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Summary 

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our 
planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is 
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known about how their transcriptomes vary globally. Here, we present a dataset of 187 
metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations, and 
establish a resource of 47 million genes to study community-level transcriptomes across depth layers, 
and from pole-to-pole. We examine gene expression changes and community turnover as the 
underlying mechanisms shaping community transcriptomes along these axes of environmental 
variation, and show how their individual contributions differ for multiple biogeochemically relevant 
processes. Furthermore, we find the relative contribution of gene expression changes to be 
significantly lower in polar than in non-polar waters, and hypothesize that in polar regions, alterations 
in community activity in response to ocean warming will be driven more strongly by changes in 
organismal composition than by gene regulatory mechanisms. 
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Introduction 

Microorganisms perform ecological functions, and drive biogeochemical cycles that transform matter 
and energy on a global scale (Falkowski et al., 2008). Recent advances in sequencing technology and 
the analysis of DNA extracted from environmental samples (metagenomics) have made it possible to 
systematically characterize the taxonomic and genomic composition of microbial communities in 
diverse biomes (Fierer et al., 2012; Human Microbiome Project Consortium, 2012; Sunagawa et al., 
2015). In the ocean, such biodiversity surveys have been conducted on local (Karl and Church, 2014; 
Venter et al., 2004), as well as regional and global scales (Biller et al., 2018; Kent et al., 2016; Rusch 
et al., 2007; Sunagawa et al., 2015). These and similar efforts (Duarte, 2015; Kopf et al., 2015; Tully 
et al., 2018), have provided valuable baseline data that reveal the biodiversity of ocean microbial taxa, 
the repertoire of genes and genomes in the ocean, and the ecological factors that structure ocean 
microbial communities. 

Despite the rich information that can be obtained about the gene-encoded functional potential in an 
environment, metagenomics alone cannot predict which, and in what amount, specific functions 
contribute to the molecular activity of microbial communities in situ, as genes may be variably 
expressed or not expressed at all. In contrast, metatranscriptomics enables the analysis of the pool of 
transcripts from genes that are actually expressed in an environmental sample (Helbling et al., 2012; 
Moran et al., 2013; Poretsky et al., 2005) and therefore provides a more accurate depiction of 
ecologically relevant processes that are occurring, e.g., in response to diurnal or other variations in 
environmental conditions (Ottesen et al., 2014; Poretsky et al., 2009). In addition, the integration of 
metagenomic and metatranscriptomic data to quantify levels of gene expression, that is, the relative 
amount of expressed transcripts per gene, has revealed a number of important insights. For example, 
the ecological importance of photosynthesis, carbon fixation and ammonium uptake has been 
highlighted in Prochlorococcus, which is abundant in oligotrophic waters of the tropical and subtropical 
ocean, as genes encoding these functions were among the most highly expressed genes in their 
genomes (Frias-Lopez et al., 2008). Picocyanobacteria in general, have been found to contribute 
more to the community pool of transcripts than expected by abundances inferred from metagenomics, 
whereas the opposite has been shown for some heterotrophic bacteria, including those from the 
highly abundant SAR11 clade (Dupont et al., 2015; Frias-Lopez et al., 2008; Shi et al., 2011). 

In contrast to studying differences between gene and transcript abundances within samples, 
understanding why a pool of community transcripts (metatranscriptome) changes from one sample to 
another has received much less attention. Notably, changes in metatranscriptomes can result from 
alterations in the relative abundance of organisms and their associated genes (community turnover) 
and/or by changes in the expression of genes encoded among the community members (Satinsky et 
al., 2014) (Figure S1). For microbial communities in the Amazon River Plume it has been shown, for 



 

 

example, that higher transcript levels for some functions (e.g., acquisition of phosphorous) could be 
explained by increased gene abundances in free-living communities whereas for other functions (e.g., 
sulfur cycling, vitamin biosynthesis, and aromatic compound degradation) higher transcript levels 
were attributed to increased gene expression levels in particle-attached communities (Satinsky et al., 
2014). However, global-scale biogeographic patterns of community turnover versus gene expression-
driven changes in metatranscriptomes, and the ecological determinants of the relative contribution 
driving these two mechanisms, have not yet been studied for marine or any other environmental 
microbial communities. 

Here, in order to better understand the basis of metatranscriptomic differences across environmental 
gradients (e.g., latitude and depth) in the ocean, we leveraged efforts from the Tara Oceans (2009-
2013) expeditions (Karsenti et al., 2011) and analyzed an environmentally contextualized dataset 
(Pesant et al., 2015) of metatranscriptomes and metagenomes, which includes a circumpolar 
representation of the climate change-impacted Arctic Ocean (Hoegh-Guldberg and Bruno, 2010; 
Overland et al., 2018). To capture the abundances of genes and transcripts from ocean microbial 
communities at the species level, we established a reference catalog of non-redundant protein-coding 
sequences (hereafter, genes). Using this integrated information, we determined for a number of 
biogeochemical processes involved in photosynthesis, as well as in the cycling of carbon, nitrogen, 
and sulfur, varying contributions of community turnover and gene expression changes to 
metatranscriptome differences across latitude and depth. We further compared, as a function of 
temperature, the relative contributions of these mechanisms, and hypothesize how they will differ 
between polar and non-polar regions in response to ocean warming. 

Results and Discussion 

A new meta-omics resource for global ocean microbiome research 

The dataset for this study consists of metatranscriptomic (n = 187) and metagenomic (n = 370) 
samples collected at 126 globally distributed sampling stations across a latitudinal range of 142° 
(Figure 1, Table S1). The samples originate from the light-penetrated, epipelagic waters from the 
surface (SRF), deep chlorophyll maximum (DCM), and mixed water layer, and dark waters from the 
mesopelagic (MES) layer, from 5 m to 1,000 m in depth (median depths of 5 m, 50 m and 550 m for 
SRF, DCM, and MES respectively). The 187 prokaryote-enriched metatranscriptomic libraries were 
generated and sequenced to an average depth of 28 Gbp per sample (Table S1), after protocol 
optimization for low-input RNA samples (Alberti et al., 2014; STAR Methods). These data were 
analyzed in conjunction with a set of 131 virus-, 59 giant virus-, and 180 prokaryote-enriched 
metagenomes (Table S1), which include prior sequencing efforts of Tara Oceans (Sunagawa et al., 
2015), virus-enriched metagenomes from polar (n = 44) and non-polar (n = 42) regions (Gregory et 
al., 2019; Roux et al., 2016) (see STAR Methods for definitions), and 41 prokaryote-enriched 
metagenomes from the Arctic Ocean (new to this study). 

We aimed to capture whole community-level variations in community turnover and gene expression 
changes, and to place these data into the context of geographic and environmental gradients at a 
global scale. Notably, the applicability of this approach critically depends on the evolutionary 
distances between the organisms present in the environment and those represented in genomic 
sequence databases (Nayfach et al., 2016). Ideally, genome sequences would be available for all 
organisms that comprise the communities of interest, thus facilitating the integration of gene 
abundance and gene expression data to assess whole-community compositions. Such analyses 
appear to be within reach for the human gut microbiome, for which appropriate genomic resources 
have recently become available (Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019). 
However, for ocean microbiome samples, less than 10% of metatranscriptomic, and less than 5% of 
metagenomic data, can currently be resolved at the species-level using available marine genomic 
sequence databases (Figure 2A). 



 

 

To overcome this limitation, we generated an updated version of the Ocean Microbial Reference 
Gene Catalog (OM-RGC.v2; http://www.ocean-microbiome.org; (Sunagawa et al., 2015)) based on 
370 metagenomes with extended geographic coverage, particularly for the Arctic Ocean (Figure 1). 
Among the 47 million non-redundant genes, 24.5% were reconstructed, although partially detected 
elsewhere (Figure 2), in the Arctic Ocean samples alone, highlighting the added value of sampling 
genomically underexplored environments. Using this reference, nearly 70% of the genes could be 
taxonomically annotated, and 61% showed homology to known (i.e., existing) orthologous groups 
(OGs) in the database used for gene functional annotation (eggNOG version 4.5, (Huerta-Cepas et 
al., 2015) STAR Methods). We further grouped the remaining 39% of the genes in the OM-RGC.v2 
that represent unknown genes (i.e., genes of unknown function without detectable homology to known 
sequences), into ~250,000 gene clusters (GCs) based on shared sequence similarity (Figure 2C, 
STAR Methods). We identified significant differences when comparing transcript abundances between 
depth layers (for 5,439 GCs) or between polar and non-polar regions (for 31,339 GCs), or correlations 
with environmental parameters (for 21,648 GCs) (Figure S2). These findings suggest ecologically 
relevant yet unknown functions of these genes in response to environmental variation. A 
benchmarked analysis of conserved co-expression as a method for identifying functionally related 
genes (Stuart et al., 2003) suggests that some of the GCs are likely to represent unidentified players 
in signal transduction, transcriptional regulation, and energy production/conversion (Figure S3, Table 
S2).  

In contrast to existing ocean genomic reference databases, we found the OM-RGC.v2 to capture the 
majority of gene-encoding metagenomic and metatranscriptomic data (70% and 51%, respectively; 
Figure 2A) used in this study, making it a suitable resource to address our aim of analyzing whole-
community metatranscriptomic compositions. All gene sequences can be queried online for their 
abundance, expression, and geographic distribution (Villar et al., 2018), and they are linked to 
contextual environmental parameters (Pesant et al., 2015) facilitating additional gene-centric 
explorations in the future. 

Variation of meta-omic compositions across latitude and depth 

Having established resources to quantify whole-community taxonomic, genomic and transcriptomic 
compositions, we next sought to identify patterns and drivers of compositional structure across major 
axes of environmental variation in the ocean biome at a global scale. Numerous studies have 
revealed that microbial communities are vertically stratified in the ocean, with a striking boundary 
between epipelagic and mesopelagic zones (DeLong et al., 2006; Giovannoni and Stingl, 2005; 
Sunagawa et al., 2015). Polar and non-polar communities have also been shown to separate into 
distinct groups with different species-level taxonomic compositions (Ghiglione et al., 2012; Gregory et 
al., 2019). Critically, however, the shared gene content between different strains of the same species 
may be as low as 40%, as has been shown, for example, in Escherichia coli (Mira et al., 2010). 
Furthermore, gene functional redundancy in microbial communities (i.e., when the same gene 
functions are encoded by different taxa) may help to maintain important community functions in cases 
of biodiversity loss (Bell et al., 2005). Thus, it is difficult to predict whether gene functional 
compositions and gene expression-regulated transcriptomic repertoires would follow the same 
patterns of taxonomic composition changes. 

To address this question, we first aimed to locate the boundaries of differentiation (Ludwig and 
Cornelius, 1987) in epipelagic waters (SRF and DCM) along the latitudinal gradient for different 
community-compositional measures derived from the prokaryote-enriched metatranscriptomes and 
metagenomes (STAR Methods). From the equator northwards, no significant differentiation was 
identified in epipelagic waters until a latitude of 40°N. At this point, the degree of differentiation 
increased significantly for all community-compositional measures and peaked at around 60°N. A 
similar trend was also observed for the southern hemisphere (Figure 3) and is consistent with the 
taxonomic compositional differences observed between polar and non-polar waters for bacterial 
(Ghiglione et al., 2012; Gregory et al., 2019) and viral communities (Ghiglione et al., 2012; Gregory et 



 

 

al., 2019). We further found that the differentiation is reflected by significant enrichments of 
operational taxonomic units (OTUs) from the order Flavobacteriales (e.g., Formosa, Polaribacter, 
NS5, NS7 and NS9 marine groups), the class Gammaproteobacteria (OM182 clade and 
Piscirickettsiaceae), and eukaryotes (e.g., Phaeocystis), as well as by depletions of Prochlorococcus 
spp., members of the Rhodospirillaceae family, and members of the SAR11 and SAR406 clades 
toward higher latitudes (Figure S4). Here, the congruent patterns observed for both metagenomic and 
metatranscriptomic differentiation, measured as changes in the relative abundance of gene copies at 
the level of OGs, indicate that on a global scale, organismal composition largely shapes the 
composition of gene functional content and also dominates over gene regulatory variations in shaping 
community-level transcriptomic compositions across ecological boundaries.  

Indeed, we found that all community-compositional measures were highly correlated (Figure S5), and 
their variability in the epipelagic ocean was, among a set of 27 environmental parameters, best 
explained by seawater temperature (Figure 4A). This result complements earlier reports of 
temperature as an important factor driving the taxonomic composition of ocean microbial communities 
(e.g. Fuhrman et al., 2006), which was corroborated by a later analysis of a globally distributed set of 
samples that accounted for geographic effects and disentangled temperature from other 
environmental parameters to confirm that it acts as a key driver of taxonomic and gene functional 
compositions in epipelagic, non-polar open ocean waters (Sunagawa et al., 2015). In fact, the 
identification of an ecological boundary starting at 40ºN and peaking at 60°N coincides with a steep 
temperature decrease between the North Atlantic and Arctic waters that were sampled (Figure S6), 
and relates to additional oceanographic features. At ~40ºN/S, the 15ºC annual-mean isotherm 
effectively delineates the permanently stratified ocean from the subpolar and polar regions 
(Behrenfeld et al., 2006), while winter mixing in the North Atlantic is the strongest (deepest mixed 
layer depth) at ~60ºN (Montégut and de Boyer Montégut, 2004). The ecological boundary we describe 
here for microbial community compositions could thus be due to physico-chemical changes driven by 
the variability in the vertical mixing of oceanic water masses, which is linked to differences in sea 
surface temperature. 

We next quantified metatranscriptomic richness (i.e., the unique number of OGs detected by cDNA 
sequencing), as a proxy for the diversity of transcribed gene functions, and compared this to 
taxonomic and metagenomic richness (i.e., the unique number of detected operational taxonomic 
units (OTUs) and OGs, respectively, detected by DNA sequencing). As measures of diversity, the 
latter two provide information about the stability (McCann, 2000), functionality (Cardinale et al., 2006) 
and possibly productivity (Tilman, 1995; Vallina et al., 2014) of ecological communities. In addition, we 
sought to quantify the fraction of the gene-encoded functional potential in a given community that is 
actually transcribed at a given time by comparing metatranscriptomic and metagenomic richness. 

Taxonomic and metagenomic richness were highly correlated, without showing signs of saturation, 
supporting the previous observation that functional redundancy in the marine ecosystem is rather low 
(Fierer et al., 2013; Galand et al., 2018), and both were found to be significantly lower in polar than in 
non-polar communities at all tested depth layers (Figure 4B). These data are congruent with studies 
suggesting a decrease in the taxonomic diversity of communities with increasing latitude (Fuhrman et 
al., 2008; Gregory et al., 2019; Ibarbalz et al., 2019 submitted; Sul et al., 2013) and an associated 
decrease in gene functional diversity, although other studies have also proposed alternative patterns 
of latitudinal diversity gradients (Ghiglione et al., 2012; Ladau et al., 2013; Raes et al., 2018). In 
contrast, metatranscriptomic richness was not correlated with taxonomic richness and only poorly 
correlated with metagenomic richness, and no significant difference was found between polar and 
non-polar microbiomes or between any depth layers (Figure 4B). This unexpected disparity between 
metagenomic and metatranscriptomic richness patterns suggests that the non-transcribed proportion 
of a given metagenome is higher in mesopelagic waters and non-polar regions relative to epipelagic 
waters and polar regions. This could be due to a higher proportion of dormant or dead, and passively 
sinking, microbes in the mesopelagic compared to the epipelagic ocean. Alternatively, these 
observations may reflect the prevalence of genome streamlining in surface ocean waters (Swan et al., 



 

 

2013), where per genome, the number of genes is expected to be lower (Mende et al., 2017). The 
proportion of transcribed genes is thus expected to be higher, than in mesopelagic waters. Future 
studies will be required to determine whether the apparent saturation of simultaneously transcribed 
gene functions, despite increasing numbers of encoded gene functions, is a feature that is also 
common in microbial communities from other biomes. 

Differential abundance and expression of biogeochemical cycling genes 

The pool of microbial community transcripts may vary along environmental gradients as a function of 
community turnover and/or changes in gene expression (Figures S1, S7; STAR Methods). To 
disentangle the individual contributions of these mechanisms across environmental gradients for 
genes that are involved in ecologically relevant processes, we integrated 122 prokaryote-enriched, 
matched metatranscriptomes and metagenomes, and quantified the differential abundances and 
expression levels for a set of biogeochemical marker genes, across depth layers and between polar 
and non-polar waters (Figure 5).  

As a first step, we sought to validate both data quality and our analytical approach by testing whether 
patterns for genes involved in well-studied processes, including carbon fixation, photosynthesis, and 
nitrogen cycling, could be observed. As expected, we found that the most differentially abundant 
transcripts between epipelagic and mesopelagic layers included those from the photosynthesis 
marker genes, psaA and psbA, and genes encoding the subunits of RuBisCO (rbcL and rbcS), the 
key enzyme required for carbon fixation (Figure 5A). Moreover, we observed that abundances of the 
rbcL and rbcS transcripts were highly correlated with those of psaA and psbB, which is consistent with 
the expectation that carbon fixation is primarily driven by photoautotrophs rather than 
chemoautotrophs (Raven, 2009; Shively et al., 1998; Swan et al., 2011). This is further supported by 
the observation of low RuBisCO gene expression levels in mesopelagic waters, despite the presence 
of chemoautotrophs (Figure S8). In addition to psbA, the abundances of other photosynthetic marker 
genes, including markers for the photosynthetic reaction center (petC, petE, and petH) and the 
cyanobacteria-specific antenna proteins (apcA, apcF, cpcA, cpeA and cpeT) were lower in polar than 
in non-polar waters (Figure 5B). This result likely reflects the depletion of cyanobacteria in colder 
environments (Marchant et al., 1987) (Figure S4), and an underrepresentation of eukaryotic 
phototrophs in the prokaryote-enriched samples we analyzed here. 

With respect to nitrogen cycling, we detected both gene and transcript abundances for denitrification 
marker genes (napA, nirS, norB, and nosZ) to be enriched in mesopelagic versus epipelagic waters 
(Figure 5A). As expected for this predominantly anaerobic process (Zehr and Ward, 2002), transcript 
abundances were particularly high in oxygen-depleted waters, although interestingly, similar transcript 
levels were also observed in some well-oxygenated Arctic water samples (Figure S9). Transcripts of 
nitrogen fixation marker genes (nifK, nifH and nifD) were more abundant in non-polar than in polar 
regions, with the highest abundances detected in waters between 20º and 35º (absolute latitude) with 
low nitrate and nitrite concentrations (Figure S10). These data generally agree with the long-standing 
expectations that nitrogen fixation activity is higher under conditions of nitrogen limitation and is 
primarily driven by cyanobacteria in tropical and subtropical regions (Dixon and Kahn, 2004; Stal, 
2009). However, more recent studies have provided additional evidence for an extended geographic 
and depth range (Blais et al., 2012; Harding et al., 2018; Moisander et al., 2017) and for a wider 
taxonomic breadth of nitrogen fixing organisms including non-cyanobacterial heterotrophic 
diazotrophs (Bombar et al., 2016; Delmont et al., 2018). Given these findings, we further investigated 
the biogeography of the nifH gene in more detail and determined which organisms not only encode 
this gene, but also express it. Specifically, we analyzed the distribution of nifH gene and transcript 
abundances among 24 nifH-encoding ‘species’ that were detected in the 122 matched metagenomes 
and metatranscriptomes. From this analysis, we found that a number of Gamma- and 
Deltaproteobacteria, for which genomes have recently been reconstructed (Delmont et al., 2018), 
were not only abundant, but also among the top contributors to the nifH transcript pool in the studied 
samples (Figure 6). Additionally, for the first time, to our knowledge, we detected nifH gene 



 

 

expression in mesopelagic Arctic waters, and reconstructed the nif operon-containing genome of its 
carrier (Table S3, STAR Methods), a candidate heterotrophic Deltaproteobacterium,or a member of 
the Myxococcota phylum according to a recent proposal for a standardized bacterial taxonomy (Parks 
et al., 2018), that awaits further characterization. 

In spite of the potential biases inherent to our approach that are related to the collection of spatially 
discrete data over a period of more than three years and to the sampling process itself (e.g., 
unaccounted effect of seasonality or potential changes in transcript abundances during the sampling 
process), we were able to corroborate expected patterns of metabolic processes using 
metatranscriptomic data at global scale. In addition to validating our methods, we demonstrated how 
our community-centric approach for analyzing metatranscriptomes can be used in conjunction with 
metagenomic data, and furthermore, bridge to new genome-resolved insights. Building on the 
robustness of our analysis, we next focused on disentangling the mechanisms that underpin the 
differences in community transcriptomes across depth and latitude. Notably, we observed cases in 
which transcript abundance changes could be mainly attributed either to differences in gene 
abundance or gene expression, or a combination of these mechanisms. As described above, the 
enrichment of transcripts from denitrification marker genes in mesopelagic versus epipelagic waters 
are mainly driven by changes in gene abundance (Figure 5A). In this case, gene abundance changes, 
due to environmental filtering of organismal community composition in response to higher nitrate and 
nitrite concentrations in mesopelagic waters, dominate the observed community transcriptomic 
differences. Conversely, a higher transcript abundance of marker genes for anaerobic dissimilatory 
sulfate reduction (aprA and aprB) in epipelagic waters is driven by an increased expression of these 
genes, despite no significant differences in the abundance of these genes between depth layers 
(Figure 5A). A taxonomic breakdown shows that 39% and 59% of aprA and aprB genes were 
encoded by Proteobacteria and only 2% of each gene could be assigned to taxa containing known 
sulfate reducers (Archaea, Firmicutes, Nitrospirae, and Deltaproteobacteria) (Muyzer and Stams, 
2008). These results suggest that the significance of alternative uses for aprA and aprB in oxic 
waters, namely to detoxify cells by catalyzing the oxidation of sulfite accumulated in the cytoplasm, as 
described for clades such as SAR11 and SAR116 (Meyer and Kuever, 2007; Smith et al., 2016), may 
be of global relevance.  

A more complex scenario for observing differences in transcript pools is exemplified by a number of 
marker genes for assimilatory sulfate reduction (cysD, cysH, cysI, cysJ, and cysN), for which the 
observed differences across the latitudinal gradient (i.e., higher transcript abundances in non-polar 
versus polar regions) result from a combination of community turnover and gene expression changes. 
In this case, the increased transcript abundance in non-polar waters results from higher expression 
levels, despite a lower abundance of genes. Interestingly, we found the transcript abundance of these 
marker genes to be anticorrelated with that of dmdA (Figure S11), the key gene for the demethylation 
of dimethylsulfoniopropionate (DMSP) (Howard et al., 2006), which results in incorporation of carbon 
and sulfur into bacterial biomass (Kiene et al., 1999). Based on these data, we hypothesize that the 
global-scale expression of the assimilatory sulfate reduction pathway may be downregulated in 
response to the availability of DMSP, which is used by prokaryotes as an alternative source for sulfur 
assimilation (Kiene et al., 2000). Notably, if turnover and differential gene expression are both 
operative, relying on gene abundance alone may lead to false predictions including of patterns that 
would suggest the opposite of what is manifested at the transcript level (e.g., non-photosynthetic 
carbon pathways with higher epipelagic expression levels, but higher mesopelagic gene abundances 
of mct and abfD). 

Turnover dominates over gene expression differences in polar water communities 

In light of global climate change, a better understanding of how ocean microbial communities will 
respond to ongoing changes is urgently needed (Cavicchioli et al., 2019; Overland et al., 2018). In 
particular, the Arctic region has experienced some of the highest ocean surface water temperature 
anomalies recorded to date (Hoegh-Guldberg and Bruno, 2010). Ocean warming models (scenario 



 

 

RCP 8.5, business as usual) predict that mean surface water temperatures will increase by 2 to 5°C in 
the Arctic by the end of the century (Alexander et al., 2018), highlighting a critical need to better 
understand how these changes will impact microbial communities in this region. Given that these 
projections focus on surface temperature changes and due to their major contribution to 
biogeochemical cycles (Field 1998), we sought to assess the response of epipelagic communities to 
environmental variation, as reflected by measurable differences in their metatranscriptomic 
composition, and subsequently to use these spatially discrete data to hypothesize on future 
projections. 

Specifically, we aimed to disentangle (Figure S7, STAR methods) whether differences in microbial 
community transcriptomes are impacted more strongly by community turnover and/or by gene 
expression changes along the temperature gradient at their sampling locations. To this end, we 
divided all samples into groups of 15 samples (bins) using a sliding window along the temperature 
gradient, so that each group reflected the range of ocean warming expected before the end of the 
century (median temperature difference within each bin: 1.6°C; Figure S12A). We then quantified the 
different mechanisms of metatranscriptome changes within each bin (Figure 7; STAR Methods), and 
found that in warmer epipelagic waters, the relative contribution of community turnover to 
metatranscriptomic compositional dissimilarities is significantly lower than that of gene expression 
changes. In contrast, the effect of community turnover in colder (predominantly Arctic) waters is 
higher or in the same range as gene expression changes (Figure 7A). Overall, community turnover 
was found to be significantly higher in polar communities than in non-polar communities (p<0.001), 
whereas gene expression changes displayed the opposite pattern (p<0.001) (Figure 7B). 
Interestingly, the shift in the relative contributions of the different mechanisms of metatranscriptome 
changes occurs at ~15ºC, and therefore coincides with the ecological boundary previously identified, 
which, as such, not only delineates communities differing in their composition, but also in the 
mechanism shaping their transcript pool. We further found that the effect of temperature was greater 
than that of other environmental variables, such as nitrate/nitrite concentrations and salinity (Figure 
S12), suggesting a higher acclimatory capacity of microbial communities in warm than in cold 
epipelagic waters in response to temperature variations. 

Finally, by extrapolating our results from spatially discrete data to potential consequences of climate 
change (Blois et al., 2013), we hypothesize that the relative impact of organismal composition 
changes on microbial community transcriptomes will be greater in polar than in non-polar waters. This 
extrapolation, however, needs to be interpreted within the limitations of the data analysed here, 
namely that it cannot account for the evolutionary adaptation of microbial communities to gradual 
changes with time. As such, further studies resolving long-term temporal dynamics of 
metatranscriptome changes are required to improve our understanding of the contributions of 
community turnover and gene expression changes in the context of environmental changes. 
Notwithstanding, the present results provide a first global-scale evaluation of the mechanisms 
underpinning the changes in community transcriptomes as well as a framework for future work. 

Conclusions 

Large-scale oceanographic sampling expeditions, such as the World Ocean Circulation Experiment 
(WOCE) or GEOTRACES (Anderson et al., 2014; Koltermann et al., 2011; Woods, 1985) have been 
extremely valuable in building our understanding of the ocean circulation, and the distribution of major 
nutrients and elements including trace metals, as well as their contribution to the climate system. 
However, our geochemical and physical knowledge of the ocean remains incomplete without 
incorporating the processes that regulate biogeochemical cycles at planetary scale (Falkowski et al., 
2008). Analyzing the repertoire of genes and transcripts from environmental samples can inform us 
about the potential and activity of microbial communities that drive these cycles at global scale, and 
thus help us to understand the intertwined processes that shape the physico-chemical state of the 
ocean through biological activity. 



 

 

In this study, we describe global biogeographical patterns of microbial community transcriptome 
compositions and demonstrate how changes in these compositions can be attributed to community 
turnover and/or gene expression changes as the underlying mechanisms. Assessing the mechanisms 
that underlie such compositional differences, as demonstrated here, can help us to determine whether 
changes in the molecular activities of microbial communities are regulated by gene expression 
changes or by a turnover of organisms containing genomic modifications that arose over evolutionary 
time. In addition, an improved understanding of the ecological factors that drive community 
compositional and diversity changes can help us to better predict how ocean microbial communities 
will respond to environmental changes. For example, the consistent identification of temperature as a 
major explanatory factor for global-scale community-level differences in genomic (Sunagawa et al., 
2015) and transcriptomic (this study) composition, as well as taxonomic diversity (Gregory et al., 
2019; Ibarbalz et al., 2019 submitted), has wide-ranging implications, in particular for the Arctic 
Ocean, given the current projections of disproportionately high warming rates in this region (Alexander 
et al., 2018; IPCC, 2014).  

Notably, the analyses of this study were enabled by a systematic, highly contextualized, pan-oceanic 
set of metagenomic and metatranscriptomic data that, along with the OM-RGC.v2, complements other 
large-scale datasets that have been developed for eukaryotes (Carradec et al., 2018; Ibarbalz et al., 
2019 submitted), prokaryotes (Biller et al., 2018) , and viruses (Gregory et al., 2019). Together, these 
will pave the way for an eco-systems level understanding of ocean plankton diversity, function, and 
activity across boundaries of organismal size ranges. To reach this goal, it will be important to 
integrate temporal meta-omics data, ideally from global observations, to account for seasonal 
variations and other concomitant environmental changes, such as increased stratification, 
acidification, nutrient availability and deoxygenation of the oceans (Bopp et al., 2013; Schmittner et 
al., 2008). Such concerted efforts are required to further refine gene-to-ecosystem models (Coles et 
al., 2017; Garza et al., 2018; Guidi et al., 2016) and to inform environmental and climate policies (Le 
Quéré et al., 2018), which must consider not only how microorganisms are impacted by but also how 
they may affect anthropogenic climate change (Cavicchioli et al., 2019). 
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Figure titles and legends 

Figure 1: Geographic coverage of the meta-omics dataset analyzed in this study. Geographic distribution of 
the sampling stations of the Tara Oceans (2009-2013) expeditions (Pesant et al., 2015). Several size-fractionated 
samples were collected from different depth layers at each station for a total of 557 samples (370 metagenomes 
and 187 metatranscriptomes). Stations numbered 155 and above represent the Tara Oceans Polar Circle 
campaign undertaken between June and October 2013. Colors indicate the type of samples collected for the 
prokaryote-enriched fractions at each station: metagenome only (orange, 18 stations); metatranscriptome only 
(blue, 40 stations); metagenome and metatranscriptome for at least one of the depth layers (green, 68 stations).  

Figure 2: Gene detection rates and annotation of the OM-RGC.v2. (A) Percentage of reads from 180 
prokaryote-enriched metagenomes (orange) and 187 prokaryote-enriched metatranscriptomes (blue) aligned with 
a 95% identity cutoff to: the MarRef database v3, updated 2019/01/19 (Klemetsen et al., 2018), a collection of 
metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans samples (Delmont et al., 2018), and 
the OM-RGC.v2 (this study). To fairly compare the alignments to the MarRef database or MAGs and the catalog, 
we corrected for the gene coding density in prokaryotic genomes (STAR Methods). (B) The accumulation of OM-
RGC.v2 genes detected in 180 prokaryote-enriched samples. The dashed line separates the prokaryote-enriched 
non-Arctic metagenomes [n = 139; (Sunagawa et al., 2015)] from the Arctic metagenomes (n = 41). The increase 
in slope reflects an increase in the rate of detection of new genes in the Arctic Ocean. The non-prokaryote-
enriched metagenomes (n = 190) and the metatranscriptomes (n = 187) are excluded from this analysis. (C) The 
taxonomic annotation of genes at the domain level (and viruses; LUCA: last universal common ancestor) and the 
breakdown of gene functional annotations into ~9k KEGG and ~76k eggNOG orthologous groups (KOs and OGs, 
respectively). The remaining fraction of unannotated genes was used to generate de novo gene clusters (GCs) 
for further functional characterization of the catalog. 

Figure 3: Latitudinal partitioning of global ocean microbiome compositions. The schematic on the left 
illustrates the underlying concept of the split moving-window analysis of ecological differentiation (Ludwig and 
Cornelius, 1987). It consists of a comparison of the pairwise distances between communities on opposite sides of 
a putative boundary with the pairwise distances between communities on the same side. A high differentiation 
value captures an increase in the distance between the two sides of the boundary compared with the distances 
within each side. The analysis was conducted with a window width of 10 samples and shows an ecological 
boundary centered around 60°N based on the taxonomic composition (grey, relative abundance of OTUs), 
metagenomic composition (orange, per-cell abundance of genes), and metatranscriptomic composition (blue, 
relative per-cell abundance of transcripts) of prokaryote-enriched samples from surface (SRF) and deep 
chlorophyll maximum (DCM) waters (both belonging to the epipelagic layer). A similar pattern is evident for the 
southern hemisphere; however, the limited number of samples precluded detection of an ecological boundary. 
Significance was determined using 99% confidence intervals computed with 10,000 random permutations of the 
latitude values. Vertical lines represent the window of the latitudinal range of significant values. The insufficient 
number of samples and latitudinal coverage prevented us to perform this analysis for the mesopelagic layer. 



 

 

Figure 4: Patterns and drivers of global ocean microbiome compositions across depth layers, and 
between polar and non-polar regions. (A) Taxonomic, metagenomic, and metatranscriptomic composition of 
epipelagic samples (based on mitags, and the normalized abundances of eggNOG-derived OGs from 
metagenomic and metatranscriptomic data, respectively) were related to each of 27 environmental factors using 
partial (geographic distance-corrected) Mantel tests with 10,000 permutations and Bonferroni correction. Pairwise 
comparisons of environmental factors are shown below, with a color gradient denoting Spearman’s correlation 
coefficients. Temperature is the best explanatory variable for all of the profiles in the epipelagic ocean (taxonomic 
profile: Pearson’s r = 0.75; metagenomic profile: Pearson’s r = 0.69; metatranscriptomic profile: Pearson’s r = 
0.64; all p < 0.05), followed by oxygen concentration, which is highly correlated to temperature (Pearson’s r = -
0.72). A more detailed description of the variables is available in Table S1. (B) Compositional richness of polar 
and non-polar microbiomes across three depth layers. Taxonomic and functional metagenomic richness 
(numbers of OTUs and OGs, respectively) increases with depth, although the richness is consistently lower in 
polar samples than in non-polar samples (two-way ANOVA: p < 0.05 for depth layers and polar/non-polar, for 
both taxonomic and metagenomic functional richness). By contrast, there was no significant difference in 
functional metatranscriptomic richness (number of OGs), either across depths or between polar and non-polar 
samples (two-way ANOVA: p > 0.05 for depth layers and polar/non-polar). (C) Correlations among species 
richness (number of OTUs), functional metagenomic (metaG) richness and metatranscriptomic (metaT) richness 
(number of OGs). Data were rarefied before richness computation (STAR Methods). Pearson’s correlation was 
used for all comparisons (OTU-metaG; r = 0.78, p < 0.001; OTU-metaT: r = 0.16, p = 0.06; metaG-metaT: r = 
0.39, p < 0.05). The solid line corresponds to the best linear fit. N.S.: not significant (p > 0.05).  

Figure 5: Differences in gene abundance and expression determine differential transcript abundances of 
metabolic marker genes across depth layers, and between polar and non-polar regions. Differences in the 
abundance of genes and transcripts, and the gene expression level of metabolic marker genes (KOs) were 
determined (A) between epipelagic and mesopelagic layers and (B) between polar and non-polar regions. The 
data points show the differences in the mean transcript abundances, mean gene abundances, and mean gene 
expression (i.e., transcript abundance normalized by gene abundance) of KOs. Differences were computed using 
log2-transformed values (STAR Methods) and tested for significance by Mann-Whitney tests. Differences were 
considered significant if p-values after Holm correction were smaller than 0.05. Only epipelagic samples were 
used for the data shown in (B). 

Figure 6: Relative gene and transcript abundance of 24 nitrogenase genes (nifH) representing nifH-
encoding ‘species’. 

Relative gene (orange) and transcript (light blue) abundance distributions of the 24 nifH genes from the OM-
RGC.v2 that were detected in 122 matched metagenomes and metatranscriptomes (A) are shown and broken 
down by latitude (B) and by depth (C) of the sample origin. Genes (IDs in the bottom panel) were annotated using 
a nifH-specific database (see STAR Methods). Colors denote phylum-level taxonomic annotations, naming 
corresponds to finer grain taxonomy or database-specific identifiers (D), and stars indicate genes that were 
previously identified in MAGs of heterotrophic bacterial diazotrophs (HBDs; Delmont et al., 2018). The genome 

containing a nifH gene for which transcripts were detected in the mesopelagic layer in the Arctic 

(OM−RGC.v2.019519152, bold) was reconstructed (see STAR Methods and Table S3). Horizontal dashed lines 

denote the latitude and depth that were used to define polar and non-polar (B), and epipelagic and mesopelagic 

waters (C), respectively. 



 

 

Figure 7: Relative contributions of community turnover and gene expression changes to variations in 
metatranscriptome composition. Determination of the relative contributions of community turnover and gene 
expression changes to variations in the metatranscriptome composition requires the decomposition of 
metatranscriptomic distances between communities (STAR Methods and Figure S7). Specifically, the relative 
contribution is determined as the ratio of the gene abundance-based distance (community turnover) and the gene 
expression-based distance (gene expression changes) between two metatranscriptomes. (A) The relationship of 
the ratio with temperature was analysed by dividing the epipelagic samples into groups (bins) of 15 samples each 
using a sliding window along the temperature gradient. For each bin, we report the median ratio (among all the 
pairwise comparisons within each bin) as a function of the median temperature of the samples present in the bin. 
The significance is determined by a Wilcoxon test comparing the within-bin distribution of the ratios to 1 (in which 
case the relative contributions of community turnover and gene expression changes are the same).The Holm 
correction was used to adjust for multiple testing. The ratio was considered to be significantly different from 1 if p 
< 0.05. (B) The inner panel represents the difference, for community turnover and gene expression changes, 
between polar and non-polar regions. The distributions capture the distances of each component for all pairwise 
comparisons of polar and non-polar epipelagic samples. Significance was tested by the Wilcoxon test; *** p < 
0.001.  



 

 

Supplementary information 

Supplementary Table 1: Sample information 

Information for all samples included in the present work: sample identifiers and information on their inclusion in 
the different steps of the analysis, summaries of sequencing and sequence processing and associated 
environmental data for each sample. 

Supplementary Table 2: Pairs of GCs/OGs linked through co-expression 

Includes GCs-GCs and GCs-OGs pairs with co-expression Pearson’s r greater than 0.86 (which corresponds to a 
false-positive rate below 5%;STAR Methods). In total, 17,516 GCs are linked either to another GC (16,706) or to 
an OG (810). 

Supplementary Table 3: Functional annotation of the putative nitrogen-fixing metagenome-assembled 
genome 

Start and end position, orientation and functional annotation of the open reading frames (ORF) detected in the 
metagenome-assembled genome (MAG). COG, EC, Pfam and KO annotation is provided for each ORF (see 
STAR Methods). The nif-operon (containing genes annotated as nifD, nifK and nifH) corresponds to the ORFs 
topc.bin.586_00486 to 00488. MAG contig and gene sequences are available at 
http://doi.org/10.5281/zenodo.3352181 



 

 

Supplementary Table 4: List of biogeochemical cycling marker KOs 

List of KOs used as functional markers for microbial metabolisms with biogeochemical relevance. 

Figure S1: Transcript abundance profile as a function of community composition and gene expression 

Cartoon exemplifying how an initial community with a given expression profile may result insimilar transcript 
abundance profiles through two different mechanisms: (i) changes in the community composition (upper arrow), 
represented by three different species (green, red, and blue), or (ii) changes in gene expression (lower arrow), 
represented by two different genes (purple and orange, with low and high expression levels, respectively). 

Figure S2: Prevalence and statistical associations to the environment of OGs and GCs 

Gene abundance-based prevalence vs. transcript abundance-based prevalence (i.e., number of samples in 
which detected) for (A) eggNOG-based orthologous groups (OGs) and (B) de novo gene clusters (GCs) based on 
the 122 paired metagenomes and metatranscriptomes. Prevalence distributions are shown in the side and upper 
panels. The numbers of OGs and GCs with significant associations of transcript abundances to depth layers (C) 
and polar/non-polar regions and (D) to environmental variables are shown. Associations were detected as 
statistically significant differences in transcript abundance by Wilcoxon tests for depth layers and polar/non-polar 
regions (p < 0.05, after Holm correction for multiple comparisons) and as significant Pearson correlations for 
environmental variables (|r| > 0.6 and p < 0.05, after Holm correction for multiple comparisons). In both cases 
only the OGs and GCs with a transcript abundance-based prevalence higher than 10% were considered in order 
to avoid spurious associations. 

Figure S3: Rationale for the use of co-expression data to associate groups with unknown functions to 
known functional groups. 

Evaluation of model performance for the link between OGs based on co-variation analysis. (A) Receiver 
operating characteristic (ROC) curves for all models. Variation in (B) false positive rate and (C) sensitivity with 
increasing Pearson correlation values used as a cut-off for classification (rmin). The rmin is a value to be optimized 
corresponding to the minimum Pearson r that provides sufficient predictive power (false positive rate < 5%). A 
total of nine models are represented, which used co-abundance, co-transcription, and co-expression for the 
prediction of shared KEGG reactions, modules and pathways, respectively, between pairs of OGs (see details in 
STAR Methods). 

Figure S4: Differential abundance of the dominant OTUs along the latitudinal gradient.  

Latitudinal niche value (i.e., the abundance-weighted mean absolute latitude) for the 60 most abundant OTUs in 
the epipelagic subset of samples. Latitudinal niche values significantly higher and lower than the value expected 
from a random distribution of abundances (represented by the horizontal bold lines; see STAR Methods) are 
color coded. The dot size is proportional to the mean relative abundance of each OTU. 

Figure S5: Correlations between the taxonomic, metagenomic and metatranscriptomic composition. 

All pairwise correlations between the Euclidean distance of the (log2-transformed) taxonomic, metagenomic, and 
metatranscriptomic profiles were computed for 122 samples for which all three profiles were available. The 
correlation strength and significance were assessed using Mantel tests with 10,000 permutations. 

Figure S6: Latitudinal distribution of seawater temperature in the epipelagic. 

Seawater temperature (°C) measurements (n = 528) at the surface (SRF) and the deep chlorophyll maximum 
(DCM) along the Tara Oceans course in relation to (A) raw latitude values and (B) bins of the absolute latitude. 
Data are available at https://doi.pangaea.de/10.1594/PANGAEA.875576. 

Figure S7: Derivation of the decomposition of a metatranscriptome. 



 

 

Mathematical basis for (A and B) the within-sample decomposition of metatranscriptomes (transcript copies / cell) 
into abundance (gene copies / cell) and expression (transcript copies / gene copy) components, and for (C) the 
between-sample decomposition of the Euclidean distance between metatranscriptomes (transcript abundance 
differences) into the abundance component (gene abundance differences), the expression component 
(expression differences), and an interaction term (abundance - expression covariation). See details in STAR 
Methods. 

Figure S8: Gene and transcript abundance of RuBisCO subunits and PSI and PSII marker genes. 

Distribution of whole-community (log2-transformed) (A) gene and (B) transcript abundances of the RuBisCO 
subunits (rbcS and rbcL) and the marker genes for photosystem I (psaA) and II (psbA) in the epipelagic and 
mesopelagic depth layers. Pairwise correlations based on the (C) gene and (D) transcript abundances of the four 
genes are shown below. All comparisons, except the ones denoted with N.S. in (A) and (B) were significant (p < 
0.05 using Wilcoxon test and Holm correction for multiple comparisons). All Pearson correlations in (B) and (C) 
were significant (p < 0.05). 

Figure S9: Transcript abundance of denitrification marker genes along the oxygen gradient. 

The log2-transformed transcript abundances of nirS, norZ, nosB, and napA in relation to the oxygen concentration 
at the sampling location, showing a high transcript abundance in samples taken from anoxic waters (<100 µM) 
and interestingly, from oxygenated waters at stations 206, 208, and 210. The depth layer (EPI or MES) and 
polar/non-polar nature of the sample are coded as the symbol type and color, respectively. The dot size is 
proportional to the concentration of NO2 and NO3 (µM) when available. 

Figure S10: Expression and transcript abundance of the nifH, nifD and nifK genes in relation to nitrate 
and nitrite concentration. 

Gene expression and transcript abundance of the nifH, nifD, and nifK genes in relation to the total nitrate plus 
nitrite concentration (µM), showing a fast decay of gene expression and transcript abundance with increased in 
nitrate/nitrite concentrations from 0 to 0.2 µM at absolute latitudes between 20° and 35°. Solid lines correspond 
to the result of local regression. 

Figure S11: Correlation between assimilatory sulfate reduction marker genes and the dmdA gene. 

Transcript abundance and expression of the genes involved in the assimilatory sulfate reduction pathway in 
relation to the transcript abundance of the dmdA gene involved in the dimethylsulfoniopropionate (DMSP) 
demethylation pathway. Pearson correlation was used to test for significance of the correlation. Pearson r values 
and significance are shown on the plot. Log2-transformed data were used in all cases. The correlation with the 
transcript abundance was significant for all genes and was especially high (-0.73) for cysD and cysN, the genes 
encoding the initial step of the pathway (i.e. the reduction of sulfate). 

Figure S12: Temperature dominates over other environmental variables in structuring the relative 
contribution of community turnover and gene expression changes to metatranscriptomic differences 
between epipelagic communities. 



 

 

Panel (A) mirrors the data in Figure 7A, so that it represents the groups of 15 samples (bins) along the 
temperature gradient on the x-axis. The y-axis, however, captures the distribution of the temperature differences 
within each bin. Notably, the distributions of these differences are highly similar in polar and non-polar waters. 
This indicates that the higher relative contribution of turnover in polar waters and gene expression changes in 
non-polar waters occurs for a similar range of temperature differences. (B) The distribution of the interaction 
component (see equation 1 in STAR Methods) for all the polar-to-polar and non-polar-to-non-polar comparisons 
across the bins are not significantly different from each other (Wilcoxon test), which indicates that the absolute 
values of turnover and gene expression changes are comparable between polar and non-polar communities 
(Figure 7B). Panel (C) is based on Figure 7A and serves as an explanatory schematic for panel (D). To evaluate 
the influence of an environmental parameter on the relative contribution of community turnover and gene 
expression changes, a similar analysis to the one in Figure 7A was performed. A score was attributed to each 
parameter as the sum of the deviation of each bin from 1 (where the effect of both mechanisms is identical). The 
deviation of each individual bin is visualized as a grey line. The results are summarized in panel (D) for the 
environmental parameters that were tested. The vertical lines indicate the distribution of this score for 100 
random binnings (solid line denotes the median value and dashed lines represent the 95% interval of the 
distribution). As a result, we identify that daylength, temperature and chlorophyll concentrations have significant 
effects on the relative contributions. We further investigated these parameters, by assessing the distribution of 
environmental variation for polar and non-polar regions across the bins [panels (E), (G), and (I)], and the 
relationship between the relative contributions (of community turnover and gene expression changes) and the 
variation in the environmental parameter across the whole (unbinned) dataset [panels (F), (H), and (J)]. The left-
side [(E), (G), and (I)] aims at answering whether the difference in regimes that are observed between polar and 
non-polar regions may simply be due to a different range of environmental variation. The distributions display little 
differences in the case of temperature, while they are strongly contrasted for daylength and chlorophyll 
concentrations. Furthermore, (F), (H), and (J) provide a direct estimation of the relationship of the relative 
contributions of community turnover and gene expression changes with the environmental distance. Based on 
linear models, temperature differences capture most of the variance, both in polar and non-polar regions. In 
contrast, daylength and chlorophyll concentrations show a weaker or no trend, especially in polar regions 
(despite a wide range of variation). Overall, this confirms that among the parameters tested, temperature is the 
best explanatory variable for the difference in the relative contribution of community turnover and gene 
expression changes observed between polar and non-polar epipelagic communities.  

  



 

 

STAR Methods 

Key resources table 

Reagent or Resource Source Identifier(s) 

Sequencing Reagents and Kits 

Ribo-Zero Magnetic Kit for 
Bacteria Epicentre 

MRZB12424 

RNA Clean and Concentrator-5 
kit ZymoResearch 

R1013 

SMARTer Stranded RNA-Seq 
Kit Clontech 

634839 

NEBNext Sample Reagent Set New England Biolabs E6000 

Ampure XP Beckmann Coulter A63882 

Platinum Pfx DNA polymerase Invitrogen 11708039 

SeqAmp DNA polymerase Clontech 638509 

Agilent 2100 Bioanalyzer Agilent Technologies, USA G2939BA 

qPCR MxPro, Agilent Technologies, USA Mx3005P 

  

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the Lead Contact, Shinichi Sunagawa (ssunagawa@ethz.ch). 

Method details 

Sample and environmental data collection 

Genetic and environmental data were collected at 126 sampling stations across all major oceanic 
provinces during the Tara Oceans expedition (2009 - 2013). Stations with absolute latitude above 60° 
were generally considered to be polar. Additionally, station 155 (at 54.5°N) was considered a polar 
station based on a manual evaluation of associated environmental data. The sampling was conducted 
within the mesopelagic layer (MES, 200-1000 m) and within the epipelagic layer at the sea surface 
(SRF, 5-10 m) and the deep chlorophyll maximum (DCM, 20-200 m) layer, with the exception of nine 
epipelagic samples that could not be classified as either SRF or DCM (MIX, 25-200 m). The sampling 
strategy and methodology are described in detail elsewhere (Pesant et al., 2015). Information about 
the samples used in this study is provided in Table S1. Environmental data measured or inferred at 
the depth of sampling are published at the PANGAEA database 
(https://doi.pangaea.de/10.1594/PANGAEA.875582). Additional information used throughout the 
manuscript is available at http://www.ocean-microbiome.org. 



 

 

Extraction of nucleic acids and sequencing of DNA and cDNA 

Metagenomic DNA and RNA were extracted from prokaryote and girus-enriched size fraction filters as 
described previously (Alberti et al., 2017). For the DNA libraries, extracted DNA was sonicated to a 
size range of 100-800 bp. The DNA fragments were subsequently end-repaired and 3’-adenylated 
before Illumina adapters were added using the NEBNext Sample Reagent Set (New England 
Biolabs). The ligation products were then purified by Ampure XP (Beckmann Coulter), and the DNA 
fragments (>200 bp) were PCR-amplified with Illumina adapter-specific primers and Platinum Pfx 
DNA polymerase (Invitrogen). The amplified fragments were then size selected (~300 bp) on a 3% 
agarose gel. For the metatranscriptomic libraries, ‘low-input’ cDNA synthesis methods adapted to 
prokaryotic mRNA were used (Alberti et al., 2014; STAR Methods). Briefly, total RNA was depleted of 
rRNA using the Ribo-Zero Magnetic Kit for Bacteria (Epicentre) and then concentrated to 10 μL total 
volume with the RNA Clean and Concentrator-5 kit (ZymoResearch). The amount of depleted RNA 
was measured by Qubit RNA HS Assay quantification, and 40 ng or less was used to synthesize 
cDNA with the SMARTer Stranded RNA-Seq Kit (Clontech). Additional details are described 
elsewhere (Alberti et al., 2017). All libraries (DNA and RNA) were subjected to profile analysis using 
an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and qPCR (MxPro, Agilent Technologies, 
USA), and then sequenced with 101 base-length read chemistry in a paired-end flow cell on Illumina 
HiSeq2000 sequencing machines (Illumina, USA). 

Generation and annotation of the Ocean Microbial Reference Gene Catalog v2 

To pre-process raw sequencing reads, we removed the adapters and primers from the whole reads 
and trimmed low-quality (quality value < 20) nucleotides from both ends. Reads shorter than 30 
nucleotides after trimming as well as reads (and their mates) that mapped to quality control 
sequences (PhiX genome) were discarded. Then, all single-end reads (inserts with one discarded 
read) were removed. Finally, the reads (and their mates) that mapped onto sequences in a ribosomal 
sequence database were removed using the SortMeRNA software (Kopylova et al., 2012). After these 
pre-processing steps, we used MOCAT (version 2) (Kultima et al., 2016) to generate sets of high-
quality (HQ) metagenomic and metatranscriptomic reads (option read_trim_filter; solexaqa with length 
cut-off 45 and quality cut-off 20), and to remove reads matching Illumina sequencing adapters (option 
screen_fastafile with an e-value of 0.00001). We then assembled the HQ metagenomic reads (option 
assembly; minimum length 500 bp) and predicted gene-coding sequences [minimum length 100 
nucleotides (bp)] on the assembled scaftigs [option gene_prediction; MetaGeneMark]. We used CD-
HIT v4.6 (Fu et al., 2012) to cluster the gene-encoding nucleotide sequences using cutoffs of 95% 
sequence identity and 90% alignment coverage of the shorter sequence.. We then selected the 
longest sequence as the representative sequence for each cluster. After removing sequences shorter 
than 100 nucleotides, we obtained a set of 46,775,154 non-redundant, contiguous, gene-encoding 
nucleotide sequences, which we operationally defined as “genes” (Sunagawa et al., 2015). We refer 
to this set of genes as the Ocean Microbial Reference Gene Catalog version 2 (OM-RGC.v2). 

To assign a taxon to each sequence in the OM-RGC.v2, we built a reference database from UniRef90 
(59.2M proteins from release 2017_08 made available on 2017-08-30) (Suzek et al., 2015), 
supplemented with a set of 19.4M sequences from marine transcriptomes and single-cell amplified 
genomes (Carradec et al., 2018). We then removed sequences of viral origin from the reference 
database and replaced them with sequences from the Virus-Host DB (release 80 of 2017-04-05) 
(Mihara et al., 2016). We obtained taxonomic classification of each reference sequence from the 
National Center for Biotechnology Information taxonomy database (ftp://ftp.ncbi.nih.gov/pub/taxonomy 
release of 2017_10_26 ) (Mihara et al., 2016; NCBI Resource Coordinators, 2018), with the exception 
of the virus taxonomic lineages, which we modified as described previously (Carradec et al., 2018) to 
better reflect the classification of eukaryotic viruses. 

Sequence similarities between OM-RGC.v2 sequences and the reference database were computed in 
protein space using MMSEQS2 (Steinegger and Söding, 2017) with the following parameters: search 
--max-seqs 1000 -a -e 1E-5 -v 3. Taxonomic affiliation was assigned using a weighted Lowest 



 

 

Common Ancestor (LCA) approach. For each marker gene, all protein sequence matches in the 

reference database with a bitscore value ≥ 90% of the bitscore of the best match were kept. We 
excluded outlier taxa by using a weighted LCA that covered at least 75% of all bitscores. 

We used BlastKOALA (Kanehisa et al., 2016) and eggNOG-mapper (Huerta-Cepas et al., 2017) to 
functionally annotate the OM-RGC.v2 according to orthologous groups in the KEGG database 
(release 86.1) and the eggNOG database (version 4.5.1), respectively. In total, 23.6% of the genes 
were annotated to a KEGG orthologous group (KO), and 60.9% were annotated to an eggNOG 
orthologous group (OG). In total, we annotated 9,026 KOs and 76,022 OGs. Genes that were not 
annotated to any OG were clustered de novo to define uncharacterized gene clusters (GCs). The 
clustering was performed with MMSEQS2 with the following options: --cluster-mode 2 --cov-mode 1 -c 
0.9 -s 7 --kmer-per-seq 20. GCs supported by at least 10 sequences were kept (249,914 GCs in 
total). Thus, of the 39% of genes without known homologs in the eggNOG database, ~250,000 were 
grouped de novo by homology into high confidence (minimum cluster size = 10) gene clusters (GCs), 
accounting for 21.8% of all the genes in the OM-RGC.v2 (Figure S2). 

Profiling of taxonomic, metagenomic, and metatranscriptomic compositions 

We used three different metrics of microbiome composition: the taxonomic composition, 
corresponding to the abundance profile of Operational Taxonomic Units (OTUs); the metagenomic 
composition, corresponding to the abundance profile of functionally annotated groups of genes (OGs 
or KOs); and the metatranscriptomic composition, corresponding to the transcriptomic abundance 
profile. We performed the profiling on the prokaryote-enriched subset of the dataset, including 187 
metatranscriptomic samples and 180 metagenomic samples, of which 129 pairs were coupled (Figure 
1). 

Taxonomic profiling was performed using 16S/18S ribosomal RNA gene fragments directly identified 
in the Illumina-sequenced metagenomes (Logares et al., 2014) as follows. We extracted 16S/18S 
reads, referred to as mitags, and used USEARCH v9.2.64 (Edgar, 2010) to map them to cluster 
centroids of taxonomically annotated 16S reference sequences from the SILVA database (Pruesse et 
al., 2007) (release 128: SSU Ref NR 99; https://www.arb-
silva.de/fileadmin/silva_databases/release_128/Exports/taxonomy/tax_slv_ssu_128.txt), which had 
been clustered based on a 97% sequence identity cutoff beforehand. Multiple hits were allowed 
(default parameters, except maxaccepts = 10,000 and maxrejects = 10,000), although only the mitags 
mapping to a unique reference sequence were used to compute abundances at the OTU level. The 
mitags mapping to more than one reference sequence (i.e., from different OTUs) were further 
processed to determine their taxonomic affiliation at a higher taxonomic level. Then, these were 
assigned to the taxonomic level (domain, phylum, class, order, family, or genus) that was common to 
all the corresponding reference sequences. Abundance tables at all levels were built by counting the 
number of mitags assigned to each taxon in each sample and the number of unassigned mitags. The 
OTU-level taxonomic profile was used in subsequent analyses, although the other profiles are 
available as additional resources at http://www.ocean-microbiome.org. Only OTUs assigned to 
Bacteria and Archaea were considered and the abundance table was rarefied (8,766 reads/sample) 
using the rrarefy function in the R package vegan (Dixon, 2003) to correct for uneven sequencing 
depths among samples. 

We generated metagenomic and metatranscriptomic composition profiles by mapping HQ reads from 
prokaryote-enriched metagenomes (n = 180) and metatranscriptomes (n = 187) to the OMRGC.v2 
using MOCAT (options: screen and filter with length and identity cutoffs of 45 and 95%, respectively, 
and paired-end filtering set to yes). The per-sample abundance of each reference gene in the catalog 
was calculated as the gene length-normalized insert count (MOCAT option profile), i.e., mean number 
of reads per base, for both data types. We subsequently converted the gene abundance profiles into 
functional profiles by taking the sum of the length-normalized abundances across reference genes 
belonging to the same functional group (i.e., OG, KO or GC). 



 

 

We determined the mapping rates of the prokaryote-enriched metagenomes and metatranscriptomes 
to the OM-RGC.v2 by summing the number of HQ reads that were aligned with the parameters 
described above. For other databases [MarRef database v3, updated 2019/01/19 (Klemetsen et al., 
2018) and a collection of metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans 
samples (Delmont et al., 2018)], we estimated the mapping rates by aligning the HQ reads using bwa 
and filtering the alignments with similar parameters (query aligned >= 80%, length >= 45bp and 
identity >= 95%). The mapping rates were then defined as the proportion of HQ reads from a 
metagenome or metatranscriptome that mapped to the reference after filtering. To compare the 
mapping rates to the reference genomes (which include intergenic regions) with those to the OM-
RGC.v2 (only gene-encoding sequences), we corrected for the average coding density of prokaryotic 
genomes using the value of 87% (Hou and Lin, 2009; Mira et al., 2001). We additionally confirmed 
this estimate by using the genome statistics available from 3,491 finished bacterial and archaeal 
genomes downloaded from IMG (mean: 87%, min: 41%, max: 98%, 95%, CI: 74-94%). 

Normalization and transformation of metagenomic and metatranscriptomic profiles and computation of 
gene expression profiles 

Per-cell normalization 

We normalized the metagenomic and metatranscriptomic profiles to relative cell numbers in the 
sample by dividing the gene abundances by the median abundance of 10 universal single-copy 
phylogenetic marker genes (MGs) (Milanese et al., 2019; Sunagawa et al., 2013). The MGs were 
selected as either OGs (COG0012, COG0016, COG0018, COG0172, COG0215, COG0495, 
COG0525, COG0533, COG0541, and COG0552) or KOs (K06942, K01889, K01887, K01875, 
K01883, K01869, K01873, K01409, K03106, and K03110) to normalize the OG and KO profiles, 
respectively. MGs are particularly suitable for normalizing metatranscriptomic data to provide 
estimates of relative per-cell gene copies, because they represent constitutively expressed 
housekeeping genes. In support of that notion, the metagenomic and metatranscriptomic abundances 
of the MGs were previously shown to be highly correlated, indicating that the MGs are constitutively 
expressed across many different conditions (Milanese et al., 2019). The normalized metagenomic 
abundance can therefore be interpreted as the per-cell number of gene copies of a given functional 
group. Accordingly, the normalized metatranscriptomic abundance can be interpreted as the relative 
per-cell number of transcripts of a given functional group. We applied this normalization procedure to 
all of the functional (i.e., KO, OG, and OG+GC) metagenomic and metatranscriptomic profiles used in 
this study. 

Transformation to counts, variance stabilization, and log2 transformation 

We converted the normalized profiles to integer counts ranging from 0 to 109 using a pseudo-count 
(i.e., normalized abundance profiles were divided by their maximum, multiplied by 109, and 
subsequently rounded). We then corrected the count-normalized metagenomic and 
metatranscriptomic abundance profiles using variance-stabilizing transformation as implemented in 
the DESeq2 R package (Love et al., 2014). This step yielded log2-transformed profiles, which are 
approximately homoscedastic (i.e., all genes display approximately constant variation across 
samples). For each sample in the resulting profiles, the abundance values were centered on the 
median of the 10 MGs, so the resulting values after variance stabilization can also be interpreted as 
the per-cell number of genes/transcripts. 

Computation of gene expression profiles 

The gene expression profiles, representing the number of transcripts per gene copy, correspond to 
the ratio between the metagenomic composition profile (reflecting the number of gene copies per cell) 
and the metatranscriptomic composition profile (reflecting the relative number of transcripts per cell). 
Because of the log-transformation, the expression profiles were computed as the difference between 



 

 

the log2-transformed metatranscriptomic profile and the log2-transformed metagenomic profile (Figure 
S7). 

Computation of taxonomic and functional richness 

Taxonomic richness was calculated as the number of OTUs detected in a given sample. Functional 
richness was computed as the number of OGs detected in a given sample after rarefaction of the 
metagenomic and metatranscriptomic profiles using RTK (https://github.com/hildebra/Rarefaction; 
(Saary et al., 2017). 

Ecological boundaries, patterns, and drivers 

We detected ecological boundaries using the split moving-window distance analysis (Ludwig and 
Cornelius, 1987) as implemented in the EcolUtils R package 
(https://github.com/GuillemSalazar/EcolUtils). We used the Euclidean distance of the log2-transformed 
taxonomic (mitags), metagenomic and metatranscriptomic profiles (eggNOG annotation) with a 
window size of 10 samples. The significance was computed based on 10,000 permutations and a 
significance threshold of p = 0.01. 

We assessed differential OTU abundances along the latitudinal gradient by computing the latitudinal 
niche value for each OTU (that is, the abundance-weighted mean absolute latitude of each OTU). The 
significance of the latitudinal niche values was computed by comparing the observed values to 1,000 
simulated values after randomization of the abundance table. The analysis, built on previous 
developments (Stegen et al., 2012, 2013), was performed using the niche.val function in the EcolUtils 
R package (https://github.com/GuillemSalazar/EcolUtils). As was done previously (Salazar et al., 
2015), OTUs that appeared in less than 10 samples were excluded from the analysis. 

We related the normalized and log2-transformed taxonomic, metagenomic and metatranscriptomic 
profiles (eggNOG annotation) of the epipelagic samples to 27 environmental factors through partial 
Mantel tests (corrected for spatial distance) with 10,000 permutations and Bonferroni correction. We 
performed pairwise comparison of environmental factors using Spearman correlation with Bonferroni 
correction. Spatial distances between sampling stations were computed as the shortest distance 
between two sampling stations while avoiding landmasses, and using the geographical coordinates of 
each sampling station. For that purpose, we used the bathymetry across the globe (available in the R 
package maptools) to construct a raster object. We then applied the Dijkstra algorithm (Dijkstra, 1959) 
to compute the shortest distance between sampling stations,considering only the coordinates 
corresponding to elevations below 0 m (i.e., excluding land masses). 

Annotation of gene clusters by co-variation patterns 

As a culture-independent approach to predict gene function, we analysed co-variation patterns of the 
genes in the OM-RGC.v2 with unknown function and no detectable homology to known sequences, 
which accounted for 39% of all the genes. Specifically, we first benchmarked the co-variation analysis 
to 1) evaluate the extent to which the pairs of OGs that were involved in a common metabolic process 
could be linked through covariation, 2) determine which type of covariation best identifies 
metabolically related OGs (i.e. co-variation based on gene abundance, transcript abundance, or gene 
expression levels), and 3) find the correlation cut-off (rmin) that provides optimal identification of 
metabolically related OGs. For that purpose we used a reduced profile with only the OGs occurring in 
at least 10% of the samples to avoid spurious correlations based on insufficient data points. We 
computed all pairwise Pearson correlations between OGs based on the log2-transformed 
metagenomic, metatranscriptomic and expression profiles. We linked each OG to a second OG by 
finding the best correlated OG. The pair of OGs was considered linked if the Pearson’s r value was 
high enough (i.e., if r > rmin). Whenever possible, the functional eggNOG-based annotation included a 
KEGG-based annotation for each OG, which we used to determine whether pairs of OGs were 
involved in a common metabolic process by checking if the corresponding KOs were involved in a 



 

 

common KEGG reaction, module, or pathway. For benchmarking, true positives (TPs) were defined 
as the number of OGs involved in a common metabolic process that were also linked through co-
variation. False positives (FPs) corresponded to pairs of OGs that were linked through co-variation 
that were not involved in a common metabolic process. True negatives (TNs) corresponded to pairs of 
OGs that were not involved in a common metabolic process nor linked through co-variation. False 
negatives (FNs) corresponded to pairs of OGs that were involved in a common metabolic process, but 
were not linked through co-variation. We assessed the predictive power of the co-variation analysis by 
computing the false-positive rate [FPR = FP / (FP + TN)]) and the true positive rate or sensitivity [TPR 
= TP / (TP + FN]). We computed the FPR and TPR for rmin values between 0 and 1 (step of 0.1) and 
built receiver operating characteristic curves by plotting FPR against sensitivity for each data type 
(gene co-abundance, transcript co-abundance, and co-expression) and each metabolic linkage 
definition (shared reaction, module, and pathway) (Figure S3). We subsequently used co-expression 
analysis to annotate all of the unknown genes, grouped into ~250k GCs by finding the GCs that could 
be linked to either an OG or a second GC. Specifically, we used co-expression analysis with an rmin 
value of 0.86, the lowest Pearson’s r value that assured an FPR < 5%, which gave an FPR of 4.7%, 
3.7%, and 3.9%, and a sensitivity of 15%, 26% and 33% for pathways, modules, and reactions, 
respectively). We identified significant associations for 16,706 GC-GC pairs and 810 GC-OG pairs. 
Among the GC-OG pairs, 702 pairs linked a GC to an existing OG of unknown function, and the other 
108 pairs linked a GC to an existing OG of known function (Table S2). 

Differential gene expression and gene abundance of microbial biogeochemical cycling genes across 
depths and latitude 

We built a list of marker KOs for microbial metabolism relevant to marine biogeochemical cycles by 
selecting KOs that could be uniquely associated to KEGG pathways involved in photosynthesis, 
carbon fixation, or nitrogen or sulfur metabolism (Table S4). Out of 72 marker KOs, 52 were detected 
in the dataset. 

We used the log2-transformed KO profiles to compute the differences in mean gene and transcript 
abundances and the mean expression for all marker KOs between the polar and non-polar samples, 
and between epipelagic and mesopelagic samples. We tested the significance of the differences 
using the Mann-Whitney test with Holm correction for multiple testing and p < 0.05 as the threshold for 
significance after correction. For the polar/non-polar comparison, only epipelagic samples were used. 

Annotation of nifH genes 

We broke down the KO for the nifH gene (K02588) and identified 24 constituent genes found in the 
OM-RGC.v2 and detected in the matched metagenomes and metatranscriptomes. We then used the 
gene and transcript abundances of those genes for a detailed analysis (see Figure 6). We re-
annotated the 24 individual genes by comparing them to a nifH-specific compilation of databases 
(Delmont et al., 2018). The compilation included the FunGene database (Fish et al., 2013) and the 
Zehr database (Heller et al., 2014), both containing nifH genes curated from the NCBI GenBank 
database, and the Farnelid database, containing amplicon sequences from a large-scale survey of 
nifH genes in the surface ocean (Farnelid et al., 2011) as well as the assemblies from the original 
study (Delmont et al., 2018). The compilation of databases was downloaded from 
https://doi.org/10.6084/m9.figshare.5259421. We compared the 24 genes against the compilation 
database using blastn (Camacho et al., 2009) with default parameters. For phylum level annotation, 
we only considered the best hit with at least 50% of the query aligned and to investigate the presence 
of the same gene in the database we used a minimum identity of 95% and an alignment length above 
80%. Following up on a gene characterized as uncultured cyanobacterium, we identified it to be 
derived from the UCYN-A genome (Zehr et al., 2008) 



 

 

Reconstruction of a metagenome-assembled genome of a putative nitrogen-fixing organism from Arctic 
mesopelagic waters 

We co-assembled four metagenomes from the mesopelagic Arctic Ocean (Stations 201, 205, 206, 
and 209) using megahit v1.1.2 (Li et al., 2016) (parameters: --presets meta-large -t 48 -m 0.99 --min-
contig-len 2000) and dereplicated the resulting assemblies with cd-hit v4.6.8-2017-0621 (compiled 
with make MAX_SEQ=10000000 and parameters: -c 0.99 -T 64 -M 290000 -n 10). We then back-
mapped the dereplicated assemblies with the prokaryote-enriched Arctic metagenomes using bowtie 
v2.3.2 (Langmead and Salzberg, 2012), and subsequently filtered (samtools view -q 10 -F 4 -Sb) and 
sorted (samtools sort @48) the alignments. We binned the assembled contigs with metaBAT2 v2.12.1 
(Kang et al., 2019) using jgi_summarize_bam_contig_depths (parameters: --minContigLength 2000 --
minContigDepth 1) to build the profile and selected a minimum contig size of 2 kbp for the binning 
step. We subsequently refined the bins as follows: (i) each bin was re-assembled with CAP3 v021015 
(Huang and Madan, 1999) (parameters -o 25 -p 95) and (ii) overlapping contigs were manually 
checked in Geneious R10 to resolve polymorphic regions. 

We screened the bins by blasting the nifH gene sequence against the assemblies and identified a 
candidate metagenome-assembled genome (MAG) containing a sequence with >99% identity to the 
nifH sequence. Using CheckM v1.0.8 (Parks et al., 2015), we assessed the quality of the 
corresponding MAG , which showed 86.6% completeness, 1.9% contamination, and 0% strain 
heterogeneity. The MAG was taxonomically annotated using GTDBTk 0.3.0 (Parks et al., 2018) with 
the database release r89. This annotation attributed the MAG as a member of an uncultured class 
within the Myxococcota phylum (formerly a class within the Deltaproteobacteria). Additionally, the 
GTDBTk results showed an average nucleotide identity of <77% with an alignment fraction <10% with 
the closest placement in the database, suggesting a high level of phylogenetic novelty. The functional 
annotation of the MAG was performed using Prokka v1.13 (Seemann, 2014) with options --gcode 11 
and --kingdom using the domain inferred by CheckM, as well as by additional hmmer searches (v 
3.1b1) against the PFAM (release 31.0), KEGG (release 2019-02-11) , COG (release 2014) & 
TIGRFAM (release 15.0) databases. Based on this annotation (Table S3), we hypothesize that the 
assembled genome is from an organism with heterotrophic metabolism, as it did not contain any 
identifiable genes from the photosynthetic machinery or any complete pathway for carbon fixation. 
The contig and gene sequences of the reconstructed genome are available at 
http://doi.org/10.5281/zenodo.3352181. 

 

Decomposition of metatranscriptomic profiles and metatranscriptome-based community distances 

We developed an analytical framework to measure how much of the difference in transcript 
abundance between samples was the result of differences in gene abundance (reflecting community 
turnover) and how much was the result of differences in gene expression (reflecting gene expression 
changes). The framework is based on the computation of the expression profiles (Enorm) as the ratio 
between the log2-transformed transcript (Tnorm) and gene (Gnorm) abundance profiles (Tnorm/Gnorm), 
which results in the following linear equality (Figure S7): log2(Tnorm) = log2(Gnorm) + log2(Enorm). That is, 
after log2-transformation, the normalised transcript abundance of a given functional group in a given 
sample equals the per-cell-normalized gene abundance plus the per-cell-normalized expression. We 
used that equality to derive an equation for the dissimilarity between two metatranscriptomic profiles. 
The resulting equation using the squared Euclidean distance as the dissimilarity measure is: 

 

𝑑 𝑖,𝑗 (𝑙𝑜𝑔2(𝑇𝑛𝑜𝑟𝑚 𝑖,𝑗))  =  𝑑 𝑖,𝑗 (𝑙𝑜𝑔2(𝐺𝑛𝑜𝑟𝑚 𝑖,𝑗))  +  𝑑 𝑖,𝑗 (𝑙𝑜𝑔2(𝐸𝑛𝑜𝑟𝑚 𝑖,𝑗))  +  𝐼 𝑖,𝑗  
 [equation 1] 

where 



 

 

𝐼 𝑖,𝑗  =  ∑𝑘
0 (𝑙𝑜𝑔2(𝐸𝑛𝑜𝑟𝑚 𝑗,𝑘)  − 𝑙𝑜𝑔2(𝐸𝑛𝑜𝑟𝑚 𝑖,𝑘))  ·  (𝑙𝑜𝑔2(𝐺𝑛𝑜𝑟𝑚 𝑗,𝑘)  −  𝑙𝑜𝑔2(𝐺𝑛𝑜𝑟𝑚 𝑖,𝑘))   

 [equation 2] 

and di,j is the squared Euclidean distance between samples i and j computed across k features (i.e., 
OGs). 

Equation 1 allows us to analytically decompose the dissimilarity between two metatranscriptomes into 
the dissimilarities between the corresponding metagenomic and expression profiles, and a third term, 
Ii,j (hereafter referred to as the ‘interaction component’), which corresponds to the weighted scalar 
product of the profiles. Given that the scalar product of centered vectors corresponded to their 
correlation coefficient, the interaction component can be interpreted as the mean correlation between 
the changes in abundance and expression between two samples for all functional groups. 
Consequently, Ii,j > 0 when changes in metagenomic abundance and expression between two 
samples are positively correlated, Ii,j < 0 when those changes are anticorrelated, and Ii, j = 0 when the 
changes are orthogonal. 

We decomposed the metatranscriptomic dissimilarity between all samples into the abundance-based 
dissimilarity (i.e., community turnover), the expression-based dissimilarity (i.e., gene expression 
changes), and the interaction component (equation 1 and 2). We then analyzed the dataset using bins 
in order to investigate how the communities respond to environmental variation of magnitude similar 
to that of predicted future environmental changes. Indeed, the median temperature difference within 
each bin was1.6°C, much in line with predicted climate change induced variations (Alexander et al., 
2018). We used a moving window to compute the median ratio between the abundance-based and 
expression-based distances for all pairwise dissimilarities in bins containing 15 samples each along 
the whole range of seawater temperatures. Thus, values above 1 represent bins where community 
turnover dominates over gene expression changes, whereas values below 1 represent bins where 
gene expression changes dominate over community turnover. For each bin, the difference between 
the mean ratio and 1 (equal contribution of both processes) was computed using the Wilcoxon test 
with Holm correction for multiple comparisons.  

Quantification and statistical analyses 

All statistical analyses were performed with R-Studio/R v.3.5.1 (R Core Team, 2018). 

  



 

 

Data and software availability 

Deposited Data 

Tara Oceans 
metagenomes 

Sunagawa et al., 2015; 
Roux et al., 2016; This 
paper 

European Nucleotide Archive (ENA) - see 
Table S1 for details 

Tara Oceans 
metatranscriptomes 

This paper European Nucleotide Archive (ENA) - see 
Table S1 for details 

OM-RGC.v2 This paper Companion website (http://www.ocean-
microbiome.org) 

Gene profiles This paper Companion website (http://www.ocean-
microbiome.org) 

Functional profiles This paper Companion website (http://www.ocean-
microbiome.org) 

Taxonomic profiles This paper Companion website (http://www.ocean-
microbiome.org) 

Environmental data This paper Companion website (http://www.ocean-
microbiome.org) and 
https://doi.pangaea.de/10.1594/PANGAEA.
875582 

Software and Algorithms 

MOCAT v2 Kultima et al. 2016 http://mocat.embl.de 

CD-HIT v4.6 Fu et al. 2012. http://cd-hit.org 

MMSEQS2 
Steinegger and Söding 
2017  

https://github.com/soedinglab/MMseqs2 

megahit v1.1.2 Li et al. 2016 
https://github.com/voutcn/megahit/releases
/tag/v1.1.2 

bowtie v2.3.2 
Langmead & Salzberg 
2012 

http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml 

BlastKOALA Kanehisa et al. 2016 https://www.kegg.jp/blastkoala/ 

eggNOG-mapper 
Huerta-Cepas et al. 
2017 

https://github.com/jhcepas/eggnog-
mapper/releases 

USEARCH v9.2.64 Edgar 2010. 
https://www.drive5.com/usearch/download.
html 



 

 

metaBAT2 v2.12.1 Kang et al 2019 
https://bitbucket.org/berkeleylab/metabat/sr
c/master/ 

CAP3 v021015 Huang & Madan 1999 
http://seq.cs.iastate.edu/cap3.html 

Geneious R10 --- 
https://www.geneious.com/ 

CheckM v1.0.8 Parks et al. 2015 
https://github.com/Ecogenomics/CheckM/r
eleases/tag/v1.0.8 

GTDB-Tk v0.3.0 Parks et al. 2018 
https://github.com/Ecogenomics/GTDBTk/r
eleases/tag/0.3.0 

Prokka v1.13 Seemann 2014 
http://www.vicbioinformatics.com/software.
prokka.shtml 

R v.3.5.1 R Core Team 2018. 
https://www.r-project.org 

R package vegan Dixon 2003 
https://cran.r-
project.org/web/packages/vegan/index.html 

R package DESeq2 Love et al. 2014. 
https://bioconductor.org/packages/release/
bioc/html/DESeq2.html 

RTK Saary et al. 2017  
https://github.com/hildebra/Rarefaction 

BLASTn Camacho et al. 2009 
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
blast+/LATEST/ 
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