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For a holomorphic function f in the open unit disc D and ζ ∈ D, Sn(f, ζ) denotes the n-th partial sum of the Taylor development of f at ζ. Given an increasing sequence of positive integers µ = (µn), we consider the classes U(D, ζ) (resp. U (µ) (D, ζ)) of such functions f such that the partial sums {Sn(f, ζ) : n = 1, 2, . . . } (resp. {Sµ n (f, ζ) : n = 1, 2, . . . }) approximate all polynomials uniformly on the compact sets K ⊂ {z ∈ C : |z| ≥ 1} with connected complement. We show that these two classes of universal Taylor series coincide if and only if lim sup n µ n+1 µn < +∞. In the same spirit, we prove that, for ζ = 0, we have the equality U (µ) (D, ζ) = U (µ) (D, 0) if and only if lim sup n µ n+1 µn < +∞. Finally we deal with the case of real universal Taylor series.

Introduction

As usual N, Q denote the sets of positive integers and rational numbers respectively. Let D := {z ∈ C : |z| < 1} be the open unit disc of the complex plane. Throughout the paper, H(D) denotes the vector space of all holomorphic functions on D endowed with the topology of uniform convergence on all compact subsets of D. Also for a compact set K of C we denote by A(K) the set of all functions which are holomorphic in the interior K o of K and continuous on K. As usual, for a holomorphic function f in the unit disc and ζ ∈ D, S n (f ) or S n (f, ζ) stands for the n-th partial sum of the Taylor development of f with center at 0 or at ζ respectively. In 1996, Nestoridis proved the following result [START_REF] Nestoridis | Universal Taylor series[END_REF].

Theorem 1.1. [START_REF] Nestoridis | Universal Taylor series[END_REF] There exist Taylor series f = n≥0 a n z n such that, for every compact set K ⊂ {z ∈ C; |z| ≥ 1} with connected complement and for every function h ∈ A(K) there exists a subsequence (λ n ) ⊂ N such that S λn (f ) converges to h, as n → +∞, uniformly on K.will

In the sequel, such Taylor series will be called universal Taylor series and we will denote by U (D, 0) the set of such universal Taylor series. In the same spirit, for ζ ∈ D, we can replace S λn (f ) by S λn (f, ζ) in the previous theorem to obtain the class U (D, ζ) of universal Taylor series with center ζ. The sets U (D, 0) or U (D, ζ) enjoy very strong properties. For example, these sets are G δ dense subsets of H(D) and contain, apart from 0, a dense vector subspace of H(D) [START_REF] Bayart | Abstract theory of universal series and applications[END_REF][START_REF] Nestoridis | Universal Taylor series[END_REF]. This last property means that the sets U (D, 0) and U (D, ζ) are algebraically generic. A very nice theorem asserts that for all ζ ∈ D, U (D, 0) = U (D, ζ). We refer the reader to [START_REF] Gehlen | On the existence of O-universal functions[END_REF] and [START_REF] Melas | Universality of Taylor Series as a Generic Property of Holomorphic Functions[END_REF]. A crucial tool for the proof is a result initiated by Gehlen, Luh and Müller [START_REF] Gehlen | On the existence of O-universal functions[END_REF] which asserts that every universal Taylor series actually possesses Ostrowski-gaps, in the sense of the following definition. Definition 1.2. Let ζ ∈ C. Let +∞ j=0 a j (zζ) j be a complex power series with radius of convergence r ∈ (0, +∞). We say that it has Ostrowski-gaps (p m , q m ) if (p m ) and (q m ) are sequences of natural numbers with (1) p 1 < q 1 ≤ p 2 < q 2 ≤ . . . and lim m→+∞ qm pm = +∞, (2) for I = ∪ ∞ m=1 {p m + 1, . . . , q m }, we have lim j∈I |a j | 1/j = 0. The fact that every universal Taylor series possesses Ostrowski-gaps is at the core of many beautiful results (see for instance [START_REF] Bayart | Boundary behavior and Cesàro means of universal Taylor series[END_REF][START_REF] Charpentier | On countably universal series in the complex plane[END_REF][START_REF] Gehlen | On the existence of O-universal functions[END_REF][START_REF] Katsoprinakis | Coincidence of some classes of universal functions[END_REF][START_REF] Melas | Universality of Taylor Series as a Generic Property of Holomorphic Functions[END_REF][START_REF] Mouze | Polynomial inequalities and universal Taylor series[END_REF]). Thus the combination of the existence of Ostrowski-gaps with a result of Luh (see Theorem 1 of [START_REF] Luh | Universal approximation properties of overconvergent power series on open sets[END_REF] and Lemma 2.3 below) allows to obtain the aforementioned equality U (D, 0) = U (D, ζ). Notice that we give a new proof of [START_REF] Luh | Universal approximation properties of overconvergent power series on open sets[END_REF]Theorem 1] in Section 2.1. Next, in order to prove the algebraic genericity of the class of universal Taylor series, the following subclass of universal series was introduced. Definition 1.3. Let ζ ∈ D. Let µ = (µ n ) be an increasing sequence of positive integers with µ n → +∞ as n tends to infinity. A holomorphic function f ∈ H(D) belongs to the class U (µ) (D, ζ) if for every compact set K ⊂ {z ∈ C; |z| ≥ 1} with connected complement and for every function h ∈ A(K) there exists a subsequence (λ n ) ⊂ N such that S µ λn (f, ζ) converges to h, as n → +∞, uniformly on K.

Obviously we have

U (µ) (D, 0) ⊂ U (D, 0) (or U (µ) (D, ζ) ⊂ U (D, ζ)).
In [START_REF] Mouze | Polynomial inequalities and universal Taylor series[END_REF], as a consequence of a more general result relating to the weighted densities of subsequences along which the partial sums of universal Taylor series realize the universal approximation, the authors exhibit non-trivial subsequences µ of N such that U (µ) (D, 0) = U (D, 0). For example, the sequences (µ n ) = (n 2 ), (µ n ) = (2 n ) or the sequence of prime numbers satisfy this property. In [START_REF] Mouze | Polynomial inequalities and universal Taylor series[END_REF]Section 5], it is asked to characterize the subsequences µ for which the equality U (µ) (D, 0) = U (D, 0) holds. In this paper, we are going to answer this question by establishing the following result. 

(i) U (D, ζ) = U (µ) (D, ζ) (ii) lim sup n→+∞ µ n+1 µ n < +∞.
To prove the implication (2) ⇒ (1) we use in an essential way the fact that all universal Taylor series possess Ostrowski-gaps. To obtain the converse implication, we employ a constructive method based on a Bernstein-Walsh type theorem given by Costakis and Tsirivas (see Theorem 2.4 below), when they studied the phenomenon of disjoint universal Taylor series [START_REF] Costakis | Doubly universal Taylor series[END_REF]. As consequence of Theorem 1.4 we show the independence of the class U (µ) (D, ζ) with the center of expansion ζ provided that lim sup n→+∞ µ n+1 µ n < +∞. This phenomenon was already noticed in specific cases in [START_REF] Vlachou | Disjoint universality for families of Taylor-type operators[END_REF][START_REF] Vlachou | Subclasses of universal Taylor series and center independence[END_REF]. Furthermore, using a constructive method similar to that of the proof of Theorem 1.4 and the ideas of the new proof of [8, Theorem 1], we obtain the following characterization. The following assertions are equivalent:

(i) U (µ) (D, ζ) = U (µ) (D, 0) (ii) lim sup n→+∞ µ n+1 µ n < +∞.
We refer the reader to Corollary 2.6 and Theorem 2.7. Finally in the last section we deal with the case of real universal Taylor series.

2. Universal Taylor series versus universal Taylor series with respect to a prescribed subsequence 2.1. Preliminary results. In this subsection we state some results that we will use for the proof of the main theorem. On one hand we are interested in the fact that all universal Taylor series possess Ostrowski-gaps. Actually a slightly more precise result holds (se [9, Theorem 9.1]). Combined Lemma 2.1 with the definition of universal Taylor series we immediately deduce the following useful lemma. Lemma 2.2. Let ζ ∈ D. Let f be in H(D) and suppose that the Taylor series of f at 0 has Ostrowski-gaps (p m , q m ). Then for every sequence (r m ) with p m < r m ≤ q m the difference between partial sums S rm (f, ζ)(z) -S pm (f, ζ)(z) converges uniformly to zero (as m → +∞) on compact sets of C.

In connection with the Ostrowski-gaps, we also have the following result ([8, Theorem 1] or [START_REF] Melas | Universality of Taylor Series as a Generic Property of Holomorphic Functions[END_REF]Lemma 9.2]). The published proof uses the Hadamard three-circle theorem. Here we give an elementary proof of the result.

Lemma 2.3. Let f be in H(D) and ζ 0 , ζ ∈ D. Suppose that the Taylor series of f at ζ 0 has Ostrowski-gaps (p m , q m ). Then the difference

S p k (f, ζ)(z) -S p k (f, ζ 0 )(z) converges to zero (as k → +∞) uniformly on compact sets of D × C (ζ ∈ D, z ∈ C).
Proof. Without loss of generality, we can suppose that ζ 0 = 0 (and ζ = ζ 0 !). Let K ⊂ C and L ⊂ D be fixed compact sets. We define

r = sup ζ∈L |ζ| and M > max(2, sup{|z -ζ| : z ∈ K, ζ ∈ L}). Let us choose 0 < ε < 1 such that r(1 + ε) < 1 and 2εM < 1. We write, for all |z| < 1, f (z) = +∞ k=0 a k z k . Thus, for all j ≥ 0, we have f (j) (ζ) = j! +∞ k=j a k k j ζ k-j .
Using the equality

z k = k l=0 a k k l (z -ζ) l ζ k-l , we get, for all ζ ∈ L, (1) 
S pm (f, ζ)(z) -S pm (f )(z) = pm j=0   +∞ k=j a k k j ζ k-j   (z -ζ) j - pm j=0   pm k=j a k k j ζ k-j   (z -ζ) j = pm j=0   qm k=1+pm a k k j ζ k-j   (z -ζ) j + pm j=0   +∞ k=1+qm a k k j ζ k-j   (z -ζ) j := A 1,m (ζ, z) + A 2,m (ζ, z)
Now we are going to estimate the series A 1,m (ζ, z)and A 2,m (ζ, z). On one hand, by the triangle inequality and the inequality k j ≤ 2 k , we get

sup ζ∈L sup z∈K |A 1,m (ζ, z)| ≤ pm j=0   qm k=1+pm |a k |2 k r k-j   M j .
Using the Ostrowski-gaps, one can find m 1 such that, for all m ≥ m 1 and 1 + p m ≤ k ≤ q m , |a k | < ε k . We deduce, using the property M > 2r,

(2) sup

ζ∈L sup z∈K |A 1,m (ζ, z)| ≤ pm j=0   qm k=1+pm (2εr) k   M r j ≤ 1 1 -2εr (2εM ) 1+pm .
On the other hand, we need the following classical inequality

(3) k j ≤ k j j! ≤ ek j j
and the fact that, for t < k, the function t → ek t t is increasing. It follows

(4) sup ζ∈L sup z∈K |A 2,m (ζ, z)| ≤ pm j=0   +∞ k=1+qm |a k |e pm k p m pm r k-j   M j .
Since p m /q m → 0, as m tends to infinity, we have, for all k ≥ 1 + q m and 0 ≤ j ≤ p m ,

e pm k-j e pm k-j log( k pm ) ≤ e pm 1+qm-pm e pm k(1-j/k) log( k pm ) ≤ e pm 1+qm-pm e - pm k(1- pm 1+qm ) log( pm k ) → 1 as m → +∞.
Therefore, since lim sup |a k | 1/k ≤ 1 and p m /q m → 0, as m tends to infinity, there exists a positive integer m 2 such that for all m ≥ m 2 , k ≥ 1 + q m and 0

≤ j ≤ p m , ke p m pm/(k-j) |a k | 1/(k-j) r ≤ (1 + ε)r.
Since the choice of ε ensures (1 + ε)r < 1 and M > (1 + ε)r, we deduce that for all m ≥ m 2

(5)

sup ζ∈L sup z∈K |A 2,m (ζ, z)| ≤ pm j=0   +∞ k=1+qm (1 + ε) k-j r k-j   M j ≤ ((1 + ε)r) 1+qm 1 -(1 + ε)r pm j=0 M (1 + ε)r j ≤ 1 + p m 1 -(1 + ε)r M (1 + ε)r pm ((1 + ε)r) 1+qm .
Finally taking into account p m /q m → 0 again and combining (1) with ( 2) and ( 5), we derive On the other hand, we will need a specific version of Bernstein-Walsh theorem. It is a polynomial approximation theorem which allows in some sense to control both the degree and the valuation of the polynomials. This elegant statement was given in [START_REF] Costakis | Doubly universal Taylor series[END_REF]. For given sequence (x n ), (y n ) of positive real numbers, the notation

sup ζ∈L sup z∈K |S pm (f, ζ)(z) -S pm (f )(z)| → 0, as m → +∞.
y n = O(x n ) means that the sequence (y n /x n ) is bounded. Theorem 2.4. [4, Theorem 2.1] Let (σ n ), (τ n ) be strictly increasing sequences of positive integers, let K ⊂ C \ D be a compact set with connected complement and let r ∈ (0, 1). If 1 ≤ τ n /σ n → +∞ as n → +∞ and if U is open in C with K ⊂ U ,
then there is θ ∈ (0, 1) so that for every h ∈ H(U ) there exists a sequence of polynomials (P n ) of the form Theorem 2.5. Let µ = (µ n ) be a strictly increasing sequence of positive integers. The following assertions are equivalent:

P n (z) =
(i) U (D, 0) = U (µ) (D, 0) (ii) lim sup n→+∞ µ n+1 µ n < +∞. Proof. (ii) ⇒ (i): assume that lim sup n→+∞ µ n+1 µ n < +∞. Since the inclusion U (µ) (D, 0) ⊂ U (D, 0)
is obvious, it suffices to prove U (D, 0) ⊂ U (µ) (D, 0). Let also f be in U (D, 0). Thus according to Lemma 2.1 for all compact subset K ⊂ C \ D with connected complement and for all h ∈ A(K), there exists two sequences of positive integers (p m ), (q m ) such that (1) the Taylor series of f at 0 has Ostrowski-gaps (p m , q m ), (2) and sup 

z∈K |S pm (f )(z) -h(z)| → 0,
|S pm (f )(z) -S µ jm (f )(z)| → 0, as m → +∞.
From the triangle inequality we get

sup z∈K |S µ jm (f )(z) -h(z)| → 0, as m → +∞.
This implies f ∈ U (µ) (D, 0).

(i) ⇒ (ii): to do this, we assume that lim sup n→+∞ µ n+1 µ n = +∞ and it suffices to exhibit an universal series f ∈ U (D, 0) such that f / ∈ U (µ) (D, 0). By hypothesis there exists an increasing subsequence of positive integers (n j ) such that µ n j +1 µ n j → +∞ as j → +∞. We set, for all j ≥ 1, (6) u j = µ n j + 1, w j = µ n j +1 and v j = ⌊ √ u j w j ⌋.

Clearly there exists N 0 ∈ N such that, for all j ≥ N 0 , u j < v j < w j and

v j u j = ⌊ √ u j w j ⌋ u j ≤ µ n j +1 µ n j → +∞ as j → +∞ and w j 1 + v j = w j 1 + ⌊ √ u j w j ⌋ ≤ µ n j +1 (1 + µ n j )µ n j +1 → +∞ as j → +∞.
Let (f q ) be an enumeration of all the polynomials with coefficients in Q + iQ. Let (K m ) be a sequence of compact sets with connected complement and K m ∩ D = ∅ for every m ∈ N such that for every compact set K ⊂ C \ D with connected complement there exists n ∈ N such that K ⊂ K n (see [START_REF] Nestoridis | Universal Taylor series[END_REF]Lemma 2.1]). We consider an enumeration (K ms , f qs ), s = 1, 2, . . . , of all couples (K m , f q ), m, q = 1, 2, . . . . Let also (r l ) be an increasing sequence of real numbers with 0 < r l < 1 and r l → 1, as l → +∞. We fix z 0 ∈ C \ D. For all l ≥ 1, we set Kl = K l ∪ {z 0 } and note that Kl is a compact set with connected complement and Kl ⊂ C \ D. First we deal with Km 1 , f q 1 and r 1 . By applying Theorem 2.4, we find j 1 ∈ N and polynomials

P 1 (z) = v j 1 k=u j 1 c j 1 ,k z k , P1 (z) = w j 1 k=v j 1 +1 c j 1 ,k z k such that sup z∈ Km 1 |P 1 (z) -f q 1 (z)| < 1 2 2 , sup |z|≤r 1 |P 1 (z)| ≤ 1 2 2 and sup z∈ Km 1 | P1 (z) + f q 1 (z)| < 1 2 2 , sup |z|≤r 1 | P1 (z)| ≤ 1 2 2 .
Observe that we have, by the triangle inequality, sup

z∈ Km 1 |P 1 (z) + P1 (z)| ≤ sup z∈ Km 1 |P 1 (z) -f q 1 (z)| + sup z∈ Km 1 | P1 (z) + f q 1 (z)| < 2 2 2 .
Further we find j 2 ∈ N with j 2 > j 1 and polynomials

P 2 (z) = v j 2 k=u j 2 c j 2 ,k z k , P2 (z) = w j 2 k=v j 2 +1 c j 2 ,k z k such that sup z∈ Km 2 |P 1 (z) + P1 (z) + P 2 (z) -f q 2 (z)| < 1 3 2 , sup |z|≤r 2 |P 2 (z)| ≤ 1 3 2 and sup z∈ Km 2 | P2 (z) + f q 2 (z)| < 1 2 2 , sup |z|≤r 2 | P1 (z)| ≤ 1 3 2 .
Observe that we have, by the triangle inequality,

sup z∈ Km 2 2 i=1 P i (z) + Pi (z) ≤ sup z∈ Km 2 |P 1 (z) + P1 (z) + P 2 (z) -f q 2 (z)| + sup z∈ Km 2 | P2 (z) + f q 2 (z)| < 2 3 2
. We argue by induction. Suppose that for a natural number s ≥ 2 we have already defined integers

j 1 < j 2 < • • • < j s
and polynomials P i , Pi , i = 1, . . . , s such that [START_REF] Katsoprinakis | Coincidence of some classes of universal functions[END_REF] P i (z) =

v j i k=u j i c j i ,k z k , Pi (z) = w j i k=v j i +1 c j i ,k z k with (8) sup z∈ Kms s-1 i=1 P i (z) + P s (z) -f qs (z) < 1 (s + 1) 2 , sup |z|≤rs |P s (z)| ≤ 1 (s + 1) 2 (9) sup z∈ Kms | Ps (z) + f qs (z)| < 1 (s + 1) 2 , sup |z|≤rs | Ps (z)| ≤ 1 (s + 1) 2 .

and (10) sup

z∈ Kms s i=1

(P i (z) + Pi (z)) < 2 (s + 1) 2 .
Using Theorem 2.4, we find j s+1 ∈ N with j s+1 > j s and polynomials

P s+1 (z) = v j s+1 k=u j s+1 c j s+1 ,k z k , Ps+1 (z) = w j s+1 k=v j s+1 +1 c j s+1 ,k z k such that sup z∈ Km s+1 s i=1 P i (z) + P s+1 (z) -f q s+1 (z) < 1 (s + 2) 2 , sup |z|≤r s+1 |P s+1 (z)| ≤ 1 (s + 2) 2 and sup z∈ Km s+1 | Ps+1 (z) + f q s+1 (z)| < 1 (s + 2) 2 , sup |z|≤r s+1 | Ps+1 (z)| ≤ 1 (s + 2) 2 .
Thus from the triangle inequality we get sup z∈ Km s+1 s+1 i=1

(P i (z) + Pi (z)) ≤ sup z∈ Km s+1 s i=1 P i (z) + Pi (z) + P s+1 (z) -f q s+1 (z) + sup z∈ Km s+1 | Ps+1 (z) + f q s+1 (z)| < 2 (s + 1) 2 .
The induction is valid. Finally we set

f (z) = i≥1 P i (z) + Pi (z) .
Thanks to the second inequalities of ( 8) and ( 9) this series converges on all compact subsets of D. So f ∈ H(D). The first inequality of (8) ensures that f ∈ U (D, 0). Indeed, let K ⊂ C \ D be a compact set with connected complement and h ∈ A(K). Set ε > 0 and s 0 ∈ N with 1/(s 0 + 1) 2 < ε/2. By hypothesis, one can find a positive integer p > s 0 such that K ⊂ K mp and sup K |h -

f qp | < ε/2. Thus from (8) we get sup z∈K |S v jp (f )(z) -h(z)| ≤ sup z∈Km p |S v jp (f )(z) -f qp (z)| + sup z∈Km p |h(z) -f qp (z)| < 1 (p + 1) 2 + ε 2 < ε.
Moreover observe that the property ( 6) implies that

{µ n ; n ≥ n j 1 + 1} ∩ (∪ s≥1 {u js , u js + 1, . . . , w js -1}) = ∅.
Therefore the equation [START_REF] Mouze | On doubly universal functions[END_REF] guarantees that, for all n ∈ N,

|S µn (f )(z 0 )| ≤ 2 s≥1 1 (s + 1) 2 = π 2 3 -2.
From this last inequality we easily deduce that f / ∈ U (µ) (D, 0). , the distance between ζ and the unit circle. By hypothesis there exists an increasing sequence of integers (n j ) such that µ n j +1 µ n j → +∞, as j → +∞.

We set, for all j ≥ 1, ( 11)

u j = µ n j + 1, w j = µ n j +1 and v j = ⌊ √ u j w j ⌋.
As in the proof of Theorem 2.5, we have for all j large enough u j < v j < w j and (12) v j u j → +∞ and

w j 1 + v j → +∞ as j → +∞.
Let us also consider an enumeration (K ms , f qs ), s = 1, 2, . . . , of all couples (K m , f q ), m, q = 1, 2, . . . , where (f q ) is an enumeration of all the polynomials with coefficients in Q + iQ and (K m ) is a sequence of compact sets with connected complement and K m ∩ D = ∅ such that for every compact set K ⊂ C \ D with connected complement there exists n ∈ N such that K ⊂ K n . Let also (r l ) be an increasing sequence of real numbers with 0 < r l < 1 and r l → 1, as l → +∞. For all l ≥ 1, we set Kl = K l ∪ {z 0 }. Observe that Kl is a compact set with connected complement and Kl ⊂ C \ D.

First we deal with Km 1 , f q 1 and r 1 . By applying Theorem 2.4, we find j 1 ∈ N and polynomial

P 1 (z) = w j 1 k=1+v j 1 a k z k such that, for all j ≥ j 1 , (13) 2|z 
j 0 -(z 0 -ζ) j | = 2(1 -(1 -|ζ|) j ) > 1 and |f q 1 (z 0 )| ≤ w j 1 , sup Km 1 |P 1 (z) -f q 1 (z)| < 1 2
and sup

|z|≤r 1 |P 1 (z)| < 1 2 .
By the triangle inequality we have

(14) |P 1 (z 0 )| ≤ |P 1 (z 0 ) -f q 1 (z 0 )| + |f q 1 (z 0 )| ≤ 1 2 + w j 1 ≤ 1 + w j 1 .
We define

a 1+w j 1 = - P 1 (z 0 ) z 1+w j 1 0 -(z 0 -ζ) 1+w j 1 .
Thanks to ( 13) and ( 14), we have

|a 1+w j 1 | ≤ 2(1 + w j 1 ). Then we set R 1 (z) = a 1+w j 1 z 1+w j 1 .
By induction we construct an increasing sequence of integers (j l ), two sequences of polynomials (P l ) and (R l ) such that, for all l ≥ 2, (15)

µ n j l 1 + µ n j l-1 → +∞, as l → +∞ |f q l (z 0 )| ≤ w j l , (16) 
P l (z) = w j l k=1+v j l a k z k , R l (z) = a 1+w j l z 1+w j l with (17) sup Km l P l (z) + l-1 i=1 (P i (z) + R i (z)) -f q l (z) < 1 2 l and sup |z|≤r l |P l (z)| < 1 2 l , and (18) 
a 1+w j l = - P l (z 0 ) + l-1 i=1 (P i (z 0 ) + R i (z 0 )) z 1+w j l 0 -(z 0 -ζ) 1+w j l .
By the triangle inequality we have

|P l (z 0 )| ≤ 1 2 l + w j l + ≤ 1 + w j l and, taking into account (13), we deduce (19) |a 1+w j l | ≤ 2(1 + w j l ).
We also define, for all l ≥ 2, (20)

a k = 0 for k = 2 + w j l-1 , . . . , v j l .
By construction we get, for all l ≥ 1, using (18),

w j l j=0   1+w j l k=j a k k j ζ k-j   (z 0 -ζ) j = w j l j=0   w j l k=j a k k j ζ k-j   (z 0 -ζ) j + a 1+w j l w j l j=0 1 + w j l j ζ 1+w j l -j (z 0 -ζ) j = l-1 i=1 (P i (z 0 ) + R i (z 0 )) + P l (z 0 ) + a 1+w j l z 1+w j l 0 -(z 0 -ζ) 1+w j l = 0. Now we consider f (z) = +∞ i=1 (P i (z) + R i (z)) := k≥0 a k z k . (21) 
Thanks to the estimates (17) and ( 19) the series f belongs to H(D). The equations ( 16) and (17) ensure that, for all l ≥ 1, sup

z∈Km l |S w j l (f )(z) -f q l (z)| < 1 2 l .
Since, for all l ≥ 1, w j l = µ 1+n j l , we deduce that f belongs to U (µ) (D, 0). To finish the proof, we are going to prove that f / ∈ U (µ) (D, ζ). Notice that we have

S m (f, ζ)(z 0 ) = m j=0   +∞ k=j a k k j ζ k-j   (z 0 -ζ) j .
First we deal with the case m = w j l . We have, thanks to the properties (20) and ( 21),

(22) S w j l (f, ζ)(z 0 ) = w j l j=0   +∞ k=1+v j l+1 a k k j ζ k-j   (z 0 -ζ) j .
Using the equation ( 15), we argue as in the estimates (3), ( 4) and ( 5) of the proof of Lemma 2.3 to obtain (23) S w j l (f, ζ)(z 0 ) → 0, as l → +∞.

Now, for all l ≥ 1 and for all positive integer m ∈ [1 + w j l , u j l+1 ], we can write, thanks to (20) and (21) again,

S m (f, ζ)(z 0 ) = w j l j=0   +∞ k=1+v j l+1 a k k j ζ k-j   (z 0 -ζ) j + m j=1+w j l   +∞ k=j a k k j ζ k-j   (z 0 -ζ) j = w j l j=0   +∞ k=1+v j l+1 a k k j ζ k-j   (z 0 -ζ) j + a 1+w j l (z 0 -ζ) 1+w j l + m j=1+w j l   +∞ k=1+v j l+1 a k k j ζ k-j   (z 0 -ζ) j := T 1,l (z 0 ) + a 1+µ n j l +1 (z 0 -ζ) 1+µ j l +1 + T 2,l (z 0 ).
By (19) we get |a 1+w j l (z 0ζ) 1+w j l | → 0, as l tends to infinity. Again inspired by the estimates (3), ( 4) and ( 5) of the proof of Lemma 2.3 we get, for i = 1, 2, T i,l (z 0 ) → 0, as l tends to infinity (let us recall that m ∈ [1 + µ j l +1 , u j l+1 ] and (1 + v j l+1 )/u j l+1 → +∞). In summary we have, for all positive integer m ∈ [w j l , u j l+1 ],

(24) S m (f, ζ)(z 0 ) → 0, as l → +∞.

By construction, we have [START_REF] Melas | Universality of Taylor Series as a Generic Property of Holomorphic Functions[END_REF][START_REF] Müller | Universal overconvergence and Ostroski-gaps[END_REF]). To see this, it suffices to note that Lemma 2.1, Lemma 2.2, Lemma 2.3 and Theorem 2.4 remain valid in this context. Thus the proofs work along the same lines.

(25) {µ n ; n ∈ N}   l≥1 ([1 + u j l+1 , w j l+1 -1] ∩ N)   = ∅.

The real case

As far as we know the first example of universal series was introduced by Fekete [14] which showed that there exists a real formal power series n≥1 a n x n satisfying the following universal property: for every continuous function g on [-1, 1] with g(0) = 0 there exists an increasing sequence (λ n ) of positive integers such that sup

x∈[-1,1] λn k=1 a k x k -g(x) → 0, as n → +∞.
Further combining this result with Borel's theorem we obtain C ∞ functions vanishing at 0 whose partial sums of its Taylor series with center 0 approximate every continuous function vanishing at 0 locally uniformly in R [START_REF] Erdmann | Universal families and hypercyclic operators[END_REF]. We denote by C ∞ 0 (R) the space of infinitely differentiable function on R vanishing at 0. Definition 3.1. Let µ = (µ n ) be an increasing sequence of positive integers with µ n → +∞ as n tends to infinity. A function f ∈ C ∞ 0 (R) belongs to the class U (µ) of universal functions with respect to µ if for every compact set K ⊂ R and every continuous functions h : R → R with h(0) = 0, there exists an increasing sequence (λ n ) of positive integers such that sup x∈K |S λn (f )(x)h(x)| → 0, as n → +∞.

For µ = N, we will denote U (µ) by U .

In this context, the analogue of Theorem 1.4 states as follows.

Theorem 3.2. Let µ = (µ n ) be a strictly increasing sequence of positive integers. The following assertions are equivalent:

(1) U = U (µ) (2) lim sup n→+∞ µ n+1 µ n < +∞.
To prove this result, we need the following results that are the C ∞ versions of Lemma 2.1 and Theorem 2.4 respectively. |P n (x)h(x)| → 0, as n → +∞.

Sketch of the proof of Theorem 3.2.

(2) ⇒ (1): thanks to Lemma 3.3, it suffices to mimic the proof (ii) ⇒ (i) of Theorem 2.5.

(1) ⇒ (2): we argue as in the proof of (i) ⇒ (ii) of Theorem 2.5. We define the same sequences (u j ), (v j ), (w j ) and we denote by (f j ) an enumeration of all the polynomials with coefficients in Q. Using Lemma 3.4, we construct step by step an increasing sequence of positive integers (j s ) and polynomials and polynomials P i , Pi , i = 1, . . . , s such that Thus f / ∈ U (µ) .

Theorem 1 . 4 .

 14 Let ζ ∈ D. Let µ = (µ n ) be a strictly increasing sequence of positive integers. The following assertions are equivalent:

Theorem 1 . 5 .

 15 Let ζ ∈ D, ζ = 0. Let µ = (µ n ) be a strictly increasing sequence of positive integers.

Lemma 2 . 1 .

 21 Let ζ ∈ D. Let f ∈ U (D, ζ). Let K ⊂ C \ D be a compact set with connected complement and let h ∈ A(K). Then there exist two sequences of positive integers (p m ), (q m ) such that (1) the Taylor series of f at ζ has Ostrowski-gaps (p m , q m ), (2) and sup z∈K |S pm (f, ζ)(z)h(z)| → 0, as m → +∞.

  Notice that the statements of [8, Theorem 1] or [9, Lemma 9.2] are given in the more general case where the open unit disc D is replaced by a simply connected domain Ω with Ω ⊂ C. Obviously the same proof does the job with easy modifications.

2 . 2 .

 22 τn k=σn c n,k z k with sup z∈K |h(z) -P n (z)| = O(θ τn ) and sup |z|≤r |P n (z)| = O(θ τn ). Proof of Theorem 1.4. In order to simplify the notations, we write the proof for the class U (D, 0). The proof works along the same lines in the case of the class U (D, ζ), ζ ∈ D.

2. 3 .Corollary 2 . 6 .

 326 Universal Taylor series and center independence. Let us recall that the classes U (D, 0) and U (D, ζ) coincide for all ζ ∈ D[START_REF] Gehlen | On the existence of O-universal functions[END_REF][START_REF] Melas | Universality of Taylor Series as a Generic Property of Holomorphic Functions[END_REF]. The proof is based on Lemma 2.1, Lemma 2.2 and Lemma 2.3 which asserts that if a Taylor series f has Ostrowski-gaps (p m , q m ) then the differenceS pm (f, ζ)(z) -S pm (f, 0)(z) converges to zero (as m → +∞) uniformly on compact sets of D × C (ζ ∈ D, z ∈ C). But if you can choose q m ∈ µ, there is no evidence that you can choose p m ∈ µ. Thus it is not clear that we have U (µ) (D, 0) = U (µ) (D,ζ). Nevertheless Theorem 1.4 immediately leads to the following corollary. Let ζ ∈ D. Let µ = (µ n ) be a strictly increasing sequence of positive integers with lim sup n→+∞ µ n+1 µ n < +∞. Then we have U (µ) (D, ζ) = U (µ) (D, 0). Proof. We know that, for all ζ ∈ D, U (D, ζ) = U (D, 0) [5, 9]. Assume that lim sup n→+∞ µ n+1 µ n < +∞. Hence Theorem 1.4 ensures that U (µ) (D, ζ) = U (D, ζ) and U (µ) (D, 0) = U (D, 0). We get U (µ) (D, ζ) = U (µ) (D, 0). Corollary 2.6 covers all the known examples of sequences µ such that U (µ) (D, ζ) = U (µ) (D, 0) [15, 16]. Moreover Corollary 2.6 is optimal in the following sense. Theorem 2.7. Let ζ ∈ D, ζ = 0. Let µ = (µ n ) be a strictly increasing sequence of positive integers with lim sup n→+∞ µ n+1 µ n = +∞. Then we have U (µ) (D, ζ) = U (µ) (D, 0). Proof. Let ζ ∈ D, ζ = 0. We are going to build an universal series f ∈ U (µ) (D, 0) such that f / ∈ U (µ) (D, ζ). Let us consider z 0 with |z 0 | = 1 such that |z 0 -ζ| = d(ζ, ∂D)

From ( 24 Example 2 . 8 .

 2428 ) and (25), we get S µn (f, ζ)(z 0 ) → 0, as n → +∞. It follows that f / ∈ U (µ) (D, ζ). This finishes the proof. Let ζ ∈ D, ζ = 0. We can apply Theorem 2.7 with the sequence (µ n ) = (n!). Therefore we obtain U ((n!)) (D, 0) = U ((n!)) (D, ζ). Remarks 2.9. (1) The combination of Corollary 2.6 with Theorem 2.7 gives Theorem 1.5. (2) Notice also that Theorem 1.4, Corollary 2.6 and Theorem 2.7 remain valid for the classes of universal Taylor series U (Ω, ζ) and U (µ) (Ω, ζ) where you replace the unit disc D by a simply connected domain Ω, with Ω ⊂ C and Ω = C, and ζ ∈ Ω, provided that the universal Taylor series possess Ostrowski-gaps (see

Lemma 3 . 3 .

 33 [START_REF] Mouze | Polynomial inequalities and universal Taylor series[END_REF] Proposition 4.4] Let f ∈ U . Let h : R → R be a continuous function, with h(0) = 0. There exist two sequences of natural numbers (λ n ), (µ n ) such that (1) the Taylor series of f around zero has Ostrowski-gaps (λ n , µ n ), (2) S λn (f ) → h, uniformly on each compact subset of R as n → +∞. Lemma 3.4. [10, Lemma 3.2] Let (l n ) and (m n ) be two strictly increasing sequences of positive integers such that l n ≤ m n and mn ln → +∞ as n → +∞. Let A > 0. For every continuous function h : R → R, with h(0) = 0, there exists a sequence (P n ) of real polynomials of the form P n (x) = mn k=ln c n,k x k , such that sup x∈[-A,A]

cP

  j i ,k x k , Pi (x) = w j i k=v j i +1 c j i ,k x k with (27) sup x∈[-s,s] s-1 i=1 P i (x) + P s (x)f s (x) < 1 (s + 1) 2 (28) sup x∈[-s,s] | Ps (x) + f s (x)| < 1 (s + 1) 2 . i (x) + Pi (x) + P s (x)f s (x) + sup x∈[-s,s] | Ps (x) + f s (x)| < 2 (s + 1) 2 .Finally let us consider the formal power series f (x) = i≥1 P i (x) + Pi (x) . By Borel's theorem one can find a function f ∈ C ∞ 0 (R) such that its Taylor development at zero is f . The inequality (27) ensures that f ∈ U . Moreover observe that the property[START_REF] Erdmann | Universal families and hypercyclic operators[END_REF] implies that∀n ≥ n j 1 + 1, ∀s ≥ 1 µ n / ∈ [u js , w js -1]and the equation (29) guarantees that, for all n ∈ N,sup x∈[-1,1]|S µn (f )(x)| ≤ 2

  as m → +∞. ∈ N, such that for all m ≥ N one can find µ jm with p m ≤ µ jm < q m . Hence we apply Lemma 2.2 to obtain sup z∈K

	Since we have both				
	lim sup n→+∞	µ n+1 µ n	< +∞ and	q m p m	→ +∞, as m → +∞,
	there exists N				
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