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The application workloads in modern multicore platforms are becoming increasingly dynamic. It becomes
challengingwhenmultiple applications need to be executed in parallel in such systems.Mapping and scheduling
of these applications are critical for system performance and energy consumption, especially in Network-on-
Chip (NoC) based multicore systems. These systems with multitasking processors offer better opportunity for
parallel application execution. Mapping solutions generated at design-time may be inappropriate for dynamic
workloads. To improve the utilization of the underlying multicore platform and cope with the dynamism
of application workload, often task allocation is carried out dynamically. This paper presents a hybrid task
allocation and scheduling strategy which exploits the design-time results at run-time. By considering the
multitasking capability of the processors, communication energy and timing characteristics of the tasks,
different allocation options are obtained at design-time. During run-time, based on the availability of the
platform resources and application requirements, the design-time allocations are adapted for mapping and
scheduling of tasks which result in improved run-time performance. Experimental results demonstrate that
the proposed approach achieves, on an average 11.5%, 22.3%, 28.6% and 34.6% reduction in communication
energy consumption as compared to CAM [18], DEAMS [4], TSMM [38] and CPNN [32], respectively for
NoC based multicore platforms with multitasking processors. Also, the deadline satisfaction of the tasks of
allocated applications improves on an average by 32.8% when compared with the state-of-the-art dynamic
resource allocation approaches.
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1 INTRODUCTION1

Advancement in VLSI technology has made it possible for designers to integrate a large number2

of Processing Elements (PEs), Intellectual Property (IP) cores and memory units (MUs) onto a3
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single chip, resulting in multicore based embedded systems. These systems provide increased par-4

allelism which demand fast communication infrastructure to fulfill the inter-core communication5

requirements. Network-on-Chip (NoC) paradigm provides the necessary scalable and efficient com-6

munication infrastructure between multiple processing cores [7]. NoC based multicore platforms7

are emerging in implementation of various application domains such as cloud computing, auto-8

motive, avionic applications and multimedia and NoC-based FPGA devices are now available [37].9

Allocation of the executable tasks of applications onto the available resources is crucial as it affects10

the system performance. The complexity of the problem increases in multicore systems when11

multiple applications are executed in parallel to maximize the use of system resources.12

The communication dependencies between the tasks and the spatial location of the PEs on a target13

multicore system are key factors affecting the allocation decisions. For real-time applications, the14

validity of results not only depends on the logical correctness but also on the time of obtaining the15

output. Thus, it is important to consider their timing constraints while performing task assignments.16

As most of the embedded systems are battery operated [13], reducing the energy consumption17

prolongs the duration of operation of the system. Energy consumed during the exchange of data18

packets on a NoC based platform is affected by the task allocation decisions such as contiguity19

of allocated PEs and placement of communicating tasks on PEs located in close vicinity. NoC20

based multicore systems, executing afore-mentioned embedded applications, exhibit time-varying21

workloads on the given platform. These variations cannot be predicted accurately during design-22

time. Such scenarios can occur when applications arrive or depart during run-time or user-driven23

requests[5]. Offline allocation methods produce sub-optimal solutions as they are unaware of online24

variations of application workloads. Thus, task allocation strategies that can take into account the25

varying run-time workload on NoC based multicore systems are essential for embedded applications.26

Typically, when the set of applications is known, task assignment and scheduling problem is27

solved statically (referred to as design-time task allocation). These algorithms typically use intensive28

search space explorationmethods to obtain the optimalmapping for the given applications. However,29

these approaches are computationally intensive and cannot cope with dynamic application behavior30

(workload variation) in which different combinations of applications can be executed concurrently31

over time. Thus, dynamic task allocation techniques (referred to as run-time task allocation) for32

embedded applications are essential, which take into account the varying workload on NoC based33

multicore systems.34

Task allocation at run-time can be performed either with or without pre-computed task mapping35

results. Several efficient online heuristics have been proposed for assigning tasks of new applications36

submitted during run-time for on-the-fly allocation [4][5][32]. But, due to the availability of limited37

computation time at run-time, task schedulability and optimal mapping may not always be ensured38

by these heuristics. To overcome the shortcomings mentioned above of static and dynamic task39

allocation algorithms, hybrid task allocation strategies have become increasingly popular in recent40

years [19][25][31]. Typically, in this kind of allocation policy, multiple potential allocation solutions41

are obtained at design time. One of these pre-determined solutions is then selected and applied at42

run-time depending on the system state. This strategy helps in accomplishing efficient run-time43

mapping/scheduling decisions. However, most of the existing hybrid mapping approaches reported44

in literature allocate a single task per processor [19][26][31][39]. These techniques are inadequate45

for applying in systems where PEs execute multitask operating systems. In such systems, each46

PE can support multiple tasks based on the amount of its memory [18][32]. Few of the hybrid47

strategies [30][24] for run-time task assignments target multitasking platform but solve task48

mapping problem. The challenges of energy-awareness and task scheduling are not addressed49

which renders these approaches insufficient for allocation of real-time tasks. Thus, an improved50

hybrid strategy is essential for dynamic task assignment and scheduling of real-time applications51
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targeting such multicore systems. In these systems, considering multiple tasks per PE allocation52

strategy can potentially result in better utilization of the available computing resources [24]. Also,53

such an allocation approach facilitates the design of a light-weight run-time platform manager.54

On a multicore system with multitasking PEs, each application may have multiple configurations55

with different usage of platform resources and different performance costs (timing response and56

energy consumption). The challenges of assigning multiple tasks per PE with a global scheduler57

on NoC based multicore system involve exploring the spatial distribution of the subset of the PEs58

chosen for task execution and determining the allocation of tasks within the set of identified PEs59

with a constraint on energy consumption and deadline satisfaction. The solution space consisting60

of PEs arranged in regions (contiguous and non-contiguous) is larger in comparison to multicore61

systems supporting single task assignment per processor. Thus, an efficient approach considering62

the multitasking capability of the underlying multicore platform is essential for hybrid mapping63

and scheduling.64

In this work, we propose an improved hybrid task allocation and scheduling approach for NoC65

based multitasking multicore systems to cater to application dynamism at run-time and obtain an66

improved task allocation for real-time applications. First, as part of the design-time exploration, a67

set of potential operating conditions are generated for a given set of target applications. It consists68

of possible shapes of allocation regions of PEs and mapping/scheduling of tasks within these69

regions. Next, at run-time, this primer allocation information is utilized to determine a suitable70

allocation configuration of the incoming applications based on the current state of the system.71

Towards this end, we introduce an improved online algorithm for selecting and adapting the design-72

time allocation solutions dynamically while meeting the deadline of the tasks and reducing the73

communication energy consumption. Thus, by leveraging the pre-computed task mapping choices74

for the target platform, the proposed strategy offers fast online decisions for run-time resource75

allocation and scheduling for multitasking multicore systems.76

The novel contributions of this article are summarized as follows:77

– Proposition of an improved methodology for region shape generation for task allocation on78

a multitasking NoC based multicore platform.79

– Augmenting Particle Swarm Optimization (PSO) formulation for task allocation and schedul-80

ing considering multitask assignment on processors in a given multicore platform.81

– Presenting a dynamic strategy for selection and placement of the set of pre-determined82

allocation configurations at run-time for satisfying the deadline of the tasks and reducing83

the energy consumption.84

– Evaluation of the proposed approach, demonstrating its effectiveness in terms of communi-85

cation energy consumption and deadline satisfaction of the allocated applications.86

The remainder of this article is organized as follows: Section 2 describes the related works in87

hybrid task allocation techniques. Section 3 gives prerequisites and problem definition for this88

work: section 4 details the proposed hybrid task allocation and scheduling algorithm. The test setup89

and the simulation results are discussed in Section 5. Section 6 concludes.90

2 LITERATURE REVIEW91

This section presents a review of literature in the domain of dynamic task mapping and scheduling.92

Algorithms can perform run-time task allocation on-the-fly, i.e., tasks are mapped as and when an93

application or a set of applications is submitted for execution by the user. It can also be performed94

at run-time using hybrid task allocation techniques.95
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2.1 On-the-fly task allocation techniques96

In [5][6], a run-time mapping policy incorporating the user behavior in allocation decisions is97

presented. In [1], dynamic task allocation heuristics are proposed considering different factors98

such as min/max channel load, average channel load and path load. A dynamic mapping approach99

employing task assignment in a spiral fashion at run-time has been presented in DSM [20]. It100

attempts to reduce the time for task communication, reconfiguration and task migration. A run-time101

mapping approach using distributed agents is mentioned in [9]. In [12], a run-time task allocation102

scheme for minimizing the internal and external congestion has been proposed using contiguous103

neighborhood allocation (CoNA) algorithm. The impact of selecting the first node on the quality of104

mapping obtained by the CoNA algorithm is investigated in [10]. It shows that a square shape is105

preferred for processor allocation for applications with dependent tasks. A contiguity adjustable106

square allocation (CASqA) algorithm for run-time task allocation has been proposed in [11]. It107

provides the flexibility to adjust the contiguity of the allocated processors by expanding the square108

search region for dynamic task allocation. The afore-mentioned approaches are aimed for single109

task allocation per processor and are unsuitable for run-time task assignment on multitasking110

multicore platforms where PEs can support multiple tasks. Furthermore, these techniques solve the111

task allocation problem and ignore the timing characteristics of task rendering them insufficient112

for real-time applications. Few works in literature deal with dynamic task mapping on multicore113

platforms with multitasking processors. Here, multiple tasks can be supported on processors up to114

to a maximum limit determined by the amount of its available memory. In [32], communicating115

tasks are mapped in close proximity of each other in a compact manner using a packing strategy.116

However, the execution time requirement of the tasks is not considered. Consequently, with an117

increase in the degree of task graph, more tasks get mapped onto the same processor, causing118

deadline misses. Authors in [18] extend the work presented in [32] by incorporating task migration119

based mapping improvement policy to shift the tasks from heavy loaded processors to appropriate120

processors. A run-time unified mapping and scheduling technique presented in [4] reduces the121

communication energy consumption of the mapped application while meeting the task deadline.122

All the above on-the-fly mapping approaches focus on fast heuristics for task assignment to take123

quick on-line decisions as the computation performed by the algorithms may add to the application124

execution time. Consequently, the quality of the mapping solution obtained by the above methods125

may be low.126

2.2 Hybrid task allocation techniques127

Hybrid mapping techniques have been proposed in the literature to remove the bottleneck of128

on-the-fly heuristics for run-time task allocation. These approaches exploit pre-computed results129

obtained offline to perform dynamic task mapping. Numerous efforts have been reported for hybrid130

mapping techniques. An online execution trace analysis for multimedia applications is proposed131

for run-time allocation in [31]. It rapidly identifies the mapping for optimizing the throughput,132

resource usage and energy consumption of the executing applications. [39] proposes an automated133

design-time exploration engine to enable dynamic application configuration as per the available134

resources using a priority-based run-time heuristic. Authors in [19] propose a framework for135

design space exploration for resource management by software reconfiguration on an industrial136

multicore platform. By a combination of design time and run-time methods, an appropriate system137

configuration point is selected at run-time which helps to meet the QoS constraints imposed by the138

user. [36] proposes a scenario-based run-time mapping strategy for homogeneous platforms. In139

this work, the optimal mappings for inter-application scenarios are explored at design-time and140

serve as the basis for run-time decision making. Authors in [24] present a model-based framework141
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for run-time system adaptability. The proposed dynamic mapping heuristic aims at run-time power142

reduction considering multitask allocation and cost of already mapped communicating tasks. The143

experimental results show that the multitask approach lowers energy consumption. However, this144

work is unsuitable for real-time task allocation. A hybrid task mapping approach for MPSoCs which145

focuses on inter-application and intra-application dynamic behavior has been proposed in [25].146

During design-time, optimal solutions are obtained considering throughput maximization with147

or without a predefined energy budget. At run-time, by using the design-time results, it achieves148

performance improvement and energy savings for multiple applications simultaneously active. In149

the hybrid mapping approach presented in [30], multiple design points indicating throughput and150

energy consumption at different resource combinations are explored. This technique is utilized151

in a run-time algorithm to select a suitable design-point depending on available resources and152

application throughput. [23] describes a move-based algorithm for run-time mapping targeting153

dataflow actors on the heterogeneous MPSoCs. In [33] describes a hybrid task mapping and154

scheduling method by using worst case timing and schedule update with actual execution time at155

run-time. Its main focus is to provide guaranteed latency for real-time applications.156

From the above survey, it can be noted that the existing dynamic allocation approaches em-157

ploying hybrid strategies for run-time task assignments offer better quality allocation decisions.158

However, these task allocation techniques for NoC based multicore systems largely consider single159

task allocation per PE. As a result, they are inadequate for applying in multicore systems with160

multitasking PEs. The reported hybrid task assignment methods mostly solve only the task mapping161

problem using run-time results due to which these hybrid approaches are insufficient for task162

allocation of real-time applications. Further, few works address task mapping/scheduling problem163

for real-time applications on multitasking platforms but do not consider energy-awareness. In this164

work, we propose an improved strategy for dynamic task allocation using design-time results. It165

gives a unified mapping and scheduling solution targeting NoC based multicore platforms with166

multitasking PEs. The design-time stage generates both contiguous and non-contiguous sets of167

PE regions for task execution for guiding the PE assignment and scheduling decisions at run-time.168

This helps to handle the dynamism in application arrival and resource availability encountered at169

run-time while reducing the communication energy consumption of executing applications and170

satisfying the task deadline.171

3 SYSTEMMODEL172

We use a multicore computing platform that is modular and configurable for parallel multi-threaded173

applications. The system model consists of basic processing nodes, interconnected to each other174

through a NoC communication infrastructure in 2D mesh, as shown in Fig. 1. The NoC based multi-175

core platform provides computation and communication resources to execute multiple applications.176

In this work, we assume that each node is made of general-purpose processors that are considered177

homogeneous. Therefore, the computation time of the task while executing uninterrupted on any PE178

is identical. A unique id, PEi identify each processor. Being connected through anNoC infrastructure,179

each processing node has a specific position described by its (x, y) integer coordinates. The PEs180

are independent subsystems having a local processor unit, control unit and memory. Similar to181

[4][18][32], the size of the available memory in a PE determines the maximum number of tasks,182

PEcap that can be supported. We have assumed a distributed multiprocessor system model and183

therefore, we do not consider any shared memory. Thus each node can communicate with any184

other node in the architecture through messages sent through the NoC routers.185

A special node called the Platform Manager (PM) runs the RTOS and coordinates the platform186

activity. PM consists of softwaremodules which include Resource Observer (RO) and TaskAllocation187

and Scheduling Unit (TASU). RO notes the status of the PEs such as occupied or idle. When an188
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executing task finishes its execution, the PE assigned to it sends its address to the PM to notify189

their availability which is then updated in RO. TASU runs the proposed adaptive task allocation190

algorithm. The pre-computed allocation configurations are stored in the offline repository present191

in memory of PM. These are fetched by TASU at run-time and used to allocate the tasks of each192

application on a region of PEs. The tasks of applications are dispatched from PM to the selected193

PEs and executed on these PEs. Since this article deals with algorithm for task allocation and194

scheduling during design-time/run-time stages on multitasking processors, it is assumed that195

suitable mechanisms for loading of task code onto the PE memory and contention delay avoidance196

during packet transfer already exist on the given platform similar to [3][5][21]. We have considered197

that no incoming application workload is executed in PM to minimize any time overhead imposed198

on application management. Furthermore, OS supports non-preemptive multitasking and event-199

based programming environment. It monitors the arrival of the new applications and makes the200

task allocation decision only when a new event occurs i.e. an application enters or leaves the201

system. It is assumed that the platform has sufficient resources to allocate the tasks of incoming202

applications onto the PEs.203

4 PROBLEM REPRESENTATION204

This section presents the necessary definitions and notations required to represent the problem of205

dynamic resource allocation for real-time applications using design-time analysis.206

Application Task Graph: An application is represented as a directed acyclic graph G = (Γ, E).207

Γ denotes the set of tasks associated with the application.208

A task τi ∈ Γ has following parameters: (exi ,dli ). exi is considered as worst-case execution time209

(WCET) taken by τi which remains fixed while executing on a PE. dli is the deadline of the task210

which is considered with respect to the time of arrival of the application. In addition, we denote211

the slack-time associated with the task by sli . It refers to the difference between the time at which212

a task would complete if it started now and its deadline time. sli is given by Eq. 1.213

sli = dli − (current time + remaininд task execution time) (1)

Being a dynamic attribute of a task, sli depends on the run-time situation. The results obtained214

on completion of task execution is transmitted as encapsulated messages. In this work, we have215

considered soft real-time tasks.216

E is the set of directed edges ekl = 1 ≤ k, l ≤ |Γ | representing the communication between the217

tasks τk and τl . The communication volume between task τk and τl is denoted by the edge weight218
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wkl . A given task, except the root task, can begin its execution on a PE when it is available and the219

required data from all its parent tasks reaches the PE.220

Topology Graph: The topology graph is an undirected graph H = (P ,L). P representing the221

set of processors present in the NoC topology. Each PEj ∈ P is attached to the on-chip network222

through a router. The bidirectional communication link connecting the routers for PEj and PEk is223

represented by an edge ljk ∈ L.224

Resource Assignment:The resource assignment χ for a given application G on a finite set of225

processors is defined by the function pair R = (map, start).map() and start() indicate the spatial226

and temporal assignment of the tasks of G onto a set of PEs of the multicore platform.227

Spatial Allocation: The spatial allocation of application G on the set of processors P is repre-228

sented by the function map: Γ 7−→ P .map(τk ) = PEj indicates that task τk is allocated to PEj ∈ P229

for execution.230

Temporal Allocation: The starting time of the task is given by its temporal allocation. This231

involves obtaining the schedule of tasks present in application G on its allocated processor. This is232

determined by the function start : Γ 7−→ Q+ which gives the start time of tasks. Thus, start(τk )233

represents the time at which task τk begins execution on a PE given bymap(τk ).234

If f inish() represents the time at which task completes its execution, then235

f inish(τk ) = start(τk ) + exk (2)

If f inish(τk ) ≤ dlk , then τk meets its deadline. For a multitasking PE PEk , multiple tasks may236

be assigned to it. While scheduling a task τi , the earliest time at which the particular processor is237

available for its execution is given by the function EAT (earliest available time) defined as:238

EAT (PEk ) = max
∀τi ∈Γ |PEk=map(τi )

f inish(τi ) (3)

Communication Energy: Communication energy is defined as the amount of energy consumed239

for transferring data packets from the source to the destination PE. It depends upon (i) distance240

between the processors executing the communicating tasks (ii) data volume and (iii) energy required241

to transfer a single bit through the NoC. Similar to existing works [3][5][32], we assume constant242

energy is consumed in one bit transmission. Let Er and El be the energy consumption for one bit243

transmission in a router and a link, respectively. The number of routers Nr and links Nl traversed244

in the communication path is calculated using the hop count between the source-destination245

pair. Communication energy, Ecomm , in u J for allocated applications on a given NoC platform is246

estimated:247

Ecomm =
∑
∀Gi

∑
∀ei j ∈Gi

(Er ∗ Nr + El ∗ Nl ) ∗wi j

Nr = HC(map(ti ),map(tj )) + 1
Nl = HC(map(ti ),map(tj ))

(4)

where,wi j is the data volume between tasks ti and tj in megabits. It is the total data that needs to248

be transferred between the tasks in packetized form where each packet consists of various flits. HC249

denotes the hop-counts.250

Operating Condition: Each application has a specific operating condition which consists of251

its allocation policy, used resources and energy consumption. A suitable operating condition for252

an application is essential for correct application behavior during run-time such that all the tasks253

in a given application satisfy their respective deadline. We define the operating condition, CG of254

application G with the following tuple:255

CG =
〈
ψ , ρ,Sρ ,Ecomm ,G

ct 〉 (5)
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An application, G can have two types of allocation mode denoted by ψ = EA or FA, where EA256

represents communication energy aware mode in which tasks of G are assigned to a PE in a given257

multicore platform such that communication energy of the application is minimized. FA denotes258

finish-time aware allocation mode which aims at reducing the finish-time of the tasks present259

in application. ρ indicates the number of PEs used for assigning the tasks of application G. In a260

multicore platform with processors having multitasking capability PEcap , ρ = Rmin ...Rmax where261

Rmin = |Γ |/PEcap and Rmax = |Γ |. The number of allocated PEs is n where n ⊂ ρ. For a given262

NoC based multicore platform, these n PEs can have different spatial distribution resulting in263

different shapes of region of allocation. This is indicated by Sρ .Gct represents the completion time264

of execution of the allocated application G.265

4.1 Problem Formulation266

We formally state the hybrid resource allocation problem addressed in this work as follows.267

268

4.1.1 Design-time sub-problem.269

270

Given the following as inputs:271

(1) A set G of known applications each represented by a directed acyclic graph G = (Γ, E).272

(2) A target NoC based multicore platform given by H = (P ,L) with each processor having273

maximum task capacity PEcap .274

(3) Timing information of the task τi of the applications275

• execution time, exi > 0276

• deadline, dli ≥ exi277

Determine the operating conditions for each of these application to find:278

• number of PEs ρ used for allocating the tasks in G(Γ, E)279

• shapes of allocation region, Sρ for all values of ρ280

• map : Γ 7−→ P |PEtasks ≤ PEcap281

such that282

(1) tasks meet their deadline.283

(2) Ecomm of the application is reduced.284

285

286

4.1.2 Run-time resource allocation sub-problem.287

288

Given the following as inputs:289

(1) A set of arrived applications Q = {G1,G2...Gn} where Q ⊂ G290

(2) A target NoC platformH = (P ,L) where processors have task capacity PEcap .291

(3) A set of operating conditions identified at design-time for each application.292

Determine an adaptive resource allocation at run-time to identify the operating conditions293

for each of the arrived applications:294

γ =
〈
CG1 ,CG2 ...CGn

〉
,CGi ∈ CG ∧ 1 ≤ i ≤ n (6)

such that during execution of the arrived application onH(P ,L):295

(1) Finish-time of the allocated application Gct
i is reduced ∀ Gi ∈ Q296

(2) Increase in Ecomm of the allocated applications at run-time is low.297

(3)
∑

Gi ∈G
CGi (ρ) ≤ |P |298
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(4) Overhead of taking run-time mapping and scheduling decision is low.299

5 PROPOSED APPROACH300

In this section, we describe the proposed allocation strategy for NoC based multicore platform.For301

mapping and scheduling applications on a multicore platform containing PEs with multitasking302

capability, a hybrid scheme is adopted. We first derive the allocation templates of individual303

applications at design-time with a focus on energy consumption and deadline satisfaction of each304

task. Next, we use an improved run-time heuristic for online adaptation of the design-time identified305

allocation decisions according to the platform resource availability and application requirements.306

The details of the proposed design-time and run-time strategy are as described next.307

5.1 Design-Time Preparation308

In the design-time exploration stage, a set of operating points are determined which consist of309

allocation templates for the tasks of the application. It consists of various allocations of tasks that310

infer different scheduling solutions, based on EAT of processors that gives different completion311

time of each application. As the order and time instant of arrival of applications are unknown the312

applications sharing the given platform are unavailable at this stage. Thus, for the given set of313

applications, the allocation decision is done during design-time considering individual application314

execution. This involves spatial allocation configuration of tasks and allocation template formation315

using the allocated PEs. These steps are as follows.316

5.1.1 Spatial allocation configuration: In this step, the spatial allocation configuration for tasks of317

each of the applications is obtained. A configuration is characterized by (i) allocation size, which is318

the number of the selected PEs for task execution of the given application, and (ii) allocation shape,319

which is the spatial distribution of the chosen PEs. This is determined by the number of tasks320

present in each of the applications and the multitasking capability of the PEs. The afore-mentioned321

information is used to find the various configuration for allocating tasks of applications as described322

below.323

Spatial allocation on a multicore platform involves selecting the allocation region, which consists324

of a set of PEs for task execution. The region is characterized by the relative position and the325

number of PEs forming the region. Therefore, these regions can have different shapes and sizes326

which is required to be determined. Algorithm 1 describes the proposed selective region shape327

generation (SRSG) approach employed to identify these regions for any given application. First,328

the algorithm enumerates the possible sizes of each region R. This is done by using the number329

of tasks N present in the application and the multitask capability PEcap of the given multicore330

platform. For an application with N tasks the region size varies between N /PEcap to N . Next,331

for each of these region sizes, the distribution of PEs is determined. Please note that we consider332

contiguous PE selection for the allocated region. The quality of the allocated region is governed by333

the average manhattan distance (AMD) between the PEs [12]. A compact region gives smaller AMD334

value compared to a scattered region of PEs. The proposed algorithm accomplishes the objective335

mentioned above by selectively growing the allocation region shape. At each intermediate level of336

the region growth, the set of nodes, S j satisfying the contiguity constraint is selected. However,337

this may give rise to identical regions i.e. regions having the same spatial pattern of PEs but with338

different orientations. For a 2D mesh NoC based multicore platform, rotations in steps of 90◦ can339

be used to identify the identical regions. Such regions are excluded from further exploration. This340

method ensures that the set of PEs determined by Algorithm 1 consists of unique region shapes.341

Such regions are enlisted in Shape_list for the given application and target multicore platform.342

These steps are repeated for each of the region sizes to find regions of various shapes.343
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ALGORITHM 1: Selective Region Shape Generation
Input :G = (Γ, E); PEcap ; AMD
Output :A set of allocation region shapes consisting of different number of PEs

1 Shape_l ist ← ∅; R ← ∅ ;Sj ← ∅; j=0;
2 Rmax = N ; \\N is total number of tasks in G = (Γ, E)
3 Rmin = N /PEcap ;
4 for i = Rmin to Rmax do
5 while size of generated region , i do
6 R ← choose a PE with maximum free neighbour;
7 for each adjacent PE location (x,y) of R do
8 R ‘ = R ∪ (x, y);
9 h = ComputeAMD(R ‘);

10 if h < AMD then
11 Sj ← R ‘; \\include the PE locations in generated shape

12 j + +;

13 for each shape Sj do
14 if Sj is identical with shape Sk where j , k then
15 remove Sj ; \\check and remove identical shapes

16 else
17 Shape_l ist ← Shape_l ist ∪ Sj ;\\update the list of generated shapes

18 return Shape_l ist ;

5.1.2 Allocation template formation: In this step, the regions obtained by spatial allocation process344

are used to determine the allocation templates i.e. the allocation of the tasks of application onto345

the PEs constituting these regions. It involves allocation of tasks and their sequence of execution,346

considering the task precedence constraints and their timing characteristics according to EAT347

values of PEs (refer Eq. 3). To explore the mapping and scheduling of tasks on the PEs, we use a348

particle swarm optimization (PSO) based approach, which is popular for tasks allocation [27][14].349

In a PSO based method, multiple candidate solutions co-exist and collaborate simultaneously. In350

this work, we have used a discrete particle swarm optimization (DPSO) to solve the problem of351

tasks to PE mapping and scheduling. First, we present a brief overview of the DPSO scheme.352

Let pik denote the ith particle in its kth iteration. It can be represented in n-dimensional space as353 〈
pk,1,pk,2...pk,n

〉
. Every particle has its corresponding local best solution which the particle has354

seen over the generations. дbestk is the best particle present until generation k . Eq. 7 gives the new355

position of the particle as follows:356

pik+1 = (c1 ∗ I ⊕ c2 ∗ (pk → pbest i ) ⊕ c3 ∗ (pk → дbestk )).p
i
k (7)

In this equation, the minimum length sequence of swapping to be applied on elements of a to357

change it to b is indicated by a → b. ⊕ sign is the fusion operator. a ⊕ b is equal to the sequence in358

which the sequence of swaps in a is followed by the sequence of swaps in b. c1, c2 and c3 are the359

inertia, self-confidence and swarm confidence values. The factor ci ∗ (a → b) means that the swaps360

in the sequence are applied with probability ci . The sequence of identity swaps is indicated by I361

which indicates the inertia of particle to retain its current configuration. To generate pik+1 from pik ,362

final swap corresponding to c1 ∗ I ⊕ c2 ∗ (pk → pbest i ) ⊕ c3 ∗ (pk → дbestk ) is applied. As reported363

in [17], DPSO particle system converges to a solution if the following condition is satisfied:364

(1 −
√
c1)

2 ≤ c2 + c3 ≤ (1 +
√
c1)

2 (8)
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We have experimented with different values of c1, c2 and c3. The results reported in this work365

correspond to c1 = 1, c2 = 0.5 and c3 = 0.5. Other values of c1, c2 and c3 affects the convergence366

rate while giving the same final results. Next, we describe the formulation of the particle to address367

the mapping and scheduling problem. Input to our formulation is the application task graph and368

the shape of the PE region determined during the previous step.369

Particle representation: For each task present in the application, a PE from the set of PEs con-370

stituting the region shape needs to be assigned. In the proposed PSO formulation, a particle is a371

sequence of integers represented as an array. The length of the particle, representing the array372

index, is equal to the number of tasks present in the application. Each element of the array indicates373

the PE id (PEid ) considered for executing the task. Fig. 2 illustrates a typical particle formulation374

for mapping an application with 6 tasks on a platform having 4 PEs with PEcap = 2. The length of375

the particle (array size) is 6 which is equal to the number of tasks. The numbers inside the boxes376

indicate the PEid , whereas the numbers shown outside the boxes (array indices) represent task id377

τi . Each of the PEid can be repeated depending on the task capacity of the processors of the target378

platform. By this particle structure, we represent multitask assignment on the PEs of the given379

multicore platform.380

τ2, τ3 τ5

τ0, τ1 τ4
PE1 PE2

PE4PE3

A typical allocation of 6 tasks

1 1 3 3 2 4

0 1 2 3 4 5

A particle structure representing the task allocation

Fig. 2. Particle structure for representation of task to PE assignment

In this work, we focus on the communication energy reduction and deadline satisfaction of381

the tasks of the application. In the fitness function formulation, we consider the communication382

energy of the mapping and timing constraint satisfaction for the tasks, which are represented in383

the particle. The fitness of a particle pi , FF [pi ] is given by Eq. 9. Bi and α are binary factors. Bi = 1384

if pi represents schedulable task assignment i.e. tasks can satisfy their deadline on the identified385

PEs, otherwise Bi = 0.386

FF [pi ] = α ∗ Ecomm [pi ] ∗ Bi + (1 − α) ∗ Bi (9)
α indicates if the application has dependent tasks (α=1) or independent tasks(α=0). It is determined387

by the edges present in the task graph. The particles with small non-zero fitness value are prefer-388

able. This is because we are interested in task allocations which give low communication energy389

consumption while meeting the deadline of the tasks.390

Evolution of particles: The initial generation of PSO comprises of particles which represent task to391

PE assignment such that the tasks are schedulable. To achieve improvement in further evolutions,392

local best of each particle lbest and global best gbest of a given generation is considered. The global393

best of the generation is initialized with the particle having the lowest non-zero value of fitness394

function. Such a particle satisfies the task deadline and results in least communication energy. The395

second generation of particle is obtained by random exchange of tasks (swap operations) between396

the selected PE pair(s). Subsequent generations are evolved by changing the particles through a397

sequence of swap operations [34][16]. The swap sequences are identified to align a particle with its398

local best and global best values by applying on the original particle with different probabilities.399

The local best value of a particular particle is updated whenever the communication energy of the400
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particle is lesser than its previous value and meets deadline of its task. This is due to the fact that401

although the swap operators help in obtaining particles with reduced communication cost but may402

result in task schedule which may not satisfy their timing constraint. In such a case, the particle403

may be rejected or the swap operation(s) may not be allowed. In this work, we have not allowed404

such swap operations. The global best value of a generation is updated when the corresponding405

fitness value of the present generation is better i.e. smaller in magnitude compared to the previous406

generation.407

5.1.3 Routing for allocation templates: The generated regions are of different shapes and sizes. Let408

us consider a NoC based multicore platform where multiple applications are executed in parallel.409

In the case of regions with irregular shape, packet communication using dimension order routing410

may allow packets to pass through the routers associated with PEs belonging to different region.411

This will lead to traffic overlap between the packets of different applications, which may affect412

the performance of the applications running in two different regions. Thus, we use table-based413

routing algorithm for routing packets between a pair of communicating nodes. Here, the route414

of the communication packets of the tasks of assigned application are confined to the routers415

associated with PEs present in its allocated region. Also, tasks belonging to different applications do416

not share a PE. This avoids the situation of tasks using the same link and thereby avoids deadlock.417

We use Lee’s shortest path routing algorithm to determine the routes for the communication nodes.418

This information is stored in a routing table present in all the routers. Based on the source and419

destination node, the routers (both sender/receiver and intermediate) route the packets within the420

allocated region.421

The allocation decision consisting of spatial (PE for tasks), temporal allocations (scheduling of422

tasks) and routing of the data packets are stored in the offline repository as allocation templates423

for each application. This information is exploited during run-time to carry out online resource424

assignment which is explained next.425

5.2 Run-time resource allocation426

Fast decision making is required during assigning the tasks of incoming applications to PEs to427

ensure that task allocation and scheduling process has low time overhead. We use the design-time428

results to obtain a light-weight scheme for run-time task assignments. It consists of determining the429

suitable set of PEs to map the tasks of an application and scheduling their execution at run-time.430

As the arrival-time of applications is not known apriori, the run-time scenarios cannot be431

predicted. Following factors affect the run-time task allocation: (a) the availability of PEs when a432

new application requests for execution and (b) timing characteristics of tasks. Due to these factors,433

the design-time decisions may not always be suitable for run-time implementation. Thus, when an434

application is submitted at run-time, the allocation of the tasks of application needs to be customized.435

We have developed an Online Allocation Reconfiguration (OAR) strategy for online task allocation436

driven by design-time results and run-time resource availability (presented in Algorithm 2).437

5.2.1 Allocation region size selection at run-time: The selection of the set of PEs for allocation of438

tasks at run-time is carried out in two modes (i) energy-aware and (ii) finish-time-aware. In energy-439

aware region selection mode, the region selection and mapping help to reduce the communication440

energy consumption of the application being mapped on the multicore platform. This is achieved441

by using a heuristic approach which selects a suitable allocation template from the repository.442

The selection procedure is implemented in ascending order of the region sizes starting from the443

least size allocation template (Rmin ) up to the number of available PEs (Availsize ) on the platform.444

The search procedure is iterated till a suitable region size is found to fit in the available set of PEs445

present in the multicore platform at run-time.446
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ALGORITHM 2: Online Allocation Reconfiguration
Input :G = (Γ, E); H = (P, L); Shape_l ist
Output :Reconfigured allocation and scheduling decisions of tasks of application on the available PEs at run-time

1 PE_Avail = дet_avail_Proc(P );
2 PE_Cust = ∅; \\set of PEs in customized PE region selected at run-time for task allocation
3 Availsize = size of PE_Avail ;
4 obtain the region sizes Rs of G from repository;
5 if energy-aware allocation mode is used then
6 if Availsize < Rmax then
7 for Rs = Rmin to Availsize do
8 for each shape Si ∈ Shape_l ist with size = Rs do
9 (PE_Cust, status) = Online_Allocation_Adapt (Si , PE_Avail );

10 if status is TRUE then
11 goto line 24;

12 else
13 goto line 8 with Rs = Rmax ;

14 else
15 if finish-time aware allocation mode is used then
16 if Availsize < Rmax then
17 for Rs = Availsize to Rmin do
18 for each shape Si ∈ Shape_l ist with size = Rs do
19 (PE_Cust, status) = Online_Allocation_Adapt (Si , PE_Avail );
20 if status is TRUE then
21 goto line 24;

22 else
23 goto line 18 with Rs = Rmax ;

24 for each task τi ∈ Γ do
25 τsel = task with earliest deadline among the tasks ready for execution;
26 PEtarдet = PE assigned to most communicating parent task of τsel ;
27 PEsel = PE ∈ PE_Cust with EAT (PE) < slack − t ime(τsel ) and nearest to PEtarдet ;
28 assign start-time of τsel on PEsel ;
29 update EAT(PEsel );

The second region selection mode consists of finish-time-aware allocation template selection.447

Here, we select an allocation size which results in the least finish-time of the application. First,448

the regions with size equal to the number of PEs available on the platform is checked. Then the449

algorithm considers pre-computed regions in descending order of their region sizes. The availability450

of free PEs on the platform affects the parallel execution of tasks present in a given application.451

Larger sized allocation region, offer a better opportunity for simultaneous execution of these tasks452

due to the availability of PEs and hence improve the finish-time of the application. This process453

is repeated until a suitable region size fits into the available PEs during run-time. In cases where454

Availsize is greater than the size of any of the allocation regions, then the templates of highest455

region size is selected.456

5.2.2 Run-time adaptation of task allocation: In this step, the actual task allocation and scheduling457

on the PEs is determined at run-time. Towards this end, an appropriate shape of the allocation458

region for a chosen region size needs to be decided for using during run-time scenario. The region459
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shapes pre-determined at design-time may not always be appropriate for directly adopting on the460

available PEs of the platform. Thus, it is necessary to customize the shape of the selected allocation461

template. This problem of run-time adaptation of allocation template is solved by invoking function462

Online_Allocation_Adapt() in lines 8, 18 of Algorithm 2. It reconfigures the offline mapping and463

scheduling decisions by identifying suitable PEs. The task having earliest deadline among the tasks464

ready for execution is selected for allocation. PEs with available task capacity are considered for465

mapping task(s) if their EAT is within the slack-time margin (refer Eq. 1) of the task to be mapped.466

Such a PE is chosen as the PE hosting the most communicating parent task or in its close vicinity.467

Tasks are then assigned start-time of execution on the identified PEs. Online_Allocation_Adapt()468

employs the following heuristics for the above process of allocation and scheduling:469

A) best_f it(): In this scheme, the pre-determined allocation template found at design-time can470

be directly applied to the set of available PEs at run-time. This occurs in the scenario when the471

distribution of available PEs on the platform is such that the shapes of the allocation region can be472

accommodated without any change in spatial allocation. This scheme provides the opportunity473

to maximally exploit the design-time results with incremental changes. These changes involve474

updating the start-time of tasks depending of the EAT of the selected PEs for task execution.475

B) reorient_f it(): During run-time, the PEs availability depends on the timing characteristics of476

the tasks executing on them. As tasks can have different execution times, the spatial distribution477

of the available PEs may not readily match with the allocation templates. Reorient fit heuristic is478

used in this condition for adapting the design-time allocation templates according to the run-time479

resource distribution. Here, the allocation templates are customized by re-orientation of allocation480

region to fit the spatial distribution of the available set of PEs. In the context of the mesh-based481

NoC platform, it is sufficient to consider rotating the allocation templates by 90◦ towards left or482

right along with mirroring in the horizontal or vertical direction.483

C) f lexible_f it(): The distribution of available PEs can be scattered on the platform. As a result,484

the pre-determined allocation templates maynot be fit to those PEs by directly applying on the485

available set of PEs (BF) or by re-orientation (RF). To overcome this, f lexible_f it() heuristic is486

used for customizing the allocation templates. For a selected region size, the allocation template is487

chosen which has most PE locations similar to the distribution of the available PEs on the platform.488

Next, the mapping and scheduling decisions of the tasks in the allocation region are customized.489

This is done by considering the PE executing the most communicating parent task or in its close490

vicinity. Such PEs are selected with EAT less than the available slack time of the task. This policy491

helps to reduce the rise in communication energy consumption while meeting task deadline.492

Using these heuristics, the design-time results are customized in accordance with the prevalent493

run-time scenario for online resource allocation of the tasks of application.494

5.3 Working Example495

In this sub-section, we explain the working of the proposed algorithm. Let us consider an application496

A1 consisting of six tasks τ0,τ1, ...τ5 as shown in Fig. 3a. In the table depicted in Fig.3a, the execution497

time and deadline of each task are shown. We assume that the target platform for execution of this498

application is a 4 × 4 NoC based multicore platform with maximum PEcap = 2 for each PE. The499

design-time analysis as detailed in subsection 5.1 is carried out to obtain the spatial allocation and500

configuration of the tasks. The possible sizes of allocation region and the relative distribution of501

the PEs constituting these regions are depicted in the repository presented in Fig. 3b. The AMD502

and the application finish-time of the resulting allocation templates are shown in the table given in503

Fig. 3b. We find that for assigning the tasks of the given application, allocation region size can vary504

between 3 to 6. In this example, we assume the upper limit on the AMD of the allocation shape to505

be 4.0 during region shape generation. Therefore, we illustrate the repository for region size (Rsize )506
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upto 5. Each of these generated allocation regions is used for obtaining the allocation template of507

the tasks showing various timing response for the target application.508

τ0

τ1 τ2

τ3 τ4 τ5

Tasks
Execution time 

(msec)

Deadline 

(msec)

τ0

τ1

τ2

τ3

τ4

τ5

1.0

0.5

0.5

1.5

1.0

1.5

1.5

2.0

1.5

3.2

4.3

4.8

PE30 PE31 PE32 PE33

PE20 PE21 PE22 PE23

PE10 PE11 PE12 PE13

PE00 PE01 PE02 PE03

A 4x4 multicore platform Application A1 Task timing characteristics

(a)

S31 S32

S41 S42 S43

Rshapes AMD

S31

S32

S41

S42

S43

S44

S45

1.33

1.33

2.0

2.5

2.25

2.5

2.5

Different shapes of the regions

S51 S52 S53 S54 S55

S45S44

S51

S52

3.2

3.2

S57

S56

S58 S59 S510 S511 S512

S53

S54

S55

S56

S57

S58

S59

S510

3.6

3.6

3.6

3.6

4.0

4.0

4.0

4.0

S511

S512

4.0

4.0

Rsize

3

4

5

Rshape

Typical shape characteristics

Finish Time 

(msec)
4.0

4.0
3.5

3.5

3.5

3.5

3.5

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

Ecomm(uJ)

97.11

167.40
205.01

178.51

260.1

336.39

341.95

341.95

341.95

358.61

369.72

391.93

391.93

397.47

397.47

397.47

397.47

341.95

397.47

(b)

Scenario-A Scenario-B Scenario-C

(c)
Fig. 3. Working of the proposed adaptive resource allocation strategy

Next, we explain the run-time selection and placement of the differently shaped regions from509

the repository generated at the design-time. We assume a time-aware allocation strategy. As online510

scenarios cannot be predicted during static analysis, therefore in some cases, reconfiguration of the511

predetermined allocation region is performed. The run-time mapping scenarios are depicted in Fig.512

3c. We assume that at run-time, some applications are already active on PEs of the target multicore513

platform. This has been depicted by shaded regions of red color to indicate that 100% PE capacity514

are already used. In this example, we consider three run-time scenarios-A to C for illustrating the515
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proposed run-time adaption and reconfiguration approach. In these scenarios, we depict a typical516

situation with five available PEs for task allocation and scheduling. The proposed algorithm adapts517

the pre-computed allocation information for A1 to take decisions on task allocation at run-time.518

First, the region size of the allocation template is decided. As time-aware allocation strategy is used,519

the allocation templates are evaluated in decreasing order of region size. As a result, the region size520

comprising of 5 PEs is evaluated for task assignment. In case sufficient PEs for required region size521

(Rsize = 5) is not available, the algorithm considers the next smaller size region for allocation. The522

working of online shape adaptation heuristics using different run-time scenarios is described next.523

Consider the scenario-A shown in Fig. 3c. The proposed algorithm first employs the best_f it()524

heuristic to select an allocation template of Rsize = 5. Here, the shape S51 is selected as it has the525

least AMD, and it can fit into the current distribution of PEs in scenario-1. Hence the task of A1526

is allocated and scheduled using S51 allocation template. Next, consider the run-time situation as527

shown in scenario-B. In this case, best_f it() heuristic could not select a suitable allocation template.528

This is because none of the shapes (in Rsize = 5) match directly with the pattern of the available529

PEs in the run-time scenario. As a result, the pre-computed decisions are required to be customized530

based on the current system state. The proposed algorithm selects an allocation region for tasks531

of A1 using reorient_f it() heuristic. The proposed algorithm considers the re-orientations of the532

allocation template of S51. It fits within the available PEs with a 90° anti-clockwise re-orientation.533

Scenario-C (refer Fig. 3c) depicts the casewhere the strategies used bybest_f it() and reorient_f it()534

heuristics to select a suitable allocation template could not identify one for assigning the tasks of535

A1. In such cases, f lexible_f it() heuristic is used by the proposed algorithm. The spatial location536

of available PEs on the platform is most similar to template S51. Hence, this template is used for537

driving the task allocation steps. While mapping the tasks of A1, the proposed algorithm selects538

PE00, PE01, PE10 and PE11. However, all the tasks of A1 cannot be fitted in the selected PEs. For539

mapping the remaining task, a PE is chosen during run-time in the close vicinity of the PE executing540

its most communicating parent task. This reduces the increase in the communication energy of541

the application while meeting its deadline. As all the adjacent PEs are busy (hosting maximum542

number of tasks), therefore PE23 is selected for executing the remaining task. However, this type543

of mapping favouring reduction of finish-time may result in a penalty on communication energy544

consumption of the mapped application. In such condition, selecting the allocation template with545

smaller region size can help in saving communication energy consumption on the given NoC based546

multicore platform. For e.g. if we use Rsize = 4, it results in 18.3% lower communication energy547

consumption compared to using template S51 with reconfiguration. However, it results in 10.2%548

average rise in finish-time of task of application.549

6 PERFORMANCE EVALUATION550

We have evaluated the performance of the proposed algorithm experimentally. The following551

subsection describes the experimental setup and simulation results.552

6.1 Test Setup553

We have used a C++ based simulator to perform application mapping/scheduling in NoC based554

multicore system. The simulator can simulate different-sized 2D mesh NoC topology and is based555

on the previous works [3][4]. We have modified the simulator for implementing the proposed task556

allocation strategy. The simulation process is divided into the following steps. In the first step, we557

implement the design-time allocation template generation. This consists of (i) formation of different558

regular and irregular shapes consisting of contiguous processor allocation, (ii) a particle swarm559

optimization (PSO) based mapping and scheduling of tasks onto the different generated shapes560

and (iii) determination of routing information of the mapped tasks. The output results obtained at561
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Table 1. Various benchmark and synthetic applications

Application
Type Applications Total

tasks

Benchmark
applications

263ENC MP3DEC 12
263DEC MP3DEC 14
MP3ENC MP3DEC 13
MPEG4 12
PIP 8

Synthetic
applications

TGFF1 45
TGFF2 60
TGFF3 85
TGFF4 100

Table 2. Simulation settings for ORION 3.0

Parameter Value

Technology 45 nm
Transistor NVT
Vdd 1.0 v
Router Frequency 250 MHz
No. of pipeline stages 4
Flit width 32
Link wire layer type Global
Link wire width & spacing DWIDTH_DSPACE

Table 3. Network settings

Parameter Value

Packet size 64 flits (32 bits per flit)
Buffer depth 8
Selection logic Random
Traffic Table based
Warm up time 5000 clk cycles
Simulation time 200000 clk cycles

Table 4. Test scenarios and their initial conditions

Test scenarios Initial condition

Scenario-1 All PEs are available
Scenario-2 10% of platform PEs occupied
Scenario-3 25% of platform PEs occupied
Scenario-4 40% of platform PEs occupied
Scenario-5 55% of platform PEs occupied

design-time are stored as repository files. The second step of the simulation is performed at the562

run-time, where different applications are submitted dynamically for execution on the NoC based563

multicore platform. The simulator selects an appropriate allocation template from the repository564

and customizes it based on the run-time scenarios. We consider 8 × 8 NoC based multicore platform565

for performing the experiments with one of the processors is selected as the Platform Manager.566

Experiments are conducted using benchmark applications such asMPEG4,MWD,MP3ENC, 263DEC567

and 263ENC [28]. However, the availability of large size benchmarks is limited. We use synthetic568

applications generated by the TGFF tool [8] to obtain the task graphs with a higher number of tasks.569

The number of tasks is varied between 5 to 100. Also, the benchmark and synthetic applications,570

as shown in Table 1, have been randomly combined to form different workloads for allocation.571

Simulation has been carried out using an Intel i7 processor running at 3.0 GHz. We have considered572

various test scenarios, which consist of initial conditions, as depicted in Table 4. These initial573

conditions indicate the different numbers of already occupied PEs when an incoming application574

requires allocation at run-time. The input to the simulator consists of an input file, which typically575

contains the number of applications, size of each application, execution time of tasks and their576

deadline. In our experiments, the computation time requirement of the tasks has been uniformly577

distributed between 50ms to 250ms . Please note that the deadline allocation for each task is similar578

to [3][4].579

Using this information, the simulator allocates the tasks belonging to an application to the580

available processors as determined by the task allocation algorithm. There are different parameters581

based on which the quality of allocation results is assessed. These parameters include communi-582

cation energy, deadline satisfaction of tasks and average communication latency of the allocated583

application. The energy consumption for packet traversal (Ecomm ) has been computed using Eq. (4).584
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We have used link energy ( El ink = 3.12 × 10−13 J/bit ) and router energy (Erouter = 5.24 × 10−12585

J/bit ) derived from ORION 3.0 power model [15]. The parameter settings for ORION is shown in586

Table 2. We have used Noxim [2], a cycle accurate simulator, to determine the overall network587

performance considering an 8 × 8 2D mesh interconnection. The configuration of Noxim simulator588

is shown in Table 3.589

6.2 Evaluation of proposed run-time mapping and scheduling algorithm590

In this subsection, we evaluate the performance of the proposed dynamic task allocation and591

scheduling algorithm in terms of communication energy of the allocated applications, finish-time592

of the mapped tasks and average packet latency of the tasks of the applications. To evaluate the593

adaptivity of the proposed approach to run-time conditions, application workloads are assumed594

to arrive randomly at any time with varying availability of PEs as indicated by the different test595

scenarios. While selecting PEs for task allocation, the occupied PEs are unavailable for new task596

assignments. For each initial condition corresponding to a test scenario, two cases are considered. In597

the first case, OPC (occupied PEs-contiguous), we consider the already occupied PEs to be present598

in contiguous regions on the platform. For experimentation, such regions are assumed to be located599

on top-left, top-right, bottom-left, bottom-right and centre region of the multicore platform. In the600

second case, the occupied PEs are considered to be distributed randomly on the multicore platform.601

This case is referred to as OPD (occupied PEs distributed) in the results. The results for the OPD602

case are averaged over 100 random arrangements of occupied PEs for each test scenario.603

6.2.1 Effect of allocation modes on performance. We have evaluated the effect of allocation modes604

on energy-consumption and finish-time of the allocated applications. We consider different test605

scenarios with varying numbers of occupied PEs in the given NoC platform, as shown in Table 4. For606

each of the test scenarios, we have used energy-aware (EA) mode and finish-time aware (FA) mode607

separately for selection of allocation regions. The resulting communication-energy and average608

finish-time margin of the allocated applications is shown in Fig 4a. For any application workload609

with N tasks, AFTM is given by Eq. 10. It indicates the time margin by which tasks complete their610

execution within their corresponding deadline.611

AFTM =
1
N

∑
∀τi ∈Γ

dli − f inish(τi )

dli
(10)

It is found that the task allocations using EA mode shows on an average, 17.3% less communication612

energy consumption compared to the case when the same tasks are assigned using FA mode during613

region selection. However, AFTM of tasks allocated by using EA mode is, on an average, 20.4%614

lesser compared to that of allocations using FA mode. Thus, EA mode is suitable for communication615

energy reduction while FA is more useful for improving the timing performance of tasks.616

6.2.2 Communication Energy. In this subsection, we evaluate the performance of the energy-aware617

mode of the proposed dynamic task allocation strategy in terms of the communication energy618

consumption of the allocated applications. Fig. 4b shows the communication energy consumed by619

the mapped application during their execution. On an average, test-scenarios 2, 3, 4 and 5 with620

already occupied PEs in the initial condition distributed on the platform, result in 10.6%, 19.4%, 27.1%621

and 36.3% more communication energy consumption as compared to test-scenario 1, respectively.622

Test scenario-1 gives the least communication energy of the allocated application as all the PEs623

are considered to be available for task assignment. As the number of already occupied PEs of624

the platform increases progressively from test-scenarios 2 to 5, the mapped region becomes less625

compact due to the non-availability of free PEs in the regular region for task assignment. This626
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increases the communication energy of the mapped application. For e.g. in test scenarios with OPD627

cases, it is found that the communication energy consumption is, on an average, 21.3% higher as628

compared to the applications mapped in the same test scenario with OPC case.629
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6.2.3 Timing performance. The finish-time aware mode of the proposed approach for run-time630

task allocation considers the completion time of the tasks while choosing an allocation region for631

their execution. The time margin by which the tasks satisfy their deadline is affected by the size632

and shape of the allocated region on the platform. Fig. 5a explores the effect of allocated region on633

the timing performance of the applications in terms of average finish time margin (AFTM) of their634

tasks. On average, AFTM drops by 20.7% when the occupied PEs considered in the test scenarios635

rises by 15%. When tasks are allocated, in test-scenarios with higher number of occupied PEs in636

initial conditions, the allocated region size is more as the PEs located sparsely are selected for637

task execution. This increases the chance of more tasks being allocated to the already occupied638

PEs depending on (i) capacity of multitasking and (ii) EAT of the selected PE. Such tasks can639

start their execution only after the earlier assigned task(s) finish their execution. Additionally,640

the AFTM is also affected by the contiguity of the already occupied PEs on the platform. For a641

given test scenario, the AFTM of the scheduled tasks, is on an average, 15.3% lower in case of test-642

scenarios with distributed patterns compared to contiguously occupied PEs. The difference is more643
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prevalent when the test-scenario has the occupied PEs present in contiguous region. Consequently,644

better opportunity for simultaneous execution of the allocated tasks of application exists due to645

the availability of PEs. More number of scheduled tasks complete their execution within their646

deadline. As a result, the AFTM of the tasks increases when the initial condition has occupied PEs647

in contiguous region.648

6.2.4 Communication Latency. The average network latency of the allocated applications under649

various test scenarios is shown in Fig.5b. It can be observed that with 15% increase in PE occupancy650

in the initial condition of the test scenarios, the latency of the allocated application rises by 19.2%. As651

more number of available PEs are present in distributed manner across the platform, the resultant652

allocated regions are irregular shaped. The communicating tasks get assigned to PEs located653

sparsely. Data packets from source to destination PEs use more network resources, such as routers654

and links, for communication between the dependent tasks. Further, it is observed that occupied655

PEs present in regular regions show reduced communication energy compared to occupied PEs656

distributed across the platform. On an average the allocated applications show 23.5% higher latency657

in test scenarios with OPD as compared to OPC.658
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6.2.5 Scalability. The scalability of the proposed approach with the number of tasks is presented659

in Fig. 6. We have varied the number of tasks for allocation and the corresponding allocation time660

taken for executing the proposed method is reported. We have conducted three sets of experiments.661

In the first set of experiment, we evaluate the allocation time of the tasks considering OPD case.662

The results are shown in Fig. 6a. It is found that as the number of tasks for allocation increases, the663

allocation time also rises. On an average, 6.7% rise in allocation time occurs with 10% increase in664

number of tasks. This is because the scheduler needs to execute the algorithm more number of665

times to complete the task allocation process. However, for a given number of tasks, the time taken666

by the scheduler to finish mapping and scheduling decision increases with more number of already667

occupied PEs present in test scenario in OPD. It is attributed to frequent customization carried out668

by the f lexible_f it() heuristic for run-time adaptation of task allocation when the PE availability669

does not match with the pre-computed region shapes. This increases when more number of already670

occupied PEs are present distributed in the platform.671

In the second set of experiment, we have repeated the allocation of the tasks but considering672

the OPC test cases in regular shapes. As depicted in Fig. 6b, it is observed that there is an average673

increase of 4.2% in allocation time with 10% increase in number of tasks. However, the rise in674
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allocation time is less compared to first set of experiments with OPD. This is due to the fact that in675

case of test-scenario with OPC, the remaining PEs are available in contiguous regions. Thus in most676

of the cases, the proposed algorithm performs incremental customization by invoking best_f it()677

and reorient_f it() heuristics. As a result, time consumed in completing the task allocation is lesser678

compared to former set of experiments.679

The third set of experiment evaluates the scalability of the proposed run-time approach with680

number of processors. The platform size is varied from 6 × 6 to 9 × 9 while fixing the number of681

allocated tasks to 60. As shown in Fig 6c, the allocation time increases for each test scenario as682

the size of the target platform increases. More number of PEs are present in larger sized platform,683

so exploring and selecting a suitable set of PE for task allocation and scheduling consumes more684

time. It is observed that on an average, for a given test scenario, the allocation time rises by 7.2% as685

the platform size is changed from 6 × 6 to 9 × 9 which is reasonable compared to the increase in686

number of PEs (×2.2).687

6.3 Comparison with existing works688

In this section, we compare the performance of the proposed dynamic allocation approach with689

the selected state-of-the-art run-time allocation methods reported in the literature for NoC based690

multicore systems having processors with multitasking capability. We first present the comparison691

results of the run-time performance of the proposed hybrid mapping technique followed by the692

discussion on the performance of the design-time computation stage of the algorithm. Deadline and693

Energy-aware Mapping and Scheduling (DEAMS) [4] approach uses an online heuristic to assign694

and schedule the tasks on multicore platforms. It selects a PE for assigning tasks of a submitted695

application while considering the timing characteristics of the tasks. The resultant allocation696

chooses an occupied PE for executing an unmapped task provided the task has enough slack time697

to finish within its deadline. Communication aware Packing based Nearest Neighbour (CPNN)698

described in [32] attempts to allocate the maximum communicating tasks on the same PE. The699

run-time approach described in [18] performs dynamic allocation of tasks to PEs and, thereafter,700

performs iterative improvement on the task mapping decisions by a Communication-Aware task701

Migration (CAM) strategy. The Two-Step Multi-application Mapping (TSMM) heuristic mentioned702

in [38] uses application mapping followed by task allocation within the selected region of PEs703

to minimize the communication energy and execution time of each application. The comparison704

results have been discussed in the following subsections.705
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6.3.1 Communication Energy. Fig.7 shows the comparison of the communication energy consumed706

by the applications allocated by various dynamic allocation methods concerning the run-time707

heuristic of the proposed approach. The results are expressed as normalized values for Nearest-708

Neighbour (NN) [1] method considered as the baseline method. From test-scenarios-1 to 5, the709

set of available PEs on the platform becomes progressively distributed across the platform. All710

the compared algorithms result in task allocation, which shows rise in communication energy711

consumption. However, the proposed algorithm out-performs the other run-time algorithms. It712

results in 24.2% reduction in communication energy of the allocated applications. When compared713

with CAM, DEAMS, TSMM, and CPNN techniques, the task allocations resulting from the proposed714

approach achieve 11.5%, 22.3%, 28.6% and 34.6% average reduction in communication energy.715

6.3.2 Deadline Performance. Fig. 8 reports the results of comparison of number of tasks meeting716

their corresponding deadline. Based on our simulations, we observe that using the proposed717

method, on an average 19.4%, 28.2% and 37.7% more number of tasks satisfy deadline compared718

to the cases when the same tasks are allocated and scheduled by DEAMS, TSMM and CPNN719

techniques, respectively. CPNN, TSMM and CAM algorithms solely focus on communication720

dependency between the tasks and ignore their timing characteristics while mapping them onto721

the same PE in the multicore platform. This policy causes an increase in the finish-time of the tasks,722

which negatively impacts their deadline performance. Tasks allocated dynamically using DEAMS723

show better results compared to the methods mentioned above and result in deadline misses when724

the task slack-time is low. The proposed dynamic allocation approach exploits the pre-computed725

decisions of mapping and scheduling for the run-time assignment of the tasks on the multitasking726

PEs. It uses the timing characteristics of tasks and selects suitable PEs closely located for run-time727

allocation customization. Thus, the number of tasks completing execution within their deadline728

increases.729
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6.3.3 Allocation time. It is essential to consider the cost of an online algorithm, i.e., the time730

spent by the Platform Manager to apply the allocation policy to tasks of the arrived application. A731

comparison of time-taken by various algorithms for dynamic task allocation is depicted in Fig.9732

under various test scenarios. Simulation has been carried out on an Intel i7 processor running at733

3.0 GHz frequency. The proposed approach gives an improved performance concerning the time734

consumed in the allocation of tasks of the application. When compared to DEAMS, the run-time735

strategy of the proposed dynamic allocation approach gives a 14.1% average improvement in736

allocation time. The proposed approach takes into account the resource availability at run-time and737

performs incremental changes in allocation templates for quick on-line mapping and scheduling.738

The allocation time of the proposed algorithm shows 12.4% and 28.7% average reduction over CPNN739
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and CAM algorithms, respectively. CPNN and CAM find only the mapping solution in each iteration740

by selecting appropriate PEs for communication energy reduction. Furthermore, the iterative task741

re-mapping performed by CAM adds to the allocation time of the tasks. TSMM results in 18.7%742

more allocation time on an average as compared to the proposed algorithm. This is attributed to743

the use of two sequential steps in TSMM at run-time, which involve application region selection744

and task mapping within the selected region.745
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Fig. 9. Allocation time of different run-time heuristics

6.3.4 Design-time performance comparison. We compare the performance of different algorithms746

for design space exploration to allocate tasks onto multitasking processors in a NoC based multicore747

platform. In this work, we have used PSO to assign tasks on PEs in the multicore platform. PSO748

has been reported to have faster convergence than other evolutionary techniques like the Genetic749

Algorithm (GA) [35] and it is capable of working with a population of relatively small size [28].750

Thus, we use existing PSO based DSE approaches for comparing with our proposed allocation751

strategy. We have considered, discrete PSO (DPSO) based application mapping technique [14] [28]752

to compare with the proposed PSO based mapping for the allocations found by the design-time753

method on benchmark applications. Besides, a GA based mapping GBMAP, presented in [35], is754

also used to compare the mapping results. Table 5 depicts the the exploration time (in sec) and755

communication cost (CC) i.e. the product of hop counts and data volume of the resultant mapping.756

The CC values are normalized with respect to NMAP[22] technique, which is popularly used for757

comparing the application allocation results. For the sake of comparison, in our experiments, we758

have considered a multicore system with a capacity of one task per PE. The proposed approach759

gives 23.3%, 16.6%, and 11.1% lower communication cost on an average, as compared to NMAP,760

PSMAP and DPSO methods respectively. NMAP, PSMAP, and DPSO approaches map the tasks of a761

given application onto a fixed rectangular-shaped region. Other shaped are not explored in these762

works. The solution space consisting of PEs arranged in contiguous and non-contiguous regions763

is larger than fixed rectangular-shaped allocation regions. We address the shape generation and764

task allocation during design-time separately. This helps to effectively explore the larger search-765

space inherent in case of rectangular and non-rectangular regions. Therefore, the quality of the766

resultant mapping using our approach is better compared to other works mentioned in the literature.767

768

7 CONCLUSION769

We have proposed a hybrid mapping and scheduling algorithm for NoC-based multicore platform770

with multitasking processors. Our approach consists of design-time allocation exploration followed771

by run-time selection and configuration of the appropriate allocation template. The allocation772
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Table 5. Communication cost (cc) & DSE-time (in sec) by different DSE approaches for hybrid strategy

Benchmarks NMAP[22]
CC DSE-time

GBMAP[35]
CC DSE-time

PSMAP[29]
CC DSE-time

DPSO[14] [28]
CC DSE-time

Proposed
CC DSE-time

MPEG4 1 0.016 0.94 0.03 0.93 0.04 0.93 2.10 0.912 2.33
263ENC MP3DEC 1 0.012 1 0.13 1 0.26 1 2.08 1 2.36
PIP 1 0.01 1 0.01 1 0.01 1 0.42 1 0.47
MP3ENC MP3DEC 1 0.01 1 0.21 1 0.32 1 1.97 0.821 2.22
263DEC MP3DEC 1 0.01 0.987 0.16 0.969 0.23 0.969 2.09 0.903 2.31

explored during design-time consider the multitasking capability of the processors and task timing773

constraints of the given applications. The proposed approach adapts to the dynamism of the774

application workload by exploiting these solutions at run-time, based on the resource availability775

and application timing requirements. We have evaluated our strategy and compared its performance776

with other task mapping and scheduling algorithms reported in the literature. Experimental results777

indicate its effectiveness in terms of communication energy consumption and deadline satisfaction778

of the allocated applications. Thus, the proposed strategy is suitable for run-time allocation of779

dynamic workloads with multiple applications with real-time constraints on NoC-based multicore780

systems. In future, we plan to extend this work to consider the actual execution time of tasks at781

run-time by updating the pre-computed decisions. Also, the proposed hybrid approach can be782

augmented to limit the mutual interference between tasks for hard real-time systems.783
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