) and ϕ2 ∈ k[l∗ × p] ⊗k Dk−1,#(g) ∧ pu.

As pu∧ε(x, y) = {0} for all (x, y) in l∗×p, the restriction of ϕ2∧ε to l∗×p is equal to 0. Moreover,

the restriction of ϕ ∧ ε to l∗ × p is equal to 0 if

ϕ ∈ Dk−1,#(g) ∧ B + JDk,#(g) + Dk−1,#(g) ∧ pu.

Conversely, by (ii),

ϕ1 ∈ k[l∗ × p] ⊗k Dk−1,#(p−) ∧ Bl.

By Proposition 9.1(ii),

Bl ⊂ B + J ⊗k p−,u + J− ⊗k pu + JJ− ⊗k l.

Hence

ϕ1 ∈ Dk−1,#(p−) ∧ B + JDk,#(g) + Dk−1,#(g) ∧ pu,

since d is simple or equal to {0}. Indeed, ϕ1 has an expansion

ϕ1 =

inf{k−1,n−d}∑

m=0

inf{m,n−d−1}∑

j=0

ϕ1,m, j with ϕ1,m, j ∈ k[l∗ × p] ⊗k[l∗×l] Dk−m(p−,u) ⊗k D j
m(l) ∧ Bl.

For (i,m) in I0, the map

G × l∗ × g // g , (g, x, y) 7−→ ε
(m)

i
(g(x), g(y)) − ε

(m)

i
(x, y)

is in m ⊗k k[l∗ × g] ⊗k g since ε
(m)

i
is a G-equivariant by Proposition 2.1(vi), whence

ϕ1,m, j ∈ Dk−1,#(g) ∧ B̂ + J ⊗k Dk,#(g) + k[l∗ × g] ⊗k Dk−1,#(g) ∧ pu +m ⊗k k[l∗ × g] ⊗k Dk,#(g)

for all (m, j). As a result, ϕ ∧ ε̂ is in κ(Mk,1,+). �

Remark 12.5. Assertion (i) and Assertion (ii) are true when d is not simple.
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Proposition 12.6. Let l be a positive integer and ϕ in Mk,l. Then κ(ϕ) is in κ(Mk,l+1,+) if and only

if ϕs,r,ι ∧ ε̂ is in κ(Mk−|ι|,1,+) for all (s, r, ι).

Proof. The condition is clearly sufficient. Suppose that κ(ϕ) is in κ(Mk,l+1,+). As g is the direct

sum of p− and pu and k[l∗ × g] is the direct sum of k[l∗ × p] and J,

ϕs,r,ι = ϕ
′
s,r,ι + ϕ

′′
s,r,ι with

ϕ′s,r,ι ∈ k[l∗ × p] ⊗k Dk−|ι|,#(p−) and ϕ′′s,r,ι ∈ J ⊗k Dk−|ι|,#(g) + k[l∗ × g] ⊗k Dk−|ι|−1,#(g) ∧ pu

for all (s, r, ι). Setting ϕ′ := (ϕ′s,r,ι, (s, r, ι) ∈ Np), ϕ
′ is in Mk,l and κ(ϕ′) is in κ(Mk,l+1,+) since the

condition is sufficient.

Let (s, r, ι) be in Np such that |(s, r, ι)| = l. By Proposition 10.6,

ϕ′s,r,ι ∈ k[l∗ × g] ⊗k Dk,#(p−) ∩ S(g) ⊗k M1.

Then the restriction of ϕ′s,r,ι ∧ ε to l∗ × p is equal to 0. So, by Lemma 12.4(iii), the restriction of

ϕs,r,ι ∧ ε to l∗ × p is equal to 0 and ϕs,r,ι ∧ ε̂ is in κ(Mk−|ι|,1,+) for all (s, r, ι). �

For l = 0, 1, . . ., let Fl be the subspace κ(Mk,l,+) of Dk,#(g, B̂). Then the sequence Fl, l =

0, 1, . . . is a decreasing filtration of Dk,#(g, B̂). Denote by gr Dk,#(g, B̂) the associate graded space

to this filtration and gr lDk,#(g, B̂) the subspace of degree l of gr Dk,#(g, B̂). For j = 0, . . . , k, let

D•
j,#

(g,B) be the graded subcomplex of k[l∗ × p] ⊗k D•(g),

D•j,#(g,B) := D•j,#(g)[−bg] ∧
∧bg (B),

and A the algebra

A := k[z1, . . . , z2n+ℓ] ⊗k S(pu) ⊗k
∧

(pu).

This algebra has a bigradation A•• such that

Ai := k[z1, . . . , z2n+ℓ] ⊗k S(pu) ⊗k
∧i(pu) and

Al :=
⊕

( j1 , j2, j3)∈N3
l

k[z1, . . . , z2n+ℓ] j1 ⊗k S j2(pu) ⊗k
∧ j3(pu)

with k[z1, . . . , z2n+ℓ] j the space of homogeneous polynomials of degree j of k[z1, . . . , z2n+ℓ].

Consider on k[l∗ × p] ⊗k A ⊗k D(g) the simple gradation deduced from the double gradation

k[l∗ × p] ⊗k A• ⊗k D•(g). The trivial structure of complex on A and the structure of complex

on D(g) induce a structure of graded complex on k[l∗ × p] ⊗k A ⊗k D(g). For l = 0, 1, . . . and i

nonnegative integer, set:

Ci
l =

i⊕

j=0

⊕

(l1,l2)∈N2
l− j

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k
∧ j(pu) ⊗k D

i− j

k− j,#
(g,B).

Denoting by C•
l

the sum Ci
l
, i = 0, 1, . . ., C•

l
is a graded subcomplex of k[l∗ × p] ⊗k A ⊗k D(g).
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Corollary 12.7. (i) For l = 0, 1, . . ., F•
l

is a graded subcomplex of the graded complex D•
k,#

(g, B̂).

(ii) The graded complex gr 0D•
k,#

(g, B̂) is isomorphic to the graded complex D•
k,#

(g,B).

(iii) For l = 1, 2, . . ., the graded complex gr lD
•
k,#

(g, B̂) is isomorphic to C•
l
.

Proof. (i) For all l, κ(Mk,l) is a graded subspace of Dk,#(g, B̂). For ϕ in Mk,l,

dκ(ϕ) =
∑

(s,r,ι)∈Np

zsvrdϕs,r,ι ∧ vι ∧ ε̂.

Hence Fl is a graded subcomplex of Dk,#(g, B̂).

(ii) Let rg,p be the quotient morphism

Ô ⊗k k[l∗ × g]
rg,p // k[l∗ × p] .

Then rg,p induces a morphism

Ô ⊗k k[l∗ × g] ⊗k D(g)
rg,p // k[l∗ × p] ⊗k D(g) .

As B = rg,p(B̂), we have a surjective morphism

D•
k,#

(g, B̂)
rg,p // D•

k,#
(g,B) .

and F1 is its kernel by Proposition 12.6, whence the assertion.

(iii) Let l be a nonnegative integer. Denote by γl the morphism of k[l∗ × p]-modules

k[l∗ × p] ⊗k Al ⊗k D(g)
γl // k[l∗ × g] ⊗k D(g) ψ⊗a⊗vι⊗ϕ 7−→ ψa⊗ϕ ∧ vι

and M′
k,l

the subspace of elements ϕ of Mk,l such that

ϕs,r,ι ∈ γl(k[l∗ × p] ⊗k Al ⊗k D(g)), ∀(s, r, ι) ∈ Np.

Then Fl = κ(M
′
k,l

) + Fl+1 since

Ĵl
= k[l∗ × p] ⊗k Al ⊕ Ĵl+1.

By Proposition 12.6, for ϕ in M′
k,l

, κ(ϕ) is in Fl+1 if and only if rg,p(ϕs,r,ι ∧ ε̂) = 0 for all (s, r, ι).

Then, by (ii), the restriction of rg,p to Fl defines through the quotient an isomorphism of k[l∗×p]-

modules,

gr lDk,#(g, B̂) // Cl .

Moreover, this isomorphism is an isomorphism of graded complex. �



68 J-Y CHARBONNEL

12.3. Annulation of cohomology. Let k = 1, . . . , n. For i integer, denote by Zi and Bi the

spaces of cocycles and coboundaries of degree i of D•
k,#

(g, B̂). For l = 1, . . . , n, denote by D•
l,u

the graded subcomplex of D•
l,#

(g, B̂),

D•l,u := D•l (pu)[−bg] ∧
∧bg (B̂).

Lemma 12.8. Let l = 1, . . . , n. The morphism

Ô ⊗k k[l∗ × g] ⊗k D•
l
(pu)[−bg] // D•

k,u
, ϕ 7−→ ϕ ∧ ε̂

is an isomorphism of graded complexes. In particular, D•
l,u

is acyclic.

Proof. Denote by D̃•
l,u

the graded subcomplex of D•
l,#

(g, B̃),

D̃•l,u := D•l (pu)[−bg] ∧
∧bg (B̃).

By Corollary 2.7, for all (x, y) in a dense open subset of l∗ × p−, Vx,y is contained in p−. So, for

(g, x, y) in a dense open subset of G × l∗ × g, Vg(x),g(y) ∩ pu = {0}. As a result, the morphism

O ⊗k k[l∗ × g] ⊗k D•
l
(pu)[−bg] // D̃•

l,u
, ϕ 7−→ ϕ ∧ ε̂

is an isomorphism of graded complexes since it is surjective. By Lemma A.2(ii), D•
l
(pu) is an

acyclic complex since l is positive. Hence so is D̃•
l,u

, whence the lemma since Ô is a faithfully

flat extension of O. �

For j nonnegative integer, denote by S
j

#
(Bl) the intersection of S j(Bl) and k[l∗ × l] ⊗k D0

j,#
(l).

For i = bg , . . . , k + bg and l nonnegative integer, set:

Ki :=

k−i+bg∑

j=0

S
j

#
(Bl)D

i
k− j,u and

Ki
l =

⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂.

Lemma 12.9. Let i = bg + 1, . . . , k + bg and l a nonnegative integer.

(i) The subspace Zi ∩ F i
l

of F i
l

is contained in dF i−1
l
+ Ki

+ F i
l+1

.

(ii) The space Ki ∩ F i
l

is contained in Ki
l
+ F i

l+1
.

(iii) The intersection of F i
l+1

and Ki is equal to J
l−i+bg+1

1
Ki.

Proof. (i) Let ϕ be in Zi∩F i
l
and ϕ its image in gr lD

i
k,#

(g, B̂). By Corollary 12.7, ϕ is a cocycle of

degree i of the graded complex C•
l
. By Corollary 12.2, for j = 0, . . . , k, the complex D•

k− j,#
(g,B)
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has no cohomolgy of degree different from bg . Then, for some ψ in Ci−1
l

,

ϕ − dψ ∈
⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k
∧i−bg (pu) ⊗k D

bg
k−i+bg ,#

(g,B).

Then, by Lemma 12.3(ii),

ϕ − dψ ∈
⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k
∧i−bg (pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

0
k−i+bg− j(pu) ∧

∧bg (B).

So, for a representative ψ of ψ in F i−1
l

,

ϕ − dψ ∈ Ki
+ F i

l+1.

(ii) By definition, Ki
l

is contained in F i
l
. Prove by induction on l that Ki ∩ F i

l
is contained in

Ki
l
+ F i

l+1
. For l = 0, there is nothing to prove. Suppose the assertion true for l− 1. By definition,

Ki
=

+∞∑

s=0

Ki
s,

so by induction hypothesis,

Ki ∩ F i
l−1 =

∞∑

s=l−1

Ki
s.

The image of Ki
l−1

in gr Dk,#(g, B̂) is contained in gr l−1Dk,#(g, B̂). Then, by Corollary 12.7(ii),

Ki ∩ F i
l

is contained in Ki
l
+ F i

l+1
.

(iii) By definition J
l−i+bg+1

1
Ki is contained F i

l+1
∩ Ki. Prove the assertion by induction on l. By

Corollary 12.7(iii), the quotient of Ki by Ki ∩ F i
1+i−bg

is equal to the subspace of gr i−bgDk,#(g, B̂),

∧i−bg (pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

0
k−i+bg− j(pu) ∧

∧bg (B).

Moreover, by Lemma 12.8, the quotient of Ki by J1Ki is equal to

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂.

In particular, the k[l∗ × p]-module Ki/J1Ki is free. Again by Lemma 12.8, the three k[l∗ × p]-

modules,
k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂,

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu),
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∧i−bg (pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

0
k−i+bg− j(pu) ∧

∧bg (B)

are three free modules of the same finite rank. Hence for some p in k[l∗ × p] \ {0}, pKi ∩ F i
i−bg+1

is contained J1Ki. As a result, Ki ∩ F i
i−bg+1

is equal to J1Ki since the k[l∗ × p]-module Ki/J1Ki
1

is torsion free.

Suppose l > i−bg and the assertion true for l−1. By induction hypothesis, it remains to prove

that J
l−i+bg+1

1
Ki is the intersection of J

l−i+bg
1

Ki and F i
l+1

. By Corollary 12.7(iii), the quotient of

J
l−i+bg
1

Ki by J
l−i+bg
1

Ki ∩ F i
l+1

is equal to the subspace of gr lDk,#(g, B̂),

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k
∧i−bg (pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

0
k−i+bg− j(pu) ∧

∧bg (B).

Moreover, by Lemma 12.8, the quotient of J
l−i+bg
1

Ki by J
l−i+bg+1

1
Ki is equal to

⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂.

In particular, the k[l∗ × p]-module J
l−i+bg
1

Ki/J
l−i+bg+1

1
Ki is free. Again by Lemma 12.8, the three

k[l∗ × p]-modules

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k
∧i−bg (pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

0
k−i+bg− j(pu) ∧

∧bg (B),

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu),

⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

S
j

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂,

are three free modules of the same finite rank. Hence for some p in k[l∗×p] \ {0}, pKi ∩F i
l+i−bg+1

is contained J
l−i+bg+1

1
Ki. As a result, Ki∩F i

i−bg+1
is equal to J

l−i+bg+1

1
Ki since the k[l∗×p]-module

J
l−i+bg
1

Ki/J
l−i+bg+1

1
Ki

1
is torsion free. �

Let d1 and d2 be the morphisms from K•
l

to F•
l

such that

d1a⊗ων ∧ ε̂ = (−1)i−bga⊗ν(dω) ∧ ε̂, d2a⊗ων ∧ ε̂ = a⊗ωdν ∧ ε̂ with

a ∈
⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu),
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ω ∈ S
j

#
(Bl), ν ∈ D

i−bg
k− j

(pu), i = bg , . . . , k + bg , j = 0, . . . , k − i + bg .

Lemma 12.10. Let i = bg , . . . , k + bg and l a nonnegative integer.

(i) For i nonnegative integer and j > 0,

dKi
l ⊂ d2Ki

l + F i+1
l+1 .

(ii) If i > bg then Zi ∩ F i
l

is contained in dF i−1
l
+ F i

l+1
.

Proof. (i) By definition d = d1 + d2. Let a, ω, ν be as in the above definition. Then

da⊗ων ∧ ε̂ ∈ d2a⊗ω ∧ ε̂ + a⊗S
j−1

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂ ∧ Bl.

By Corollary 12.7,

a⊗S
j−1

#
(Bl)D

i−bg
k− j

(pu) ∧ ε̂ ∧ Bl ⊂ F i+1
l+1

since the image of ε̂ by the restriction morphism rg,p is a generator of
∧bg (B), whence the asser-

tion.

(ii) Let ϕ be in Zi ∩ F i
l
. By Lemma 12.9(i), for some ψ in F i−1

l
,

ϕ − dψ ∈ Ki
+ F i

l+1.

As a matter of fact, by Lemma 12.9(ii),

ϕ − dψ ∈ Ki
l + F i

l+1.

By Lemma 12.9(iii) and Lemma 12.8, for i′ = i, i + 1, the sum Ki′

l
+ F i′

l+1
is direct. Let ϕ1 be the

component of ϕ − dψ on Ki
l
. Then, by (i), d2ϕ1 = 0 since d2ϕ1 is in Ki+1 and dF i

l+1
is contained

in F i+1
l+1

. As a result, by Lemma 12.8, for some ϕ′1 in Ki−1
l

, ϕ1 = d2ϕ
′
1. Then, by (i),

ψ + ϕ′1 ∈ F i−1
l and ϕ − dψ − dϕ′1 ∈ F i

l+1,

whence the assertion. �

Corollary 12.11. Let i = bg + 1, . . . , bg + k.

(i) For all nonnegative integer l, Zi is contained in Bi
+ F i

l
.

(ii) For some p in m ⊗k k[l∗], (1 + p)Zi is contained in Bi.

Proof. (i) By Lemma 12.10(ii), for l nonnegative integer,

Zi ∩ F i
l ⊂ dF i−1

l + F i
l+1.

Then, by induction on l, Zi is contained in Bi
+ F i

l
.

(ii) The natural gradation of k[g] induces a gradation of Ô⊗kk[l∗ × g]⊗kD(g). As B̂ is a graded

submodule of Ô ⊗k k[l∗ × g] ⊗k D(g) so are D•
k,#

(g, B̂), D•
k,u

, F•
l
, l = 0, 1, . . .. Then Zi and Bi are

graded submodules of Di
k,#

(g, B̂) since the differential of D•
k
(g, B̂) is homogeneous of degree 0

with respect to this gradation.
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Let l be a nonnegative integer. Denote by

Ô ⊗k k[l∗ × g]
(l), D

i,l

k,#
(g, B̂), Zi,l, Bi,l

the subspaces of degree l of

Ô ⊗k k[l∗ × g], Di
k,#(g, B̂), Zi, Bi

respectively. In particular, these spaces are finitely generated Ô ⊗k k[l∗]-modules. Then, by

[MA86, Ch. 3, Theorem 8.9], for some pl in m ⊗k k[l∗],

(1 + pl)
⋂

j∈N

(Bi,l
+m jDi,l

k,#
(g, B̂)) ⊂ Bi,l.

By (i),

Zi,l ⊂ Bi,l
+m j−l ⊗k Di,l

k
(g, B̂)

for all integer j bigger than l since F i
s is graded for all nonnegative integer s and J is generated

by elements of positive degree. As a result,

(1 + pl)Z
i,l ⊂ Bi,l.

Then, for some p in m ⊗k k[l∗],

(1 + p)Zi ⊂ Bi

since Zi is a finitely generated module over Ô ⊗k k[l∗ × g]. �

Proposition 12.12. For k = 0, . . . , n, D•
k,#

(g, B̂) and D•
k,#

(g, B̃) have no cohomology of degree

different from bg .

Proof. As Ô is a faithfully flat extension of O, it is sufficient to prove that D•
k,#

(g, B̂) has no

cohomology of degree different from bg . For i < bg or i > k + bg , Di
k,#

(g, B̂) = {0}. By definition,

D•
k,#

(g, B̂) has no cohomology of degree k + bg . So, it is true for k = 0, 1. Let k = 2, . . . , n and

i = bg + 1, . . . , k − 1 + bg . Denote by Ti the support of Zi/Bi in Spec(Ô ⊗k k[l∗ × g]). As Zi/Bi

is finitely generated, Ti is a closed subset of Spec(Ô ⊗k k[l∗ × g]). Since m is contained in all

maximal ideal of Ô ⊗k k[l∗ × g], Ti does not contain a maximal ideal by Corollary 12.11. Then

Ti is empty and Zi
= Bi, whence the proposition. �

13. Induction. Case n ≥ 2

Let p be a parabolic subalgebra of g containing b. Then we use the notations of Section 9 and

some notations of Section 12. In particular, l is the reductive factor of p containing h, d is its

derived algebra, n is the number of simple factors of d. We suppose that n is bigger than 1 and

the simple factors d1, . . . , dn of d have Property (P). For i = 1, . . . , n, let E′i be the submodule of

k[l∗ × l] ⊗k l generated by the elements λi,1, . . . , λi,ni
defined in Subsection 9.3. Denote by E the



COMMUTING VARIETY 73

k[l∗ × l]-submodule of k[l∗ × l] ⊗k g generated by pu and E′
1
, . . . ,E′n. Let J+ be the ideal of the

algebra k[l∗ × g] ⊗k[l∗×l]
∧

(E′) generated by J⊗1 and 1⊗E. Denote by J̃+ and Ĵ+ the ideals of

O ⊗k k[l∗ × g] ⊗k[l∗×l]
∧

(E) and Ô ⊗k k[l∗ × g] ⊗k[l∗×l]
∧

(E)

generated by m⊗1 and J+. Let J1 be the ideal of Ô ⊗k k[l∗ × g] generated by m and J.

13.1. Quasi-regularity. Let I be as in Subsection 6.2. According to notations of Subsection 6.2

and Section 4, for I subset of Ik and ( j1, j2) in N2 such that j1 + j2 ≤ k, let I j1 , j2 be the subset of

elements ι of I′′
k− j1− j2

such that ( j1, j2, ι) is in I. Then, for I subset of Ik and V = p− or g, denote

by Dk,I,#(V) the graded subcomplex of D•
k
(V) deduced from the triple complex

k⊕

i=0

⊕

( j1 , j2)∈N2
i

D•j1(V
′) ⊗k D•j2(z) ⊗k Di,I j1 , j2

,#(d),

with V ′ = p−,u when V = p− and V ′ = p±,u when V = g. For j = ( j1, . . . , jn) in I′′
k

, set:

I
( j) := {(i−1, . . . , in) ∈ I | i1 ≤ n1 − j1, . . . , in ≤ nn − jn},

D•k,#, j(V) := Dk−| j|,I( j) ,#(V)[−| j|] ∧
∧ j1(E′

1
) ∧ · · · ∧

∧ jn(E′n),

D•k,#, j,∗(V) :=
∧ j1(E′1) ∧ · · · ∧

∧ jn(E′n) ⊗k D•
k−| j|,I( j) ,#

(V)[−| j|].

Then D•
k,#, j

(V) is a graded subcomplex of k[l∗ × l
′] ⊗k D•

k,#
(V).

For k = 0, . . . , n and j non negative integer, denote by D•
k,#, j

(V) the graded submodule of

k[l∗ × l] ⊗k Dk,#(V),

D•k,#, j(V) :=
⊕

( j1,..., jn)∈Nn
j

D•k,#,( j1 ,..., jn)(V)

and D•
k,#, j,×

(g) the graded submodule of k[l∗ × l] ⊗k
∧ j(E) ⊗k D•

k− j,#
(g),

D•k,#, j,×(g) :=

j⊕

i=0

⊕

( j1 ,..., jn)∈Nn
j−i

∧i(pu) ∧ D•k−i,#,( j1 ,..., jn),×(g).

Let k = 0, . . . , n. Set:

Np,+ := N2n+ℓ × Nd × J × I, |(s, r, υ, ι)| := |s| + |r| + |υ| + |ι|,

for (s, r, υ, ι) in Np,+. For j = 0, . . . , n, set:

M j,∗ := {ϕ ∈ (k[l∗ × g] ⊗k D(g))Np,+ | ∃Nϕ ∈ N such that |r| ≥ Nϕ =⇒ ϕs,r,υ,ι = 0 and

ϕs,r,υ,ι ∧ λυ ∈ k[l∗ × l] ⊗k D j−|ι|,#,|υ|(g)},

κ(ϕ) :=
∑

(s,r,υ,ι)∈N′p,+

zsvrϕs,r,υ,ι ∧ λυ ∧ vι ∧ ε̂
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for ϕ in M j,∗. For l nonnegative integer, denote by M j,∗,l the subspace of elements ϕ of M j,∗ such

that

|(s, r, υ, ι)| , l =⇒ ϕs,r,υ,ι = 0

and M j,∗,l,+ the sum of M j,∗,i, i = l, l + 1, . . ..

Recall that B0,0 is the submodule of B generated by ε
(0)

1
, . . . , ε

(0)

ℓ
.

Lemma 13.1. For ϕ in k[l∗ × g] ⊗k Dk,#(g), the restriction of ϕ ∧ ε to l∗ × p is equal to 0 if and

only if

ϕ ∈ k[l∗ × g] ⊗k[l∗×l] Dk,#,1(g) + Dk−1,#(g) ∧ B0,0 + JDk,#(g) + k[l∗ × g] ⊗k Dk−1,#(g) ∧ pu.

Moreover, in this case ϕ ∧ ε̂ is in κ(Mk,∗,1,+).

Proof. Since k[l∗ × g] = k[l∗ × p]+ J, we can suppose that ϕ is in k[l∗ × p]⊗k Dk,#(g). As g is the

direct sum of p− and pu,

∧
(g) =

∧
(p−) ⊕

∧
(g) ∧ pu and Dk,#(g) =

k⊕

m=0

Sm(pu) ⊗k Dk−m,#(p−) ⊕ Dk−1,#(g) ∧ pu.

Then ϕ = ϕ1 + ϕ2 with

ϕ1 ∈ k[l∗ × p] ⊗k

k⊕

m=0

Sm(pu) ⊗k Dk−m,#(p−) and ϕ2 ∈ k[l∗ × p] ⊗k Dk−1,#(g) ∧ pu.

By Lemma 12.4(ii) and Remark 12.5, the restriction of ϕ2 ∧ ε to l∗ × p is equal to 0 and the

condition is sufficient.

Conversely, suppose that the restriction of ϕ ∧ ε to l∗ × p is equal to 0. Since the condition is

sufficient, the restrictions of ϕ2∧ε and ϕ1∧ε to l∗×p are equal to 0. By Proposition 4.4, setting:

I
′′
i,− := {( j1, . . . , jn) ∈ Nn

i | j1 ≤ n1 − 1, . . . , jn ≤ nn − 1},

and arguing as in the proof of Lemma 12.4(ii),

ϕ1 = ϕ
′
1 +

ℓ∑

j=1

ϕ1, j ∧ ε
(0)

j
with ϕ′1 ∈ k[pu] ⊗k Dk,#,1(p−) and

ϕ1, j ∈

k⊕

i=0

k[l∗ × p] ⊗k Dk,I′′
i,−
,#(p−)

for j = 1, . . . , ℓ since ε j(x) has a nonzero component on dl for l = 1, . . . , n for all x in a dense

open subset of l∗ by Lemma 8.1(i). As a result,

ϕ ∈ Dk−1,#(g) ∧ B̂ + J ⊗k Dk,#(g) + k[l∗ × g] ⊗k[l∗×l] Dk,#,1(g) +m ⊗k k[l∗ × g] ⊗k Dk,#(g)

since for j = 1, . . . , ℓ, the map

G × l∗ × g // g , (g, x) 7−→ ε j(g(x)) − ε j(x)
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is in m ⊗k k[l∗] ⊗k g, whence the lemma. �

Proposition 13.2. Let l be a positive integer and ϕ in Mk,∗,l. Then κ(ϕ) is in κ(Mk,∗,l+1,+) if and

only if ϕs,r,υ,ι ∧ ε̂ is in κ(Mk−|υ|−|ι|,∗,1,+) for all (s, r, υ, ι). Moreover, in this case,

ϕs,r,υ,ι ∧ λυ ∧ ε̂ ∈ κ(Mk−|ι|,∗,|υ|+1,+)

for all (s, r, υ, ι).

Proof. The condition is clearly sufficient. Suppose that κ(ϕ) is in κ(Mk,∗,l+1,+). As g is the direct

sum of p− and pu and k[l∗ × g] is the direct sum of k[l∗ × p] and J,

ϕs,r,υ,ι = ϕ
′
s,r,υ,ι + ϕ

′′
s,r,υ,ι with ϕ′s,r,υ,ι ∧ λυ ∈ k[l∗ × p] ⊗k Dk−|ι|,#,|υ|(p

′
−) and

ϕ′′s,r,υ,ι ∧ λυ ∈ J ⊗k Dk−|ι|,#(g) + k[l∗ × g] ⊗k Dk−|ι|−1,#(g) ∧ pu

for all (s, r, υ, ι). Setting ϕ′ := (ϕ′s,r,υ,ι, (s, r, υ, ι) ∈ Np,+), ϕ
′ is in Mk,∗,l and κ(ϕ′) is in κ(Mk,∗,l+1,+)

since the condition is sufficient.

For (s, r, ι) in Np, set:

ψs,r,ι :=
∑

υ∈J′

ϕ′s,r,υ,ι ∧ λυ and ψ := (ψs,r,ι, (s, r, ι) ∈ Np).

Then

l < |(s, r, ι)| =⇒ ψs,r,ι = 0 and κ(ψ) ∧ ε̂ ∈ κ(Mk,∗,l+1,+).

As a result, by Proposition 10.6, ψs,r,ι is in M1 for all (s, r, ι). Then by Proposition 11.2, the

restrictions of ϕ′s,r,υ,ι ∧ ε and ϕs,r,υ,ι ∧ ε to l∗ × p are equal to 0 since ε(x, y) and ε0(x, y) ∧ µ+ are

colinear for all (x, y) in l∗ × p by Corollary 2.7. So, by Lemma 13.1(ii),

ϕs,r,υ,ι ∧ ε̂ ∈ κ(Mk−|ι|−|υ|,∗,1,+) and ϕs,r,υ,ι ∧ λυ ∧ ε̂ ∈ κ(Mk−|ι|,∗,|υ|+1,+)

for all (s, r, υ, ι). �

For l = 0, 1, . . ., let Fl be the subspace κ(Mk,∗,l,+) of Dk,#(g, B̂). Then the sequence Fl, l =

0, 1, . . . is a decreasing filtration of Dk,#(g, B̂). Denote by gr Dk,#(g, B̂) the associate graded space

to this filtration and gr lDk,#(g, B̂) the subspace of degree l of gr Dk,#(g, B̂). For j = 0, . . . , k and

i = 0, . . . , j, let D•
j,#,i,×

(g,B) be the graded subcomplex of k[l∗ × p] ⊗k[l∗×l]
∧

(E) ⊗k D•(g),

D•j,#,i,×(g,B) := D•j,#,i,×(g)[−bg] ∧
∧bg (B),

and A the algebra

A := k[z1, . . . , z2n+ℓ] ⊗k S(pu) ⊗k
∧

(E).

This algebra has a bigradation A•• such that

Ai := k[z1, . . . , z2n+ℓ] ⊗k S(pu) ⊗k
∧i(E) and

Al :=
⊕

( j1 , j2, j3)∈N3
l

k[z1, . . . , z2n+ℓ] j1 ⊗k S j2(pu) ⊗k
∧ j3(E).
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Consider on k[l∗ × p] ⊗k[l∗×l] A ⊗k D(g) the simple gradation deduced from the double gradation

k[l∗ × p] ⊗k[l∗×l] A• ⊗k D•(g). The trivial structure of complex on A and the structure of complex

on D(g) induce a structure of graded complex on k[l∗ × p] ⊗k[l∗×l] A ⊗k D(g). For l = 0, 1, . . . and

i nonnegative integer, set:

Ci
l =

i⊕

j=0

⊕

(l1,l2)∈N2
l− j

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k D
i− j

k,#, j,×
(g,B).

Denoting by C•
l

the sum Ci
l
, i = 0, 1, . . ., C•

l
is a graded subcomplex of k[l∗ × p]⊗k[l∗×l] A⊗k D(g).

Corollary 13.3. (i) For l = 0, 1, . . ., F•
l

is a graded subcomplex of D•
k,#

(g, B̂).

(ii) The graded complex gr 0D•
k,#

(g, B̂) is isomorphic to the graded complex D•
k,#

(g,B).

(iii) For l = 1, 2, . . ., the graded complex gr lD
•
k,#

(g, B̂) is isomorphic to C•
l
.

Proof. (i) The proof is the same as the proof of Corollary 12.7(i).

(ii) The proof is the same as the proof of Corollary 12.7(ii) and results from Proposition 13.2.

(iii) Let l be a nonnegative integer. Denote by γl the morphism of k[l∗ × p]-modules

k[l∗ × p] ⊗k Al ⊗k D(g)
γl // k[l∗ × g] ⊗k D(g) ψ⊗a⊗λυ ∧ vι⊗ϕ 7−→ ψa⊗ϕ ∧ λυ ∧ vι

and M′
k,l

the subspace of elements ϕ of Mk,l such that

ϕs,r,υ,ι ∈ γl(k[l∗ × p] ⊗k Al ⊗k D(g)).

Then Fl = κ(M
′
k,l

) + Fl+1 since

Ĵl
= k[l∗ × p] ⊗k Al ⊕ Ĵl+1.

By Proposition 13.2, for ϕ in M′
k,l

, κ(ϕ) is in Fl+1 if and only if rg,p(ϕs,r,υ,ι ∧ ε̂) = 0 for all

(s, r, υ, ι). Then, by (ii), the restriction of rg,p toFl defines through the quotient an isomorphism

of k[l∗ × p]-modules,

gr lDk,#(g, B̂) // Cl .

Moreover, this isomorphism is an isomorphism of graded complex. �

13.2. Annulation of cohomology. Let k = 1, . . . , n. For i integer, denote by Zi and Bi the

spaces of cocycles and coboundaries of degree i of D•
k,#

(g, B̂). For j = 1, . . . , n and i in I′′j , denote

by D•
j,#

(E′) the graded the submodule of k[l∗ × l] ⊗k D•
j
(l) deduced from the multigraded module

⊕

i∈I′′
j

D•i1(E
′
1) ∧ · · · ∧ D•in (E′n).

For l = 1, . . . , n, let D•
l,#

(E) be the graded submodule of D•
l
(E) deduced from the bigraded module

l⊕

j=0

Dl− j(pu) ⊗k D•j,#(E′).
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Set:

D̃•l,u := D•l,#(E)[−bg] ∧
∧bg (B) and D•l,u := D•l,#(E)[−bg] ∧

∧bg (B̂).

Then D•
l,u

is a graded subcomplex of D•
l,#

(g, B̂).

Lemma 13.4. Let l = 1, . . . , n.

(i) The morphisms

k[l∗ × g] ⊗k[l∗×l] D•
l
(E)[−bg]

θl // D•
l
(g,B) , ϕ 7−→ ϕ ∧ ε and

Ô ⊗k k[l∗ × g] ⊗k[l∗×l] D•
l
(E)[−bg]

θ̂l // D•
l
(g, B̂) , ϕ 7−→ ϕ ∧ ε̂

are injective.

(ii) The complexes D•
l
(E), D̃•

l,u
, D•

l,u
are acyclic.

Proof. (i) For ψ in Ml,∗, set:

κ(ψ) :=
∑

(s,r,υ,ι)∈Np,+

zsvrψs,r,υ,ι ∧ λυ ∧ vι.

Let E be the subset of elements ψ of Ml,∗ such that

s , 0 =⇒ ψs,r,υ,ι = 0 and ψs,r,υ,ι ∈ k[l∗ × g] ⊗k[l∗×l] Sl(E).

For m nonnegative integer, denote by Em the subspace of elements ψ of E such that

|(r, υ, ι)| < m =⇒ ψ0,r,υ,ι = 0.

For ϕ in k[l∗ × g] ⊗k[l∗×l] D•
l
(E), ϕ = κ(ψ) for some ψ in E. Denote by λ(ϕ) the biggest integer m

such that ϕ = κ(ψ) for some ψ in Em \ Em+1.

Suppose that θl is not injective. A contradiction is expected. Let ϕ be in its kernel such

that λ(ϕ) is minimal. For some ψ in Eλ(ϕ), ϕ = κ(ψ). By Corollary 11.3, for (r, υ, ι) such that

|(r, υ, ι)| = λ(ϕ),

ψ0,r,υ,ι ∈ JS(E),

since S(E) is a free module, whence the contradiction since ϕ is not in Eλ(ϕ)+1.

Suppose that θ̂l is not injective. A contradiction is expected. Let ϕ be a nonzero element of

degree i of its kernel. The element ϕ has an expansion

ϕ =
∑

s∈N2n+ℓ

zsϕs with ϕs ∈ k[l∗ × g] ⊗k[l∗×l] Sl−i(E) ⊗k[l∗×l]
∧i(E)

for all s. Denote by σ the smallest integer such that ϕs , 0 for some s in N2n+ℓ
σ . By minimality

of σ, ϕs ∧ ε = 0 for all s in N2n+ℓ
σ since ε̂ − ε is in m ⊗k k[l∗ × g] ⊗k g as already observed. Then,

by the injectivity of θl, ϕs = 0 for all s in N2n+ℓ
σ , whence the contradiction.

(ii) As E is a free module, D•
l
(E) is an acyclic complex by Lemma A.2(ii) since l is positive.

Then D•
l,#

(E) is acyclic since D•
l,#

(E) is a direct factor of D•
l
(E). By (i), the restriction of θl to
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k[l∗ × g] ⊗k[l∗×l] D•
l,#

(E)[−bg] is an isomorphism of graded complexes onto D̃•
l,u

. Hence D̃•
l,u

is

acyclic. Again by (i), the restriction of θ̂l to Ô ⊗k k[l∗ × g]⊗k[l∗×l] D•
l,#

(E)[−bg] is an isomorphism

of graded complexes onto D•
l,u

. Hence D•
l,u

is acyclic. �

For j = 0, . . . , k, denote by D•
k, j,#

the intersection of k[l∗ × l] ⊗k D•
k,#

(g) and S j(B0,0)D•
k− j

(E).

For i = bg , . . . , k + bg and l nonnegative integer, set:

Ki :=

k−i+bg∑

j=0

D
i−bg
k, j,#
∧

∧bg (B̂) and

Ki
l =

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

D
i−bg
k, j,#
∧ ε̂.

Denote by D0
k− j,i−bg ,#,×

the image of D
i−bg
k, j,#
∧ε̂ by the quotient morphism Fi−bg

// gr i−bgDk,#(g, B̂) .

Lemma 13.5. Let i = bg + 1, . . . , k + bg and l a nonnegative integer.

(i) The subspace Zi ∩ F i
l

of F i
l

is contained in dF i−1
l
+ Ki

+ F i
l+1

.

(ii) The space Ki ∩ F i
l

is contained in Ki
l
+ F i

l+1
.

(ii) The intersection of F i
l+1

and Ki is equal to J
l−i+bg+1

1
Ki.

Proof. (i) Let ϕ be in Zi∩F i
l
and ϕ its image in gr lD

i
k,#

(g, B̂). By Corollary 13.3, ϕ is a cocycle of

degree i of the graded complex C•
l
. By Corollary 12.2, for j = 0, . . . , k, the complex D•

k− j,#
(g,B)

has no cohomolgy of degree different from bg . Then, for some ψ in Ci−1
l

,

ϕ − dψ ∈
⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k D
bg
k,i−bg ,#,×

(g,B).

Then, by Lemma 12.3(ii),

ϕ − dψ ∈
⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l1 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

Dk− j,i−bg ,#,×.

So, for a representative ψ of ψ in F i−1
l

,

ϕ − dψ ∈ Ki
+ F i

l+1.

(ii) The proof is analogous to the proof of Lemma 12.9(ii).

(iii) By definition J
l−i+bg+1

1
Ki is contained F i

l+1
∩ Ki. Prove the assertion by induction on l. By

Corollary 13.3(iii), the quotient of Ki by Ki ∩ F i
1+i−bg

is equal to the subspace of gr i−bgDk,#(g, B̂),

k−i+bg∑

j=0

D0
k− j,i−bg ,#,×

.
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Moreover, by Lemma 13.4(i), the quotient of Ki by J1Ki is equal to

k−i+bg∑

j=0

D
i−bg
k, j,#
∧ ε̂.

In particular, the k[l∗ × p]-module Ki/J1Ki is free. Again by Lemma 13.4(i), the three k[l∗ × p]-

modules,
k−i+bg∑

j=0

D
i−bg
k, j,#
∧ ε̂,

k−i+bg∑

j=0

D
i−bg
k, j,#

,

k−i+bg∑

j=0

D0
k− j,i−bg ,#,×

are three free modules of the same finite rank. Hence for some p in k[l∗ × p] \ {0}, pKi ∩ F i
i−bg+1

is contained J1Ki. As a result, Ki ∩ F i
i−bg+1

is equal to J1Ki since the k[l∗ × p]-module Ki/J1Ki
1

is torsion free.

Suppose l > i−bg and the assertion true for l−1. By induction hypothesis, it remains to prove

that J
l−i+bg+1

1
Ki is the intersection of J

l−i+bg
1

Ki and F i
l+1

. By Corollary 13.3(iii), the quotient of

J
l−i+bg
1

Ki by J
l−i+bg
1

Ki ∩ F i
l+1

is equal to the subspace of gr lDk,#(g, B̂),

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

D0
k− j,i−bg ,#,×

.

Moreover, by Lemma 12.8, the quotient of J
l−i+bg
1

Ki by J
l−i+bg+1

1
Ki is equal to

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2 (pu) ⊗k

k−i+bg∑

j=0

D
i−bg
k, j,#
∧ ε̂.

In particular, the k[l∗ × p]-module J
l−i+bg
1

Ki/J
l−i+bg+1

1
Ki is free. Again by Lemma 12.8, the three

k[l∗ × p]-modules

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

D0
k− j,i−bg ,#,×

,

⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu) ⊗k

k−i+bg∑

j=0

D
i−bg
k, j,#

,

⊕

(l1 ,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2 (pu) ⊗k

k−i+bg∑

j=0

D
i−bg
k, j,#
∧ ε̂,
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are three free modules of the same finite rank. Hence for some p in k[l∗×p] \ {0}, pKi ∩F i
l+i−bg+1

is contained J
l−i+bg+1

1
Ki. As a result, Ki∩F i

i−bg+1
is equal to J

l−i+bg+1

1
Ki since the k[l∗×p]-module

J
l−i+bg
1

Ki/J
l−i+bg+1

1
Ki

1
is torsion free. �

Let d1 and d2 be the morphisms from K•
l

to F•
l

such that

d1a⊗ων ∧ ε̂ = (−1)i−bg )a⊗ν(dω) ∧ ε̂, d2a⊗ων ∧ ε̂ = a⊗ωdν ∧ ε̂ with

a ∈
⊕

(l1,l2)∈N2
l−i+bg

k[z1, . . . , z2n+ℓ]l2 ⊗k Sl2(pu),

ω ∈ S j(B0,0), ν ∈ D
i−bg
k− j

(E), a⊗ων ∈ Di
k, j,#, i = bg , . . . , k + bg , j = 0, . . . , k − i + bg .

Lemma 13.6. Let i = bg , . . . , k + bg and l a nonnegative integer.

(i) For i nonnegative integer and j > 0, the subspace dKi
l

of Di+1
k,#

(g, B̂) is contained in d2Ki
l
+

F i+1
l+1

.

(ii) If i > bg then Zi ∩ F i
l

is contained in dF i−1
l
+ F i

l+1
.

Proof. (i) By definition d = d1 + d2. Let a, ω, ν be as in the definition of d2. Then

da⊗ων ∧ ε̂ ∈ d2a⊗ω ∧ ε̂ + a⊗D
i−bg
k, j−1,#

∧ ε̂ ∧ B0,0.

By Corollary 13.3, a⊗νdω∧ ε̂ is in F i+1
l+1

since the image of ε̂ by the restriction morphism rg,p is a

generator of
∧bg (B) and B0,0 is a submodule of B, whence the assertion.

(ii) Let ϕ be in Zi ∩ F i
l+1

. By Lemma 13.5(i), for some ψ in F i−1
l

,

ϕ − dψ ∈ Ki
+ F i

l+1.

As a matter of fact, by Lemma 13.5(ii),

ϕ − dψ ∈ Ki
l + F i

l+1.

By Lemma 13.5(iii) and Lemma 13.4(i), for i′ = i, i+1, the sum Ki′

l
+F i′

l+1
is direct. Let ϕ1 be the

component of ϕ − dψ on Ki
l
. Then, by (i), d2ϕ1 = 0 since d2ϕ1 is in Ki+1 and dF i

l+1
is contained

in F i+1
l+1

. As a result, by Lemma 13.4(ii), for some ϕ′
1

in Ki−1
l

, ϕ1 = d2ϕ
′
1
. Then, by (i),

ψ + ϕ′1 ∈ F i−1
l and ϕ − dψ − dϕ′1 ∈ F i

l+1,

whence the assertion. �

Arguing as in the proof of Corollary 12.11, we deduce the following corollary from Lemma 13.6(ii).

Corollary 13.7. Let i = bg + 1, . . . , bg + k and l a natural integer.

(i) For all nonnegative integer l, Zi is contained in Bi
+ F i

l
.

(ii) For some p in m ⊗k k[l∗], (1 + p)Zi is contained in Bi.

Arguing as in the proof of Proposition 12.12, we deduce the following proposition from Corol-

lary 13.7.
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Proposition 13.8. For k = 0, . . . , n, D•
k,#

(g, B̂) and D•
k,#

(g, B̃) have no cohomology of degree

different from bg .

13.3. End of the proof of Theorem 1.5. We can now complete the proof of Theorem 1.5.

We prove the theorem by induction on the dimension of g. By Proposition 4.1(ii), the theorem

is true for ℓ = 1. Suppose ℓ > 1 and the theorem true for the simple algebras of rank smaller than

ℓ. By Proposition 12.12, Proposition 13.8 and the induction hypothesis, for k = 1, . . . , n and z

in hb \ {0}, D•
k,#

(g, B̂) has no cohomology of degree different from bg . Then, by Proposition 6.5,

̟1(S k) ∩ h = {0}. As a result, by remark 6.7, g has Property (P), whence the theorem.

Appendix

Appendix A. Some complexes

Let X be an affine irreducible variety. The canonical injection from V into
∧

(V) has a unique

extension as a derivation of the algebra S(V) ⊗k
∧

(V) which is equal to 0 on the subalgebra

1⊗k
∧

(V). Then S(V)⊗k
∧

(V) is a graded cohomology complex whose gradation is induced by

the natural gradation of
∧

(V). We denote this complex by D•(V) and its derivation by d.

A.1. General facts. For k nonnegative integer, set:

D•k(V) :=

k⊕

i=0

Sk−i(V) ⊗k
∧i(V),

so that D•
k
(V) is a graded subcomplex of D•(V).

Definition A.1. Let L be a free submodule of positive rank r of k[X] ⊗k V . For k nonnegative

integer, denote by D•
k
(V, L) the graded subcomplex of k[X] ⊗k D•(V):

D•k(V, L) := D•k(V, L)[−r] ∧
∧r(L).

The restriction to D•
k
(V, L) of the derivation of k[X] ⊗k D•(V) is also denoted by d.

For W subspace of V , let D•
k
(W, L) be the graded subspace of D•

k
(V, L) such that

Di+r
k (W, L) := Sk−i(W) ⊗k

∧i(W) ∧
∧r(L).

Then D•
k
(W, L) is a graded subcomplex of D•

k
(V, L).

The embedding of Sk(L)⊗k
∧r(L) into Sk(V)⊗k

∧r(L) is an augmentation of D•
k
(V, L). Denote

by D
•

k(V, L) this augmented complex. In particular, D
•

0(V, L) is acyclic.

Lemma A.2. Let k be a positive integer.

(i) The cohomology of D•(V) is equal to k.

(ii) The complex D•
k
(V) is acyclic.

(iii) For any subspace E of V, D
•

k(V, E) is an acyclic complex.
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Proof. (i) We prove the statement by induction on the dimension of V . For V equal to zero,

D•(V) is equal to k and its differential is equal to 0. We suppose the statement true for any vector

space whose dimension is strictly smaller than dimV . Let W be an hyperplane of V and let v be

in V\W. Let a be a homogeneous cocycle of degree d of D•(V). Then a has a unique expansion

a = vmam + · · · + a0 ,

with a0, . . . , am in S(W) ⊗k
∧

(V). If d = 0, then

mvm−1am⊗v + · · · + a1⊗v = 0

so that a = a0 is in k. Suppose d > 0. Then for i = 0, . . . ,m,

ai = a′i + a′′i ∧ v,

with a′
i

and a′′
i

in S(W) ⊗k
∧d(W) and S(W) ⊗k

∧d−1(W) respectively. From the equality

0 =

m∑

i=0

vida′i +

m∑

i=1

(−1)divi−1a′i ∧ v +

m∑

i=0

vida′′i ∧ v,

we deduce that a′0, . . . , a
′
m are cocycles. So, by the induction hypothesis, for i = 0, . . . ,m, a′i = dbi

for some bi in S(W) ⊗k
∧d−1(W). Then

a − d(

m∑

i=0

vibi) = v
ma′′m ∧ v +

m−1∑

i=0

vi((−1)d(i + 1)bi+1 + a′′i ) ∧ v .

Hence a′′m and (−1)d(i + 1)bi+1 + a′′
i

are cocycles of degree d − 1 for i = 0, . . . ,m − 1. If d = 1,

a = d(

m∑

i=0

vibi +
1

m + 1
vm+1a′′m +

m−1∑

i=0

1

i + 1
vi+1((−1)d(i + 1)bi+1 + a′′i )) .

For d bigger than 1, by induction hypothesis, a′′m is the coboundary of an element cm in S(W) ⊗k∧d−2(W) and for i = 0, . . . ,m − 1, (−1)d(i + 1)bi+1 + a′′
i

is the coboundary of an element ci in

S(W) ⊗k
∧d−2(W) so that

a = d(

m∑

i=0

vibi +

m∑

i=0

vici ∧ v).

(ii) As D•(V) is the direct sum of D•
i
(V), i ∈ N, the assertion results from (i).

(iii) Let F be a complement to E in V and d the dimension of E. For i = 0, . . . , k,

Di+d
k (V, E) =

k−i⊕

j=0

Sk−i− j(F) ⊗k S j(E) ⊗k
∧i(F) ∧

∧d(E),

whence

D
•

k(V, E) =

k⊕

j=0

S j(E) ⊗k D•k− j(F)[−d] ∧
∧d(E).
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By (ii), for j < k, D•
k− j

(F) is acyclic. As a result D•
k
(V, E) has no cohomology of degree different

from d, whence the assertion since for v in V , v ∧
∧d(E) = {0} if and only if v is in E. �

For π automorphism of X, denote by π# the automorphism of the algebra k[X]⊗kS(V)⊗k
∧

(V)

induced by the comorphism of π. Let L be a free submodule of rank r of k[X] ⊗k V .

Lemma A.3. Let k be a positive integer and π an automorphism of X.

(i) The restriction of π# to D•
k
(V, L) is an isomorphism from D•

k
(V, L) onto D•

k
(V, π#(L)).

(ii) For any positive integer j, the image by π−1 of the support in X of the cohomology of degree

j of D•
k
(V, L) is the support in X of the cohomology of degree j of D•

k
(V, π#(L)).

Proof. (i) For i positive integer, π#(Di
k
(V, L)) is equal to Di

k
(V, π#(L)). Hence π#(D•

k
(V, L)) is equal

to D•
k
(V, π#(L)). As π# is an automorphism of the complex k[X] ⊗k D•(V), the restriction of π# to

D•
k
(V, L) is an isomorphism of the complex D•

k
(V, L) onto the complex D•

k
(V, π#(L)).

(ii) Let j be a positive integer, J j and J j,π the ideals of definition in k[X] of the supports

of the cohomology of degree j of D•
k
(V, L) and D•

k
(V, π#(L)). If a is a cocycle of degree j of

D•
k
(V, L) and p is in J j, for m sufficiently big positive integer, pma is a coboundary of D•

k
(V, L).

Hence by (i), π#(p)mπ#(a) is a coboundary of D•
k
(V, π#(L)). So J j,π contains π#(J j). By the same

argument, J j contains π#(J j,π) since π is an automorphism. Hence J j,π is equal to π#(J j), whence

the assertion. �

For any x in X, denote by L(x) the image of L by the map ϕ 7→ ϕ(x).

Lemma A.4. Let X′ be the subset of elements x of X such that L(x) has dimension r and L the

localization of L on X.

(i) The subset X′ of X is open and nonempty. Moreover, X′ has a finite cover by affine open

subsets Y which have the following property:

• there exists a subspace E of V which is a complement to L(x) in V for all x in Y.

(ii) For all positive integer k, the support in X of the cohomology of D
•

k(V, L) has an empty

intersection with X′.

(iii) Suppose that X is normal and X′ is a big open subset of X. Then D
•

k(V, L) has no coho-

mology of degree r.

Proof. (i) Let η1, . . . , ηr be a basis of L. For all x in X, L(x) is the subspace of V generated by

η1(x), . . . , ηr(x). Then X′ is a nonempty open subset of X. Let x be in X′. Let E be a complement

to L(x) in V . Then, for all y in an open neighborhood Yx of x in X, L(y) has dimension r and E

is a complement to L(y) in V . In particular, Yx is contained in X′.

(ii) Let k be a positive integer and Y an affine open subset of X′ which satisfies the condition

of (i). Denoting by LY the space of sections of L above Y , we have to prove that D
•

k(V, LY ) is

acyclic.
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Let x0 be in Y . For x in Y , denote by τ(x) the linear automorphism of V such that τ(x)(v) = v

for all v in E and for w in L(x), τ(x)(w) is the element of L(x0) such that w − τ(x)(w) is in E. Let

τ be the automorphism of the algebra k[Y] ⊗k S(V) ⊗k
∧

(V) such that τ(ϕ) is the map

Y // S(V) ⊗k
∧

(V) , x 7−→ τ(x)(ϕ(x)).

The images of LY and D
•

k(V, LY ) by τ are equal to k[Y] ⊗k LY (x0) and k[Y] ⊗k D
•

k(V, LY (x0))

respectively. Moreover, the map

D
•

k(V, LY)
τ // k[Y] ⊗k D

•

k(V, LY (x0))

is an isomorphism of graded complexes. Hence by lemma A.2(iii), D•
k
(V, LY ) is acyclic.

(iii) Let a be a cocycle of degree r of D
•

k(V, L). By (ii), the restriction of a to Y is the image

by d of a unique element ϕ of Sk(LY ) ⊗k[Y]

∧r(LY ). So, by (i), the restriction of a to X′ is the

image by d of a section above X′ of the localization on X of Sk(L) ⊗k[X]

∧r(L). As L is a free

module, Sk(L) ⊗k[X]

∧r(L) is a free module and any section above X′ of its localization on X is

the restriction to X′ of an element of Sk(L) ⊗k
∧r(L) since X′ is a big open subset of the normal

variety X. Hence a is a coboundary. �

A.2. Some equivalence. Let L be a free submodule of rank r of k[X]⊗kV such that 2r > dimV .

For k = 0, . . . , dimV − r, denote by K•
k
(V, L) the graded subcomplex of k[X] ⊗k D•(V) whose

subspace of degree i is

Ki
k(V, L) :=

∧i(V) ⊗k Sk−i(L)

for i = 0, . . . , k. Denote by δ the restriction of d to K•
k
(V, L). The map

Kk
k
(V, L)

θk // Dk+r
k

(V, L) , ϕ 7−→ ϕ ∧ η

with η a generator of
∧r(L), is an augmentation of K•

k
(V, L). Denote by K

•

k(V, L) the augemented

complex so defined.

Lemma A.5. Let X′ be the subset of elements x of X such that L(x) has dimension r.

(i) For k = 1, . . . , dimV − r, the support of the cohomology of K
•

k(V, L) is contained in X \ X′.

(ii) The complex K•
k
(V, L) has no cohomology of degree 0.

Proof. (i) Let Y be an affine open subset of X′ and E a subspace of V satisfying the condition of

Lemma A.4(i) and set

LY := k[Y] ⊗k[X] L.

The complex K•
k
(V, LY ) is isomorphic to

k⊕

j=0

∧ j(E) ⊗k D•k− j(LY )[− j].
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Then K•
k
(V, LY ) has no cohomology of degree different from k by Lemma A.2(ii) since LY is a

free module. Moreover, the space of cocycles of degree k of K
•

k(V, LY) is equal to

k⊕

j=1

∧k− j(E) ∧
∧ j(LY ).

Hence K
•

k(V, LY ) is acyclic and the support of the cohomology of K
•

k(V, L) is contained in X \ X′

since X′ has a cover by affine open subsets satisfying the condition of Lemma A.4(i).

(ii) By (i), K•
k
(V, L) has no cohomology of degree 0 since Sk(L) is a torsion free module. �

Denote by η1, . . . , ηr a basis of L. Let I be the union of {0} and the set of strictly increasing

sequences in {1, . . . , r} and for ι = i1< · · · < i j in I, set:

{ι} := {i1, . . . , i j}, |ι| = j, ηι := ηi1∧ · · · ∧ ηi j
.

For j = 0, . . . , r and s = (s1, . . . , sr) in Nr, set:

I j := {ι ∈ I | |ι| = j} and ηs := ηs1

1
· · ·ηsr

r .

For k = 1, . . . , dimV −r and j = 1, . . . , k, denote by K•
k, j

(V, L) the graded subcomplex of K•
k
(V, L)

whose subspace of degree i is

Ki
k, j(V, L) :=

∧i− j(V) ∧
∧ j(L) ⊗k Sk− j(L),

Zi
k

and Bi
k

the space of cocycles and coboundaries of degree i of K
•

k(V, L) respectively.

Lemma A.6. Let k = 1, . . . , dimV−r. Suppose that
∧i−1(V)∧L is the kernel of θi for i = 1, . . . , k.

(i) Suppose 2 ≤ k. For i = 1, . . . , k − 1, Zi
k

is contained in Bi
k
+ Ki

k,i
(V, L).

(ii) The complex K
•

k(V, L) is acyclic.

Proof. (i) For j = 0, . . . , i, set Zi
k, j

:= Zi
k
∩Ki

k, j
(V, L) and prove that Zi

k, j
is contained in Bi

k
+ Zi

k, j+1

for j < i. Let ϕ be in Zi
k, j

. Then ϕ has an expansion

ϕ =
∑

s∈Nr
k−i

∑

ι∈I j

ηι ∧ ϕs,ι⊗η
s with ϕs,ι ∈ k[X] ⊗k

∧i− j(V).

For s′ in Nr
k−i−1

, set

Is′ := {(s, l) ∈ Nr
k−i × {1, . . . , r} | η

s
= ηlη

s′}.

As ϕ is a cocycle,
∑

s′∈Nr
k−i−1

∑

(s,l)∈Is′

∑

ι∈I j

slηl ∧ ηι ∧ ϕs,ι⊗η
s′
= 0 whence

∑

(s,l)∈Is′

∑

ι∈I j

slηl ∧ ηι ∧ ϕs,ι = 0

for all s′ in Nr
k−i−1

.
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Let Y be an affine open subset of X′ and E a subspace of V satisfying the condition of

Lemma A.4(iii). For (s, ι) in Nr
k−i
× I j,

ϕs,ι |Y = ϕ
′
s,ι + ϕ

′′
s,ι with ϕ′s,ι ∈ LY ∧

∧i− j−1(V), ϕ′′s,ι ∈ k[Y] ⊗k
∧i− j(E).

For (l, ι) in {1, . . . , r} × I j such that l < {ι}, denote by υ(l, ι) the element of Ir− j−1 and ǫ(l, ι) the

element of {−1, 1} such that

{l} ∪ {ι} ∪ {υ(l, ι)} = {1, . . . , r} and ηl ∧ ηι ∧ ηυ(l,ι) = ǫ(l, ι)η.

For s′ in Nr
k−i−1

and l = 1, . . . , r, set:

Is′,l := {s ∈ Nr
k−i | (s, l) ∈ Is′}.

For s′ in Nr
k−i−1

and for (l, ι) in {1, . . . , r} × I j such that l < {ι}, by the above equality, after

multiplication by ηυ(l,ι),
∑

s∈Is′ ,l

ǫ(l, ι)slϕ
′′
s,ι ∧ η = 0 whence

∑

s∈Is′ ,l

ǫ(l, ι)slϕ
′′
s,ι = 0.

Since for (s, l) in Is′ , η
s
= ηlη

s′ , |Is′ ,l| = 1. Hence ϕ′′s,ι = 0 for all (s, ι) in Nr
k−i
× I j such that sl , 0

for some l < {ι}. As a result for such (s, l), ϕs,ι ∧ η is equal to 0 since so is its restriction to Y . So,

by hypothesis, for such (s, ι), ϕs,ι is in L ∧
∧i− j−1(V) and

ηι ∧ ϕs,ι⊗η
s ∈ Ki

k, j+1(V, L).

Let (s, ι) be in Nr
k−i
× I j such that

sl , 0 =⇒ l ∈ {ι}.

Then, for l in {ι} such that sl , 0,

±ηι⊗η
s
= d

1

sl + 1
ηι′ ∧ ηlη

s and ± ηι ∧ ϕs,ι⊗η
s
= d

1

sl + 1
ηι′ ∧ ϕs,ι⊗ηlη

s with {ι′} = {ι} \ {l},

whence the assertion.

(ii) By hypothesis, K
•

k(V, L) has no cohomology of degree k and by Lemma A.5(ii), it has no

cohomology of degree 0. Let i = 1, . . . , k − 1. By (i),

Zi
k ⊂ Bi

k + Ki
k,i(V, L) = Bi

k +
∧i(L) ⊗k[X] Sk−i(L).

As L is a free module, K•
k,i

(V, L) has no cohomology of degree i by Lemma A.2(ii). Hence

Zi
k
= Bi

k
. �

Proposition A.7. Let k = 1, . . . , dimV − r.

(i) The complex K
•

k(V, L) is acyclic if D•
k
(V, L) has no cohomology of degree different from r.

(ii) The complex D•
k
(V, L) has no cohomolgy of degree different from r if K

•

i (V, L) is acyclic for

i = 1, . . . , k.



COMMUTING VARIETY 87

(iii) Suppose that
∧i−1(V) ∧ L is the kernel of θi for i = 1, . . . , k. Then D•

k
(V, L) has no

cohomology of degree different from r.

Proof. (i) and (ii) For i = 1, . . . , k, denote by δ the restriction to K•i (V, L) of the derivation d of

k[X] ⊗k D•(V). Setting

E
i, j

k
:=



Sk−i(V) ⊗k
∧ j(V) ⊗k Si− j(L) if j ≤ i ≤ k

Sk− j(V) ⊗k
∧ j(V) ∧

∧r(L) if i = j − 1 < k

0 otherwise

,

we have the equalities

E
j−1, j

k
= D

j

k
(V, L), E

i, j

k
= D

j

k−i+ j
(V) ⊗k Si− j(L) = Sk−i(V) ⊗k K

j

i
(V, L)

for j ≤ i ≤ k. Denoting again by δ the map

E
j, j

k

δ // E
j−1, j

k
, ϕ 7−→ ϕ ∧ η,

we have the double complex

E
i, j+1

k

d // E
i, j

k

d //

δ

OO

E
i+1, j+1

k

δ

OO

.

Along a line, i − j is constant and a line corresponding to a nonnegative constant is acyclic

by Lemma A.2(ii). Then K
•

k(V, L) has no cohomology of positive degree if D•
k
(V, L) has no

cohomology of degree different from r since the maps

E
j, j

k

δ // E
j−1, j

k
and E

k−1, j

k

d // E
k, j

k

are surjective, whence Assertion (i) by Lemma A.5(ii). As E
i,•

k
= Sk−i(V) ⊗k K•i (V, L), D•

k
(V, L)

has no cohomology of degree different from r if K
•

i (V, L) is acyclic for i = 1, . . . , k.

(iii) By Lemma A.6(ii), K
•

i (V, L) is acyclic for i = 1, . . . , k, whence the assertion by (ii). �

Appendix B. Projective dimension and cohomology

Recall in this section classical results. Let X be a Cohen-Macaulay irreducible affine algebraic

variety and S a closed subset of codimension p of X. Let P• be a complex of finitely generated

projective k[X]-modules whose length l is finite and let ε be an augmentation morphism of P•

whose image is R, whence an augmented complex of k[X]-modules,

0 // Pl
// Pl−1

// · · · // P0
ε // R // 0 .
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Denote by P•, R, K0 the localizations on X of P•, R, the kernel of ε respectively and denote by

Ki the kernel of the morphism Pi
// Pi−1 for i positive integer.

Lemma B.1. Suppose that S contains the support of the homology of the augmented complex

P•.

(i) For all positive integer i < p − 1 and for all projective OX-module P, Hi(X \ S ,P) is equal

to 0.

(ii) For all nonnegative integer j ≤ l and for all positive integer i < p − j, the cohomology

group Hi(X \ S ,Kl− j) is equal to zero.

Proof. (i) Let i < p − 1 be a positive integer. Since the functor Hi(X \ S , •) commutes with the

direct sum, it suffices to prove Hi(X \ S ,OX) = 0. Since S is a closed subset of X, we have the

relative cohomology long exact sequence

· · · // Hi
S
(X,OX) // Hi(X,OX) // Hi(X \ S ,OX) // Hi+1

S
(X,OX) // · · · .

Since X is affine, Hi(X,OX) is equal to zero and Hi(X \S ,OX) is isomorphic to Hi+1
S

(X,OX). Since

X is Cohen-Macaulay, the codimension p of S in X is equal to the depth of its ideal of definition

in k[X] [MA86, Ch. 6, Theorem 17.4]. Hence, according to [Gro67, Theorem 3.8], Hi+1
S

(X,OX)

and Hi(X \ S ,OX) are equal to 0 since i + 1 < p.

(ii) Let j be a nonnegative integer. Since S contains the support of the homology of the

complex P•, for all nonnegative integer j, we have the short exact sequence of OX\S -modules

0 // K j+1 |X\S
// P j+1 |X\S

// K j |X\S
// 0

whence the long exact sequence of cohomology

· · · // Hi(X \ S ,P j+1) // Hi(X \ S ,K j) // Hi+1(X \ S ,K j+1) // Hi+1(X \ S ,P j+1) // · · · .

Then, by (i), for 0 < i < p − 2, the cohomology groups Hi(X \ S ,K j) and Hi+1(X \ S ,K j+1) are

isomorphic since P j+1 is a projective module. Since Pi = 0 for i > l, Kl−1 and Pl have isomorphic

restrictions to X \ S . In particular, by (i), for 0 < i < p − 1, Hi(X \ S ,Kl−1) equal zero. Then, by

induction on j, for 0 < i < p − j, Hi(X \ S ,Kl− j) is equal to zero. �

Proposition B.2. Let R′ be a k[X]-module containing R. Suppose that the following conditions

are satisfied:

(1) p is at least l + 2,

(2) X is normal,

(3) S contains the support of the homology of the augmented complex P•.

(i) The complex P• is a projective resolution of R of length l.

(ii) Suppose that R′ is torsion free and that S contains the support in X of R′/R. Then R′ = R.
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Proof. (i) Let j be a positive integer. We have to prove that H0(X,K j) is the image of P j+1. By

Condition (3), the short sequence of OX\S -modules

0 // K j+1

∣∣∣
X\S

// P j+1 |X\S
// K j

∣∣∣
X\S

// 0

is exact, whence the cohomology long exact sequence

0 // H0(X \ S ,K j+1) // H0(X \ S ,P j+1) // H0(X \ S ,K j) // H1(X \ S ,K j+1) // · · · .

By Lemma B.1(ii), H1(X \ S ,K j+1) equals 0 since 1 < p − l + j + 1, whence the short exact

sequence

0 // H0(X \ S ,K j+1) // H0(X \ S ,P j+1) // H0(X \ S ,K j) // 0 .

As the codimension of S in X is at least 2 and X is irreducible and normal, the restriction mor-

phism from P j+1 to H0(X \ S ,P j+1) is an isomorphism. Let ϕ be in H0(X,K j). Then there exists

an element ψ of P j+1 whose image ψ′ in H0(X,K j) has the same restriction to X \ S as ϕ. Since

P j is a projective module and X is irreducible, P j is torsion free. Then ϕ = ψ′ since ϕ − ψ′ is a

torsion element of P j, whence the assertion.

(ii) Let R′ be the localization of R′ on X. Arguing as in (i), since S contains the support of

R′/R and 1 < p − l, the short sequence

0 // H0(X \ S ,K0) // H0(X \ S ,P0) // H0(X \ S ,R′) // 0

is exact. Moreover, the restriction morphism from P0 to H0(X/S ,P0) is an isomorphism since

the codimension of S in X is at least 2 and X is irreductible and normal. Let ϕ be in R′. Then for

some ψ in P0, ϕ − ε(ψ) is a torsion element of R′. So ϕ = ε(ψ) since R′ is torsion free, whence

the assertion. �

Corollary B.3. Let C• be a homology complex of finitely generated k[X]-modules whose length l

is finite and positive. For j = 0, . . . , l, denote by Z j the space of cycles of degree j of C•. Suppose

that the following conditions are satisfied:

(1) S contains the support of the homology of the complex C•,

(2) for all i, Ci is a submodule of a free module,

(3) for i = 1, . . . , l, Ci has projective dimension at most d,

(4) X is normal and l + d ≤ p − 1.

Then C• is acyclic and for j = 0, . . . , l, Z j has projective dimension at most l + d − j − 1.

Proof. Prove by induction on l − j that the complex

0 // Cl
// · · · // C j+1

// Z j
// 0

is acyclic and Z j has projective dimension at most l+d− j−1. For j = l, Z j is equal to zero since

Cl is torsion free by Condition (2) and Zl is a submodule of Cl, supported by S by Condition
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(1). Suppose j ≤ l − 1 and the statement true for j + 1. By Condition (3), C j+1 has a projective

resolution P• whose length is at most d and whose terms are finitely generated. By induction

hypothesis, Z j+1 has a projective resolution Q• whose length is at most l + d − j − 2 and whose

terms are finitely generated, whence an augmented complex R• of projective modules whose

length is l + d − j − 1,

0 // Ql+d− j−2 ⊕ Pl+d− j−1
// · · · // Q0 ⊕ P1

// P0
// Z j

// 0 .

Denoting by d the differentials of Q• and P•, the restriction to Qi ⊕ Pi+1 of the differential of R•

is the map

(x, y) 7→ (dx, dy + (−1)iδ(x)),

with δ the map which results from the injection of Z j+1 into C j+1. Since P• and Q• are projective

resolutions, the complex R• is a complex of projective modules having no homology of positive

degree. Hence the support of the homology of the augmented complex R• is contained in S by

Condition (1). Then, by Proposition B.2 and Condition (4), R• is a projective resolution of Z j

of length l + d − j − 1 since Z j is a submodule of a free module by Condition (2), whence the

corollary since Z0 = C0 by definition. �

Corollary B.4. Let

0 // E−1
// E0

// · · · // El
// 0

be a complex of finitely generated C[X]-modules. Suppose that the following conditions are

satisfied:

(1) E−1 is projective and for i = 0, . . . , l − 1, Ei has projective dimension at most i,

(2) S contains the support of the cohomology of this complex,

(3) for i = 0, . . . , l, Ei is a submodule of a free module,

(4) X is normal and p ≥ l + 2.

Then the complex is acyclic and El has projective dimension at most l.

Proof. Prove the corollary by induction on l. For l = 0, by Conditions (2), (3), (4), the arrow

E−1
// E0 is an isomorphism. Suppose the corollary true for the integers smaller than l. Let

Zl−1 be the kernel of the arrow El−1
// El , whence the two complexes

0 // E−1
// E0

// · · · // El−2
// Zl−1

// 0

0 −→ Zl−1
// El−1

// El
// 0 .

By Condition (2), the support of the cohomology of these two complexes is contained in S . Then,

by induction hypothesis, the first complex is acyclic and Zl−1 has projective dimension at most

l − 1. As a result, arguing as in the proof of Corollary B.3, we have a complex of k[X]-modules

0 // Pl
// Pl−1

// · · · // P0
// El

// 0
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such that P0, . . . ,Pl are projective, the image of P0 in El is the image of the arrow El−1
// El

and the support of its homology is contained in S . Then, by Condition (4) and Proposition B.2,

it is acyclic so that El has projective dimension at most l and the complex

0 // E−1
// E0

// · · · // El
// 0

is acyclic. �

Let

0 // M0
// M1

// M2
// 0

be a short exact sequence of k[X]-modules.

Lemma B.5. Suppose that for i = 0, 1, 2, Mi has a finite projective dimension di. Then we have

the inequalities

d2 ≤ sup{d0 + 1, d1} and d0 ≤ sup{d2 − 1, d1}.

Proof. Let N be a k[X]-module. We have to prove Ext j(M2,N) = 0 for j bigger than {d0 + 1, d1}

and Ext j(M1,N) = 0 for j bigger than {d2 − 1, d1}. From the short exact sequence, we deduce the

long exact sequence

· · · // Ext j(M1,N) // Ext j(M0,N) // Ext j+1(M2,N) // Ext j+1(M1,N) // · · · .

For j + 1 > sup{d0 + 1, d1}, Ext j+1(M1,N) = 0 and Ext j(M0,N) = 0, whence Ext j+1(M2,N) = 0.

For j > sup{d2 − 1, d1}, Ext j(M1,N) = 0 and Ext j+1(M2,N) = 0, whence Ext j(M0,N) = 0. �

Appendix C. Some computations

For k, l positive integers such that k ≤ l, set:

r(k, l) :=

k−1∑

j=0

(−1) j

(
l

j

)

and for k, l nonnegative integers, set:

c(k, l) :=

k∑

j=0

(−1) j

j!(l + j)!
.

For e, k, l integers such that 2 ≤ e ≤ k ≤ l, set:

ψ(e, k, l) := r(k, l) −

e−1∑

j=1

(−1)k− jc( j, k − j)r( j, l)
(l − j)!

(l − k)!
.

Let pk, k = 0, . . . be the sequence of polynomials defined by the induction relations:

p0 := 1, p1(x) := x, pk(x) := k(x − k)pk−1(x) + (−1)k.
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Lemma C.1. Let k, l be positive integers.

(i) For k ≤ l,

r(k, l) :=
(−1)k−1(l − 1)!

(k − 1)!(l − k)!
.

(ii) The rational number c(k, l) is equal to pk(l)/(k!(l + k)!).

(iii) For k ≥ 2, pk(l) is in kZ ± 1.

Proof. (i) Prove the assertion by induction on k. For k = 1, r(k, l) = 1. Suppose k > 1 and the

assertion true for k − 1. Then

r(k, l) =
(−1)k−2(l − 1)!

(k − 2)!(l − k + 1)!
+

(−1)k−1l!

(k − 1)!(l − k + 1)!
=

(−1)k−2(l − 1)!

(k − 1)!(l − k + 1)!
(k − 1 − l),

whence the assertion.

(ii) Prove the assertion by induction on k. For k = 1, c(k, l) = l/(l + 1)!. Suppose k > 1 and

the assertion true for k − 1. Then

c(k, l) =
pk−1(l)

(k − 1)!(l − k + 1)!
+

(−1)k

k!(l + k)!
=

1

k!(l + k)!
(k(l − k)pk−1(l) + (−1)k),

whence the assertion.

(iii) Prove the assertion by induction on k. For k = 2, there is nothing to prove. Suppose k > 2

and the assertion true for k − 1. From the equality

pk(l) = k(l − k)pk−1(l) + (−1)k

and the induction hypothesis, we deduce the assertion. �

For e, k positive integers such that 2 ≤ e ≤ k, set:

ϕ(e, k) := k −

e−1∑

j=1

j

( j!)2
p j(k − j).

Corollary C.2. Let e, k, l be positive integers such that 2 ≤ e ≤ k ≤ l. Then

(−1)k−1 k!(l − k)!

(l − 1)!
ψ(e, k, l) = ϕ(e, k).

Proof. By Lemma C.1,

ψ(e, k, l) =
(−1)k−1(l − 1)!

(k − 1)!(l − k)!
−

e−1∑

j=1

p j(k − j)

j!k!

(−1)k−1(l − 1)!

( j − 1)!(l − j)!

(l − j)!

(l − k)!
=

(−1)k−1(l − 1)!

(k − 1)!(l − k)!
−

e−1∑

j=1

(−1)k−1 j(l − 1)!p j(k − j)

( j!)2k!(l − k)!
,
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whence

(1)k−1 k!(l − k)!

(l − 1)!
ψ(e, k, l) = k −

e−1∑

j=1

j

( j!)2
p j(k − j).

�

Proposition C.3. Let e, k, l be positive integers such that 2 ≤ e ≤ k ≤ l. Then ψ(e, k, l) , 0

Proof. By Corollary C.2, it is equivalent to prove ϕ(e, k) , 0. By definition,

ϕ(2, k) = k − k + 1 and ϕ(3, k) = ϕ(2, k) −
1

2
p2(k − 2) ∈ Z ±

1

2
,

whence the proposition for e = 2 and e = 3. Suppose e ≥ 4 and prove by induction on e,

((e − 2)!)2ϕ(e, k) ∈ Z ±
1

e − 1
.

From the equality

ϕ(4, k) = ϕ(3, k) −
3

(3!)2
p3(k − 3),

we deduce the assertion by Lemma C.1(iii) and the relation for ϕ(3, k). Suppose e > 4 and the

assertion true for e − 1. By definition,

ϕ(e, k) = ϕ(e − 1, k) −
e − 1

((e − 1)!)2
pe−1(k − e + 1) whence

((e − 2)!)2ϕ(e, k) = ((e − 2)!)2ϕ(e − 1, k) +
1

e − 1
pe−1(k − e + 1).

By induction hypothesis,

((e − 2)!)2ϕ(e − 1, k) ∈ Z,

and by Lemma C.1(i),
1

e − 1
pe−1(k − e + 1) ∈ Z ±

1

e − 1
,

whence the assertion and the proposition. �

Appendix D. Some remarks about representations

In this section, g is a semisimple Lie algebra, p is a parabolic subalgebra of g, containing b, l

is the reductive factor of p, containing h, and d is the derived algebra of l. Let Rl the set of roots

α such that gα is contained in l and Rl,+ the intersection of Rl and R+. Denote by P# the subset

of elements of P(R) whose restriction to h ∩ d is a dominant weight of the root system Rl with

respect to the positive root system Rl,+.

Let M be a rational g-module. For λ in P+(R), denote by Mλ the isotypic component of type

Vλ of the g-module M. Let PM be the subset of dominant weights λ such that Mλ , 0.

Lemma D.1. The space M is the direct sum of Mλ, λ ∈ PM.
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Proof. As M is a rational g-module, M is a union of g-modules of finite dimension. In particular,

all simple g-module contained in M has finite dimension. Hence Mλ, λ ∈ PM is the set of

isotypic components of M. Moreover, M is the direct sum of Mλ, λ ∈ PM. �

For λ in PM, denote by ̟λ the canonical projection M // Mλ . Let N1 and N2 be two

g-submodules of M such that N1 is contained in N2. For λ in PM, denote by Mλ,+ the subspace of

highest weight vectors of Mλ. For the trivial action of G on Mλ,+, Vλ ⊗k Mλ,+ is a g-module. For

j = 1, 2, set N j,λ,+ := N j∩Mλ,+ and for v in Mλ,+, denote by Mv the g-submodule of Mλ generated

by v.

Lemma D.2. Let λ be in PM.

(i) For j = 1, 2, N j is the direct sum of Ni ∩ Mγ, γ ∈ PM.

(ii) For v in Mλ,+, the g-modules Vλ and Mv are isomorphic.

(iii) There exists a basis vi, i ∈ Iλ of Mλ,+ satisfying the following condition: for some subsets

Iλ,1 and Iλ,2 of Iλ, Iλ,1 ⊂ Iλ,2, vi, i ∈ Iλ,1 and vi, i ∈ Iλ,2 are basis of N1,λ,+ and N2,λ,+ respectively.

(iv) For i in Iλ, denote by τλ,i an isomorphism of g-modules Vλ
// Mvi

. Then the linear

map

Vλ ⊗k Mλ,+

τλ // Mλ , v⊗vi 7−→ τλ,i(v)

is an isomorphism of g-modules such that τλ(Vλ ⊗k N j,λ,+) = N j ∩ Mλ for j = 1, 2.

Proof. (i) As N j is a g-submodule of M, it is rational. So, by Lemma D.1(i), N j is the direct sum

of its isotypic components, whence the assertion since an isotypic component of N j is contained

in the isotypic component of M of the same type.

(ii) As v is in Mλ,+, Mv is a module of highest weight λ and the space of highest weight vectors

in Mv is generated by v. Hence Mv is simple and isomorphic to Vλ.

(iii) is straightforward. Moreover, if N j ∩ Mλ = {0} then Iλ, j is empty.

(iv) By (ii), the isomorphisms τλ,i does exist. As vi, i ∈ Iλ is a basis of Mλ,+, Mλ is the direct

sum of the subspaces Mvi
, i ∈ Iλ. Hence τλ is an isomorphism of g-modules. Moreover, for

j = 1, 2, for i in Iλ, τλ(Vλ⊗vi) is contained in N j if and only if i is in Iλ, j, whence the assertion

since N j is a g-module. �

Let M′ be a l-submodule of M. For µ in P#, denote by V ′µ a simple l-module of highest weight

µ and M′µ the isotypic component of type V ′µ of M′. Denote by PM′ the subset of elements µ of P#

such that M′µ , {0} and PM,M′ the subset of elements (λ, µ) of PM × PM′ such that ̟λ(M′µ) , {0}.

Lemma D.3. (i) The space M′ is the direct sum of M′µ, µ ∈ PM′ .

(ii) For (λ, µ) in PM,M′ , V ′µ is isomorphic to a l-submodule of Vλ.

Proof. (i) As M′ is a l-submodule of the rational g-module M, M′ is a rational l-module, whence

the assertion by Lemma D.1(i).
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(iii) Let (λ, µ) inPM,M′ and V0 a simple l-module contained in̟λ(M′µ). According to Lemma D.2,(ii)

and (iii),

Mλ =

⊕

i∈Iλ

Mvi
.

For i in Iλ, denote by πi the projection

Mλ

πi // Mvi

corresponding to this decomposition. For some i, the restriction to V0 is different from 0. As V0

is a simple l-module, this restriction is an embedding of V0 into Mvi
, whence the assertion since

Mvi
is isomorphic to Vλ. �

For λ in PM, denote by V l
λ

the subspace of elements of Vλ, annihilated by u ∩ l, and for (λ, µ)

in PM,M′ , let V l
λ,µ

be the subspace of weight µ of V l
λ
.

Lemma D.4. Let (λ, µ) be in PM,M′ .

(i) There exists an isomorphism of l-modules

V ′µ ⊗k V lλ,µ
τµ,λ // U(l).V lλ,µ .

(ii) For a well defined subspace Eλ,µ of V l
λ,µ
⊗k Mλ,+,

̟λ(M′µ) = τλ◦(τµ,λ⊗idMλ,+
)(V ′µ ⊗k Eλ,µ).

(iii) For j = 1, 2, let Eλ,µ, j be the intersection of Eλ,µ and V ′µ ⊗k N j,λ,+. Then

̟λ(N j ∩ M′µ) = τλ◦(τµ,λ⊗idMλ,+
)(V ′µ ⊗k Eλ,µ, j).

Proof. (i) Let w1, . . . , wm be a basis of V l
λ,µ

. For i = 1, . . . ,m, denote by V ′i the l-submodule of

Vλ generated by wi. As wi is weight vector of weight µ of V l
λ,µ

, V ′i is a module of highest weight

µ and the space of highest weight vectors in V ′i is generated by wi so that V ′i is a simple module

isomorphic to V ′µ. Moreover, U(l).V l
λ,µ

is the direct sum of V ′
i
, i = 1, . . . ,m since w1, . . . , wm is a

basis of V l
λ,µ

, whence an isomorphism

V ′µ ⊗k V lλ,µ
τµ,λ // U(l).V lλ,µ .

(ii) For v in τ−1
λ

(̟λ(M′µ)), v has an expansion

v =
∑

i∈Iλ

v′i⊗vi

with v′
i
, i ∈ Iλ in Vλ. As τλ(v) is in ̟λ(M′µ), for i in Iλ, u.v′

i
is in V l

λ,µ
for some u in U(u ∩ l). As a

result, τ−1
λ (̟λ(M′µ)) is a subspace of U(l).V l

λ,µ
⊗k Mλ,+, whence the assertion by (i).

(iii) Let v be in Eλ,µ. By Lemma D.2(ii), τλ◦(τλ,µ⊗idMλ,+
)(v) is in N j if and only if τλ,µ⊗idMλ,+

(v)

is in Vλ⊗kN j,λ,+. Then, by (ii), τλ◦(τλ,µ⊗idMλ,+
)(v) is in ̟λ(N j∩M′µ) if and only if v is in Eλ,µ, j. �
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For λ in PM, let θλ be the linear map

V∗
λ
⊗k Vλ

θλ // // k , v′⊗v 7−→ 〈v′, v〉

given by the duality. The kernel Kλ of θλ is a G-submodule of V∗λ ⊗k Vλ so that

V∗λ ⊗k Vλ ⊗k Mλ,+ = Mλ,+ ⊕ Kλ ⊗k Mλ,+.

Corollary D.5. Suppose that M′ generates the g-module M. Let λ be in PM. Then

Mλ,+ = θλ⊗idMλ,+
(

⊕

µ∈PM,M′ ,λ

V∗λ ⊗k Eλ,µ) with PM,M′,λ := {µ ∈ PM′ | (λ, µ) ∈ PM,M′}

and for j = 1, 2,

N j,λ,+ = θλ⊗idMλ,+
(

⊕

µ∈PM,M′ ,λ

V∗λ ⊗k Eλ,µ, j).

Proof. As Eλ,µ is contained in V l
λ,µ
⊗k Mλ,+, the sums

∑

µ∈PV,V′ ,λ

Eλ,µ and
∑

µ∈PV,V′ ,λ

Mλ,+ ∩ V∗λ ⊗k Eλ,µ

are direct. By the hypothesis, Mλ is the g-submodule of M generated by ̟λ(M′). The map

θλ⊗idMλ,+
is a morphism of g-modules for the trivial action of g in Mλ,+. Hence

θλ⊗idMλ,+
(

⊕

µ∈PM,M′ ,λ

V∗λ ⊗k τ
−1
λ (̟λ(M′µ))) = Mλ,+

by Lemma D.3(i). Then, by Lemma D.4(ii),

θλ⊗idMλ,+
(

⊕

µ∈PM,M′ ,λ

V∗λ ⊗k Eλ,µ) = Mλ,+,

and by Lemma D.4(iii),

θλ⊗idMλ,+
(

⊕

µ∈PM,M′ ,λ

V∗λ ⊗k Eλ,µ, j) = N j,λ,+.

�

Proposition D.6. Suppose that the following conditions are satisfied:

(1) M′ generates the G-module M,

(2) N2 ∩ M′ is contained in N1 ∩ M′.

Then N1 = N2.

Proof. By Lemma D.3(i), for j = 1, 2, N j ∩ M′ is the direct sum of N j ∩ M′µ since N j ∩ M′ is

a l-submodule of M′. So, by Condition (2), for all (λ, µ) in PM,M′ , Eλ,µ,2 is contained in Eλ,µ,1.

Then, by Condition (1) and Corollary D.5, N2,λ,+ is contained in N1,λ,+ for λ in PM . As a result,

by Lemma D.2(iii), N1 ∩ Mλ = N2 ∩ Mλ for all λ in PM since N1 is contained in N2, whence the

proposition by Lemma D.2(i). �
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