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Abstract

This paper concerns portfolio selection with multiple assets under rough covariance
matrix. We investigate the continuous-time Markowitz mean-variance problem for a
multivariate class of affine and quadratic Volterra models. In this incomplete non-
Markovian and non-semimartingale market framework with unbounded random coe-
fficients, the optimal portfolio strategy is expressed by means of a Riccati backward
stochastic differential equation (BSDE). In the case of affine Volterra models, we derive
explicit solutions to this BSDE in terms of multi-dimensional Riccati-Volterra equa-
tions. This framework includes multivariate rough Heston models and extends the
results of Han and Wong (2020a). In the quadratic case, we obtain new analytic for-
mulae for the the Riccati BSDE and we establish their link with infinite dimensional
Riccati equations. This covers rough Stein-Stein and Wishart type covariance models.
Numerical results on a two dimensional rough Stein-Stein model illustrate the impact
of rough volatilities and stochastic correlations on the optimal Markowitz strategy. In
particular for positively correlated assets, we find that the optimal strategy in our
model is a ‘buy rough sell smooth’ one.
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1 Introduction

The Markowitz (1952) mean-variance portfolio selection problem is the cornerstone of mo-
dern portfolio allocation theory. Investment decisions rules are made according to a trade-
off between return and risk, and the use of Markowitz efficient portfolio strategies in the
financial industry has become quite popular mainly due to its natural and intuitive for-
mulation. A vast volume of research has been devoted over the last decades to extend
Markowitz problem from static to continuous-time setting, first in Black-Scholes and com-
plete markets (Zhou and Li (2000)), and then to consider more general frameworks with
random coefficients and multiple assets, see e.g. Lim (2004), Chiu and Wong (2014), or
more recently Ismail and Pham (2019) for taking into account model uncertainty on the
assets correlation.

In the direction of more realistic modeling of asset prices, it is now well-established that
volatility is rough (Gatheral et al., 2018), modeled by fractional Brownian motion with
small Hurst parameter, which captures empirical facts of times series of realized volatility
and key features of implied volatility surface, see Alòs et al. (2007); Fukasawa (2011).
Subsequently, an important literature has focused on option pricing and asymptotics in
rough volatility models. In comparison, the research on portfolio optimization in fractional
and rough models is still little developed but has gained an increasing attention with the
recent papers of Fouque and Hu (2018); Bäuerle and Desmettre (2020); Han and Wong
(2020b), which consider fractional Ornstein-Uhlenbeck and Heston stochastic volatility
models for power utility function criterion, and the work by Han and Wong (2020a) where
the authors study the Markowitz problem in a Volterra Heston model, which covers the
rough Heston model of El Euch and Rosenbaum (2018).

Most of the developments in rough volatility literature for asset modeling, option pricing
or portfolio selection have been carried out in the mono-asset case. However, investment in
multi-assets by taking into account the correlation risk is an importance feature in portfolio
choice in financial markets, see Buraschi et al. (2010). Inspired by the recent papers
Abi Jaber (2019c); Abi Jaber et al. (2019); Cuchiero and Teichmann (2019); Rosenbaum
and Thomas (2019) that consider multivariate versions of rough Volterra volatility models,
the basic goal of this paper is to enrich the literature on portfolio selection:

(i) by introducing a class of multivariate Volterra models, which captures stylized facts
of financial assets, namely various rough volatility patterns across assets, (possibly
random) correlation between stocks, and leverage effects, i.e., correlation between a
stock and its volatility.

(ii) by keeping the model tractable for explicit computations of the optimal Markowitz
portfolio strategy, which can be a quite challenging task in multivariate non-Markovian
settings.

Main contributions. In this paper, we study the continuous-time Markowitz problem in
a multivariate setting with a focus on two classes: (i) affine Volterra models as in Abi Jaber
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et al. (2019) that include multivariate rough Heston models, (ii) quadratic Volterra models,
which are new class of Volterra models, and embrace multivariate rough Stein-Stein models,
and rough Wishart type covariance matrix models, in the spirit of Abi Jaber (2019c);
Cuchiero and Teichmann (2019). We provide:

• A generic verification result for the corresponding mean-variance problem, which
is formulated in an incomplete non-Markovian and non-semimartingale framework
with unbounded random coefficients of the volatility and market price of risk, and
under general filtration. This result expresses the solution to the Markowitz problem
in terms of a Riccati backward stochastic differential equation (BSDE) by checking in
particular the admissibility condition of the optimal control. We stress that related
existing verification results in the literature (see Lim (2004), Jeanblanc et al. (2012),
Chiu and Wong (2014), Shen (2015)) cannot be applied directly to our setting, and
we shall discuss more in detail this point in Section 3.

• Explicit solutions to the Riccati BSDE in two concrete specifications of multivariate
Volterra models exploiting the representation of the solution in terms of a Laplace
transform:

(i) the affine case: the optimal Markowitz strategy is expressed in terms of mul-
tivariate Riccati-Volterra equations which naturally extends the one obtained in
Han and Wong (2020a). We point out that the martingale distortion arguments
used in Han and Wong (2020a) for the univariate Volterra Heston model, do not
apply in higher dimensions, unless the correlation structure is highly degenerate.

(ii) the quadratic case: our major result is to derive analytic expressions for the
optimal investment strategy by explicitly solving operator Riccati equations.
This gives new explicit formulae for rough Stein-Stein and Wishart type co-
variance models. These analytic expressions can be efficiently implemented: the
integral operators can be approximated by closed form expressions involving
finite dimensional matrices and the underlying processes can be simulated by
the celebrated Cholesky decomposition algorithm.

• Numerical simulations of the optimal Markowitz strategy in a two-asset rough
Stein-Stein model to illustrate our results.1 We depict the impact of some parameters
onto the optimal investment when one asset is rough, and the other smooth (in
the sense of the Hurst index of their volatility), and show in particular that for
positively correlated assets, the optimal strategy is to “buy rough, sell smooth”,
which is consistent with the empirical backtesting in Glasserman and He (2020).

Outline of the paper. The rest of the paper is organized as follows: Section 2 formulates
the financial market model and the mean-variance problem in a multivariate setting with

1The code of our implementation can be found at the following link.
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random covariance matrix and market price of risk, and defines the general correlation
structure. We state in Section 3 our generic verification result, which can be seen as unifying
framework for previous results obtained in related literature. Section 4 is devoted to affine
Volterra models where we derive an explicit expression for the optimal Markowitz strategy.
In Section 5, we consider the class of quadratic Volterra models, and we show how to solve
the infinite-dimensional Riccati equations that appear in the closed-form expressions of
the optimal portfolio. Numerical illustrations on the behavior of the optimal investment
in a two-asset rough Stein-Stein model are given in Section 6. Finally, the proof of the
verification result and other technical lemmas are postponed to the Appendices.

Notations. Given a probability space (Ω,F ,P) and a filtration F = (Ft)t≥0 satisfying the
usual conditions, we denote by

L∞F ([0, T ],Rd) =
{
Y : Ω× [0, T ] 7→ Rd, F− prog. measurable and bounded a.s.

}
LpF([0, T ],Rd) =

{
Y : Ω× [0, T ] 7→ Rd, F− prog. measurable s.t. E

[ ∫ T

0
|Ys|pds

]
<∞

}
S∞F ([0, T ],Rd) =

{
Y : Ω× [0, T ] 7→ Rd, F− prog. measurable s.t. sup

t≤T
|Yt(w)| <∞ a.s.

}
.

Here | · | denotes the Euclidian norm on Rd. Classically, for p ∈ J1,∞K, we define

Lp,locF ([0, T ],Rd) as the set of progressive processes Y for which there exists a sequence of
increasing stopping times τn ↑ ∞ such that the stopped processes Y τn are in LpF([0, T ],Rd)
for every n ≥ 1, and we recall that it consists of all progressive processes Y s.t.

∫ T
0 |Yt|

pdt

< ∞, a.s. To unclutter notation, we write Lp,locF ([0, T ]) instead of Lp,locF ([0, T ],Rd) when
the context is clear.

2 Formulation of the problem

Fix T > 0, d,N ∈ N. We consider a financial market on [0, T ] on some filtered probability
space (Ω,F ,F := (Ft)t≥0,P) with a non–risky asset S0

dS0
t = S0

t r(t)dt,

with a deterministic short rate r : R+ → R, and d risky assets with dynamics

dSt = diag(St)
[(
r(t)1d + σtλt

)
dt+ σtdBt

]
, (2.1)

driven by a d-dimensional Brownian motion B, with a d × d-matrix valued stochastic
volatility process σ and a Rd-valued continuous stochastic process λ, called market price
of risk. Here 1d denotes the vector in Rd with all components equal to 1. The market is
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typically incomplete, in the sense that the dynamics of the continuous volatility process σ
is driven by an N -dimensional process W = (W 1, . . . ,WN )> defined by:

W k
t = C>k Bt +

√
1− C>k CkB

⊥,k
t , k = 1, . . . , N, (2.2)

where Ck ∈ Rd s.t. C>k Ck ≤ 1, and B⊥ = (B⊥,1, . . . , B⊥,N )> is anN–dimensional Brownian
motion independent of B. Note that d〈W k〉t = dt but W k and W j can be correlated, hence
W is not necessarily a Brownian motion. Observe that processes λ and σ are F-adapted,
possibly unbounded, but not necessarily adapted to the filtration generated by W . We
point out that F may be strictly larger than the augmented filtration generated by B and
B⊥ as we shall deal with weak solutions to stochastic Volterra equations.

Remark 2.1. In our applications, we will be chiefly interested in the case where λt is linear
in σt, and where the dynamics of the matrix-valued process σ is governed by a Volterra
equation of the form

σt = g0(t) +

∫ t

0
µ(t, s, ω)ds+

∫ t

0
χ(t, s, ω)dWs. (2.3)

The class of models that we shall develop in Sections 4 and 5 includes in particular the case
of Volterra Heston model when d = 1 with λt = θσt, for some constant θ, as studied in
Han and Wong (2020a), and the case of Wishart process for the covariance matrix process
Vt = σtσ

>
t , as studied in Chiu and Wong (2014). The class of models that we will develop

in Sections 4 and 5 includes in particular the case of

(i) multivariate Volterra Heston models based on Volterra square-root processes, see
Abi Jaber et al. (2019, Section 6), we refer to Rosenbaum and Thomas (2019) for
a microstuctural foundation. When d = 1, we recover the results of Han and Wong
(2020a), which cover the case of the rough Heston model of El Euch and Rosenbaum
(2019).

(ii) multivariate Volterra Stein-Stein and Wishart type in the sense of Abi Jaber (2019c),
where the instantaneous covariance is given by squares of Gaussians. Under the
Markovian setting, we recover a similar structure as in the results of Chiu and Wong
(2014).

Mean-variance optimization problem. Let πt denote the vector of the amounts in-
vested in the risky assets S at time t in a self–financing strategy and set α = σ>π. Then,
the dynamics of the wealth Xα of the portfolio we seek to optimize is given by

dXα
t =

(
r(t)Xα

t + α>t λt
)
dt+ α>t dBt, t ≥ 0, Xα

0 = x0 ∈ R. (2.4)
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By a solution to (2.4), we mean an F-adapted continuous process Xα satisfying (2.4) on
[0, T ] P-a.s. and such that

E
[

sup
t≤T
|Xα

t |2
]
< ∞. (2.5)

The set of admissible investment strategies is naturally defined by

A = {α ∈ L2,loc
F ([0, T ],Rd) such that (2.4) has a solution satisfying (2.5)}.

The Markowitz portfolio selection problem in continuous-time consists in solving the
following constrained problem

V (m) := inf
α∈A

{
Var(XT ) : s.t. E[XT ] = m

}
. (2.6)

given some expected return value m ∈ R, where Var(XT ) = E
[(
XT − E[XT ]

)2]
stands for

the variance.

3 A generic verification result

In this section, we establish a generic verification result for the optimization problem (2.6)
given the solution of a certain Riccati BSDE. We stress that our mean-variance prob-
lem deals with incomplete markets with unbounded random coefficients σ and λ, so that
existing results cannot be applied directly to our setting: Lim (2004) presents a general
methodology to solve the MV problem for the wealth process (2.4) in an incomplete market
without assuming any particular dynamics on σ nor that the excess return is proportional
to σ. However, a nondegeneracy assumption is made on σσ>, see Lim (2004, Assumption
(A.1)). The main verification result in Lim (2004, Proposition 3.3), based on a completion
of squares argument, states that if a solution to a certain (nonlinear) Riccati BSDE exists,
then the MV is solvable. The difficulty resides in proving the existence of solutions to such
nonlinear BSDEs (see also Lim and Zhou (2002) for similar results in complete markets).

Here, we assume that the excess return is proportional to σ (instead of the nonde-
generacy condition) and state a verification result in terms of solutions of Riccati BSDEs
(completion of squares, ie LQ problem with random coefficients). A verification result
depending on the solution of a Riccati BSDE is also stated in Chiu and Wong (2014),
but the admissibility of the optimal candidate control is not proved. We also mention the
paper of Jeanblanc et al. (2012) where the authors adopt a BSDE approach for general
semimartingales, but focusing on situations in which the existence of an optimal strategy
is assumed. In our case, the existence of an admissible optimal control is obtained under
a suitable exponential integrability assumption involving the market price of risk and the
Z components of the BSDE, which extends the condition in Shen (2015).
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Our main result of this section, Theorem 3.1 below, can be seen as unifying framework
for the aforementioned results, refer to Table 1. For the sake of presentation, we postpone
its proof to Appendix A.

Random coef. Unbounded coef. degenerate σ Incomplete market

Lim and Zhou (2002) 3 7 7 7

Lim (2004) 3 7 7 3

Shen (2015) 3 3 7 7

Theorem 3.1 3 3 3 3

Table 1: Comparison to existing verification results for mean-variance problems.

We define C ∈ RN×d by

C = (C1, . . . , CN )> , (3.1)

where we recall that the vectors Ci ∈ Rd come from the correlation structure (2.2). We
will use the matrix norm |A| = tr(A>A) in the subsequent theorem.

Theorem 3.1. Assume that there exists a solution triplet (Γ, Z1, Z2) ∈ S∞F ([0, T ],R)

×L2,loc
F ([0, T ],Rd)× L2,loc

F ([0, T ],RN ) to the Riccati BSDE{
dΓt = Γt

[(
− 2r(t) +

∣∣λt + Z1
t + CZ2

t

∣∣2 )dt+
(
Z1
t

)>
dBt +

(
Z2
t

)>
dWt

]
,

ΓT = 1,
(3.2)

such that

(H1) 0 < Γ0 < e2
∫ T
0 r(s)ds, and Γt > 0, for all t ≤ T ,

(H2)

E
[

exp
(
a(p)

∫ T

0

(
|λs|2 +

∣∣Z1
s

∣∣2 +
∣∣Z2

s

∣∣2 )ds)] < ∞, (3.3)

for some p > 2 and a constant a(p) given by

a(p) = max
[
p (3 + |C|) , 3(8p2−2p)

(
1 + |C|2

)]
. (3.4)

Then, the optimal investment strategy for the Markowitz problem (2.6) is given by the
admissible control

α∗t = −
(
λt + Z1

t + CZ2
t

)(
Xα∗
t − ξ∗e−

∫ T
t r(s)ds

)
, (3.5)
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where

ξ∗ =
m− Γ0e

−
∫ T
0 r(t)dtx0

1− Γ0e
−2

∫ T
0 r(t)dt

. (3.6)

Furthermore, the value of (2.6) for the optimal wealth process X∗ = Xα∗ is

V (m) = Var(X∗T ) = Γ0

∣∣x0 −me−
∫ T
0 r(t)dt

∣∣2
1− Γ0e

−2
∫ T
0 r(t)dt

. (3.7)

Proof. We refer to Appendix A.

Remark 3.2. By setting Z̃it = ΓtZ
i
t , i = 1, 2, the BSDE (3.2) agrees with the one in Chiu

and Wong (2014, Theorem 3.1):

dΓt = Γt

[(
− 2r(t) +

∣∣λt +
Z̃1
t + CZ̃2

t

Γt

∣∣2)]dt+
(
Z̃1
t

)>
dBt +

(
Z̃2
t

)>
dWt,

and justifies the terminology Riccati BSDE.

In the sequel, we will provide concrete specifications of multivariate stochastic Volterra
models for which the solution to the non-linear Riccati BSDE (3.2) can be computed in
closed and semi-closed forms, while satisfying conditions (H1) and (H2). The key idea is
to observe that, first, if such solution exists, then, it admits the following representation
as a Laplace transform:

Γt = E
[

exp
(∫ T

t

(
2r(s)−

∣∣λs + Z1
s + CZ2

s

∣∣2 )ds) ∣∣∣ Ft], 0 ≤ t ≤ T.

In the special case where λ is deterministic, then the solution to (3.2) trivially exists with
Z1 = Z2 = 0, and condition (H1) and (H2) are obviously satisfied when λ is nonzero
and bounded. In the general case where λ is an (unbounded) stochastic process, the
admissibility of the optimal control is obtained under finiteness of a certain exponential
moment of the solution triplet (Γ, Z1, Z2) and the risk premium λ as precised in (H2). Such
estimate is crucial to deal with the unbounded random coefficients in (2.4), see for instance
Han and Wong (2020a); Shen et al. (2014); Shen (2015) where similar conditions appear.
If the coefficients are bounded, such condition is not needed, see Lim (2004, Lemma 3.1).

Our main interest is to find specific dynamics for the volatility σ and for the market
price of risk λ such that the Laplace transform can be computed in (semi)-explicit form.
We shall consider models as mentioned in Remark 2.1, where all the randomness in λ comes
from the process W driving σ, and for which we naturally expect that Z1 = 0. We solve
more specifically this problem for two classes of models:
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(i) Multivariate affine Volterra models of Heston type in Section 4. This extends the
results of Han and Wong (2020a) to the multi dimensional case and provides semi-
closed formulas.

(ii) Multivariate quadratic Volterra models of Stein-Stein and Wishart type in Section 5
for which we derive new closed-form solutions.

4 Multivariate affine Volterra models

We let K = diag(K1, . . . ,Kd) be diagonal with scalar kernels Ki ∈ L2([0, T ],R) on the
diagonal, ν = diag(ν1, . . . , νd) and D ∈ Rd×d such that

Dij ≥ 0, i 6= j.

We assume that σ in (2.3) is given by σ =
√

diag(V ), where V = (V 1, . . . , V d)> is the
following Rd+–valued Volterra square–root process

Vt = g0(t) +

∫ t

0
K(t− s)DVsds+

∫ t

0
K(t− s)ν

√
diag(Vs)dWs. (4.1)

Here g0 : R+ → Rd+, W is a d-dimensional Brownian motion and the correlation structure
with B is given by

W i = ρiB
i +
√

1− ρ2
iB
⊥,i, i = 1, . . . , d, (4.2)

for some (ρ1, . . . , ρd) ∈ [−1, 1]d. This corresponds to a particular case of the correlation
structure in (2.2) with N = d, and Ci = (0, . . . , ρi, . . . , 0)>. Furthermore, the risk premium

is assumed to be in the form λ =
(
θ1

√
V 1, . . . , θd

√
V d
)>

, for some θi ≥ 0, so that the
dynamics for the stock prices (2.1) reads

dSit = Sit
(
r(t) + θiV

i
t

)
dt+ Sit

√
V i
t dB

i
t, i = 1, . . . , d. (4.3)

We assume that there exists a continuous R2d
+ -valued weak solution (V, S) to (4.1)-(4.3)

on some filtered probability space (Ω,F , (F)t≥0,P) such that

sup
t≤T

E [|Vt|p] <∞, p ≥ 1. (4.4)

For instance, weak existence of V such that (4.4) holds is established under suitable assump-
tions on the kernel K and specifications g0 as shown in the following remark. The existence
of S readily follows from that of V .
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Remark 4.1. Assume that, for each i = 1, . . . , d, Ki is completely monotone on (0,∞)2,and
that there exists γi ∈ (0, 2] and ki > 0 such that∫ h

0
K2
i (t)dt+

∫ T

0
(Ki(t+ h)−Ki(t))

2dt ≤ kih
γi , h > 0. (4.5)

This covers, for instance, constant non-negative kernels, fractional kernels of the form
tH−1/2/Γ(H + 1/2) with H ∈ (0, 1

2 ], and exponentially decaying kernels e−βt with β > 0.
Moreover, sums and products of completely monotone functions are completely monotone,
refer to Abi Jaber et al. (2019) for more details.

• If g0(t) = V0 +
∫ t

0 K(t − s)b0ds, for some V0, b
0 ∈ Rd+, then Abi Jaber et al. (2019,

Theorem 6.1) ensures the existence of V such that (4.4) holds,

• In Abi Jaber and El Euch (2019a), the existence is obtained for more general in-
put curves g0 for the case d = 1, the extension to the multi-dimensional setting is
straightforward.

Exploiting the affine structure of (4.1)-(4.3), see Abi Jaber et al. (2019), we provide an
explicit solution to the Riccati BSDE (3.2) in terms of the Riccati-Volterra equation

ψi(t) =

∫ t

0
Ki(t− s)Fi(ψ(s))ds, (4.6)

Fi(ψ) = −θ2
i − 2θiρiνiψ

i + (D>ψ)i +
ν2
i

2
(1− 2ρ2

i )(ψ
i)2, i = 1, . . . , d, (4.7)

and the Rd-valued process

gt(s) = g0(s) +

∫ t

0
K(s− u)DVudu+

∫ t

0
K(s− u)ν

√
diag(Vu)dWu, s ≥ t. (4.8)

One notes that for each, s ≤ T , (gt(s))t≤s is the adjusted forward process

gt(s) = E
[
Vs −

∫ s

t
K(s− u)DVudu

∣∣∣ Ft].
Lemma 4.2. Assume that there exists a solution ψ ∈ C([0, T ],Rd) to the Riccati-Volterra
equation (4.6)-(4.7). Let

(
Γ, Z1, Z2

)
be defined as

Γt = exp
(

2
∫ T
t r(s)ds+

∑d
i=1

∫ T
t Fi(ψ(T − s))git(s)ds

)
,

Z1
t = 0,

Z2,i
t = ψi(T − t)νi

√
V i
t , i = 1, . . . , d, 0 ≤ t ≤ T,

(4.9)

2A function f is completely monotone on (0,∞) if it is infinitely differentiable on (0,∞) such that
(−1)nfn(t) ≥ 0, for all n ≥ 1 and t > 0.
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where g = (g1, . . . , gd)> is given by (4.8). Then,
(
Γ, Z1, Z2

)
is a S∞F ([0, T ],R)×L2

F([0, T ],Rd)×
L2
F([0, T ],Rd)-valued solution to (3.2).

Proof. We first observe that the correlation structure (4.2) implies that C in (3.1) is given
by C = diag(ρ1, . . . , ρd). Set

Gt = 2

∫ T

t
r(s)ds+

d∑
i=1

∫ T

t
Fi(ψ(T − s))git(s)ds, t ≤ T.

Then, Γ = exp(G) and

dΓt = Γt

(
dGt +

1

2
d〈G〉t

)
. (4.10)

Using (4.8), and by stochastic Fubini’s theorem, see Veraar (2012, Theorem 2.2), the
dynamics of G reads as

dGt =
(
− 2r(t)−

d∑
i=1

Fi(ψ(T − t))V i
t +

d∑
j=1

∫ T

t
Fj(ψ(T − s))Kj(s− t)ds

d∑
i=1

DjiV
i
t

)
dt

+
d∑
i=1

∫ T

t
Fi(ψ(T − s))Ki(s− t)dsνi

√
V i
t dW

i
t

=
(
− 2r(t)−

d∑
i=1

Fi(ψ(T − t))V i
t +

d∑
j=1

ψj(T − t)
d∑
i=1

DjiV
i
t

)
dt

+

d∑
i=1

ψi(T − t)νi
√
V i
t dW

i
t ,

where we changed variables and used the Riccati–Volterra equation (4.6) for ψ for the last
equality. This yields that the dynamics of Γ in (4.10) is given by

dΓt = Γt

(
− 2r(t) +

d∑
i=1

V i
t

(
− Fi(ψ(T − t)) +

d∑
j=1

Djiψ
j(T − t) +

ν2
i

2
(ψi(T − t))2

))
dt

+ Γt

d∑
i=1

ψi(T − t)νi
√
V i
t dW

i
t

= Γt

[(
− 2r(t) +

d∑
i=1

V i
t (θi + ρiνiψ

i(T − t))2
)
dt+ (Z2

t )>dWt

]
, (4.11)

where we used (4.7) for the last identity. Finally, observing that

∣∣λt + Z1
t + CZ2

t

∣∣2 =
d∑
i=1

(
θi + ρiνiψ

i(T − t)
)2
V i
t ,

11



together with ΓT = 1, we get that (Γ, Z1, Z2) as defined in (4.9) solves the BSDE (3.2).
It remains to show that

(
Γ, Z1, Z2

)
∈ S∞F ([0, T ],R)×L2

F([0, T ],Rd)×L2
F([0, T ],Rd). For

this, define the process

Mt = Γt exp
(∫ T

t

(
− 2r(s) +

d∑
i=1

V i
s (θi + ρiνiψ

i(T − s))2
)
ds
)
, t ≤ T.

An application of Itô’s formula combined with the dynamics (4.11) shows that dMt =
Mt(Z

2
t )>dWt, and so M is a local martingale of the form

Mt = E
(∫ T

t

d∑
i=1

ψi(T − s)νi
√
V i
s dW

i
s

)
.

Since ψ is continuous, it is bounded so that a straightforward adaptation of Abi Jaber
et al. (2019, Lemma 7.3) to the multi-dimensional setting, recall (4.4), yields that M is a
true martingale. Since MT = 1, writing E[MT |Ft] = Mt, we obtain

Γt = E
[

exp
(∫ T

t

(
2r(s)−

d∑
i=1

V i
s (θi + ρiνiψ

i(T − s))2
)
ds
)
| Ft

]
, t ≤ T, (4.12)

which ensures that 0 < Γt ≤ e2
∫ T
t r(s)ds, P − a.s., since V ∈ Rd+. As for Z2, it is clear

that it belongs to L2
F([0, T ],Rd) since Γ and ψ are bounded and E

[ ∫ T
0

∑d
i=1 V

i
s ds
]
<∞ by

(4.4).

The following remark makes precise the existence of a continuous solution to the Riccati-
Volterra equation (4.6)-(4.7).

Remark 4.3. Assume that K satisfies the assumptions of Remark 4.1.

• If 1 − 2ρ2
i ≥ 0, then Abi Jaber et al. (2019, Lemma 6.3) provides the existence of

a unique solution ψ ∈ L2([0, T ],Rd−). Continuity of such solution can then be easily
established, since as opposed to Abi Jaber et al. (2019, Lemma 6.3), (4.6) starts from
0.

• If d = 1 and 1 − 2ρ2
1 < 0, Han and Wong (2020a, Lemma A.4) establishes the

existence of a continuous solution ψ.

Using Theorem 3.1, we can now explicitly solve the Markowitz problem (2.6) in the
multivariate Volterra Heston model (4.1)-(4.2)-(4.3). The next theorem extends (Han and
Wong, 2020a, Theorem 4.2) to the multivariate case. Notice that the martingale distortion
argument in this cited paper is specific to the dimension d = 1, and here, instead, we rely
on the generic verification result in Theorem 3.1.
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Theorem 4.4. Assume that there exists a solution ψ ∈ C([0, T ],Rd) to the Riccati-Volterra
equation (4.6)-(4.7) such that

max
1≤i≤d

max
t∈[0,T ]

(
θ2
i + ν2

i ψ
i(t)2

)
≤ a

a(p)
, for some p > 2, (4.13)

where a(p) is given by (3.4) and the constant a > 0 is such that E
[
exp

(
a
∫ T

0

∑d
i=1 V

i
s ds
)]
<

∞. Assume that gi0(0) > 0 for some i ≤ d. Then, the optimal investment strategy for the
maximization problem (2.6) in the multivariate Volterra Heston model (4.1)-(4.2)-(4.3) is
given by the admissible control

α∗it = −
(
θi + ρiνiψ

i(T − t)
)√

V i
t

(
Xα∗
t − ξ∗e−

∫ T
t r(s)ds

)
, 1 ≤ i ≤ d, (4.14)

where ξ∗ is defined as in (3.6), the wealth process X∗ = Xα∗ by (2.4) with λ =
(
θ1

√
V 1,

. . . , θd
√
V d
)>

, and the optimal value is given by (3.7) with Γ0 as in (4.12).

Proof. First note that under the specification (4.9), the candidate for the optimal feedback
control defined in (3.5) takes the form

α∗t = −
(
λt + Z1

t + CZ2
t

)(
X∗t − ξ∗e−

∫ T
t r(s)ds

)
=
(
−
(
θi + ρiνiψ

i(T − t)
)√

V i
t

(
X∗t − ξ∗e−

∫ T
t r(s)ds

))
1≤i≤d

.

It then suffices to check that the assumptions of Theorem 3.1 are verified to ensure that
such α∗ is optimal and to get that (3.7) is the optimal value. The existence of a solution
triplet (Γ, Z1, Z2) ∈ S∞F ([0, T ],R)× L2

F([0, T ],Rd)× L2
F([0, T ],RN ) to the stochastic back-

ward Riccati equation (3.2) is ensured by Lemma 4.2. In addition, (4.12) implies that

Γ0 < e2
∫ T
0 r(s)ds since gi0(0) > 0 for some i ≤ d by assumption and V i is continuous. Thus

condition (H1) of Theorem 3.1 is verified. As for condition (H2) of Theorem 3.1, note that

a(p)
(
|λs|2 +

∣∣Z1
s

∣∣2 +
∣∣Z2

s

∣∣2) = a(p)
d∑
i=1

V i
s

(
θ2
i + ν2

i ψ
i(t)2

)
≤ a

d∑
i=1

V i
s ,

which implies that E
[
exp

(
a(p)

∫ T
0

(
|λs|2 +

∣∣Z1
s

∣∣2 +
∣∣Z2

s

∣∣2) ds)] < ∞ and ends the proof.

Remark 4.5. Condition (4.13) concerns the risk premium constants (θ1, . . . , θd). For

a > 0, a sufficient condition ensuring E
[

exp
(
a
∫ T

0

∑d
i=1 V

i
s ds
)]
< ∞ is the existence of a

continuous solution ψ̃ to the Riccati–Volterra

ψ̃i(t) =

∫ t

0
Ki(t− s)

(
a+

(
Dψ̃(s)

)
i
+
ν2
i

2
ψ̃i(s)

)
ds,
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see Abi Jaber et al. (2019, Theorem 4.3). In the one dimensional case d = 1, such existence
is established in Han and Wong (2020a, Lemma A.2) for the case where g0(t) = V0 +

κ
∫ t

0 K(t− s)φds, φ ≥ 0, D = −κ and a < κ2

2ν2
.

Remark 4.6. Note that in the one dimensional case the condition (4.13) can be made
more explicit by bounding ψ with respect to θ. Indeed since −θ2 < 0 we get from Abi Jaber
and El Euch (2019b, Theorem C.1) that ψ is non-positive. Furthermore, the fact that ψ is
solution to the following linear Volterra equation

χ(t) =

∫ t

0
K(t− s)

(
− θ2 +

(
(D − 2θρν) +

ν2

2
(1− 2ρ2)ψ(s)

)
χ(s)

)
ds,

leads to, see Abi Jaber and El Euch (2019b, Corollary C.4),

sup
t∈[0,T ]

|ψt| ≤ |θ|2
∫ T

0
RD(s)ds,

where RD is the resolvent of KD. Consequently, a sufficient condition on θ to ensure
(4.13) would be

θ2

(
1 + (θν)2

∫ T

0
RD(s)ds

)
≤ a

a(p)
.

Remark 4.7. In order to numerically implement the optimal strategy (4.14), one needs
to simulate the possibly non-Markovian process V and to discretize the Riccati-Volterra
equation for ψ. Abi Jaber (2019a); Abi Jaber and El Euch (2019b) develop a taylor-
made approximating procedure for the stochastic Volterra equation (4.1) (resp. the Riccati-
Volterra equation (4.6)), using finite-dimensional Markovian semimartingales (resp. finite-
dimensional Riccati ODE’s). An illustration of such procedure on the mean-variance pro-
blem in the univariate Volterra Heston model for the fractional kernel is given in Han and
Wong (2020a, Section 5).

5 Multivariate quadratic Volterra models

Before we introduce the class of multivariate quadratic Volterra models, we need to define
and introduce some notations on integral operators.

5.1 Integral operators

Fix T > 0. We denote by 〈·, ·〉L2 the inner product on L2
(
[0, T ],RN

)
that is

〈f, g〉L2 =

∫ T

0
f(s)>g(s)ds, f, g ∈ L2

(
[0, T ],RN

)
.
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We define L2
(
[0, T ]2,RN×N

)
to be the space of measurable kernels K : [0, T ]2 → RN×N

such that ∫ T

0

∫ T

0
|K(t, s)|2dtds <∞.

For any K,L ∈ L2
(
[0, T ]2,RN×N

)
we define the ?-product by

(K ? L)(s, u) =

∫ T

0
K(s, z)L(z, u)dz, (s, u) ∈ [0, T ]2,

which is well-defined in L2
(
[0, T ]2,RN×N

)
due to the Cauchy-Schwarz inequality. For any

kernel K ∈ L2
(
[0, T ]2,RN×N

)
, we denote by K the integral operator induced by the kernel

K that is

(Kg)(s) =

∫ T

0
K(s, u)g(u)du, g ∈ L2

(
[0, T ],RN

)
.

K is a linear bounded operator from L2
(
[0, T ],RN

)
into itself. If K and L are two integral

operators induced by the kernels K and L in L2
(
[0, T ]2,RN×N

)
, then KL is the integral

operator induced by the kernel K ? L.
We denote by K∗ the adjoint kernel of K for 〈·, ·〉L2 , that is

K∗(s, u) = K(u, s)>, (s, u) ∈ [0, T ]2,

and by K∗ the corresponding adjoint integral operator.

Definition 5.1. A kernel K ∈ L2
(
[0, T ]2,RN×N

)
is symmetric nonnegative if K = K∗

and ∫ T

0

∫ T

0
f(s)>K(s, u)f(u)duds ≥ 0, ∀f ∈ L2

(
[0, T ],RN

)
.

In this case, the integral operator K is said to be symmetric nonnegative and K = K∗ and
〈f,Kf〉L2 ≥ 0. K is said to be symmetric nonpositive, if (−K) is symmetric nonnegative.

We recall the definition of Volterra kernels of continuous and bounded type in the
terminology of Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1 and 9.5.2).

Definition 5.2. A kernel K : R2
+ → RN×N is a Volterra kernel of continuous and bounded

type in L2 if K(t, s) = 0 whenever s > t and

sup
t∈[0,T ]

∫ T

0
|K(t, s)|2ds <∞, and lim

h→0

∫ T

0
|K(u+ h, s)−K(u, s)|2ds = 0, u ≤ T.(5.1)

Any convolution kernel of the form K(t, s) = k(t − s)1s≤t with k ∈ L2
(
[0, T ],RN×N

)
satisfies (5.1), we refer to Abi Jaber (2019c, Example 3.1) for additional examples. Note
that (s, t) 7→ K(s, t) is not necessarily continuous nor bounded.

For completeness, we collect in Appendix B.1 below standard results for integral oper-
ators and their resolvents.
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5.2 The model

In this section, we assume that the components of the stochastic volatility matrix σ in
(2.1) are given by σij = γ>ijY , where γij ∈ RN and Y = (Y 1, . . . , Y N )> is the following
N -dimensional Volterra Ornstein–Uhlenbeck process

Yt = g0(t) +

∫ t

0
K(t, s)DYsds+

∫ t

0
K(t, s)ηdWs, (5.2)

where D, η ∈ RN×N , g0 : R+ → RN is locally bounded, W is a N -dimensional process as
in (2.2), i.e.,

W k
t = C>k Bt +

√
1− C>k CkB

⊥,k
t , (5.3)

where Ck ∈ Rd, such that C>k Ck ≤ 1, k = 1, . . . , N , and K : [0, T ]2 → RN×N is a Volterra
kernel of continuous and bounded type in L2 as in Definition 5.2. We stress that the process
W is not necessarily a N -dimensional Brownian motion due to the possible correlations.

Furthermore, the risk premium is assumed to be in the form

λt = ΘYt, t ≤ T,

for some Θ ∈ Rd×N , so that the dynamics for the stock prices (2.1) reads as

dSit = Sit

(
r(t) +

N∑
k,`=1

d∑
j=1

γ`ijΘ
jkY `

t Y
k
t

)
dt+ Sit

d∑
j=1

γ>ijYtdB
j
t , i = 1, . . . , d. (5.4)

The appellation quadratic reflects the quadratic dependence of the drift and the covari-
ance matrix of logS in Y . Such models nest as special cases the Volterra extensions of the
celebrated Stein and Stein (1991) or Schöbel and Zhu (1999) model and certain Wishart
models of Bru (1991) as shown in the following example.

Example 5.3. (i) The multivariate Volterra Stein-Stein model:
For N = d, K = diag(K1, . . . ,Kd) and γij = βijei with βij ∈ R such that

∑d
j=1 β

2
ij = 1

and (e1, . . . , ed) the canonical basis of Rd, we recover the multivariate Volterra Stein-Stein
model defined by{

dSit = Sit

(
r(t) +

∑d
j,k=1 βijΘ

jkY i
t Y

k
t

)
dt+ SitY

i
t

∑d
j=1 βijdB

j
t ,

Y i
t = gi0(t) +

∫ t
0 K

i(t, s)
∑d

j=1D
ijY j

s ds+
∫ t

0 K
i(t, s)ηidW i

s , i = 1, . . . , d,

and Ci = ρi(βi1, . . . , βid)
> to take into account the leverage effect. Recall that W is possibly

correlated and is not necessarily a Brownian motion.

(ii) The Volterra Wishart covariance model:
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Using the vectorization operator, which stacks the columns of a matrix one underneath
another in a vector, see Abi Jaber (2019c, Section 3.1), one can recover the Volterra
Wishart covariance model for N = d2:{

dSt = diag(St)
[
r(t)1ddt+ ỸtdBt

]
, S0 ∈ Rd+,

Ỹt = g̃0(t) +
∫ t

0 K̃(t, s)DYsds+
∫ t

0 K̃(t, s)ηdWs,

with g̃0 : [0, T ]→ Rd×d, a suitable measurable kernel K̃ : [0, T ]2 → Rd×d, a d× d Brownian
motion W and

W ij = ρ>ijB +
√

1− ρ>ijρij B
⊥,ij , i, j = 1, . . . , d,

for some ρij ∈ Rd×d such that ρ>ijρij ≤ 1, for i, j = 1, . . . , d, where B⊥ is a d×d–dimensional

Brownian motion independent of B. Here the process Ỹ is d× d-matrix valued.

Remark 5.4. Note that with (5.3), there are no restrictions on the correlations between
Y i and the stocks Si in (5.2) and (5.4), in contrast with the correlation structure (4.1) of
the multivariate Volterra Heston model. Moreover, the models in Example 5.3 allow us to
deal with correlated stocks in contrast with the multivariate Heston model in (4.3) where
no correlation between the driving Brownian motion of the assets Si and Sj is allowed in
order to keep the affine structure.

Since K is a Volterra kernel of continuous and bounded type in L2, there exists a
progressively measurable RN × Rd+-valued strong solution (Y, S) to (5.2) and (5.4) such
that

sup
t≤T

E [|Yt|p] <∞, p ≥ 1.

Indeed, the solution for (5.2) is given in the following closed form

Yt = g0(t) +

∫ t

0
RD(t, s)g0(s)ds+

∫ t

0
(K(t, s) +RD(t, s))ηdWs, (5.5)

where RD is the resolvent of KD, whose existence is ensured by Lemma B.2-(i) below,
we refer to Appendix B.1 for more details on the resolvents. The existence of S readily
follows from that of Y and is given as a stochastic exponential. In the sequel, we will
assume that the solution Y is continuous. Additional conditions on K, in the spirit of
(4.5), are needed to ensure the existence of continuous modification, by an application
of the Kolmogorov-Chentsov continuity criterion, for instance, as shown in the following
remark.
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Remark 5.5. For s ≤ t and p ≥ 2, an application of Jensen and Burkholder-Davis-
Gundy’s inequalities yield

E [|(Yt − g0(t))− (Ys − g0(s))|p] ≤ c
(

1 + sup
r≤T

E
[
|Ys|p

])
×
(∫ t

s
|K(t, r)|2dr +

∫ T

0
|K(t, r)−K(s, r)|2dr

)p/2
.

This shows that (Y − g0) admits a continuous modification, by the Kolmogorov-Chentsov
continuity criterion, provided that∫ t

s
|K(t, r)|2dr +

∫ T

0
|K(t, r)−K(s, r)|2dr ≤ c|t− s|γ ,

for some γ > 0.

5.3 The explicit solution

In this section, we provide an explicit solution for the Markowitz problem for quadratic
Volterra models, and our main result is stated in Theorem 5.9 below.

Exploiting the quadratic structure of (5.2)-(5.4), see Abi Jaber (2019c), we provide an
explicit solution to the Riccati BSDE in Lemma 5.7 below, in terms of the following family
of linear operators (Ψt)0≤t≤T acting on L2

(
[0, T ],RN

)
:

Ψt = −
(

Id− K̂
)−∗

Θ>
(

Id + 2ΘΣ̃tΘ
>
)−1

Θ
(

Id− K̂
)−1

, 0 ≤ t ≤ T, (5.6)

where F−∗ := (F−1)∗, and K̂ is the integral operator induced by the kernel K̂ = K(D −
2ηC>Θ) and Σ̃t the integral operator defined by

Σ̃t = (Id− K̂)−1Σt(Id− K̂)−∗, t ∈ [0, T ], (5.7)

with Σt defined as the integral operator associated to the kernel

Σt(s, u) =

∫ s∧u

t
K(s, z)η

(
U − 2C>C

)
η>K(u, z)>dz, t ∈ [0, T ], (5.8)

where U = d〈W 〉t
dt =

(
1i=j + 1i 6=j(Ci)

>Cj
)

1≤i,j≤N .
We start by deriving some first properties of t 7→ Ψt, namely that it is well-defined,

strongly differentiable and satisfies an operator Riccati equation under the following addi-
tional assumption on the kernel:

sup
t≤T

∫ T

0
|K(s, t)|2ds <∞. (5.9)
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We recall that t 7→ Ψt is said to be strongly differentiable at time t ≥ 0, if there exists a
bounded linear operator Ψ̇t from L2

(
[0, T ],RN

)
into itself such that

lim
h→0

1

h
‖Ψt+h −Ψt − hΨ̇t‖op = 0, where ‖G‖op = sup

f∈L2([0,T ],RN )

‖Gf‖L2

‖f‖L2

.

Lemma 5.6. Fix a kernel K as in Definition 5.2 satisfying (5.9). Assume that (U −
2C>C) ∈ SN+ . Then, for each t ≤ T , Ψt given by (5.6) is well-defined and is a bounded
linear operator from L2

(
[0, T ],RN

)
into itself. Furthermore,

(i) (Θ>ΘId + Ψt) is an integral operator induced by a kernel ψt(s, u) such that

sup
t≤T

∫
[0,T ]2

|ψt(s, u)|2dsdu <∞. (5.10)

(ii) For any f ∈ L2
(
[0, T ],RN

)
,

(Ψtf1t)(t) =(−Θ>ΘId + K̂∗Ψt)(f1t)(t),

where 1t : s 7→ 1t≤s.

(iii) t 7→ Ψt is strongly differentiable and satisfies the operator Riccati equation

Ψ̇t = 2ΨtΣ̇tΨt, t ∈ [0, T ]

ΨT = −
(

Id− K̂
)−∗

Θ>Θ
(

Id− K̂
)−1 (5.11)

where Σ̇t is the strong derivative of t 7→ Σt induced by the kernel

Σ̇t(s, u) = −K(s, t)η
(
U − 2C>C

)
η>K(u, t)>, a.e. (5.12)

Proof. The proof is given in Appendix B.2.

We are now ready to provide a solution for the Riccati-BSDE (3.2). For this, denote
by g the process

gt(s) = 1t≤s

(
g0(s) +

∫ t

0
K(s, u)DYudu+

∫ t

0
K(s, u)ηdWu

)
. (5.13)

One notes that for each, s ≤ T , (gt(s))t≤s is the adjusted forward process

gt(s) = E
[
Ys −

∫ s

t
K(s, u)DYudu | Ft

]
, s ≥ t.
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We also denote the trace of an integral operator F by Tr(F ) =
∫ T

0 tr(F (s, s))ds, where tr
is the usual trace of a matrix, and we define the function φ by

φ̇t = Tr
(
ΨtΛ̇t

)
− 2r(t)

=
∫

(t,T ] tr
(
Θ>ΘK(s, t)ηUη>K(s, t)>

)
ds

−
∫

(t,T ]2 tr
(
ψt(s, u)K(u, t)ηUη>K(s, t)>

)
dsdu− 2r(t),

φT = 0,

(5.14)

where Λ̇t is the integral operator induced by the kernel given by

Λ̇t(s, u) = −K(s, t)ηUη>K(u, t)>, u, s ≤ T.

Lemma 5.7. Fix a kernel K as in Definition 5.2 satisfying (5.9). Assume that (U −
2C>C) ∈ SN+ . Let Ψ be the operator defined in (5.6). Then, the process

(
Γ, Z1, Z2

)
defined

by 
Γt = exp (φt + 〈gt,Ψtgt〉L2),

Z1
t = 0,

Z2
t = 2

(
(ΨtKη)∗gt

)
(t),

(5.15)

where g and φ are respectively given by (5.13) and (5.14), is a S∞F ([0, T ],R)×L2
F([0, T ],Rd)×

L2
F([0, T ],RN )-valued solution to the Riccati-BSDE (3.2).

Proof. Set Gt = φt + 〈gt,Ψtgt〉L2 , so that Γt = exp(Gt) and

dΓt = Γt
(
dGt +

1

2
d〈G〉t

)
. (5.16)

To obtain the dynamics of G it suffices to determine the dynamics of the process t 7→
〈gt,Ψtgt〉L2 .

Step 1. In this step we prove that the dynamics of t 7→ 〈gt,Ψtgt〉L2 is given by

d〈gt,Ψtgt〉L2 =
(
〈gt, Ψ̇tgt〉L2 + λ>t λt + 2λ>t CZ

2
t + Tr

(
ΨtΛ̇t

))
dt+ (Z2

t )>dWt.(5.17)

We first note that

〈gt,Ψtgt〉L2 =

∫ T

0
gt(s)

>(Ψtgt)(s)ds,

and compute the dynamics of t 7→ gt(s)
>(Ψtgt)(s). For fixed s ≤ T , it follows from (5.13)

and the fact that Yt = gt(t), that

dgt(s) = −δt=sgt(t)dt+K(s, t)Dgt(t)dt+K(s, t)ηdWt.
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Together with Lemma 5.6-(iii), we deduce that t 7→ (Ψtgt)(s) is a semimartingale with the
following dynamics

d(Ψtgt)(s) = (Ψ̇tgt)(s)dt+ (Ψtdgt)(s)

= (Ψ̇tgt)(s)dt− ψt(s, t)gt(t)dt+ (ΨtK(·, t)Dgt(t))(s)dt+ (ΨtK(·, t)ηdWt)(s).

Here, we used the fact that Idδt = 0: indeed, for every f ∈ L2([0, T ],Rd) we have
(Idδt)(f) = (f(·)1t=·) = 0L2 . Moreover,

d〈g·(s), (Ψ·g·)(s)〉t = − tr
(
Θ>ΘK(s, t)ηUη>K(s, t)>

)
dt

+

∫ T

t
tr
(
ψt(s, u)K(u, t)ηUη>K(s, t)>

)
dudt

= tr
(
Θ>ΘΛ̇t(s, s)

)
dt−

∫ T

t
tr
(
ψt(s, u)Λ̇t(u, s)

)
dudt

= − tr
((

ΨtΛ̇t(·, s)
)
(s)
)
.

Whence, combining the previous three identities, we get

d
(
gt(s)

>(Ψtgt)(s)
)

= dgt(s)
>(Ψtgt)(s) + gt(s)

>d(Ψtgt)(s) + d〈g·(s), (Ψ·g·)(s)〉t

= −δt=sgt(t)>(Ψtgt)(s)dt+ gt(t)
>D>K(s, t)>(Ψtgt)(s)dt

+ gt(s)
>(Ψ̇tgt)(s)dt− gt(s)>ψt(s, t)gt(t)dt+ gt(s)

>(ΨtK(·, t)Dgt(t))(s)dt

− tr
((

ΨtΛ̇t(·, s)
)
(s)
)

+ dW>t η
>K(s, t)>(Ψtgt)(s) + gt(s)

>(ΨtK(·, t)ηdWt)(s)

=
[
I(s) + II(s) + III(s) + IV(s) + V(s) + VI(s)

]
dt+ VII(s) + VIII(s).

We now integrate in s. First, using Lemma 5.6-(i) we get that∫ T

0

[
I(s) + IV(s)

]
ds = −gt(t)>(Ψtgt)(t)− gt(t)>

∫ T

t
ψt(t, u)gt(u)du

= λ>t λt − 2gt(t)
>
∫ T

t
ψt(t, u)gt(u)du

= λ>t λt − 2gt(t)
>((Ψt + Θ>ΘId)gt)(t).

On the other hand, since, Ψ∗ = Ψ, we have∫ T

0

[
II(s) + V(s)

]
ds = 2gt(t)

>
((

(KD)∗Ψt

)
gt

)
(t).
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Therefore, summing the above, using Lemma 5.6-(ii), and the definition of K̂, we get∫ T

0

[
I(s) + IV(s) + II(s) + V(s)

]
ds = λ>t λt − 2gt(t)

>
((

Ψt + Θ>ΘId− ((KD)∗)Ψt

)
gt

)
(t)

= λ>t λt + 4gt(t)
>((KηC>Θ)∗Ψt)gt)(t)

= λ>t λt + 2λ>t CZ
2
t .

Finally, observing that∫ T

0
III(s)ds = 〈gt, Ψ̇tgt〉L2 ,

∫ T

0
VI(s)ds = Tr

(
ΨtΛ̇t

)
,∫ T

0

[
VII(s) + VIII(s)

]
ds =

(
Z2
t

)>
dWt,

we obtain the claimed dynamics (5.17).

Step 2. Plugging the dynamics (5.17) in (5.16) yields

dΓt
Γt

=
[
φ̇t,T − Tr

(
ΨtΛ̇t

)
︸ ︷︷ ︸

1

+ 〈gt, Ψ̇tgt〉L2 +
(Z2

t )>UZ2
t

2︸ ︷︷ ︸
2

+λ>t λt + 2λ>t CZ
2
t︸ ︷︷ ︸

3

]
dt

+
(
Z2
t

)>
dWt.

By (5.14), we have: 1 = −2r(t). From the definition of Z2, we have

(Z2
t )>UZ2

t

2
= 2

[((
ΨtKη

)∗
gt

)
(t)
]>
U
((

ΨtKη
)∗
gt

)
(t)

= −2〈gt, (ΨtΛ̇tΨt)gt〉L2 .

Thus, using the Riccati relation (5.11), we get

2 = 〈gt, (Ψ̇t −ΨtΛ̇tΨt)gt〉L2 = 4
[((

ΨtKη
)∗
gt

)
(t)
]>
C>C

((
ΨtKη

)∗
gt

)
(t)

= (Z2
t )>CC>Z2

t .

Combining 1,2 and 3 yields

dΓt
Γt

=
(
− 2r(t) +

∣∣λt + Z1
t + CZ2

t

∣∣2 )dt+ (Z2
t )>dWt.

This shows that (Γ, Z1, Z2) solves (3.2).
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Step 3. It remains to check that
(
Γ, Z1, Z2

)
∈ S∞F ([0, T ],R)×L2

F([0, T ],Rd)×L2
F([0, T ],RN ).

For this, observe that since Ψ is a nonpositive operator over [0, T ], we have the bound

0 < Γt ≤ e
∫ T
t 2r(s)ds. Finally, to show that Z2 ∈ L2

F([0, T ],Rd), it is enough to show that

E
[ ∫ T

0

∣∣∣ ∫ T

t
K(s, t)>gt(s)ds

∣∣∣2dt] < ∞,
and E

[ ∫ T

0

∣∣∣ ∫
(t,T ]2

K(v, t)>ψt(v, s)gt(s)dvds
∣∣∣2dt] < ∞.

This follows from the fact that K and ψ satisfy (5.1)-(5.10) respectively, and

sup
0≤t≤s≤T

E
[
|gt(s)|2

]
≤ sup

s≤T
|g0(s)|2

(
1 + sup

s≤T

∫ T

0
|RD(s, u)|2du

)
< ∞,

where RD is the resolvent of KD.

From Theorem 3.1, we can now explicitly solve the Markowitz problem (2.6) in the
quadratic Volterra model (5.2), (5.3) and (5.4), see Theorem 5.9 below. In order to verify
condition (H2) of Theorem 3.1, we will first need the following lemma whose proof is
postponed to Appendix B.3.

Lemma 5.8. Let the assumptions of Lemma 5.7 be in force. Assume |D − 2ηC>Θ| ×
‖K‖2L2([0,T ]2) < 1, then

|λs|2 +
∣∣Z1

s

∣∣2 +
∣∣Z2

s

∣∣2 ≤ κ(Θ)

(
|gs(s)|2 +

∫ T

0
|gs(u)|2du

)
, s ≤ T, Θ ∈ Rd×N ,(5.18)

where κ(Θ) = c|Θ|2(1 + |Θ|4κ̂(Θ)) with c > 0 independent of Θ and

κ̂(Θ) =

(
|f(Θ)| × ‖K‖2L2([0,T ]2)

1− |f(Θ)| × ‖K‖2
L2([0,T ]2)

)4

.

Proof. See Appendix B.3.

We now arrive to the main result of this section.

Theorem 5.9. Fix a kernel K as in Definition 5.2 satisfying (5.9) and assume that (U −
2C>C) ∈ SN+ . Let a(p) be as in (3.4) and κ the function defined in Lemma 5.8. Assume
that there exists Θ ∈ Rd×N such that

E
[

exp
(
a(p)κ(Θ)

∫ T

0

(
|gs(s)|2 +

∫ T

0
|gs(u)|2du

)
ds
)]

< ∞, (5.19)
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for some p > 2. Assume that gi0(0) > 0 for some i ≤ d. Then, the optimal investment
strategy for the Markowitz problem (2.6) is given by the admissible control

α∗t = −
((

Θ + 2C [ΨtKη]∗
)
gt

)
(t)
(
Xα∗
t − ξ∗e−

∫ T
t r(s)ds

)
, (5.20)

where ξ∗ is defined in (3.6), and the optimal value is given by (3.7) with Γ0 as in (5.15).

Proof. First note that under the specification (5.15), and λt = ΘYt = Θgt(t), the candidate
for the optimal feedback control defined in (3.5) takes the form

α∗t = −
(
λt + Z1

t + CZ2
t

) (
Xα∗
t − ξe−

∫ T
t r(s)ds

)
=
((

Θ + 2C [ΨtKη]∗
)
gt

)
(t)
(
Xα∗
t − ξe−

∫ T
t r(s)ds

)
.

It thus suffices to check that the assumptions of Theorem 3.1 are verified to ensure that
α∗(ξ∗) is optimal and to get that (3.7) is the optimal value. The existence of a solu-
tion triplet (Γ, Z1, Z2) ∈ S∞F ([0, T ],R)× L2

F([0, T ],Rd)× L2
F([0, T ],RN ) to the stochastic

backward Riccati equation (3.2) is ensured by Lemma 5.7. In addition, we have

Γ0 = E
[
e
∫ T
0

(
2r(s)−|λs+Z1

s+CZ2
s |2
)
ds
]

= E
[
e
∫ T
0

[
2r(s)−

∣∣((Θ+2C[ΨsKη]∗
)
gs
)

(s)
∣∣2]ds],

which implies that Γ0 < e2
∫ T
0 r(s)ds since gi0(0) > 0 for some i ≤ d by assumption. Thus

condition (H1) of Theorem 3.1 is verified. Condition (H2) follows directly from Lemma 5.8
and (5.19). The proof is complete.

The following lemma provides a general sufficient condition for the existence of Θ
satisfying (5.19). Without loss of generality, we assume that D = 0 in (5.2).3 Define
Z(s, u) = ( 1

T gs(s), gs(u))> for any s, u ∈ [0, T ], which we view as a random variable in
L2([0, T ]2,R2N ). Its mean is given by µ(s, u) = E[Z(s, u)] = ( 1

T g0(s), g0(u))> and its
covariance kernel by

Σ̄((s, u), (t, r)) = E
[(
Z(s, u)− E(Z(s, u))

)(
Z(t, r)− E(Z(t, r))

)>]
, s, u, t, r ∈ [0, T ],

which is symmetric and nonnegative. It follows from assumption (5.1) that Σ̄ is con-
tinuous on [0, T ]4 so that an application of Mercer’s theorem, see Shorack and Wellner
(2009, Theorem 1 p.208), yields the existence of a countable orthonormal basis (en)n≥1

3If D 6= 0, then making use of the resolvent kernel RD of KD, we reduce to the case D = 0 as illustrated
on (5.5) by working on the kernel (K +RD) instead of K.
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in L2([0, T ]2,R2N ) and a non increasing sequence of nonnegative numbers (λn)n≥1, with
λn → 0, as n→∞, such that

Σ̄((s, u), (t, r)) =
∑
n≥1

λnen(s, u)en(t, r)>. (5.21)

In addition, we observe by virtue of (5.1) that

∑
n≥1

λn = tr(Σ̄) =
1

T

∫ T

0

(∫ s

0
tr
(
K(s, z)ηUηTK(s, z)>

)
dz

)
ds (5.22)

+

∫ T

0

(∫ T

0

(∫ u

0
tr
(
K(s, z)ηUηTK(s, z)>

)
dz

)
ds

)
du <∞.

Lemma 5.10. Set D = 0. Let a > 0 be such that 2a < 1
λ1

. Then,

E
[

exp
(
a

∫ T

0

(
|gs(s)|2 +

∫ T

0
|gs(u)|2du

)
ds
)]

< ∞.

In particular, (5.19) holds if 2a(p)κ(Θ) < 1
λ1

for some p > 2.

Proof. We refer to Appendix B.4.

Remark 5.11. In practice, as λ1 ≤ tr(Σ̄), it follows from Lemma 5.10 and (5.22), that a
sufficient condition for the existence of Θ satisfying (5.19) would be

2a(p)κ(Θ) <
1

tr(Σ̄)
.

For instance, for the fractional convolution kernel K(t, s) = 1s≤t(t − s)H−1/2, we have∫ T
0

∫ T
0 |K(t, s)|2dsdt = T 2H+1. Consequently tr(Σ̄) ≥ η2(T 2H +T 2(H+1)) and the condition

on Θ reads

κ(Θ) ≤ (2a(p)η2(T 2H + T 2(H+1)))−1.

The following corollary treats the standard Markovian and semimartingale case for
K = IN and shows how to recover the well-known formulae in the spirit of Chiu and Wong
(2014).

Corollary 5.12. Set K(t, s) = IN1s≤t and g0(t) ≡ Y0 for some Y0 ∈ RN . Then, the
solution to the Riccati BSDE can be re-written in the form

Γt = exp
(
φt + Y >t PtYt

)
, and Z2

t = 2η>PtYt, (5.23)
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where P : [0, T ] 7→ RN×N and φ solve the conventional system of N × N -matrix Riccati
equations

Ṗt = Θ>Θ + Pt(2ηC
>Θ−D) + (2ηC>Θ−D)>Pt + 2Pt(η(U − 2C>C)η>)Pt,

PT = 0,

φ̇t = −2r(t)− tr(PtηUη
>), t ∈ [0, T ],

φT = 0.

Furthermore, the optimal control reads

α∗t = −
(

Θ + 2C(Dη)>PtYt

)(
Xα∗
t − ξ∗e−

∫ T
t r(s)ds

)
. (5.24)

Proof. For K(t, s) = IN1s≤t,

Ys = Yt +

∫ s

t
DYudu+

∫ s

t
ηdWu, s ≥ t,

so that the adjusted forward process reads

gt(s) = E
[
Ys −

∫ s

t
DYudu | Ft

]
= 1t≤sYt,

and the solution to the Riccati BSDE can be re-written in the form

Γt = exp
(
φt + 〈gt,Ψtgt〉L2

)
= exp

(
φt + Y >t PtYt

)
,

where Pt =
∫ T
t (Ψt1t)(s)ds with the RN -valued indicator function 1t : (s) 7→ (1t≤s, . . . , 1t≤s)

>.
We now derive the equations satisfied by P and φ. First we have KT = 0 and

Ṗt = − (Ψt1t)(t) +

∫ T

t

d(Ψt1t)(s)

dt
ds

= − (Ψt1t)(t) +

∫ T

t
(Ψ̇t1t)(s)ds−

∫ T

t
ψt(s, t)ds

= 1 + 2 + 3.

Using Lemma 5.6–(ii) and the expression K̂(s, u) = 1u≤s(D − 2ηC>Θ) we get

1 = (−Θ>ΘId + K̂∗Ψt)(1)(t) = −Θ>Θ + (D − 2ηC>Θ)>Pt.

Furthermore, Lemma 5.6–(iii) and Σ̇t(s, u) = 1t≤s∧uη(U − 2C>C)η> yield

2 =

∫ T

t
(Ψ̇t1t)(s)ds =

∫ T

t
(ΨtΣ̇tΨt1t)(s)ds

=

(∫ T

t
(Ψt1t)(s)ds

)
η(U − 2C>C)η>

(∫ T

t
(Ψt1t)(s)ds

)
= Pt(η(U − 2C>C)η>)Pt.
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Moreover, by using Lemma 5.6–(i)-(ii), we obtain

3 = −
∫ T

t
ψt(s, t)ds = −(Ψt + Θ>Θid)∗(1t) = −(K̂∗Ψt)

∗(1)(t) = −Pt(D − 2ηC>Θ).

This proves the equation for P , and that of φ is immediate. Finally to prove the formula
of Z2 in (5.23) and α∗ in (5.24) it suffices to observe the following identity(

(ΨtKη)∗gt
)
(t) = η>PtYt.

6 Numerical experiment: rough Stein-Stein for two assets

We illustrate the results of Section 5 on a special case of the two dimensional rough Stein-
Stein model as described in Example 5.3. We consider a four dimensional Brownian motion
(B1, B2, B1,⊥, B2,⊥), and define

B̃1 = B1, B̃2 = ρB1 +
√

1− ρ2B2, W i = ciB̃
i +
√

1− c2
i B̃
⊥,i,

for some ρ ∈ [−1, 1], and ci ∈ [−1, 1], i = 1, 2.
For simplicity we set r ≡ 0, and consider two stocks of price process S1 and S2 with

the following dynamics4{
dSit = Sitθi(Y

i
t )2dt+ SitY

i
t dB̃

i
t,

Y i
t = Y i

0 + 1
Γ(Hi+1/2)

∫ t
0 (t− s)Hi−1/2ηidW

i
s , i = 1, 2,

with H i > 0, ηi, θi ≥ 0 and Y i
0 ∈ R.

Although the framework of Section 5 allows for a more general correlation structure for
the Brownian motion, the model is already rich enough to capture the following stylized
facts:

• the two stocks Si, i = 1, 2, are correlated through ρ,

• each stock Si has a stochastic rough volatility |Y i| with possibly different Hurst
indices Hi,

• each stock Si is correlated with its own volatility process through ci to take into
account the leverage effect.

4This corresponds to Example 5.3-(i) with (β11, β12, β21, β22) = (1, 0, ρ,
√

1− ρ2) and Θ =
β−1 diag (θ1, θ2).
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Our main motivation for considering the multivariate rough Stein-Stein model is to
study the ‘buy rough sell smooth’ strategy of Glasserman and He (2020) that was back-
tested empirically: this strategy consisting in buying the roughest assets while shorting on
the smoothest ones was shown to be profitable. We point out that the numerical simula-
tions for the one dimensional rough Heston model carried in Han and Wong (2020a) by
varying the Hurst index H could not provide much insight on such strategy, apart from
suggesting that the vol-of-vol has a possible impact on the ‘buy rough sell smooth strategy’.
Our quadratic multivariate framework allows for more flexible simulations, with a richer
correlation structure compared to multivariate extensions of the rough Heston model, recall
Remark 5.4. Our results below provide new insights on the strategy by showing that the
correlation between stocks plays a key role.

Our present goal is to illustrate the influence of some parameters, namely the horizon
T , the vol-of-vol η and the correlation ρ between the stocks, onto the optimal investment
strategy when two assets, one rough and one smooth with H1 < H2, are at stakes. To ease
comparison, we set c1 = c2 = −0.7 for the leverage effects, Y 1

0 = Y 2
0 and we normalize

the vol-of-vols by setting η1 = η2. We consider the evolution of optimal vector of amount
invested into each stock, i.e., t 7→ π∗t (recall that α∗t = σ>t π

∗
t with σ = diag(Y 1, Y 2)β and

α∗ is given by (5.20)). π being a stochastic process, we also consider the deterministic
function t 7→ ((Θ + 2C [ΨtKη]∗)Y0)(t)(ξ∗), where ξ∗ is defined in (3.6), to help us in our
analysis.

For our implementation of α∗ given by (5.20), we discretize in time the operators acting
on L2, so that the kernel of the operator Ψ in (5.6) is approximated by a finite dimensional
matrix (see for instance Abi Jaber (2019c, Section 2.3) for a similar procedure) and the
Gaussian process (gt(s))t≤s≤T defined in (5.13) is simulated by Cholesky’s decomposition
algorithm. We refer to the following url for the full code and additional simulations.

Our observations from the simulations are the following.

1. Horizon T : With the goal of understanding the effect of the horizon T on the
investment strategy, we fix all parameters but T with ρ = 0. The results are illustrated on
Figures 1a-1b-1c and 2a-2b-2c. We can distinguish 3 regimes:

• T � 1 : When the investment horizon is close to the end, the rough asset is over-
weighted over the smooth one.

• T ≈ 1 : A transition appears, as the smooth asset is first overweighted and then the
rough asset becomes overweighted as we approach the final horizon.

• T � 1: The smooth asset is overweighted all along the experiment, letting its first
position only when the maturity is close, suggesting that the transition point becomes
closer to T as T grows.
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One possible interpretation of this transition is the following. Rough processes are more
volatile than smooth processes in the short term but less volatile in the long term, since
their variances evolve approximately as t2H . Thus, when there is not much time left, it
seems natural to look for rough processes to obtain some performance. Conversely, the
more time we have, the more we favor the smooth asset.

2. Vol-of-vol η: The volatility of volatility seems to have the opposite effect of the
horizon T over the investment strategy as shown on Figures 3a-3b.

• η � 1 : The smooth asset and then the rough asset are successively overweighted.

• η � 1 : The rough asset is overweighted.

It is quite natural to expect the vol-of-vol to have an inverse effect when compared to
the horizon T , since increasing the vol-of-vol is similar to accelerating the time scale at a
certain rate depending on H (think of the self-similarity property of fractional Brownian
motion).

3. Correlation ρ:

• ρ < 0 : In the case of negatively correlated assets it is natural to expect the following
strategy : pick both assets in order to be protected from volatility and benefit from the
drift. So we expect the case ρ < 0 to be similar from ρ = 0 except that the transition
from T � 1 to T � 1 should appear at a greater T . This is what we observe on
Figures 5a-5b-5c. We interpret this evolution towards the equally weighted portfolio
as the possibility to be protected from volatility by holding both assets.

• ρ > 0 : when the two stocks are positively correlated with ρ > 0, there is no
minimization of variance through diversification by going long in both assets. Thus
in the case a positively correlated assets, it is natural to expect the emergence of a
starker choice between the assets. In the ρ > 0 case, see Figures 4a-4b, we observe
a buy rough sell smooth strategy as the one empirically found in Glasserman and He
(2020).

As a further line of research, we see two interesting paths :

• A theoretical study of influence of the parameters onto the investments strategies.

• An empirical study testing the different conjectures made about the influence of some
parameters such as T, η, ρ,H, etc.

29



0.0 0.1 0.2 0.3 0.4 0.5
t

0.10

0.11

0.12

0.13

0.14

0.15
t t 

H1 = 0.08
H2 = 0.4

0.0 0.1 0.2 0.3 0.4 0.5
t

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

t (( + 2C[ tK ] * )Y0)(t)( )
H1 = 0.08
H2 = 0.4

(a) T = 0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300
t t 

H1 = 0.08
H2 = 0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

t (( + 2C[ tK ] * )Y0)(t)( )
H1 = 0.08
H2 = 0.4

(b) T = 1.5

0.0 0.5 1.0 1.5 2.0 2.5
t

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

t t 
H1 = 0.08
H2 = 0.4

0.0 0.5 1.0 1.5 2.0 2.5
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
t (( + 2C[ tK ] * )Y0)(t)( )

H1 = 0.08
H2 = 0.4

(c) T = 2.4

Figure 1: Effect of the horizon T on the optimal allocation strategy. When the horizon T
approaches, the rough stock in blue is preferred. When T is big enough and the horizon far
enough the smooth stock in green is preferred. (The parameters are: H1 = 0.08, H2 = 0.4,
ρ = 0, η1 = η2 = 1, ci = −0.7.)

Our numerical results extend to larger horizon T . For instance, in Figure 6, we took a
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Figure 2: The efficient frontier in the case where both assets have the same roughness
H1 = H2 = H. When the horizon T is small, the rough stocks allows for lower variance.
When T increases we observe a transition and an inversion of the relation order. Indeed,
when T increases, it is the smoothest stocks that allow for a lower variance.
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Figure 3: As the vol-of-vol η increases, it is as if the horizon T was decreasing and the
rough stock in blue begins to be preferred. H1 = 0.08, H2 = 0.4, T = 2.1, ρ = 0, ci = −0.7.

maturity of T = 20 years, although we noted that a smaller η = 0.1 had to be chosen to
avoid any blow-up, in accordance with Remark 5.11.

A Proof of the verification result

In this section, we provide a detailed proof of Theorem 3.1. It is well-known that Markowitz
problem (2.6) is equivalent to the following max-min problem, see e.g. (Pham, 2009,
Proposition 6.6.5):

V (m) = max
η∈R

min
α∈A

{
E
[∣∣Xα

T − (m− η)
∣∣2]− η2

}
. (A.1)
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Figure 4: ρ = 0.7, when the two assets are positively correlated we recover the buy rough
sell smooth strategy as it is described in Glasserman and He (2020). (the parameters are:
H1 = 0.08, H2 = 0.4, T = 2.1, η1 = η2 = 1, ci = −0.7.)

Thus, solving problem (2.6) involves two steps. First, the internal minimization problem
in term of the Lagrange multiplier η has to be solved. Second, the optimal value of η for
the external maximization problem has to be determined. Let us then introduce the inner
optimization problem:

Ṽ (ξ) := min
α∈A

E
[∣∣Xα

T − ξ
∣∣2], ξ ∈ R. (A.2)

First, we provide a verification result for the inner optimization problem (A.2) via the
standard completion of squares technique, see for instance Lim and Zhou (2002, Proposition
3.1), Lim (2004, Proposition 3.3) and Chiu and Wong (2014, Theorem 3.1).

Lemma A.1. Assume there exists a solution triplet (Γ, Z1, Z2) ∈ S∞F ([0, T ],R)

×L2,loc
F ([0, T ],Rd) × L2,loc

F ([0, T ],RN ) to the Riccati BSDE (3.2) such that Γt > 0, for all
t ≤ T . Fix ξ ∈ R, and assume that there exists an admissible control α∗(ξ) satisfying

α∗t (ξ) = −
(
λt + Z1

t + CZ2
t

) (
X
α∗(ξ)
t − ξe−

∫ T
t r(s)ds

)
, 0 ≤ t ≤ T. (A.3)

Then, the inner minimization problem (A.2) admits α∗(ξ) as an optimal feedback control
and the optimal value is

Ṽ (ξ) = Γ0

∣∣∣x0 − ξe−
∫ T
0 r(s)ds

∣∣∣2 . (A.4)

Proof. Let us first define X̃α
t = Xα

t − ξe−
∫ T
t r(s)ds, for any α ∈ A. Then, by Itô’s lemma

we have

dX̃α
t =

(
r(t)X̃α

t + α>t λt
)
dt+ α>t dBt, 0 ≤ t ≤ T, X̃α

0 = x0 − ξe−
∫ T
0 r(s)ds.
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Figure 5: Effect of the horizon T on the optimal allocation strategy when the two assets are
negatively correlated (ρ = −0.4), H1 = 0.08, H2 = 0.4. As T increases the smooth stock in
green is more and more weighted in comparison to the rough one in blue. But the transition
takes more time compared to the case ρ = 0, see Figures 1a-1c. η1 = η2 = 1, ci = −0.7.
Note the beginning of the blow-up when T reaches T = 2.4, as it could be foreseen by the
condition of Lemma 5.10.
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Figure 6: Simulation for a larger horizon T = 20 years. Note that a smaller η had to
be chosen in accordance with Remark 5.11. (The parameters are: H1 = 0.08, H2 = 0.4,
ρ = 0, η1 = η2 = 0.1, ci = −0.7.)

As a result, X̃α and Xα have the same dynamics and X̃α
T = Xα

T − ξ so that problem (A.2)
can be alternatively written as

min
α∈A

E
[∣∣X̃α

T

∣∣2].
To ease notations, we set ht = λt +Z1

t +CZ2
t . For any α ∈ A, Itô’s lemma combined with

(3.2) and a completion of squares in α yield

d
(

Γt
∣∣X̃α

t

∣∣2) =
∣∣X̃α

t

∣∣2Γt
(
− 2r(t) + h>t ht

)
dt+ Γt

∣∣X̃α
t

∣∣2((Z1
t

)>
dBt +

(
Z2
t

)>
dWt

)
+ Γt

(
2X̃α

t

(
r(t)X̃α

t + α>t λt
)

+ α>t αt

)
dt+ 2ΓtX̃

α
t α
>
t dBt

+ 2α>t
(
Z1
t + CZ2

t

)
X̃α
t dt

=
(
αt + htX̃

α
t

)>
Γt
(
αt + htX̃

α
t

)
dt

+ 2ΓtX̃
α
t α
>
t dBt + Γt

∣∣X̃α
t

∣∣2((Z1
t

)>
dBt +

(
Z2
t

)>
dWt

)
.

As a consequence, using ΓT = 1, we get∣∣X̃α
T

∣∣2 =Γ0

∣∣X̃α
0

∣∣2 +

∫ T

0

(
αs + hsX̃

α
s

)>
Γs
(
αs + hsX̃

α
s

)
ds

+

∫ T

0
2ΓsX̃

α
s α
>
s dBs +

∫ T

0
2Γs
∣∣X̃α

s

∣∣2((Z1
s

)>
dBs +

(
Z2
s

)>
dWs

)
.

Note that the stochastic integrals∫ .

0
2ΓsX̃

α
s α
>
s dBs,

∫ .

0
Γs
∣∣X̃α

s

∣∣2 (Z1
s

)>
dBs,

∫ .

0
Γs

(
X̃α
s

)2 (
Z2
s

)>
dWs,
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are well-defined sinceXα is continuous, (α,Z1, Z2) are in L2,loc
F ([0, T ]) and Γ in S∞F ([0, T ],R).

Furthermore, they are local martingales. Let {τk}k≥1 be a common localizing increasing
sequence of stopping times converging to T . Then,

E
[∣∣X̃α

T∧τk
∣∣2] = Γ0

∣∣X̃α
0

∣∣2 + E
[ ∫ T∧τk

0

(
αs + hsX̃

α
s

)>
Γs
(
αs + hsX̃

α
s

)
ds
]
.

Since α ∈ A, Xα satisfies (2.5), and so E
[
supt≤T |X̃α

t |2
]
< ∞. An application of the

dominated convergence theorem on the left term combined with the monotone convergence
theorem on the right term, recall that Γ is Sd+-valued, yields, as k →∞,

E
[∣∣X̃α

T

∣∣2] = Γ0

∣∣X̃α
0

∣∣2 + E
[ ∫ T

0

(
αs + hsX̃

α
s

)>
Γs
(
αs + hsX̃

α
s

)
ds
]
.

Since Γs is positive definite for any s ≤ T , we obtain that the optimal strategy α∗(ξ) is
given by (A.3) and the optimal value of (A.2) is equal to

Ṽ (ξ) = Γ0

∣∣X̃α∗(ξ)
0

∣∣2 = Γ0

∣∣X0 − ξe−
∫ T
0 r(s)ds

∣∣2,
which gives (A.4).

We next address the admissibility of the candidate for the optimal control.

Lemma A.2. Assume that there exists a solution triplet (Γ, Z1, Z2) ∈ S∞F ([0, T ],R) ×
L2,loc
F ([0, T ],Rd) × L2,loc

F ([0, T ],RN ) to the Riccati BSDE (3.2) such that (3.3) holds for
some p > 2 and a constant a(p) given by (3.4). Then, for any ξ ∈ R, there exists an
admissible control process α∗(ξ) satisfying (A.3).

Proof. Fix ξ ∈ R. We first prove that there exists a control α∗(ξ) satisfying (A.3). For
this, we prove that the corresponding wealth equation (2.4) admits a solution. As in the
proof of Lemma A.1, it is enough to consider the modified equation

dX̃∗t =
(
r(t)X̃∗t + λ>t AtX̃

∗
t

)
dt+

(
AtX̃

∗
t

)>
dBt, X̃∗0 = x0 − ξe−

∫ T
0 r(s)ds,

where At = −
(
λt + Z1

t + CZ2
t

)
, and then set X∗t = X̃∗t + ξe−

∫ T
t r(s)ds. By virtue of Itô’s

lemma the unique continuous solution is given by

X̃∗t = X̃∗0 exp
(∫ t

0

(
r(s) + λ>s As −

A>s As
2

)
ds+

∫ t

0
A>s dBs

)
.

Setting α∗t (ξ) := AtX̃
∗
t , we obtain that α∗(ξ) satisfies (A.3) with the controlled wealth

Xα(ξ)∗ = X∗. The crucial step is now to obtain the admissibility condition (2.5). For
that purpose, observe by virtue of (3.3), that the Doléans-Dade exponential E

(∫ ·
0 A
>
s dBs

)
35



satisfies Novikov’s condition, and is therefore a true martingale. Whence, successive appli-
cations of the inequality ab ≤ (a2 + b2)/2 and Doob’s maximal inequality yield, for some
constant K > 0 which may vary from line to line,

E
[

sup
t∈[0,T ]

|X̃∗t |p
]
≤ KE

[
sup
t∈[0,T ]

∣∣e∫ t0 (r(s)+λ>s As)ds
∣∣2p]+KE

[
sup
t∈[0,T ]

∣∣∣e− ∫ t
0
A>s As

2
ds+

∫ t
0 A
>
s dBs

∣∣∣2p]
≤ KE

[
e
∫ T
0 2p

∣∣λ>s As∣∣ds]+KE
[
e−p

∫ T
0 A>s Asds+2p

∫ T
0 A>s dBs

]
= K (1 + 2) ,

which is finite since

1 ≤ E
[
exp

(
a(p)

∫ T

0

(
|λs|2 + |Z1

s |2 + |Z2
s |2
)
ds

)]
<∞,

and, by virtue of the Cauchy-Schwarz inequality,

2 ≤
(
E
[
e(8p2−2p)

∫ T
0 A>s Asds

])1/2 (
E
[
e−8p2

∫ T
0 A>s Asds+4p

∫ T
0 A>s dBs

])1/2

≤
(
E
[
ea(p)

∫ T
0 (|λs|2+|Z1

s |2+|Z2
s |2)ds

])1/2
× 1 <∞,

where we used Jensen’s inequality to bound

A>s As = |λs + Z1
s + CZ2

s |2 ≤ 3(|λs|2 + |Z1
s |2 + |CZ2

s |2) ≤ 3(1 + |C|2)(|λs|2 + |Z1
s |2 + |Z2

s |2),

together with assumption (H2) and Novikov’s condition to the Doléans-Dade exponential
E(4p

∫ ·
0 A
>
s dBs). Finally, to get that α∗(ξ) is admissible, we are left to prove that α∗(ξ) ∈

L2
F([0, T ],Rd). Let 2/p+ 1/q̂ = 1, by Hölder’s inequality we obtain

E
[∫ T

0
|α∗s(ξ)|2ds

]
=E

[∫ T

0
|AsX̃∗s |2ds

]
≤ E

[
sup
t∈[0,T ]

|X̃∗t |2
∫ T

0
|As|2ds

]

≤

(
E

[
sup
t∈[0,T ]

|X̃∗t |p
])2/p(

E

[(∫ T

0
|As|2ds

)q̂])1/q̂

≤ C

(
E

[
sup
t∈[0,T ]

|X̃∗t |p
])2/p(

E

[(∫ T

0

(
|λs|2 + |Z1

s |2 + |Z2
s |2
)
ds

)q̂])1/q̂

<∞,
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where the last term is finite due to condition (3.3) and the inequality |z|q ≤ cqe
|z|. The

proof is complete.

Finally, combining the above, we deduce the solution for the outer optimization problem
(2.6) under a non-degeneracy condition on the solution Γ to the Riccati BSDE, yielding
Theorem 3.1.

Proof of Theorem 3.1. From Lemmas A.1 and A.2, we have that the max-min problem
(A.1) (which is equivalent to the Markowitz problem (2.6)) is equivalent to

max
η∈R

J(η), with J(η) = Γ0

∣∣X0 − (m− η)e−
∫ T
0 r(s)ds

∣∣2 − η2.

Furthermore, condition (H1): Γ0 < e2
∫ T
0 r(s)ds, ensures that the quadratic function J is

strictly concave. This yields that the maximum is achieved from the first-order condition
J ′(η∗) = 0, which gives

η∗ =
Γ0e
−

∫ T
0 r(s)ds

(
x0 −me−

∫ T
0 r(s)ds

)
1− Γ0e

−2
∫ T
0 r(s)ds

,

and thus ξ∗ = m − η∗ is given by (3.6). We conclude that the optimal control is equal
to α∗ = α∗(ξ∗) as in (3.5), and by (A.1), the optimal value of (2.6) is equal to V (m) =
Ṽ (ξ∗)− (η∗)2, given by (3.7).

B Proofs of some technical lemmas

B.1 Reminder on resolvents of integral operators

Lemma B.1. Let K satisfy (5.1) and L ∈ L2([0, T ]2,RN×N ). Then, K ?L satisfies (5.1).
Furthemore, if L satisfies (5.1), then, (s, u) 7→ (K ? L∗)(s, u) is continuous.

Proof. An application of the Cauchy-Schwarz inequality yields the first part. The second
part follows along the same lines as in the proof of Abi Jaber (2019c, Lemma 3.2).

For a kernel K ∈ L2([0, T ]2,RN×N ), we define its resolvent RT ∈ L2([0, T ]2,RN×N ) by
the unique solution to

RT = K +K ? RT , K ? RT = RT ? K. (B.1)

In terms of integral operators, this translates into

RT = K + KRT , KRT = RTK.
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In particular, if K admits a resolvent, (Id−K) is invertible and

(Id−K)−1 = Id + RT , (B.2)

where Id denotes the identity operator, i.e. (Idf) = f for all f ∈ L2
(
[0, T ],RN

)
.

The following lemma establishes the existence of resolvents for the two classes of kernels
introduced above.

Lemma B.2. Let K ∈ L2
(
[0, T ]2,RN×N

)
. K admits a resolvent if either one of the

following conditions hold:

(i) K is a Volterra kernel of continuous and bounded type in L2 in the sense of Defi-
nition 5.2. In this case, the resolvent is again a Volterra kernel of continuous and
bounded type.

(ii) K is symmetric nonpositive in the sense of Definition 5.1 and (s, u) 7→ K(s, u) is
continuous.

Proof. (i) follows from Gripenberg et al. (1990, Lemma 9.3.3, Theorem 9.5.5(i)). (ii) follows
from an application of Mercer’s theorem, see Abi Jaber (2019c, Section 2.1).

B.2 Proof of Lemma 5.6

Fix t ≤ T . We start by proving that Ψt is well defined and is a bounded linear operator
from L2

(
[0, T ],RN

)
to L2

(
[0, T ],RN

)
. First, since K is a Volterra kernel of continuous

and bounded type in L2, so is K̂, and Lemma B.2-(i) yields the existence of its resolvent
R̂ such that

sup
s≤T

∫ T

0
|R̂(s, u)|ds <∞, sup

u≤T

∫ T

0
|R̂(s, u)|du <∞. (B.3)

In particular, denoting by R̂ the integral operator induced by R̂, we obtain that (Id− K̂)
is invertible with an inverse given by (Id − K̂)−1 = Id + R̂, recall (B.2). Next, we prove
that

(
Id + 2ΘΣ̃tΘ

>) is invertible. It follows from (5.7) that

Σ̃t = (Id + R̂)Σt(Id + R̂)∗ = Σt + ΣtR̂
∗ + R̂Σt + R̂ΣtR̂

∗.

Whence, Σ̃t is an integral operator generated by the kernel

Σ̃t = Σt + Σt ? R̂
∗ + R̂ ? Σt + R̂ ? Σt ? R̂

∗. (B.4)

Since K satisfies (5.1) and (U − 2C>C) ∈ SN+ , Σt defined in (5.8) is clearly a symmetric

nonnegative kernel. Combined with (B.4), we get that Σ̃t is symmetric nonnegative. Suc-
cessive applications of Lemma B.1 yield that (s, u) 7→ Σ̃t(s, u) is continuous. Therefore,
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(−2ΘΣ̃tΘ
>) is symmetric nonpositive and continuous so that an application of Lemma B.2-

(ii) yields the existence of its resolvent RΘ
t . In particular,

(
Id+2ΘΣ̃tΘ

>) is invertible with
an inverse given by (Id + RΘ

t ), recall (B.2). Combining the above, we get that Ψt is
well-defined, and satisfies

Ψt = −(Id + R̂)∗Θ>(Id + RΘ
t )Θ(Id + R̂)

= −Θ>ΘId− R̂∗Θ>Θ−Θ>ΘR̂− R̂∗Θ>RΘ
t Θ−Θ>RΘ

t ΘR̂

− R̂∗Θ>RΘ
t ΘR̂− R̂∗Θ>ΘR̂−Θ>RΘ

t Θ,

(B.5)

showing that Ψt is a bounded operator.

(i): From (B.5), we see that (Θ>ΘId + Ψt) is an integral operator whose kernel is of the
form

ψt = −R̂∗Θ>Θ−Θ>ΘR̂− R̂∗Θ> ? RΘ
t Θ−Θ>RΘ

t ?ΘR̂

− R̂∗Θ> ? RΘ
t ?ΘR̂− R̂∗Θ> ?ΘR̂−Θ>RΘ

t Θ.

Then, from Abi Jaber (2019c, Lemma C.1) we get that

sup
t≤T

∫
[0,T ]2

|RΘ
t (s, u)|2dsdu <∞,

which, combined with (B.3) ensures (5.10).

(ii): Fix f ∈ L2
(
[0, T ],RN

)
and t ≤ T . We first argue that

RΘ
t (t, .) = 0 and R̂(s, u) = 0, for any s < u. (B.6)

Indeed, since K̂ is a Volterra kernel, its resolvent R̂ is also a Volterra kernel so that
R(s, u) = 0 whenever s < u. This, combined with the fact that Σt(t, ·) = 0 and (B.4),
yields that Σ̃t(t, ·) = 0, so that RΘ

t (t, ·) = 0 by virtue of the resolvent equation (B.1). Using
the relations (B.6), we compute(

Θ>ΘR̂
)

(f1t)(t) = Θ>Θ

∫ T

0
R̂(t, s)f(s)1t(s)ds = 0,(

Θ>RΘ
t Θ
)

(f1t)(t) = Θ>
∫ T

0
RΘ
t (t, s)Θf(s)1t(s)ds = 0,(

Θ>RΘ
t ΘR̂

)
(f1t)(t) = Θ>

∫ T

0

∫ T

0
RΘ
t (t, u)ΘR̂(u, s)f(s)1t(s)duds = 0.

(B.7)

Thus, (B.7) combined with (B.5) and the resolvent’s relations R̂ = K̂ + K̂R̂ and R̂∗ =
K̂∗ + K̂∗R̂∗ yield

−(Θ>ΘId + Ψt)(f1t)(t) =(R̂∗Θ>Θ + R̂∗Θ>RΘΘ + R̂∗Θ>RΘ
t ΘR̂ + R̂∗Θ>ΘR̂)(f1t)(t)

=− (K̂∗Ψt)(f1t)(t)
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which proves the second claim (ii).

(iii): Under (5.9), Abi Jaber (2019c, Lemma 3.2) yields that t 7→ Σt is strongly differen-
tiable on [0, T ] with a derivative given by t 7→ Σ̇t induced by the kernel (5.12). Whence, it

follows from (5.7), that t 7→ Σ̃t is also differentiable such that
˙̃
Σt = (Id−K̂)−1Σ̇t(Id−K̂)−∗.

Thus, (5.6) yields that t 7→ Ψt is strongly differentiable with a derivative given by

Ψ̇t = 2(Id− K̂)−∗Θ>(Id + 2ΘΣ̃tΘ
>)−1Θ

˙̃
ΣtΘ

>(Id + 2ΘΣ̃tΘ
>)−1Θ(Id− K̂)−1

= 2ΨtΣ̇tΨt.

Finally, evaluating (5.8) at t = T , yields that ΣT (s, u) = 0 for all s, u ≤ T , leading to

ΣT = 0 so that ΨT = −
(

Id− K̂
)−∗

Θ>Θ
(

Id− K̂
)−1

. This proves (5.11).

B.3 Proof of Lemma 5.8

We start with a lemma to bound the kernel Σ̃.

Lemma B.3. Let f(Θ) = D − 2ηC>Θ and assume that |f(Θ)| × ‖K‖2L2([0,T ]2) < 1. Then
there exists a constant c > 0 such that

sup
t≤T
‖Σ̃t‖2L2([0,T ]2) ≤ c(1 + κ̂(Θ)), (B.8)

where κ̂ is defined as

κ̂(Θ) =

(
|f(Θ)| × ‖K‖2L2([0,T ]2)

1− |f(Θ)| × ‖K‖2
L2([0,T ]2)

)4

. (B.9)

Proof. Let R̂ denote the resolvent kernel of K̂ = Kf(Θ) as in the proof of Lemma 5.6.
First note that the relation (Id− K̂)−1 = Id + R̂ yields

‖Σ̃t‖2L2([0,T ]2) =‖(Id− K̂)−1 ? Σt ? (Id− K̂)−∗‖2L2([0,T ]2)

=‖Σt + R̂ ? Σt + Σt ? R̂+ R̂ ? Σt ? R̂‖2L2([0,T ]2)

≤23
(
‖Σt‖2L2([0,T ]2) + ‖R̂ ? Σt‖2L2([0,T ]2)

+ ‖Σt ? R̂‖2L2([0,T ]2) + ‖R̂ ? Σt ? R̂‖2L2([0,T ]2)

)
.

An application of the Cauchy-Schwarz inequality combined with Tonelli’s theorem implies
that

‖K ?H‖L2([0,T ]2) ≤‖K‖L2([0,T ]2)‖H‖L2([0,T ]2), K,H ∈ L2([0, T ]2,RN×N ), (B.10)
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so that

‖Σ̃t‖2L2([0,T ]2) ≤23
(
‖Σt‖2L2([0,T ]2) + ‖R̂ ? Σt‖2L2([0,T ]2) + ‖Σt ? R̂‖2L2([0,T ]2) + ‖R̂ ? Σt ? R̂‖2L2([0,T ]2)

)
≤23‖Σt‖2L2([0,T ]2)

(
1 + ‖R̂‖2L2([0,T ]2) + ‖R̂‖4L2([0,T ]2)

)
≤c‖Σt‖2L2([0,T ]2)

(
1 + ‖R̂‖4L2([0,T ]2)

)
,

where c > 0 is a constant independent of Σ and R̂. Thus, to obtain (B.8) it is enough to

show that ‖R̂‖2L2([0,T ]2) ≤
(
|f(Θ)|×‖K‖2

L2([0,T ]2)

1−|f(Θ)|×‖K‖2
L2([0,T ]2)

)2

. For this, note that applying successive

Picard’s iteration to R̂ = K̂ + K̂ ? R yields

R̂(s, u) =

∞∑
n=1

K̂?n(s, u) =

∞∑
n=1

(Kf(Θ))?n(s, u), (B.11)

where K̂?n is the (n)-fold ?-product of K̂ by itself. Combining (B.10) and (B.11) together
with the submultiplicativity of the Frobenius norm yields

‖R̂‖2L2([0,T ]2) ≤
∑

1≤n,m≤∞

∫ T

0

∫ T

0
| (K(s, u)f(Θ))?n ||(K(s, u)f(Θ))?n|dsdu

≤
∑

1≤n,m≤∞
|f(Θ)|n+m‖K?n‖2L2([0,T ]2)‖K

?m‖2L2([0,T ]2)

=

( ∞∑
n=1

|f(Θ)|n‖K?n‖2L2([0,T ]2)

)2

≤

( ∞∑
n=1

|f(Θ)|n‖K‖2nL2([0,T ]2)

)2

≤

(
|f(Θ)| × ‖K‖2L2([0,T ]2)

1− |f(Θ)| × ‖K‖2
L2([0,T ]2)

)2

.

This proves the desired inequality on R̂ and the claimed inequality (B.8) follows.

We can now complete the proof of Lemma 5.8.

Proof of Lemma 5.8. Fix s ≤ T and Θ ∈ Rd×N . We first note that

|λs|2 +
∣∣Z1

s

∣∣2 +
∣∣Z2

s

∣∣2 =|Θgs(s)|2 + 4 |((ΨsKη)∗ gs) (s)|2 .
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Using 5.6-(i), and denoting by ψop
s the operator induced by the kernel ψs there, we write

|((ΨsKη)∗ gs) (s)|2 = | − ((Θ>ΘKη)∗gs)(s) + ((ψop
s Kη)∗gs)(s)|2

= |1 + 2|2

≤ 2(|1|2 + |2|2).

An application of the Cauchy-Schwarz inequality combined with (5.9) leads to

|1|2 =

∣∣∣∣−∫ T

0
ηTK(z, s)>Θ>Θgs(z)dz

∣∣∣∣2 ≤ |η|2|ΘΘ>|2 sup
u′≤T

∫ T

0
|K(z, u′)|2du′

∫ T

0
|gs(u)|2du.

(B.12)

Similarly,

|2|2 =

(∫ T

0
η>
(∫ T

0
K(r, s)>ψs(r, z)dr

)
gs(z)dz

)2

≤|η|2
(∫ T

0

∫ T

0
|K(r, s)|2|ψs(r, z)|2drdz

)(∫ T

0
|gs(z)|2dz

)
≤|η|2 sup

u′≤T

∫ T

0
|K(r, u′)|2dr

(∫ T

0

∫ T

0
|ψs(r, z)|2drdz

)(∫ T

0
|gs(z)|2dz

)
,

where we stress that ψs is the only term on the right hand side depending on Θ. Let us
now show that there exists a constant c > 0 independant of Θ such that

sup
s∈[0,T ]

∫ T

0

∫ T

0
|ψs(r, z)|2drdz ≤ c|Θ|2(1 + |Θ|4κ̂(Θ)), (B.13)

where κ̂ is defined as in (B.9). Recall from (B.5) that we have

ψt = −R̂∗Θ>Θ−Θ>ΘR̂− R̂∗Θ> ? RΘ
t Θ−Θ>RΘ

t ?ΘR̂

− R̂∗Θ> ? RΘ
t ?ΘR̂− R̂∗Θ> ?ΘR̂−Θ>RΘ

t Θ.

Thus, recalling (B.3), there exists a constant c > 0 independent of Θ such that

sup
s∈[0,T ]

∫ T

0

∫ T

0
|ψs(r, z)|2drdz ≤ c|Θ|2

(
1 + sup

t∈[0,T ]

∫ T

0

∫ T

0
|RΘ

t (s, u)|2dsdu

)
. (B.14)

To obtain (B.13), it is enough to show that

sup
t∈[0,T ]

∫ T

0

∫ T

0
|RΘ

t (s, u)|2dsdu ≤ c|Θ|4(1 + κ̂(Θ)), (B.15)
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for some constant c > 0 not depending on Θ and κ̂ defined in (B.9). For this recall that RΘ
t

is the resolvent of −2ΘΣ̃tΘ
> which implies that RΘ

t = (Id + 2ΘΣ̃tΘ
T )−1 − Id. Since, for

each t ≤ T , ΘΣ̃tΘ
> is a positive symmetric operator on L2([0, T ],Rd) induced by a contin-

uous kernel, an application of Mercer’s theorem, see Shorack and Wellner (2009, Theorem
1, p.208), yields the existence of a countable orthonormal basis (ent,Θ)n≥1 of L2([0, T ],Rd)
such that

2ΘΣ̃t(s, u)Θ =
∑
n≥1

λnt,Θe
n
t,Θ(s)ent,Θ(u)>,

where λnt,Θ ≥ 0, for all n ≥ 1. Consequently

RΘ
t (s, u) =

∑
n≥1

−λnt,Θ
1 + λnt,Θ

ent,Θ(s)ent,Θ(u)>,

which yields∫ T

0

∫ T

0
|RΘ

t (s, u)|2dsdu =
∑
n≥1

(λnt,Θ)2

(1 + λnt,Θ)2

≤
∑
n≥1

(λnt,Θ)2 =

∫ T

0

∫ T

0
|2ΘΣ̃t(s, u)Θ>|2dsdu

≤ 4|Θ|4 sup
t≤T

∫ T

0

∫ T

0
|Σ̃t(s, u)|2dsdu

≤ c|Θ|4(1 + κ̂(Θ)),

where the last inequality comes from Lemma B.3. Consequently, inequality (B.15) com-
bined with (B.14) yield inequality (B.13). Finally, the claimed bound (5.18) follows by
recollecting inequalities (B.13) and (B.12).

B.4 Proof of Lemma 5.10

Proof. Recalling the decomposition (5.21), the process Z admits the following Karhunen-
Loeve representation

Z(s, u) =
∑
n≥1

ξne
n(s, u), s, u ∈ [0, T ]2, (B.16)

where (ξn)n≥1 is a sequence of independent Gaussian random variables with mean µn =
〈µ, en〉L2([0,T ]2,R2N ) and variance λn, for each n ∈ N. Now observe that the representation

(B.16) combined with the orthogonality of (en)n≥1 in L2([0, T ]2,R2N ) yields

a

∫ T

0

(
|gs(s)|2 +

∫ T

0
|gs(u)|2du

)
ds = a‖Z‖2L2([0,T ]2,R2N ) =

∑
n≥1

aξ2
n,
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so that the independence of (ξn)n≥1 leads to

E
[
exp

(
a

∫ T

0

(
|gs(s)|2 +

∫ T

0
|gs(u)|2du

)
ds

)]
=E

exp

∑
n≥1

aξ2
n

 (B.17)

=
∏
n≥1

E
[
exp

(
aξ2
n

)]

=
∏
n≥1

e
aµ2n

1−2aλn

√
1− 2aλn

where the last equality follows from the fact that ξ2
n is chi-squared distributed and 0 <

1−2aλ1 < 1−2aλn by hypothesis. We now argue that the right hand side of (B.17) is finite.
For the denominator, due to

∑
n≥1 λ

n <∞, we obtain that 0 <
∏
n≥1(1− 2aλn) <∞. For

the numerator, since λn → 0, as n→∞,
(

1
1−2aλn

)
n≥1

is uniformly bounded by a constant

c > 0 so that an application of Parseval’s identity yields∏
n≥1

exp

(
aµ2

n

1− 2aλn

)
≤ exp

(
ca‖µ‖2L2([0,T ]2,R2N )

)
= exp

(
ca

(∫ T

0

∫ T

0

(
1

T 2
|g0(s)|2 + |g0(u)|2

)
dsdu

))
= exp

(
ca

(
T +

1

T

)
‖g0‖2L2([0,T ],RN )

)
<∞.

The proof is complete.

C Additional proof for the martingale property

For completeness, we adapt Abi Jaber et al. (2019, Lemma 7.3) to the multi-dimensional
setting to prove that the local martingale

Mt = M0 E
(
−
∫ t

0

d∑
i=1

ψi(T − s)νi
√
V i
s dW

i
s

)
.

is a true martingale. For this we set U =
∫ ·

0 Vsds and we observe that, thanks to stochastic
Fubini’s theorem, integrating (4.1) yields

U it =

∫ t

0
gi0(s)ds+

∫ t

0
Ki(t− s)Zisds

with

Zit =

∫ t

0
(DVs)ids+

∫ t

0
νi

√
V i
s dW

i
s .

44



Proof. Since M is a nonnegative local martingale, it is a supermartingale by Fatou’s lemma.
Whence to obtain the true martingality it suffices to show that E[MT ] = 1 for any T ∈
R+. To this end, fix T > 0 and define the stopping times τn = inf{t ≥ 0:

∫ t
0 V

i
s ds >

n for some i ≤ d} ∧ T . Novikov’s condition, recall that ψ is bounded on [0, T ] being
continuous, yields that M τn = Mτn∧· is a uniformly integrable martingale for each n.
Whence,

1 = M τn
0 = EP

[
M τn
T

]
= EP [MT1τn≥T ] + EP [Mτn1τn<T ] ,

where we made the dependence of the expectation on P explicit. Since EP [MT1τn≥T ] →
EP [MT ] as n→∞, by dominated convergence, in order to get that EP[MT ] = 1, it suffices
to prove that

EP [Mτn1τn<T ]→ 0, as n→∞. (C.1)

To this end, since M τn is a martingale, we may define probability measures Qn by

dQn

dP
= M τn

τn .

By Girsanov’s theorem, the process Wn = (Wn,1, . . . ,Wn,d) defined by

Wn,i = W i +

∫ ·
0

1s≤τnψ
i(T − s)νi

√
V i
s ds, i = 1, . . . , d,

is a Brownian motion under Qn. Furthermore, under Qn, we have

U it =

∫ t

0
gi0(s)ds+

∫ t

0
Ki(t− s)Zn,is ds

Zn,it =

∫ t

0
((DVs)i − 1s≤τnψ

i(T − s)ν2
i V

i
s )ds+

∫ t

0
νi

√
V i
s dW

n,i
s .

and we observe that, due to the boundedness of ψ, the drift of Zn under Qn satisfy a
linear growth condition in U for some constant κL independent of n. An application of the
generalized Grönwall inequality for convolution equations would yield the moment bound

EQn [|UT |2] ≤ η(κL, T,K, g0),

where η(κL, T,K, g0) does not depend on n, see for instance Abi Jaber (2019b, Lemma
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3.1). We then get by an application of Chebyshev’s inequality

EP [Mτn1τn≤T ] = Qn(τn < T )

≤
d∑
i=1

Qn
(
U iT > n

)
≤

d∑
i=1

1

n2
EQn

[
|U iT |2

]
=

1

n2
EQn

[
|UT |2

]
≤ 1

n2
η(κL, T,K, g0).

Sending n→∞, we obtain (C.1), proving that M is martingale.
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