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Abstract: 

Second order nonlinearities in whispering gallery mode resonators are highly investigated for their many 

applications such as wavelength converters, entangled photon sources and generation of frequency combs. In 

such systems, depending on the material under scrutiny, the derivation of quasi-phase matching equations can 

lead to the appearance of additional quanta in the selection rule on the azimuthal confinement order. Here, we 

demonstrate that these additional quanta show up due to the Berry phase experienced by the transverse spin 

angular momentum components of the whispering gallery modes during their circulation within the resonator. We 

first detail the case of Zinc-blende materials and then generalize this theory to other crystal symmetries relevant for 

integrated photonics. 

 

Second order nonlinear phenomena in integrated photonic devices are highly valued due to their potential use 

as frequency converters for on-chip optical interconnects,1,2 in entangled photon sources for quantum processing3–

5 and even in the generation of supercontinuum.6,7 The eligibility of many different materials for the realization of 

these devices is currently explored. We can cite in particular the integrated lithium niobate (LN) platform5,8 as well 

as the III-V semiconductor one with experimental demonstrations using arsenides,9–11 phosphides12,13 or 

nitrides.14–16 At the same time, planar whispering gallery mode (WGM) resonators seem to have established 

themselves as reference systems for nonlinear photonics on chip,17,18 due to the convenience of their integration 

within photonic integrated circuits, in the form of microdisks, microrings or racetracks. 

When nonlinear 2nd order phenomena are investigated in axisymmetric resonators, the conservation of photons 

momentum, the so-called phase matching condition, appears in the form of a selection rule on the azimuthal 

confinement orders of the input WGMs (𝑚𝑖𝑛) and nonlinear products (𝑚𝑝𝑟𝑜𝑑) where additional quanta may appear 

depending on the crystal symmetry of the material under scrutiny. This was related to a “natural” poling of the crystal 

in these axisymmetrical geometries.19–21 So Far, the most satisfying method to explain the occurrence of these 

additional quanta was the derivation of the Fourier components of the azimuthal dependence of the 2nd order 

nonlinear  coefficient, providing momentum to the photons.22    In planar z-cut LN-based WGM resonators where 

the extraordinary axis is parallel to the resonator symmetry axis, the currently observed trivial selection rule 

∑𝑚𝑝𝑟𝑜𝑑 =∑𝑚𝑖𝑛 can require artificial periodic poling to show efficient conversion.23,24 On the contrary, “natural” 

quasi-phase matching (QPM) was reported in x-cut LN microdisks thanks to a 90º rotation of the crystal orientation 

which places the extraordinary axis of the crystal in the microdisk plane.22 Second harmonic generation (SHG) was 

for example observed between a fundamental mode  with 𝑚𝐹 = 111 and a SH mode with 𝑚𝑆𝐻 = 221,  demonstrating 

the loss of a single momentum quantum. The occurrence of such additional quanta in the momentum conservation 

rule had also been pointed out for III-V zinc-blende resonators.25 This 4̅-QPM, named after the 4̅3𝑚 point group 

symmetry of the crystal, has been predicted to require the condition:  

∆𝑚 = ∑𝑚𝑝𝑟𝑜𝑑 − ∑𝑚𝑖𝑛 = ±2          (1) 

which has then been confirmed experimentally by many groups.9,13 In contrast, the QPM selection rule of  wurtzite 

GaN microdisks is simply ∆𝑚 = 0.16 In the calculation of the nonlinear conversion efficiency, each phase matching 

condition is associated to a weight which is specific to the signed value of the additional quantum.20 Despite the 



  

directness of the Fourier approach, no clear physical 

meaning can be given to the expressions of these different 

weights. In addition, for resonators such as microdisks, the 

Fourier analysis approach requires some approximation 

on the effective radius of the modes. This points out the 

need of a new formalism for the derivation of 2nd order 

nonlinear processes in resonators with rotational 

symmetry. 

Concurrently, a novel description of polarization 

properties of light in photonics has recently been 

introduced, based on the longitudinal electric field 

components showing up under certain conditions such as 

photonic confinement.26,27  The later indeed enables the 

photons to feature transverse spin angular momentum 

(TSAM), a forbidden property for plane wave optics. In this 

framework, one can thus investigate the propagation of a 

photon carrying a spin (or helicity) perpendicular to the 

propagation plane. WGM resonators suit particularly well 

to this description since revolution symmetry is shared 

between the geometry of the system and the TSAM 

polarization basis as detailed in the following.  

In this work, we use TSAM formalism to derive the field 

components of WGMs into a complete polarization basis 

respecting the revolution symmetry of the system and 

demonstrate that the TSAM components inherit a ±2𝜋 

Berry phase during the revolution of their transverse spin 

within the resonator. This additional topological phase is 

then considered in the derivation of second order nonlinear 

phenomena such as SHG which explains straightforwardly 

the origin of the diversity of natural QPM. We investigate 

in detail the case of 4̅-QPM in zinc-blende materials and 

finally generalize our approach to other nonlinear 

materials.   

In planar WGM resonators, the polarization eigenmodes of the system are commonly labeled as the ones of the 

slab waveguide: TE, with a main contribution of the electric field lays in the confinement plane and TM, which 

electric field pointing mainly outside of it (what we will call the z axis). For the sake of simplicity, we will make the 

approximation that TM modes feature only a non-zero z component of the electric field, so that only the TE modes 

will show a TSAM character. Going beyond this approximation, the full-vectorial model of NL processes even opens 

more possibilities to the present theory as suggested by Ciret et al.28 While describing the mode profiles of the 

WGM, it straightforwardly comes that a frame following the symmetry of the system such as the rotating one 

(|𝑟⟩, |𝜑⟩, |𝑧⟩) is more convenient than the fixed cartesian one (|𝑥⟩, 𝑦⟩, |𝑧⟩) as shown in Figure 1. Most theoretical 

works, from basic theory of WGMs to advanced derivation of NL quasi-phase matching have used this rotating 

frame.20,21 The limitation of the later comes from the parametrized position of the basis unit vectors with the 

azimuthal angle 𝜑. On the contrary, the fixed circular polarization (CP) frame allows a non-parametrized description 

of the WGMs and unveil their TSAM character. Let us define:  

 
Figure 1. Squared magnitudes of the electric field 

planar components of a TE WGM using (a) a 

cartesian fixed basis, (b) a rotating polar basis and 

(c) the circular polarization basis along the resonator 

axis, unveiling the TSAM components of the WGM. 

The results are obtained from FEM simulations with 

a WGM at 1.9μm with azimuthal order m=18, planar 

and radial orders of 1, a refractive index of 3.04, 

radius of 3.4μm and 180nm of thickness. 



  

{
|+⟩ =

1

√2
(|𝑥⟩ + 𝑖|𝑦⟩)

|−⟩ =
1

√2
(|𝑥⟩ − 𝑖|𝑦⟩)

,    (2) 

the unit vectors of the CP frame describing the spin up and 

spin down polarization of photons. The |𝑧⟩ unit vector 

remains unchanged and can be seen as describing 

photons with spin 0. Within the disk, the electric field 

components of TE modes are well described in the rotating 

frame: 29    

{
 
 

 
 
𝐸𝑟 =

𝑚

𝑟
𝐶𝑚 𝐽𝑚(𝑘̃1𝑟)𝑒

𝑖𝑚𝜑

= 𝑆𝑚(𝑟)𝑒
𝑖𝑚𝜑          

                                  

𝐸𝜑 =
𝑖𝑘̃1

2
𝐶𝑚[𝐽𝑚−1(𝑘̃1𝑟) − 𝐽𝑚+1(𝑘̃1𝑟)]𝑒

𝑖𝑚𝜑

= 𝑖 𝑇𝑚(𝑟)𝑒
𝑖𝑚𝜑                                        

    (3) 

where m is the WGM azimuthal order, 𝐶𝑚 a constant, 𝐽𝑖(𝑥) 

Bessel functions of the first kind and 𝑘̃1 the effective 

propagation constant of the WGM. The real-valued 

functions 𝑆𝑚(𝑟) and 𝑇𝑚(𝑟) are introduced for the sake of 

clarity. By using the transfer matrix ℛ𝑧(𝜑) and the 

projections of eq.(2), one gets: 

{
𝐸+ =

1

√2
(𝑆𝑚(𝑟) + 𝑇𝑚(𝑟))𝑒

𝑖(𝑚−1)𝜑

𝐸− =
1

√2
(𝑆𝑚(𝑟) − 𝑇𝑚(𝑟))𝑒

𝑖(𝑚+1)𝜑
  (4) 

Opposite additional quanta on azimuthal dependence 

appears on both CP components, which come from the 

rotation operator involved in the rotating frame description 

and can also be written using the spin operator 𝒔 of the 

photon as ℛ𝑧(𝜑) = exp (−𝑖𝝋 ∙ 𝒔).  

This phenomenon is a direct consequence of the Berry 

phase experienced by each CP component during the 

revolution within the resonator as demonstrated by Chiao 

and coworkers:30,31 During the round trip, the photon 

realizes a loop in parameter space (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧). The 𝑘 = 0 point represents a topological monopole for photons and 

the photons should thus acquire a topological phase proportional to their spin number and to the solid angle 

subtended by the closed path with respect to the monopole. In Ref.31, the Berry phase is investigated into an optical 

fiber helically wound around a cylinder and found to be Ω = 2𝜋𝑁(1 − 𝑐𝑜𝑠𝜃) where N is the winding number of the 

helix and 𝜃 the local angle between the waveguide axis and the cylinder axis. Our case corresponds to an angle 

𝜃 = 𝜋/2 where a Berry phase  Ω = 2𝜋 is acquired at each round trip, ensuring periodic boundary conditions in our 

resonant system. The azimuthal phase dependence of spin up and spin down photons of a TE WGM are thus 

different as presented in Figure 2 b) for m=18. 

To unveil the effect of this Berry Phase of the CP field components on second order nonlinear phenomena, it is 

now necessary to project susceptibility tensors along the complete CP basis (|+⟩, |−⟩, |𝑧⟩). Calling Q the transfer 

matrix from cartesian to CP basis, one can calculate the 2nd nonlinear polarization in the CP basis: 

𝑷𝑁𝐿,𝐶𝑃 = 𝑸 ∙ 𝝌𝑥,𝑦,𝑧
(2) ∙ (𝑸−1 ∙ 𝑬𝐶𝑃)⨂(𝑸

−1 ∙ 𝑬𝐶𝑃)        (5)   

 

Figure 2. (a) radial profiles of the squared electric 

field components E+ and E- of a fundamental TE 

mode together with Ez radial profile of a TM SH 

mode for SHG in a 4̅-QPM WGM resonator 

(Parameters identical to Figure 1). (b) Phase 

distribution of the E+ and E- components of the TE 

mode where opposite Berry phases shows up in the 

difference of 2π phase jumps (17 and 19 phase 

jumps respectively). 



  

where 𝑬𝐶𝑃 is the total input field and can contain contributions with different frequencies. Consequently the 2nd 

order susceptibility tensor can be defined as:  

𝝌𝐶𝑃
(2). = 𝑸 ∙ 𝝌𝑥,𝑦,𝑧

(2) ∙ (𝑸−1⨂𝑰𝟑) ∙ (𝑰𝟑⨂𝑸
−1)         (6)  

where 𝑰𝟑 is identity in the 3-dimensional vector space. 

Let us first detail the case of SHG in a III-V zinc-blende microdisk resonator, featuring 4̅-QPM. We call 𝐸1 the 

mode profile of the fundamental mode with azimuthal order 𝑚1 and 𝐸2 the mode profile of the SH one with azimuthal 

order 𝑚2.Here, the only non-zero element of χ 
(2) is 𝑑14. Using eq. (6), the SH polarization can be expressed in the 

CP basis with contracted notations and reads as: 

(
P+
P−
Pz

) = ϵ d14 [
0 0 0
0 0 0
i −i 0

    
−i 0 0
0 i 0
0 0 0

]

(

 
 
 

E+E+
E−E−
EzEz
2E−Ez
2E+Ez
2E+E−)

 
 
 

        (7) 

We find in particular that a TM-polarized SH field can be generated from the nonlinear polarization Pz and results 

from the square of either the spin up or the spin down field component of the fundamental mode, E+
2 or E−

2. The 

derivation of the nonlinear coupling coefficient for SHG β2 as described for example by Rodriguez et al.32 and which 

enters into account for the calculation of the conversion efficiency thus becomes: 

β2 =
1

4

∫d3x∑ εijk χijk
(2)
E2i
∗ E1j

 E1k
 

[∫ d3x ε|E1
 |
2
][∫ d3x ε|E2

 |
2
]

1
2

, i, j, k = x, y, z  

    =
i d14

4

∫d3x ε E2z
∗ (E1+

2−E1−
2)

[∫d3x ε|E1
 |
2
][∫ d3x ε|E2

 |
2
]

1
2

          (8) 

 

z-cut LiNbO3 – Trigonal 3m x-cut LiNbO3 – Trigonal 3m GaN– Wurtzite 

P63mc 

KNbO3 – Amm2 

 

2ϵ0 [
0 a 0
a∗ 0 0
0 0 c

    
0 b 0
b 0 0
0 0 b

] 

d15 = d24, d22 = −d16,  

a = i√2d22, b = d15, c = d33 

 

2ϵ0 [
a b c
b∗ a∗ c∗

0 0 0
    
0 0 a∗

0 0 a
c c∗ 0

] 

a = √2 (−𝑑33 + 𝑑15 + 𝑖𝑑22) 4⁄ , 

 b = √2 (−𝑑33 − 3𝑑15 + 𝑖𝑑22) 4⁄ , 

 c = −√2 (𝑑15 − 𝑖𝑑22) 2⁄   
 

 

2ϵ0 [
0 0 0
0 0 0
0 0 a

    
0 b 0
b 0 0
0 0 b

] 

d15 = d24, 
a = d33, b = d15 

 

2ϵ0 [
0 0 0
0 0 0
a a c

    
a b 0
b a 0
0 0 b

] 

a =
1

2
(𝑑15 − 𝑑24), b =

1

2
(𝑑15 + 𝑑24) , 

c = d33 

 

α𝛼-Quartz– 32 BTM – Monoclinic 2 Additional quanta to ∆m 

 

2ϵ0 [
a b 0
b a 0
0 0 0

    
0 0 0
0 0 0
0 0 0

] 

 a = √2 (𝑑11 + 𝑑12) 4⁄ ,  

 b = √2 (𝑑11 − 3𝑑12) 4⁄   

 

2ϵ0 [
a b c
b∗ a∗ c∗

d∗ d 0
    
d 0 a∗

0 d∗ a
c c∗ 0

] 

a = 𝑖√2 (𝑑16 + 𝑑22) 4⁄  , b = 𝑖√2 (−3𝑑16 + 𝑑22) 4⁄ , 

c = −id23 √2⁄   d = −id14 
 

 

[
+1 −3 −1
+3 −1 +1
+2 −2 0

    
−2 0 −1
0 +2 +1
−1 +1 0

] 

Table 1. Contracted 2nd order susceptibility tensors expressed in the CP basis for different point groups 

symmetries and related materials. Values reported in pm/V.  The bottom right matrix provides the list of additional 

quanta induced by the Berry phase mismatch in the azimuthal order selection rule for each conversion process, 

in the same contracted notation as equation 7. A general form of the tensor in the CP basis is provided in SI. 



  

Inserting eq.(4) into eq. (8) allows to explicit the azimuthal dependence in the overlap integral. which leads to the 

4̅-QPM conditions to be fulfilled for efficient SHG: Δ𝑚 ± 2 = 0, similar to eq. (1). The coupling coefficients 

𝐾±introduced by Kuo in Ref.21 can thus simply be attributed to the overlap integral of the SH mode with either the 

spin up or spin down components of the fundamental field as illustrated in Figure 2a. A discussion on the 

optimization of these overlaps is provided as supporting information as well as the whole derivation of nonlinear 

coupling coefficients and conversion efficiency.  

We now generalize this approach to materials of interest for integrated nonlinear photonics. Table 1 provides the 

list of the additional quanta to be introduced in the azimuthal selection rule for each component association in 

processes such as SHG or sum frequency generation (SFG). The case of DFG requires a careful handling of 

conjugates in the CP basis which is discussed in the SI. Table 1 also gives a description of NL susceptibility tensors 

in the contracted CP basis for different point-group symmetries, illustrated with material cases relevant for integrated 

photonics. First it appears that each non-zero element of the tensor in the CP basis is now associated with a single 

QPM condition. At the 2nd order, up to seven QPM conditions can coexist, from ∆𝑚 = −3 to +3, depending on the 

material symmetry. While for zinc-blende materials only ±2 conditions exist as already reported, the situation is 

different for LN. For z-cut LN, a natural QPM condition with ∆𝑚 = ±3 in between two TE-polarized fields could thus 

be used to balance the material dispersion. However, it should feature a much smaller efficiency compared to the 

use of the 𝑧𝑧𝑧 tensor element both because of the value of the element itself and because of the possibly limited 

overlap between the 𝐸+(−) component of the fundamental field and the 𝐸−(+) component of the SH field. Note that 

the z-cut LN tensor does not present any QPM condition with ∆𝑚 = ±1 as experimentally observed in Ref.22. In 

that case, prior to the CP basis projection, the LN tensor should be rotated by 90° to account for the x-cut. Notably, 

the resulting tensor shows that different SHG processes  with ∆𝑚 = ±1 are expected either with copolarized (TE) 

fundamental and SH fields22 (elements 𝑎) or with cross polarized modes (element 𝑐).19,33,34 

As a conclusion, we used the TSAM description of light in planar WGM resonators to explicit the Berry phase 

experienced by the spin up and spin down components of the field during their revolution into the resonator. This 

Berry phase is found to be at the origin of the additional quanta appearing in the quasi-phase matching conditions 

of nonlinear 2nd order processes in these devices for many different materials. This description does not only allow 

for a straightforward assessment of QPM conditions in WGM resonators; it also opens new routes for the design of 

more complex nonlinear processes in such integrated photonic devices.  
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Supporting information: 
A. General form of the 2nd order nonlinear tensor in the circular polarization basis and code 

 

The general form of the nonlinear tensor can be written in the circular polarization basis with keeping the 𝑑𝑖𝑗 

parameters known from the usual cartesian representation of the tensor: 
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In contracted notations, one gets :  
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The code used to compute all these terms is provided below. To run the code, the installation of the sympy 

package for Python is needed.S1 A version of the code is also available at https://github.com/Alex-l-

r/QPM_BerryPhase_WGM. 

 

from sympy.matrices import Matrix, eye, zeros, ones, diag, GramSchmidt 

from sympy import symbols, pprint, sqrt, I, init_printing, simplify 

from sympy.physics.quantum import TensorProduct 

 

# Definition of the whole tensor in a x,y,z basis 

d11, d12, d13, d14, d15, d16, d22, d23, d24, d33 = symbols("d11 d12 d13 d14 d15 d16 d22 

d23 d24 d33") 

susc = Matrix([[d11, d16, d15, d16, d12, d14, d15, d14, d13], [d16, d12, d14, d12, d22, 

d24, d14, d24, d23], [d15, d14, d13, d14, d24, d23, d13, d23, d33]]) 

 

 

# Definition of the transfer matrices for circular polarization basis 

# Jones matrix, consistent with Rothberg lecture Washington university 

rot = 1/sqrt(2)*Matrix([[1, -I], [1, I]]) 



  

rotm = 1/sqrt(2)*Matrix([[1, 1], [I, -I]] 

 

#Full 3D polarization basis, including |z> polarization state 

rot3 = zeros(3, 3) 

rotm3 = zeros(3, 3) 

rot3[0:2, 0:2] = rot 

rotm3[0:2, 0:2] = rotm 

rot3[2, 2] = 1 

rotm3[2, 2] = 1 

 

# Tensorial product towards the 3x3=9 basis 

ROTmA = TensorProduct(rotm3, eye(3, 3)) 

ROTmB = TensorProduct(eye(3, 3), rotm3) 

 

# Transformation 

susc_CP = rot3*susc*ROTmA*ROTmB 

 

# Compact form of the tensor 

DCP = zeros(3, 6) 

DCP[:, 0] = susc_CP[:, 0] 

DCP[:, 1] = susc_CP[:, 4] 

DCP[:, 2] = susc_CP[:, 8] 

DCP[:, 3] = (susc_CP[:, 5]+susc_CP[:, 7])/2 

DCP[:, 4] = (susc_CP[:, 2]+susc_CP[:, 6])/2 

DCP[:, 5] = (susc_CP[:, 1]+susc_CP[:, 3])/2 

DCP_simp = simplify(DCP) 
 

B. Field distribution of higher order fundamental WGMs in circular basis.  

 

In order to compare the convenience of the use of higher radial order modes, we present here the radial profiles 

of the squared 𝐸+/− components of the first three radial orders for the fundamental modes together with profiles of 

the Ez component of TM modes at the SH wavelength. This nonlinear conversion scheme applies to 4̅ −QPM. The 

Figure S1 shows the utility of the CP-basis description, not only for explaining the physics beyond the QPM in 

circular microresonators but to optimize and design highly efficient devices. 

Here the WGMs shown are calculated to satisfy the Δm=+2 condition, further calculations show that small 

changes in the azimuthal number barely modifies the distribution of the electric fields so we can use Fig.S1 to 

comment Δm=-2 cases too. It is important to remark that for real optimization of the SHG a careful and detailed 

optimization of the geometry of the resonator should also be made to obtain resonances for both WGMs. 

 For fundamental radial order equal to one, it is clear that for Δm=+2 (𝐸− component), choosing a SH mode of 

radial order 2 gives a very good overlap. In the case where a process with rSH=1 is wanted, using a microring 

instead of a microdisk will push the fundamental 𝐸− profile towards the external edge, improving the overlap with 

the SH rSH=1 mode and thus the efficiency. 

In contrast, the Δm=-2 QPM condition (𝐸+ component) should lead to maximal overlap with radial orders equals 

to 1, but it is made impossible in small disks due to chromatic dispersion.S2 Looking at a fundamental radial order 



  

of 2, the combination with the SH WGM of r=3 gives a good overlap. In this situation, the chromatic dispersion might 

be compensated for some materials. 

 
Figure S1: Representation of the radial profiles of 𝐸+/−  components for the first three radial orders at fundamental wavelength, 

compared to the Ez components of the first three radial orders of SH TM-polarized WGMs. The considered azimuthal orders are 
mF=18 mSH= 38. 

C. Derivation of nonlinear coupling coefficients for time-dependent differential equations of 

2nd order nonlinear processes. 

 

Rodriguez et al.S3 introduce the nonlinear differential equations describing second harmonic generation (SHG) 

in a doubly resonant cavity as: 
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       (S4) 

 

where a1(2) are the field envelopes of the fundamental (SH) cavity modes, featuring frequencies ω1(2) and loaded 

decay times τ1(2) defined  as 1 τ1(2)⁄ = 1 τi,1(2)⁄ + 1 τc,1(2)⁄  with the index i holding for the intrinsic decay time and the 

index c holding for the coupling one. The decay times are related to the quality factors by: Qi = ωiτi/2 . The driving 

laser is modeled by F1 and β1 and β2 are the nonlinear coupling coefficients: 
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, i, j, k = x, y, z      (S5) 

 

In the case of 4̅-QPM in WGM resonator and with the approximation that the only non-zero E field component of 

TM modes is along the WGM resonator axis so that only TE modes feature in-plane electric field components, SHG 

can only be obtained from a TE fundamental mode to a TM SH mode. The only field components to be considered 

are thus E2z
 , E1x

 , and E1y
 . The transfer of the susceptibility tensor in the CP basis is quite straightforward for the 

calculation of β2 since 2𝑑14𝐸2𝑧
∗𝐸1𝑥𝐸1𝑦 = 𝑖𝑑14𝐸2𝑧

∗(𝐸1+
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2). However, the calculation of β1 requires to extract 

the DFG process from the mixing of the real solution of the field: E = Re(E1 + E2) =
1

2
(E1 + E2 + E1

∗ + E2
∗). In the 

CP basis which feature complex coefficients, conjugation should be handled carefully:  
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Taking into account this specific projection onto the CP basis unit vectors allows to restrict the sum on i,j, and k 

of the β1 components to  −𝑖𝑑14𝐸2𝑧(E1+
∗ 2 − E1−

∗ 2) so that β1 and β2 are complex conjugates. Using real solutions for 

𝐸2𝑧, 𝐻1𝑧,
S4 and thus 𝐸1+and 𝐸1− as demonstrated in eq.(4) of the main text, and using the rotating frame for the sum 

over the microdisk volume, it comes that: 
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The output SH field can be calculated from the intracavity field of (S4):  

s2 = √
2

τc,2
a2,           (S8) 

So that Pout = |s2|
2 is the output SH power. 

 

Solving the system of equations (S4) in the hypothesis of the non-depletion of the pump a1 leads to:  

Pout = |s2|
2 = 26

ω2

ω1
2 [

Q2
2

Qc,2
] [
Q1

2
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]
2

β2
2PL

2 = η PL
2       (S9) 

Where PL = |F1|
2 is the pump laser power. Eq.(S9) is consistent with the formulation proposed by Andronico et 

al. when using critical coupling condition.S5 
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