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Stochastic Shape Optimization via Design-Space Augmented Dimensionality Reduction and RANS Computations

The paper presents how to efficiently and effectively solve stochastic shape optimization problems by combing Reynolds-averaged Navier-Stokes (RANS) equation solvers with designspace augmented dimensionality reduction (ADR). This study has been conducted within the NATO Science and Technology Organization, Applied Vehicle Technology, Task Group AVT-252 "Stochastic Design Optimization for Naval and Aero Military Vehicles." The application pertains to the robust and the reliability-based robust design optimization of a destroyer hullform for resistance in calm water and waves and seakeeping performance, under stochastic environmental and operating conditions (speed, sea state, heading). The current work extends previous research by the authors, presented at earlier AIAA conferences [1-3], where only potential flow solvers were used. In the present work, the expected value of the total resistance is reduced respectively by 4.4 and 3% in calm water and waves. An 8% improvement of the seakeeping performance is also achieved. Design-space assessment by ADR is demonstrated to be a viable option in solving the curse of dimensionionality in shape optimization, especially when high-fidelity CPU-expensive solvers are used.

I. Introduction

The simulation-based design (SBD) paradigm is rapidly replacing the traditional build-and-test design approach for naval and aeronautical military vehicles, offering innovative out-of-the-box design opportunities previously not realizable due to technological limitations. The recent and continuous improvement of high-performance computing (HPC) systems has allowed the application of high-fidelity simulation tools and the integration of optimization algorithms in the SBD process, leading to effective, efficient, and automatic SBD optimization (SBDO) procedures. In single/multi-disciplinary shape optimization, SBDO consists of three main elements: (i) performance analysis, (ii) optimization algorithm, and (iii) geometry modification and automatic meshing tool (see Fig. 1, right box).

Real world applications of SBDO are affected by uncertainties and require both an accurate modeling of environmental and operating conditions, and the solution of an uncertainty quantification (UQ) problem within the performance analysis and the optimization loop. Robust and/or reliability-based design optimization formulations are required to integrate UQ and the associated statistical estimators into the design process. Despite the availability of powerful HPC systems, SBDO for shape optimization under stochastic conditions still remains a challenging process, from theoretical, algorithmic, and technological viewpoints, especially when high-fidelity solvers are used.

In the optimization process, design improvements depend strongly on the dimension and the extent of the design space. The curse of dimensionality is relevant in simulation-based shape optimization, especially when complex physics Finally, assume that the shape modification of the geometry is governed by the design parameters u ∈ R M , which have a domain U. The objective of the following KLE analysis is to isolate new design parameters which have a maximum influence on δ, π and θ, so that most of the design variability can be expressed with fewer than M parameters.

Consider now a combined geometry and multi-physics based vector γ ∈ R m , where the physics part may contain multi-disciplinary information. For the sake of simplicity, consider one set of coordinates ξ ∈ R n , such that

γ(ξ, u) =          δ(ξ, u) if ξ ∈ G π(ξ, u) if ξ ∈ P θ(ξ, u) if ξ ∈ Q (1)
as belonging to a disjoint Hilbert space L 2 ρ (D), defined by the generalized inner product 

with associated norm a = (a, a)

1 2
ρ , where ρ(ξ) ∈ R is an arbitrary weight function. Note that in general, one may have multi-disciplinary physics vectors defined over multiple different domains, P 1 , ..., P ∞ . In this case, P ≡ ∞ k=1 P k . Considering the design modification vector only, generally, ξ ∈ R n with n = 1, 2, 3 and δ ∈ R m with m = 1, 2, 3 (with m not necessarily equal to n). For example, a typical hull geometry is a curved surface in three dimensions, so it has n = 2 and m ≤ 3 (meaning that the shape modification vector has at most three components). Figure 3 shows an example with n = 1 and m = 2, for the design modification vector δ(ξ, u).

Give the design vector u an arbitrary probability density function p(u). Considering all possible realizations of u, the associated mean vector is

γ (ξ) = ∫ U γ(ξ, u)p(u)du (3) 
Where • denotes the ensemble average over u. The associated variance (considering globally combined geometry and multi-physics based variability) equals

σ 2 = γ 2 = ∫ U ∫ D ρ(ξ) γ(ξ, u) • γ(ξ, u)p(u)dξdu (4) 
where γ(ξ, u) = γ(ξ, u) -γ (ξ) represents the combined geometry and multi-physics based modification vector. The aim of the KLE is to find an optimal basis of orthonormal functions which will be used to construct a linear, decomposed representation of γ:

γ(ξ, u) ≈ N k=1 x k (u)ψ k (ξ) (5) 
In order to perform design-space ADR, the basis functions ψ k in each subdomain of D is denoted as:

ψ k (ξ) =          ϕ k (ξ) if ξ ∈ G χ k (ξ) if ξ ∈ P ν k (ξ) if ξ ∈ Q (6) 
and

x k (u) = ( γ, ψ k ) ρ = ∫ D ρ(ξ) γ(ξ, u) • ψ k (ξ)dξ (7) 
are the basis-function weights, used hereafter as new design variables that replace u.

The optimality condition associated with the KLE refers to a maximization of the geometric and multi-physics variance σ retained by the basis functions of Eq. 5. Combining Eqs. 4-7 and using the orthonormality of the basis functions ψ yields:

σ 2 = ∞ k=1 ∞ j=1 x k x j (ψ k , ψ j ) ρ = ∞ k=1 x 2 k = ∞ k=1 ( γ, ψ k ) 2 ρ ( 8 
)
The basis retaining the maximum variance is formed by the solutions ψ k of the variational problem maximize

ψ ∈L 2 ρ (D) J (ψ k ) = ( γ, ψ k ) 2 ρ subject to (ψ k , ψ k ) 2 ρ = 1 (9) 
which yields [START_REF] Diez | Design-space dimensionality reduction in shape optimization by Karhunen-Loève expansion[END_REF] Lψ

k (ξ) = ∫ D ρ(ζ ) γ(ξ, u) ⊗ γ(ζ, u) ψ k (ζ )dζ = λ k ψ k (ξ) ( 10 
)
where L is the selfadjoint integral operator whose eigensolutions define the optimal basis functions for the linear representation of Eq. 5. Therefore, its eigenfunctions (KL modes) {ψ k } ∞ k=1 are orthogonal and form a complete basis for L 2 ρ (D). Additionally (see, e.g., [START_REF] Diez | Design-space dimensionality reduction in shape optimization by Karhunen-Loève expansion[END_REF])

σ 2 = ∞ k=1 λ k (11) 
where the eigenvalues λ k (KL values) represent the variance retained by the associated basis function ψ k , through its component x k in Eq. 5:

λ k = x 2 k (12)
Finally, the solutions {ψ k } ∞ k=1 of Eq. 10 are used to build a reduced-dimensionality design space. For efficiency, the eigenmodes are ordered as λ k ≥ λ k+1 . Defining l, with 0 < l ≤ 1, as the desired confidence level of the ADR, N in Eq. 5 is selected such as

N k=1 λ k ≥ l ∞ k=1 λ k = lσ 2 (13) 
After the design-space ADR is assessed and performed, the geometric components {ϕ k } N k=1 of the eigenvectors ψ k in Eq. 6 are used for the new representation of the shape modification vector. Details about the numerical implementation of the design-space ADR are given in Serani et al. [START_REF] Serani | Towards Augmented Design-Space Exploration via Combined Geometry and Physics Based Karhunen-Loève Expansion[END_REF].

Setup and assumptions for current application ADR are provided later in Section IV.E.

III. Computational Fluid Dynamics Solvers

A. ISIS-CFD

The flow solver ISIS-CFD is an incompressible unsteady Reynolds-averaged Navier-Stokes (URANS) method mainly devoted to marine hydrodynamics. The flow solver includes several sophisticated turbulence models available with wall-function or low-Reynolds near wall formulations. The solver is based on the finite volume method to build the spatial discretization of the transport equations. The unstructured discretization is face-based. While all unknown state variables are cell-centered, the systems of equations used in the implicit time stepping procedure are constructed face by face. Fluxes are computed in a loop over the faces and the contribution of each face is then added to the two cells next to the face. This technique poses no specific requirements on the topology of the cells. Therefore, the grids can be completely unstructured; cells with an arbitrary number of arbitrarily-shaped faces are accepted.

Pressure-velocity coupling is enforced through a Rhie & Chow SIMPLE type method [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF]: at each time step, the velocity updates come from the momentum equations and the pressure is given by the mass conservation law, transformed into a pressure equation. In the case of turbulent flows, transport equations for the variables in the turbulence model are added to the discretization. Free-surface flow is simulated with a multi-phase flow approach: the water surface is captured with a conservation equation for the volume fraction of water, discretized with specific compressive discretization schemes. The technique included for the 6 degrees of freedom (DoF) simulation of solid body motion is described by [START_REF] Leroyer | Numerical methods for RANSE simulations of a self-propelled fish-like body[END_REF]. Time-integration of Newton's law for the body motion is combined with analytic weighted or elastic analogy grid deformation to adapt the fluid mesh to the moving ship. Finally, an anisotropic automatic grid refinement procedure has been developed which is controlled by various flow-related criteria [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF].

In the present work the wall-function condition is applied on the solid surfaces while far field boundary conditions are imposed on the lateral sides of the computational domain. Pressure is imposed on the top and bottom. A half geometry is simulated with a symmetry condition on the center plane. The k -ε -SST turbulence model is used.

B. CFDShip-Iowa

CFDShip-Iowa is a URANS code [START_REF] Huang | Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics[END_REF], developed at the University of Iowa, IIHR-Hydroscience & Engineering, over the past 25 years. CFDShip-Iowa V4.5 is an incompressible RANS/DES solver designed for ship hydrodynamics. The equations are solved in an inertial coordinate system, either fixed to a ship or other frame moving at constant speed or in the earth system. The free surface is modelled with a single-phase capturing approach, meaning that only the water flow is solved, enforcing kinematic and dynamic free-surface boundary conditions on the interfaces. Arbitrary free-surface topologies can be predicted, with the limitation that pressurized closed air/water packets (bubbles) cannot be simulated. The solver uses structured multiblock grids and has overset capabilities. Other capabilities include 6 DoF motions, several turbulence models, moving control surfaces, multi-objects, advanced controllers, propulsion models, incoming waves and wind, bubbly flow, and fluid-structure interaction [START_REF] Mousaviraad | CFD prediction of ship response to extreme winds and/or waves[END_REF].

In the present study the URANS equations are solved in the inertial coordinate system fixed to the ship. The turbulence is computed with an isotropic model (Menter's blended k -ω/kε -BKW) with shear stress transport (SST). A second order upwind scheme is used to discretize the convective terms of the momentum equations. The pressure implicit with splitting of operators (PISO) loop for pressure/velocity coupling is used. For high-performance parallel computing, an MPI-based domain decomposition approach is used, where each decomposed block is mapped to one processor. The code SUGGAR runs as a separate process from the flow solver to compute interpolation coefficients for the overset grid, which enables CFDShip-Iowa to take care of 6 DoF movement with a motion controller at every time step. Simulations are performed for the right demi-hull for both calm-water and head waves, taking advantage of symmetry about the xz-plane (see Fig. 4). 

C. SMP

Seakeeping performance are evaluated by the Standard Ship Motion program (SMP), developed at the David Taylor Naval Ship Research and Development Center [START_REF] Meyers | SMP84: improvements to capability and prediction accuracy of the standard ship motion program SMP81[END_REF]. SMP provides a potential flow solution based on linearized strip theory. The 6 DoF response of the ship is given, advancing at constant forward speed with arbitrary heading in both regular waves and irregular seas, as well as the longitudinal, lateral, and vertical responses at specified locations of the ship.

IV. Stochastic Shape Optimization Problem: Destroyer Hull

A. Model Geometry

The DTMB 5415 model is selected as a test case for the current application.

It is an open-to-public early concept of the DDG-51 (see Fig. 5), a USS Arleigh Burke-class destroyer, widely used for both towing tank experiments [START_REF] Longo | Pitch and Heave Tests and Uncertainty Assessment for a Surface Combatant in Regular Head Waves[END_REF] and hull-form SBDO [START_REF] Serani | Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms[END_REF]. The main particulars of the DTMB 5415 and the test conditions are summarized in Tab. 1. Since no rudder is considered here, the L pp is calculated from the fore perpendicular to the transom bottom edge.

B. Stochastic Environmental and Operating Conditions

Stochastic conditions are: velocity U from 18kn to 30kn (0.25 ≤ Fr ≤ 0.41) following the transit speed-time distribution (see Fig. 6a), defined using the kernel density estimation (KDE) of 2013 data from Anderson et al. [START_REF] Anderson | Operational Ship Utilization Modeling of the DDG-51 Class[END_REF], approximated by

p(U) = 2(-0.0063715U + 0.192915) (14) 
Sea state S from 4 to 6 following the probability occurrence of the North Atlantic Ocean (see Fig. 6b [21] and Tab. 2); heading β with respect to the waves from 0 deg to 180 deg following a uniform distribution (see Fig. 6c [START_REF] Kennell | Innovative Naval Designs for North Atlantic Opeartions[END_REF]).

C. Optimization Problem Statement

A single-objective RDO, addressing the the calm water total resistance coefficient minimization, and a multi-objective RBRDO problem, addressing the minimization of the total resistance in waves and the maximization of the ship operability, are solved. Details are provided in the following subsections. 

Robust Design Optimization in Calm Water

The following single-objective RDO problem is solved:

minimize µ[C T (x, U)] subject to h i (x) = 0, i = 1, .
. . , I and to l j (x) ≤ 0, j = 1, . . . , J and to x l ≤ x ≤ x u (15) where x is the reduced-dimensionality design variable vector, µ is the expected value of the model scale total resistance coefficient (C T ) in calm water at variable speed (U) defined by

µ[C T (x, U)] = ∫ U C T (x, U)p(U)dU (16) 
where p(U) is the probability density function (PDF) associated to calm water evaluations with variable speed (see Eq. 14). Finally, equality h i and inequality l j geometrical constraints include fixed length between perpendiculars (L pp ) and displacement (∇), along with a ±5% maximum variation of beam (B) and draft (T), respectively, and reserved volume for the sonar in the dome, corresponding to 4.9 m diameter and 1.7 m length (cylinder).

Reliability-based Robust Design Optimization in Waves

The following multi-objecitve RBRDO is solved:

minimize {µ[ RT (x, U, H 1/3 ,T p )], -Ω(x)} T subject to h i (x) = 0, i = 1, .
. . , I and to l j (x) ≤ 0, j = 1, . . . , J and to x l ≤ x ≤ x u [START_REF] Mousaviraad | CFD prediction of ship response to extreme winds and/or waves[END_REF] where µ is the expected value of the model scale mean total resistance ( RT ) in head waves at variable speed (U) and significant wave height (H 1/3 , representative of the sea state) and Ω is the full scale ship operability considering North Atlantic Ocean conditions with variable speed, wave height, and heading (β). Equality and inequality constraint are defined as per the RDO problem. The objectives are described by Eqs. 18 and 19, respectively

µ[ RT (x, U, H 1/3 ,T p )] = ∭ U ,H 1/3 ,T p RT (x, U, H 1/3 ,T p )p(U, H 1/3 ,T p )dT p dH 1/3 dU (18) Ω(x) = ⨌ U ,H 1/3 ,T p ,β N g n=1 SSA n (x, U, H 1/3 ,T p , β) ≤ max(SSA n ) p(U, H 1/3 ,T p , β)dβdT p dH 1/3 dU (19) 
where p(U, H 1/3 ,T p ) is the joint PDF of the stochastic environmental parameter considered; SSA n are the significant single amplitude operator, representing the seakeeping constraints addressing subsystem seakeeping performance as per NATO STANAG 4154 [START_REF] Kennell | Innovative Naval Designs for North Atlantic Opeartions[END_REF]. These include criteria for mobility, anti-submarine warfare, surface warfare, anti-air warfare, imposing constraints for: roll motion, pitch motion, vertical acceleration at bridge, vertical velocity at flight deck, and wetnesses/slams/emergences per hour. Here, a limited set of four constraints (N g = 4) is considered, addressing roll and pitch motions, vertical velocity at the flying deck, and vertical acceleration at the bridge, with maximum allowable values summarized in Tab. 3. 

where R CW is the calm-water total resistance and RAW is the average added resistance, predicted from the non-dimensional added resistance response function (C AW ) by

RAW = 2 ∫ +∞ 0 C AW S ζ (ω e )dω e with C AW = RRW -R CW ζ 2 0 ( 21 
)
where ζ 0 is the wave amplitude, ω e is the wave-encounter frequency, and S ζ (ω e ) is the encounter wave spectrum evaluated from the wave spectrum S ζ (ω) as

S ζ (ω e , U, β, H 1/3 ,T p ) = S ζ (ω, H 1/3 ,T p ) g g + 2ωU cos β (22) 
Here, the Bretschneider ocean wave spectrum is considered, defined by

S ζ (ω) = 5 16 
ω 4 p ω 5 H 2 1/3 e -5ω 4 p /4ω 4 (23) 
where ω p = 2π/T p is the peak angular frequency. Figure 7 shows the Bretschneider spectra for sea state 4, 5, and 6 for the North Atlantic Ocean (see Tab. 2). Combining Equations 20 and 21, Equation 16 can be recast as

µ[ RT (x, U, H 1/3 ,T p )] = = ∫ U R CW (x, U)p(U)dU + 2 ∬ U ,H 1/3 ∫ ω e C AW (x, U, H, ω e )S ζ (ω e , U, H 1/3 ,T p (H 1/3
))dω e p(U, H 1/3 )dH 1/3 dU [START_REF] Loeven | Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[END_REF] with H = H = π/8 H 1/3 . Operability: The operability (or ship motion) constraints are related to the SSA of roll and pitch motions, vertical velocity at the flying deck, and vertical acceleration at the bridge. The SSA of the generic χ-motion is defined as

SSA ( χ) = 2 √ m χ ( 25 
)
where m χ is the spectral moment (standard deviation, STD or root mean square, RMS) of the generic motion χ. In a probabilistic form the general spectral moment m χ reads

m χ = E[q(ω e )] = ∫ +∞ 0 q(ω e )p(ω e )dω e (26) 
with

q(ω e ) = m ζ σ 2 χ (ω e ) ζ 2 0 and p(ω e ) = S ζ (ω e ) m ζ (27) 
where m ζ is the area underlined by the encounter wave spectrum

m ζ = ∫ +∞ -∞ S ζ (ω e )dω e (28) 
and σ χ is the STD or RMS (if the signal has zero mean) of the χ-motion, evaluated as

σ χ = 1 T 2 -T 1 ∫ T 2 T 1 [ χ(t) -χ] 2 dt (29) 
Combining Eqs. 25, 26, and 27 with 19, the latter can be recast as

Ω(x) = ∭ U ,H 1/3 ,β B(x, U, H 1/3 ,T p (H 1/3 ), β)p(U, H 1/3 , β)dβdH 1/3 dU (30) 
with

B = N g n=1        2 ∫ +∞ 0 σ 2 n (x, U, H, β, ω e ) ζ 2 0 S ζ (ω e , U, β, H 1/3 ,T p (H 1/3 ))dω e 1 2 ≤ max(SSA n )        (31) 

D. Uncertainty Quantification Methods

Non-intrusive probabilistic collocation

For the RDO problem, UQ is performed using the non-intrusive probabilistic collocation method as developed by Wunsch et al. [START_REF] Wunsch | Quantification of combined operational and geometrical uncertainties in turbo-machinery design[END_REF] based on the work by Loeven et al. [START_REF] Loeven | Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[END_REF]. In this approach, the dependence of a simulation result on a stochastic parameter is obtained with a Lagrange interpolating polynomial that is fitted through the results of deterministic simulations. The collocation points chosen for these simulations correspond to the Gauss quadrature points for general PDF shapes. This has the advantage that arbitrary PDF types can be used to describe the uncertainty.

Gaussian Quadrature

An n-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2n -1 or less by a suitable choice of the points x i and weights w i for i = 1, . . . , n. The domain of integration for such a rule is conventionally taken as [-1, 1], so the rule is stated as

∫ 1 -1 f (x)dx = n i=1 w i f (x i ) ( 32 
)
where w i are weights. Equation 32 can be easily extended to multidimensional integral. Herein, the Gauss-Legendre quadrature with n = 2 for each stochastic variable (weights w i = 1 and Gauss points

x 1,2 = ±1/ √
3) is used to approximate Eq. 24 as

µ[ RT (x, U, H 1/3 ,T p )] = = U u -U l 2 2 i=1 R CW (x, U i )p(U i ) + (U u -U l )(H 1/3,u -H 1/3,l ) 4 2 i=1 2 j=1 RAW (x, U i , H 1/3, j )p(U i , H 1/3, j ) (33) with RAW (x, U i , H 1/3, j ) = (ω e,u,i j -ω e,l,i j ) 2 k=1 C AW (x, U i , Hj , ω e,i jk )S ζ (U i , H 1/3, j ,T p (H 1/3, j ), ω e,i jk )) (34) 
The Gauss points selected for the URANS simulations are summarized in Tab. 4.

Table 4 Stochastic variables used as Gauss points for the RBRDO solution.

Speed Sea state 

i j k U [kn] Fr [-] Re [-] H 1/3 [m] H [m] T p (H 1/3 ) [s] ω [rad/s] ω e [rad/s]

Metamodel-based Importance Sampling

A stochastic radial basis functions (SRBF, [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF]) network is used for the prediction of the motions SSA for the solution of the RBRDO problem. Herein, the metamodel prediction ( SSA) is defined as the expected value of 100 RBF metamodels as

SSA(y) = µ[h(y, j )] with { j } 100 j=1 ∼ unif[1, 3] (35) 
where y = {U, H 1/3 , β} define the stochastic parameters space and

h(y, j ) = N T i=1 w i ϕ y -z i j (36)
with N T the number of training points and w = {w i } is the solution of the linear system that provides exact prediction at y = z i Aw = l with a i j = ϕ z iz j j and l = {l i } (37)

The motion constraints are evaluated by the linearized strip theory SMP at the training points, given by the full factorial combination of U = {18, 20, 22, 24, 26, 28, 30}kn, H 1/3 = {1.88, 3.25, 5.00}m, and β = {0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180}deg, for a total of N T = 273. The operability in Eq. 30 is evaluated by importance sampling as

Ω(x) = ∭ U ,H 1/3 ,β B(x, U, H 1/3 ,T p (H 1/3 ), β)p(U, H 1/3 , β) q(U, H 1/3 , β) q(U, H 1/3 , β)dβdH 1/3 dU (38)
with q(U, H 1/3 , β) the importance distribution. Herein Eq. 38 is solved by a uniform Monte Carlo (MC) sampling over the stochastic parameters space, leading to its discretized form

Ω(x) ≈ N U i=1 N H 1/3 j=1 N β k=1 4 n=1 [ SSA n (x, U i , H 1/3, j , β k ) ≤ max(SSA n )]p(U i , H 1/3, j , β k ) N U i=1 N H 1/3 j=1 N β k=1 p(U i , H 1/3, j , β k ) (39) 
where

N U = N H 1/3 = N β = 25 
are the number of MC samples, composed by speeds, wave heights (sea states), and headings, respectively. MC samples are provided by the SRBF prediction.

E. Design-Space Augmented Dimensionality-Reduction Setup and Assumptions

The design variability vector γ (Eq. 1) contains: a shape modification vector δ based on a three-dimensional orthogonal basis function (OBF) [START_REF] Serani | Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms[END_REF] as described in the following Sec. IV.F; a distributed physical parameter vector π that includes the pressure distribution p and wave elevation η; and a lumped physical parameter vector θ that includes the wave resistance coefficient in calm water C w and the RMS of vertical acceleration at the bridge a z and pitch angle ϑ in waves. The design-space ADR is performed considering multiple speeds (Fr = 0.25, 0.33, and 0.41), for both calm water and seakeeping performance. The latter are evaluated in head waves at sea state 5. Further details can be found in [START_REF] Serani | Shape Optimization under Stochastic Conditions by Design-space Augmented Dimensionality Reduction[END_REF].

F. Hull-Form Modification Method

The original shape modifications δ(ξ, u) (defining the original design space) are produced directly on the Cartesian coordinates ξ of the computational body surface g, as per

g(ξ, u) = g 0 (ξ) + δ(ξ, u) (40) 
where g 0 represents the original body surface. The shape modification is defined using M = 27 functions of the Cartesian coordinates over a hyper-rectangle embedding the demi hull [START_REF] Serani | Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms[END_REF] 

φ i (ξ) : V = [0, L ξ 1 ] × [0, L ξ 2 ] × [0, L ξ 3 ] ∈ R 3 -→ R 3 (41) with i = 1, ..., M, as δ(ξ, u) = M i=1 u i φ i (ξ) (42) 
where the coefficients u i ∈ R (i = 1, . . . , M) are the original design variables and

φ i (ξ) := 3 j=1 sin c i j πξ j L ξ j + r i j e q(i) (43) 
imposing the following orthogonality property:

∫ V φ i (ξ) • φ k (ξ)dξ = δ ik (44) 
In Eq. 43, {c i j } 3 j=1 ∈ R define the order of the function in the corresponding geometric directions ξ; {r i j } 3 j=1 ∈ R are the corresponding spatial phases; {L ξ j } 3 j=1 are the hyper-rectangle edge lengths; e q(i) is a unit vector. Modifications are applied in ξ 1 , ξ 2 , or ξ 3 direction, with q(i) = 1, 2, or 3 respectively. The parameter values used here are taken from Serani et al. [START_REF] Serani | Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms[END_REF].

Fixed L pp and ∇ are satisfied by automatic geometric scaling, while geometries exceeding the constraints for B and T are discarded. This is used here, since the relationship between beam/draft variations and design variables is not explicitly provided by the orthogonal expansion and geometric scaling.

The reduced-dimensionality space is built as

g(ξ, x) = g 0 (ξ) + δ(ξ, x) (45) with δ 
(ξ, x) = N k=1 x k ϕ k (ξ) (46) 
where {ϕ k (ξ)} N k=1 are the N geometry eigenvector component of Eq. 6, that cover at least the 95% of the original design variability as per Eq. 13, and -√ 3λ k ≤ x k ≤ √ 3λ k are the new design variables.

V. Numerical Results

A. Design-Space Augmented Dimensionality Reduction

In the current analysis, the vector spaces are normalized so that the variance associated with the geometry, the distributed and the lumped multi-physics parameter vectors is the same. The weight ρ(ξ) of the grid nodes above the water line is set equal to zero. A number of S = 9, 000 random designs are produced assuming a uniform distribution p(u) and assessed by low fifelity solvers. Calm water performace are assessed by the linear potential flow solver WARP [START_REF] Bassanini | The wave resistance problem in a boundary integral formulation[END_REF], whereas seakeeping performance are assessed by SMP. Details can be found in [START_REF] Serani | Shape Optimization under Stochastic Conditions by Design-space Augmented Dimensionality Reduction[END_REF]. Figure 8 shows the geometry and multi-physics based variability associated with the design space. The PDF is shown for normalized geometric variation δ(ξ 2 )/L pp of a point on the hull, variation of the wave resistance coefficient ∆C w , variation of the normalized pressure distribution ∆p/p 0 (where p 0 is the pressure reference), variation of the normalized wave elevation ∆η/L pp of a point downstream, variation of the pitch angle ∆ϑ, and finally variation of the bridge vertical acceleration ∆a z . Multi-physics PDF are shown conditional to the Froude number. Figure 9 shows the KLE results in terms of design variability associated to a reduced-dimensionality space of dimension N for S = 2, 250, 4, 500, and 9, 000 samples. The results are found convergent versus S. The 95% of the original design variability is achieved reducing the number of design variables up to 52% (N = 14).

The first three KL modes retaining the largest design variability are shown in Fig. 10. Specifically, the absolute value of the corresponding eigenvector component (geometry, pressure distribution, wave elevation, wave resistance coefficient, pitch, and vertical acceleration) are depicted. The multi-physics eigenvector components are shown conditional to the Froude number. 

B. Solution of the RDO Problem in Calm Water

A reduced-dimensionality space resolving about 93% of the original design-space variability is used with N = 10. The RDO problem is solved with help of the commercial optimization package FINE/Design3D from NUMECA Int. A design of experiments (DoE) is performed using Latin Hypercube sampling of the design space. A total number of 5N + 1 = 56 simulations has been performed. Subsequently, optimization is performed using an artificial neural network metamodel approach. In total, 30 design iterations were performed, which corresponds to 90 simulations in order to perform UQ for each point. The optimized geometry is shown in Fig. 11. Compared with the baseline, it has a sharper bow and a notable bulge just behind the bow, which creates a shoulder wave. The midship is thicker than the baseline, whereas the stern has a more slender shape which may produce a smoother pressure recovery and reduce the stern waves. The drag coefficient as a function of the speed is given in Fig. 12: since the velocity probability distribution puts more emphasis on lower speeds, the optimal shape has a reduced total resistance coefficient at low speeds, whereas high-speed performance deteriorates. An average (expected value) total-resistance coefficient reduction of 4% is achieved. The wave patterns (see Fig. 13) further clarify why the optimized shape performs better. At the lowest speed, the bow wave is almost completely eliminated by the shoulder wave. The stern wave, which remains unchanged at the lowest velocity, seems a bit smaller than for the baseline at the middle velocity. At this velocity, the shoulder wave is still successful in reducing the bow wave. At the highest velocity on the contrary, the waves have lengthened so the bow and shoulder waves are now in phase. Thus, their amplitudes are summed and the wave resistance increases. Like a bulbous bow on a freighter, the shoulder bulge is a resistance reduction device which is optimal at one speed since it depends on the out-of-phase superposition of two wave systems. The result of performing a robust optimization, instead of a single-speed optimization, is probably that a less pronounced bulge is created. The current results show that the small bulge chosen here is effective for reducing drag over the entire low and middle speed range.

C. Solution of the RBRDO Problem in Waves

A reduced-dimensionality space resolving about 65% of the original design-space variability is used with N = 3. Irregular waves total resistance expected value and operability preliminary sensitivity analysis are shown in Fig. 14. The results show a possible improvement of both the objectives. Looking at the design-space isoplanes x 1x 2 (Fig. 14a andd), x 1x 3 (Fig. 14b ande), and x 2x 3 (Fig. 14c andf), the objectives improvement are located at almost opposite total resistance in irregular waves with about 5% worsening of operability; design B shows 19% worsening for total resistance and about 8% improvement of operability. 

VI. Conclusions

The design-space augmented dimensionality reduction method is based KLE analysis and combines shape design modifications with the associated multi-physics performance for multiple design conditions, based on low-fidelity computations. Combining design modifications and performance improves the effectiveness of the design space dimensionality reduction for the subsequent design optimization by high-fidelity solvers (Fig. 1), has shown in [START_REF] Serani | Towards Augmented Design-Space Exploration via Combined Geometry and Physics Based Karhunen-Loève Expansion[END_REF][START_REF] Serani | Shape Optimization under Stochastic Conditions by Design-space Augmented Dimensionality Reduction[END_REF].

The method is demonstrated through the solution of RDO and RBRDO problems of a naval destroyer hull form, namely the DTMB 5415 model, subject to stochastic speed, sea state, and heading. Results are shown for improved resistance (in calm water and waves) and seakeeping performance. The RDO problem, by trading off high-speed performance for low-speed efficiency, produced a total resistance coefficient reduction of 4.4% over the speed range. The RBRDO problem, shows the complexity (for the current problem) of improving both total resistance and operability in waves, since no compromise solutions have been found. Nevertheless, significant objective improvements have been found at the extrema of non-dominated solutions set: about 3% for total resistance and 8% for operability.

The effectiveness and efficiency of the ADR method are affected, in general, by the nonlinearities involved in the process. In order to quantify their effects, ongoing research focuses on nonlinear extensions of the current methodology [START_REF] D'agostino | Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization[END_REF][START_REF] Serani | Assessing the Interplay of Shape and Physical Parameters by Nonlinear Dimensionality Reduction Methods[END_REF][START_REF] D'agostino | Deep Autoencoder for Off-line Design-Space Dimensionality Reduction in Shape Optimization[END_REF].
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 2 Fig. 2 Domains for shape modification vector, distributed physical parameter vector, and lumped (or global) physical parameter vector in a disjoint Hilbert space.

  Figure 2 summarizes these domains and vectors.

  (a, b) ρ = ∫ D ρ(ξ)a(ξ) • b(ξ)dξ = ∫ G ρ(ξ)a(ξ) • b(ξ)dξ + ∫ P ρ(ξ)a(ξ) • b(ξ)dξ + ρ(ξ θ )a(ξ θ ) • b(ξ θ )
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 3 Fig. 3 Scheme and notation for the current formulation, showing an example for n = 1 and m = 2.
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 4 Fig. 4 Summary of boundary conditions for calm water/regular head wave simulations by CFDShip-Iowa.
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 5 Fig. 5 DDG-51 overview with bridge and flight deck location (images from the-blueprints.com and shipbucket.com).
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 6 Fig. 6 Stochastic parameters distribution.
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 67 Fig. 7 Bretschneider North Atlatic sea spectra.
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 8 Fig. 8 PDF of geometry and multi-physics based variables associated to the design space variability, using S = 9, 000 random designs. The multiphysics graphs show curves for three Froude numbers.
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 9 Fig. 9 Normalized variance resolved by reduced-dimensionality spaces of dimension N.
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 10 Fig. 10 Geometry and multi-physics eigenvector components.
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 11 Fig. 11 RDO: baseline (left) and optimal (right) designs.
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 12 Fig. 12 RDO: dependence of resistance coefficient on the velocity for the optimal and baseline designs.
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 1516 Fig. 15 RBRDO: non-dominated solutions set and optimal designs.

  

Table 1 DTMB 5415 main particulars and fluid conditions.

 1 

	Description	Symbol	Unit	Full scale Model scale
	Displacement	∇	tonnes	8,437	0.549
	Length between perpendiculars	L pp	m	142.0	5.720
	Beam	B	m	18.90	0.760
	Draft	T	m	6.160	0.248
	Longitudinal center of gravity	LCG	m	71.60	2.884
	Vertical center of gravity	VCG	m	1.390	0.056
	Bridge longitudinal position	B x	m	44.00 †	1.772 †
	Bridge vertical position	B z	m	24.75 ‡	0.997 ‡
	Flight deck longitudinal position	D x	m	132.0 †	5.317 †
	Flight deck vertical position	D z	m	13.00 ‡	0.524 ‡
	Roll radius of gyration	K xx	-	0.40B
	Pitch radius of gyration	K yy	-	0.25L pp
	Yaw radius of gyration	K zz	-	0.25L pp
	Water density	ρ	kg/m 3	998.5	
	Kinematic viscosity	ν	m 2 /s	1.09E-6
	Gravity acceleration	g	m/s 2	9.803	
	Above the water line;				

† Backward bow; ‡ Above the keel; ADR conditions

Table 2 Annual sea state occurrence in the open North Atlantic Ocean [21].

 2 

	S	p(S)% p(S)% H 1/3 [m] p(H 1/3 )%	H [m] T p [s]
	≤ 1	0.00	-	0.05	-	0.03	-
	2	7.20	-	0.30	-	0.19	7.5
	3	22.4	-	0.88	-	0.55	7.5
	4	28.7	45.6	1.88	36.5	1.18	8.8
	5	15.5	24.6	3.25	16.4	2.04	9.7
	6	18.7	29.7	5.00	14.9	3.13	12.4
	7	6.10	-	7.50	-	4.70	15.0
	8	1.20	-	11.5	-	7.21	16.4
	> 8 < 0.05	-	> 14	-> 8.77	20.0

Table 3 Subsystem seakeeping performance criteria [22].

 3 

	Criterion	Unit Symbol max(SSA)
	Roll motion	deg	SSA 1	8.00
	Pitch motion	deg	SSA 2	3.00
	Vertical acceleration at bridge	g	SSA 3	0.40
	Vertical velocity at flight deck m/s	SSA 4	0.99

Expected Value of Mean Total Resistance in Irregular Waves:

The time-average total resistance in irregular waves is evaluated by regular wave analysis as RT = R CW + RAW
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Figure 15 shows the non-dominated solutions set provided by a deterministic version of the multi-objective particle swarm optimization algorithm [START_REF] Pellegrini | Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimization[END_REF]. No compromise solutions (capable to improve simultaneously both the objectives) are found, since the objectives are completely conflicting, as shown by the sensitivity results. Two designs optima are identified at the extrema (A and B) of the non-dominated solutions set and the corresponding hull stations are shown in Fig. 15. Total resistance expected value and operability improvement verification (by CFDShip-Iowa and SMP simulations, respectively) is shown in Fig. 16: design A provides about 3% improvement for the expected value of the