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Adaptive Multifidelity Shape Optimization Based on Noisy CFD Data

INTRODUCTION

Metamodelling in CFD-based automatic shape optimization aims to replace expensive CFD computations by evaluations of a computationally-inexpensive surrogate model, created from a limited training set of simulations. Multi-fidelity (MF) metamodels make this process even more efficient by basing a part of the metamodel on inexpensive low-fidelity simulations and introducing a correction based on the discrepancy with few high-fidelity simulations [START_REF] Pellegrini | Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization[END_REF]. To adaptively define the training sets of the low-fidelity and discrepancy metamodels, different sampling strategies can be used [START_REF] Pellegrini | Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization[END_REF].

Unfortunately, the adaptive sampling is affected by the computational-output noise due to CFD numerical errors. Especially if new grids are generated for each simulation, the numerical errors for two similar geometries can be different. Adaptive sampling strategies may react to this noise by placing new points in noisy regions, rather than in places where the overall metamodel is unreliable, especially if the metamodel uses exact interpolation. This deteriorates the metamodel quality.

The present work presents a multi-fidelity metamodel based on stochastic radial basis functions (RBF) [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF]. To avoid the undesired effects of noise associated with exact interpolation, a leastsquares regression is used by selecting a number of RBF degrees of freedom (DoF) and centers smaller than the number of training points. The number of DoF is adaptively defined by an in-the-loop optimization of the metamodel with a leave-one-out cross-validation (LOOCV) metric.

The multi-fidelity least squares RBF (LS-RBF) is used for the shape optimization of a NACA four-digit airfoil and compared to RBF with exact interpolation (I-RBF). The numerical simulations are based on the Reynolds-averaged Navier-Stokes solver ISIS-CFD, which uses adaptive grid refinement to create low-and high-fidelity evaluations.

MULTI-FIDELITY LEAST SQUARES RADIAL BASIS FUNCTIONS

Consider an objective function f (x), where x ∈ R N is the design variable vector and N the design space dimension. Let N t training points x i be known, with simulated objective function values f S (x i ) = f (x i ) + N i . The simulation noise N is considered as realizations of zero-mean uncorrelated random variables. For these training points, a stochastic RBF (SRBF) metamodel f (x) is computed as the expected value (EV) over a stochastic tuning parameter τ ∼ unif [START_REF] Pellegrini | Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization[END_REF][START_REF] Serani | Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems[END_REF]:

f (x) = EV [g (x, τ )] τ , with g (x, τ ) = Nc j=1 w j ||x -c j || τ , (1) 
where w j are unknown coefficients, || • || is the Euclidean norm and c j are the RBF centers, defined via k-means clustering of the training points. Noise reduction is achieved by choosing N c ≤ N t . Hence, w j are determined with least squares regression by solving w

= (A T A) -1 A T f S , with w = {w j }, a ij = ||x i -c j || τ and f S = {f S (x i )}.
The optimal number of RBF centers (N c ) is defined by minimizing a LOOCV metric. Let f\i (x) be a metamodel trained by all points but the i-th point, then N c is defined as:

N c = argmin Nc (RMSE), with RMSE = 1 N t Nt i=1 f S (x i ) -f\i (x i ) 2 . (2) 
This single-fidelity metamodel is extended to multi fidelity f (x) by starting from a low-fidelity (LF) trained metamodel f L (x) and adding a correction based on high-fidelity (HF) evaluations:

f (x) = fL (x) + ε (x) , (3) 
where the correction is provided by the exact interpolation (N c = N t ) of the error/discrepancy ε (x).

The training points for ε are defined as the difference between HF evaluations and LF metamodel:

ε (x i ) = f H (x i ) -fL (x i ) . (4) 
Since the LF simulations are generally noisier than the HF simulations, the LF metamodel is a better representation of the LF response than the actual LF simulations, which explains this choice.

The uncertainty U f (x) of the SRBF prediction is quantified by the 95%-confidence interval of g(x, τ ), evaluated using a Monte Carlo sampling over τ [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF]. Assuming, as zeroth-order approximation, that the uncertainties associated with the low-fidelity and error metamodels (U f L and U ε respectively) are uncorrelated, the uncertainty of the MF prediction is

U f (x) = U 2 f L (x) + U 2 ε (x). (5) 
The MF metamodel is dynamically updated by adding new training points where the prediction uncertainty is maximum [START_REF] Pellegrini | Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization[END_REF]. New training points are identified solving

x = argmax x [U f (x)]. ( 6 
)
Once x is identified, either low-fidelity (L) or error-metamodel (E) training-set is refined, based on the following statement

If U fL (x ) ≥ βU ε(x ), add {x , f L (x )} to L, else, add {x , ε(x )} to E, (7) 
where β ∈ [0, 1] is the ratio between low-and high-fidelity computational costs.

NACA HYDROFOIL SHAPE OPTIMIZATION PROBLEM

The drag coefficient (C D ) minimization of a NACA four-digit airfoil is solved. The airfoil's shape is analytically defined, based on three parameters: the maximum camber position p, the maximum camber value m, and the thickness t. In this work, the vector of design variables is defined as x = {t, m} with t ∈ [0.030, 0.120] and m ∈ [0.025, 0.065], with fixed p = 0.4. Simulation conditions are: velocity U = 10 m/s, chord c = 1 m, fluid density ρ = 1, 026 kg/m 3 , and Reynolds number Re = 8.41 • 10 6 . Simulations are run at a constant lift coefficient C L = 0.6. Optimization is performed with a deterministic version of the particle swarm optimization (DPSO) algorithm [START_REF] Serani | Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems[END_REF].

CFD simulations are performed with the unstructured finite-volume RANSE solver ISIS-CFD developed at ECN -CNRS [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF], available in the FINE TM /Marine computing suite from NUMECA Int. Computational grids are created with adaptive grid refinement [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF] which uses metric-tensor based refinement criteria. For MF optimization, the interest of this procedure is that different fidelity results can be obtained by running the same simulations with different global refinement thresholds T r [START_REF] Pellegrini | Adaptive sampling criteria for multi-fidelity metamodels in CFD-based shape optimization[END_REF]. The initial computational grid has 2,654 cells, the threshold value T r is set equal to 0.1, and 0.4 for HF and LF. The adapted grids have 12.8 and 3.7k cells as shown in Fig. 1. 

RESULTS AND CONCLUSIONS

As an initial test, metamodels are constructed for a fixed training set of L = 48 and E = 9 training points. Figure 2 compares the MF metamodels and associated uncertainties using I-RBF and LS-RBF. The results are quite similar, nevertheless LS-RBF provides the smoothest response surface, filtering noise especially at the domain corners. Overall, LS-RBF provides the lowest uncertainty.

Figure 3 shows the NRMSE associated to the LOOCV procedure of the LF metamodel, along with a HF validation using a benchmark of 141 high-fidelity simulations as validation set (shown with black dots on the right of Fig. 2a andb). The normalization factors are the low-and high-fidelity evaluation ranges, respectively. The best LS-RBF is achieved with 24 DoF/centers (see Fig. 3). This corresponds well with the HF validation, so LOOCV is a sensible metric. LS-RBF achieves an NRMSE equal to 2.9%, whereas I-RBF gives an error of 3.7%. Finally, Fig. 4 shows the convergence when DPSO is applied to the I-RBF and LS-RBF MF metamodels. LS-RBF provides the fastest convergence to the optimum. Metamodels and optimization results are summarized in Tab. 1.

In conclusion, at least for the present problem, the use of a LS-RBF MF regression improves the metamodel response, avoiding the undesired effects of noise associated with exact interpolation. The smoother response surface facilitates the convergence of the optimization algorithm in shape optimization. Ongoing and future work focuses on applying LS-RBF to adaptive sampling along with the generalization of the present method to an arbitrary number of fidelity levels. 
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 1 Figure 1: NACA hydrofoil computational grids.
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 1212122 Figure 2: Exact interpolation (I-RBF) versus least squares regression (LS-RBF). From left to right: lowfidelity, error, and multi-fidelity metamodels, training sets, and uncertainties. The validation set is also depicted on the MF metamodel.
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 3 Figure 3: NRMSE cross-validation.

Figure 4 :

 4 Figure 4: DPSO convergence.

Table 1 :

 1 Summary of the optimization results.

					minimum position	minimum value
	Metamodel L [-]	E [-] Nc [-]	x 1 [-]	x 2 [-]	ĈD ± U [-]
	I-RBF	48	9	48	5.6543E-2 2.500E-2 7.1301E-3±3.7489E-5
	LS-RBF	48	9	24	5.6411E-2 2.500E-2 7.0746E-3±3.6734E-5
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