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a b s t r a c t 

A new 3rd-order Vorticity Confinement scheme is presented as an extension of the original VC2 scheme

developed by Steinhoff for the resolution of the fluid dynamic equations. The theoretical developments

are explained, and the method is tested. The results obtained show that the new scheme combines

the accuracy of the underlying higher order scheme and the confinement capability of the original VC2

method.

1. Introduction

The computation of vortices and wakes by CFD is a difficult 

problem. A large part of the methods applied in the past for wake 

simulations uses a Lagrangian approach [1,2] , which allows a per- 

fect conservation of the vortex sheets. However, most of them are 

restricted to inviscid, incompressible flows, and have difficulties to 

deal with the merging of vortical structures. The Eulerian approach 

is more general from all these aspects, but it suffers from other 

weaknesses. Numerical schemes for compressible flows need to be 

dissipative for stability reasons, thus wakes and vortices are dif- 

fused much faster in the computations than what actually occurs 

in reality. A significant amount of work has been done to reduce 

these flaws, considering either automatic mesh refinement in order 

to concentrate the mesh points in the vicinity of the vortical re- 

gions of interest, or the application of higher-order discretizations. 

Mesh adaption is generally performed with unstructured grids or 

with Cartesian grids and the Chimera overset grids method [3–

6] . Grid adaption can be based on physical criteria or on error

estimates, which may require the solution of an adjoint problem

[7–10] . Higher-order space discretizations are an appealing alter- 

native to decrease the dissipation of numerical schemes. However, 

the derivation of high-order space discretizations on general grids 

is complex and very often truly high accuracy is implemented on 

Cartesian grids only [11–13] . Whatever the approach, a significant 
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additional CPU cost is needed, and the artificial spreading of wakes 

cannot be totally removed. 

Alternative techniques in the Eulerian framework include the 

Vorticity Confinement method of Steinhoff [14–16] , which proved 

to be very efficient for wake conservation. Such a method has been 

investigated at ONERA in the past [17–20] . We are more particu- 

larly interested here in the second VC scheme proposed by Stein- 

hoff, known as VC2 [21,22] . In spite of its capability to maintain 

concentrated vorticity in the numerical simulations at a reduced 

extra cost with respect to fine mesh computations, the original VC 

formulation is only 1st-order accurate and the internal profile of 

the confined vortices is rapidly governed by the VC term. There- 

fore it is of little interest to use this method when a higher-order 

numerical scheme is applied, although the capabilities of VC could 

be beneficial even in this kind of simulation. This is more par- 

ticularly the case when considering turbulent or separated flows 

for which vorticity plays a major role. The development of a VC 

method adapted to higher-order discretizations is therefore of in- 

terest. Furthermore, such a higher-order VC method may allow the 

level of negative dissipation applied in vortical regions to be de- 

creased according to the lower numerical dissipation introduced by 

higher-order schemes. 

In [23] , higher-order confinement schemes were developed for 

the linear transport equation. The main outcome of this study is 

that all schemes asymptotically converge towards the same con- 

fined solution whatever the order of the confinement scheme, but 

the rate of convergence towards the asymptotic solution depends 

on the order of the scheme. The resulting schemes thus combine 

confinement property and high accuracy. The topic of the present 

paper is the extension of the 3rd-order VC scheme developed in Petropoulos), paola.cinnella@ensam.eu (P. 
Cinnella).
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[23] for the scalar linear advection equation to the Euler/RANS

equations. A preliminary study including applications to helicopter- 

related problems was presented in [24] . 

In the first part of this paper, the theoretical developments are 

presented, starting with a brief reminder of the basic 3rd-order 

confinement scheme for the linear 1D transport equation, and then 

describing its extension to the system of governing equations for 

gas dynamics. In a following part, the new approach is tested over 

simple test cases. First, a convergence study is performed for a 

steady 2D isentropic vortex in order to evaluate the actual accuracy 

of the various schemes used, with and without vorticity confine- 

ment. Then the advection of an inviscid 2D vortex over long dis- 

tances is considered. The high-order VC scheme is compared with 

the original confinement scheme. Finally, a 2-D airfoil/vortex inter- 

action is studied to investigate the capabilities of 3rd-order con- 

finement alongside high-order schemes to capture the physics of a 

more realistic application. 

2. Presentation of the VC scheme

2.1. VC method for the 1D linear transport equation 

The VC methodology was developed by Steinhoff et al. based on 

the theory of nonlinear solitary waves. Here we adopt a different 

approach, leading to similar results. Let us consider the simple case 

of the 1D transport equation: 

∂u 

∂t 
+ c 

∂u 

∂x 
= 0 (1)

with c > 0 the constant transport speed of a quantity u ≥ 0. We 

start from a standard 1st-order upwind discretization on a Carte- 

sian grid of constant space step �x and time step �t : 

u 

n +1 
j 

= u 

n 
j − σδu 

n 
j−1 / 2 (2)

where u n 
j 
= u ( j�x, n �t) is the numerical solution, δu j−1 / 2 = u j −

u j−1 , and σ = 

c�t 
�x 

denotes the CFL number, with σ < 1 for stabil- 

ity. 

The original VC2 term uses a 2nd-difference of the harmonic 

mean between two successive grid values to correct the highly- 

diffusive 1st-order discretization of the above equation. Introducing 

the harmonic mean of the solution at two adjacent grid points, ex- 

pressed as: h (u j , u j−1 ) = 

2 u j u j−1 

u j + u j−1 
for u j u j−1 > 0 and h (u j , u j−1 ) = 0 

otherwise, the 1st-order VC discretization of (1) writes: 

un +1
j

= u 

n 
j − σδu 

n 
j−1 / 2 + ε

σ (σ − 1) 

2 

δ2 h (u 

n 
j , u 

n 
j−1 ) (3) 

where δ2 h = δ( δh ) and ε is a real constant called the confinement 

parameter. The flux difference correction due to the VC2 term is 

thus expressed by: 

ε 
1 − σ

2 

δ2 h (u 

n 
j , u 

n 
j−1 ) (4)

Deriving the equivalent partial differential equation from the linear 

differences of (3) and leaving the harmonic mean term unmodified 

leads to a mixed differential/difference equation representative of 

the numerical problem which is actually solved: 

∂u 

∂t 
+ c

∂u 

∂x 
− ( 1 − σ ) c�x

2 

(
∂ 2 u 

∂x 2 
− ε

δ2 h (u, T −u ) 

�x 2 

)
= 0 (5) 

Here, T −u (x ) = u (x − �x ) is the backward shifting operator so that 

h (u, T −u ) is a symbolic representation of the harmonic mean be- 

tween two successive node values of u . When u � = 0, a Taylor ex- 

pansion of the 2nd difference of the harmonic mean can be done, 

giving as leading term of the truncation error of (3) : 

(ε − 1) c�x 
1 − σ

2 

∂ 2 u 

∂x 2 
(6) 

Since σ < 1, for ε > 1 negative dissipation is introduced on the 

right hand side of (1) and the corresponding scheme, although 

1st-order accurate, has the capability to conserve indefinitely non- 

trivial solutions which are transported at the correct speed by the 

numerical scheme. As shown in [23] , these solutions have a pulse 

shape in the form sech (k (x − ct)) and they are obtained by balanc- 

ing the numerical diffusion of the first-order scheme and the non- 

linear confinement term at the discrete level. As a result of eq. (5) , 

asymptotic pulse solutions satisfy the equality: 

∂ 2 u 

∂x 2 
− ε

δ2 h (u, T −u ) 

�x 2 
= 0 (7) 

A sufficient condition for obtaining asymptotic solutions to the 

linear transport equation with confinement can be obtained by 

approximating ∂ 2 u 
∂x 2 

on the same stencil as the harmonic mean 

difference in (7) . Precisely, setting 
δ2 μu j−1 / 2 

�x 2
, where μu j−1 / 2 = 

1
2

(
u j−1 + u j

)
is the arithmetic averaging operator, this condition 

reduces to the simple relation between the arithmetic and the har- 

monic mean: 

μu j−1 / 2 = εh (u j−1 , u j ) (8) 

A nontrivial and nonsingular solution to (8) is given by: 

u j = sech 

(
kx j 

)
= 

1 

cosh 

(
kx j 

) (9) 

where k is a positive real parameter such that ε = cosh k �x 
2 . As 

shown in [23] , the counterpart of the numerical solution (9) is 

u = 

1
cosh ( a x 

�x ) 
, where a = k �x . Because ε = cosh a 2 or, equivalently, 

a = 2 ln (ε + 

√ 

ε 2 − 1 ) it is clear that, for a prescribed ε, confined 

solutions depend on the mesh size because the signal is concen- 

trated over the same number of cells, whatever the discretization. 

On the other hand, it is possible to compute the confinement pa- 

rameter to keep a pulse solution close to the exact solution. In 

order to verify this assumption, it is possible to compute the nu- 

merical solution of (3) with the initial condition u ( x ) = 

1 
cosh ( 2 . 09 x ) 

, 

corresponding to an asymptotic solution with ε = 1 . 6 for �x = 1 . 

The computational domain is a segment of length L = 100 with 

periodicity boundary conditions at the left and right ends of the 

domain. The CFL number is set to σ = 0 . 611 , a typical value al- 

ready used in [23] and [20] . The simulation is performed for var- 

ious mesh refinements. Hereafter we consider �x = 1 , �x = 1 / 4 

and �x = 1 / 16 . For the refined grids, the confinement parameter 

corresponding to ε = cosh a 2 is ε = 1 . 03 and ε = 1 . 002 for �x = 1 / 4 

and �x = 1 / 16 respectively. The solutions obtained after the signal 

has traveled a distance c t = 6110 are compared with the exact one 

in Fig. 1 , using the value of ε corresponding to the mesh cell size 

of the simulation. The good preservation of the initial condition in 

the computation can be noted for all mesh cell sizes. Additionally, 

solutions for two other initial conditions corresponding to a Gaus- 

sian function with two values of the standard deviation, 2 and 1/2, 

were computed using �x = 1 / 2 and ε = 1 . 14 . For the purpose of 

comparison, all initial conditions had the same integral versus x , 

equal to that of the hyperbolic secant initial condition. The results 

at time c t = 6110 are compared with the solution using the hyper- 

bolic secant as initial condition in Fig. 2 . For readability, the results 

have been shifted by x = 5 from one another, and the correspond- 

ing exact solutions as well. It is clear that whatever the initial con- 

dition, all pulse solutions converge towards the same asymptotic 

solution which is approximately described by the hyperbolic se- 

cant u = 

1 
cosh ( a x 

�x ) 
. This is confirmed by the time evolution of the 

discrete energy plotted in Fig. 3 : all initial conditions converge to- 

wards a constant energy level, equal to that of the hyperbolic se- 

cant initial condition. 
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Fig. 1. Asymptotic solution at time c t = 6110 with confinement parameter adapted 

to grid spacing.
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Fig. 2. Asymptotic solution at time c t = 6110 for various initial conditions. 

Finally, it is important to point out that if the VC2 term (4) is 

replaced by any linear second-difference approximation in Eq. (3) , 

numerical stability requires ε = 1 . Since the leading term in the 

Taylor series development is identical between the nonlinear VC2 

and any linear 2nd-difference, (6) shows that the linear schemes 

are at least 2nd-order accurate. According to the stencil used, 

the Lax-Wendroff, Warming-Beam and Fromm scheme can be ob- 

tained. Then the leading term in the truncation error has a 3rd 

derivative and is dispersive. Further, all these linear schemes are 

dissipative with a leading dissipative term given by the 4th deriva- 

tive in their Taylor expansion. As a result, they asymptotically con- 

verge towards a constant solution for which the initial information 

is almost totally lost. 

The VC2 scheme was extended to higher odd orders in [23] , 

using the same ideas underlying the first-order approach. A non- 

linear harmonic mean approximation of the opposite of the lead- 

ing dissipative term of the truncation error of an odd-order linear 

scheme is added to the linear part of the scheme. At the 3rd-order 

of accuracy, the discretization becomes: 

un +1
j

= u n j − σδu n j−1 / 2 + 

σ (σ − 1) 

2! 
δ2 u n j −

(σ + 1) σ (σ − 1) 

3! 
δ3 u n j−1 / 2 

+ ε
(σ + 1) σ (σ − 1)(σ − 2) 

4! 
δ4 h (u n j , u 

n 
j−1 ) (10) 

ct

x
u
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Fig. 3. Time evolution of energy norm for various initial conditions.

The 3rd-order VC flux difference correction is now: 

−ε 
(1 + σ )(1 − σ )(2 − σ ) 

4! 
δ4 h (u 

n 
j , u 

n 
j−1 ) (11) 

Accordingly, the leading term in the truncation error is: 

−(ε − 1) c�x 3 
(1 + σ )(1 − σ )(2 − σ ) 

4! 

∂ 4 u 

∂x 4 
(12) 

When ε > 1, we have again negative dissipation added to the right 

hand side of (1) , ensuring the confinement property of this 3rd- 

order accurate scheme. In [23] , we showed that the VC schemes 

extended to any odd order p are characterized by the same asymp- 

totic pulse solutions which can be transported exactly at the dis- 

crete level. This is easily seen by deriving the equivalent equation 

similarly for the pth-order VC scheme: 

∂u 

∂t 
+ c

∂u 

∂x 
+ ( −1 ) 

p+1
2 O ( �x p ) 

(
∂ p+1 u 

∂x p+1 
− ε

δp+1 h (u, T −u ) 

�x p+1 

)
= 0 

(13) 

Approximating the linear derivative with the same difference op- 

erator as the one used for the harmonic mean leads to the same 

sufficient condition as eq. (8) , and thus to the same asymptotic so- 

lution. The interest of the higher-order schemes is that any initial 

solution converges to this asymptotic solution more slowly than 

the 1st-order VC, so that the benefits of higher-accuracy and of 

confinement can be combined. This is shown in the example below 

using the following 5th-order discretization with confinement: 

un +1
j

= u n j − σδu n j−1 / 2 + 

σ (σ − 1) 

2! 
δ2 u n j −

(σ + 1) · · · (σ − 1) 

3! 
δ3 u n j−1 / 2 

+ (σ + 1) · · · (σ − 2) 

4! 
δ4 u n j −

(σ + 2) · · · (σ − 2) 

5! 
δ5 u n j−1 / 2 

+ ε
(σ + 2) · · · (σ − 3) 

6! 
δ6 h (u n j , u 

n 
j−1 ) (14) 

The 5th-order scheme was run for the same initial conditions con- 

sidered before (hyperbolic secant, Gaussians with standard devia- 

tion of 2 and 1/2). As shown in Figs. 4 and 5 , the numerical so- 

lutions corresponding to the Gaussian initial conditions evolve to- 

ward the hyperbolic secant asymptotic solution (and thus deviate 

from the exact Gaussian solution) after a much longer travelling 

distance ( c t > 10 4 ) than the 1st-order VC scheme, so that the orig- 

inal shape is still reasonably well conserved for c t = 6110 for the 

less impulsive initial condition. This is also confirmed by inspec- 

tion of the discrete energy of the solution presented in Fig. 6 . The 



x

u

15 20 25 30 35

0

0.5

1

1.5 sech
gaussian s.d.=2
gaussian s.d.=0.5
exact

Fig. 4. Asymptotic solution at time c t = 6110 for various initial conditions. 
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Fig. 5. Asymptotic solution at time c t = 4 · 10 8 for various initial conditions. 

energy norm for the Gaussian initial condition with standard devi- 

ation of 1/2 is much slower to converge to its asymptotic value. In 

this case, the 5th-order VC scheme maintains a small pulse at the 

foot of the initial one ( Fig. 5 ). It comes from the known property 

of the VC scheme to split low frequency signals into higher fre- 

quency ones according to the value of ε ( [23] ). It creates a small 

secondary pulse which is eventually slowly dissipated as the main 

pulse is being concentrated. This secondary pulse has to be com- 

pletely removed in order to reach the asymptotic state. 

2.2. Extension to the Euler/RANS equations 

2.2.1. First-order vorticity confinement 

Extending the VC2 schemes to the Euler/RANS equations is not 

straightforward because vorticity is not part of the conservative 

variables generally used in the resolution of these equations. In or- 

der to see how to translate the discretization from the linear trans- 

port equation to the fluid dynamic equations, let us come back to 

the original formulation of the VC2 scheme as described by Stein- 

hoff. The VC term is included in the momentum equation as a 

source term. Denoting the primitive flow variables, density, veloc- 

ity and pressure, by ρ , 
−→ 

U and p , the viscous stress tensor by τ and 

the source term by 
−→ 

f , the momentum equation can be expressed 

ct

x
u

j2
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Fig. 6. Time evolution of energy norm for various initial conditions.

by: 

D 

−→ 

U 

Dt 
+ 1 

ρ

−→ ∇ p − 1 

ρ

−→ ∇ · τ = −→ 

f (15) 

with: 
−→ 

f = −−→ ∇ × (μ−→ ω − ε 
−→ 

w ) (16) 

The first vector term on the right hand side of (16) is propor- 

tional to the vorticity vector 
−→ ω = 

−→ ∇ × −→ 

U , while the second one is 

aligned with vorticity, and its magnitude is equal to the harmonic

mean of the vorticity modulus ω = ‖ −→ ω ‖ of the surrounding grid

points: 

−→ 

w = 

−→ ω 

ω 

[∑ N
l=1 ω 

−1 
l 

N 

−1

(17) 

2.2.2. Analogy with linear transport equation 

The link between (16) and (4) can be established by deriving 

the vorticity transport equation, which is obtained by taking the 

curl of the momentum Eq. (15) . We use a modified version of it for 

the specific vorticity in order to get rid of compressibility terms. 

This writes: 

d 

dt 

(−→ ω 

ρ

)
= ∇ 

−→ 

U ·
−→ ω 

ρ
− 1 

ρ

−→ ∇ ×
−→ ∇ p 

ρ
+ 1 

ρ

−→ ∇ ×
−→ ∇ · τ

ρ
+ 1 

ρ

−→ ∇ × −→ 

f 

(18) 

Consider an isolated 2D vortex in inviscid flow. All terms except 

the last one on the right hand side of (18) vanish, because the 

velocity vector lies in a plane perpendicular to vorticity, and the 

gradients of pressure and density are aligned. Thus the VC term 

indirectly appears in the vorticity transport equation as: 

−→ ∇ × −→ 

f = 

−→ ∇ 

2 
(
μ−→ ω − ε 

−→ 

w 

)
− −→ ∇ 

−→ ∇ ·
(
μ−→ ω − ε 

−→ 

w 

))
(19) 

Again, the second term is equal to zero because: 

−→ ∇ · −→ 

w = 

−→ ω · −→ ∇ 

h ( ω )

ω 

(20) 

which is obviously zero for a 2D vortex. The vorticity transport 

equation can thus be written: 

∂ 

∂t 

ω

ρ

)
+ 

−→ 

U · −→ ∇ 

ω

ρ

)
− μ

ρ

−→ ∇ 

2 ω − ε

μ
h ( ω 1 , . . . , ω N ) 

)
= 0 (21) 

The analogy of (21) with (5) is now clear. The first term of (16) is 

a diffusion term, which mimics the effect of the truncation error 



of the linear differences in (3) . This contribution was found helpful 

for prescribing a linear dissipation term independently of the nu- 

merical scheme used. The second term in (16) is the anti-diffusive 

confinement term. The user-prescribed parameters, ε and μ, are 

both set proportional to the mesh size �x for consistency. Finally, 

the ratio ε 
μ is the equivalent of the value of the confinement pa- 

rameter ε in the linear transport equation. By neglecting the dis- 

sipation of the baseline discretization, which is generally the case 

for VC of lower order than the underlying scheme, the numerical 

error of (21) can be attributed to the effect of the explicit dissipa- 

tive VC term. In that case, the asymptotic solution of (21) is driven 

by the explicit term rather than the numerical error of the origi- 

nal equation. By analogy with the linear transport equation, an iso- 

lated vortex is expected to be convected without diffusion by the 

numerical scheme when: 

ω i j = 

ε

μ
h 

(
ω i + k j+ l 

)
(22) 

where k and l lie in the interval [ −1 , 1] . Again, an asymptotic so- 

lution in the form ω 

n 
i j 

= 

1 
cosh ( Kx i + Ly j ) 

is recovered because: 

h 

(
ω i + k j+ l 

)
= 

9 

1 + 2 cosh ( K�x ) + 2 cosh ( L �y ) + 4 cosh ( K�x ) cosh ( L �y ) 
ω i j 

(23) 

and therefore: 

ε 

μ
= 

1 + 2 cosh ( K�x ) + 2 cosh ( L �y ) + 4 cosh ( K�x ) cosh ( L �y )

9 

≥ 1 (24) 

Confinement is generally applied on Cartesian meshes with �x = 

�y . Furthermore, the cross-section of the vortex has a symmetry 

of revolution, resulting in K = L . Similarly to the linear advection 

equation, introducing a = K�x = L �y, asymptotic solutions of VC2 

can be written: 

ω ( x, y ) = 

1 

cosh 

(
a 
(

x
�x

+ y
�y

)) (25) 

In that case: 

ε 

μ
= 

(
2 cosh ( a ) + 1 

3 

)2

(26) 

Therefore asymptotic solutions of VC2 depend directly on the mesh 

size for a given set of confinement parameters also for the Eu- 

ler/RANS equations. Similarly to what was done with the linear ad- 

vection, it is thus theoretically possible to adjust the value of ε/ μ
to a particular vortex size. This practice can be viable for some 

academic cases, but is not straightforward for complex flows and 

therefore has not been followed for the numerical results of the 

present study. 

2.2.3. Third-order vorticity confinement 

To derive a 3rd-order accurate VC2 confinement term 

−→ 

f 3 , we 

need to introduce the equivalent of a 4th-difference operator (as 

in eq. (11) ) in the vorticity transport equation. The idea is that, ex- 

actly as the 4th-difference in (11) can be obtained by recursively 

applying 1st-differences to the harmonic mean four times instead 

of two for the original VC2 term, applying the curl operator twice 

to the original VC term will naturally increase the order of the dif- 

ferencing by two since most of the terms disappear, leaving higher- 

order derivatives only. Introducing the vector 
−→ α = −(μ−→ ω − ε 

−→ 

w ) , 

the original VC2 term is given by: 

−→ 

f = 

−→ ∇ × −→ α (27) 

Then, applying twice the curl operator to (27) , we get: 

−→ ∇ × −→ 

f = 

−→ ∇ × ( 
−→ ∇ × −→ α ) = 

−→ ∇ ( 
−→ ∇ · −→ α ) − −→ ∇ 

2 −→α
−→ 

f 3 = 

−→ ∇ × ( 
−→ ∇ × −→ 

f ) = 

−→ ∇ × ( 
−→ ∇ ( 

−→ ∇ · −→ α ) − −→ ∇ 

2 −→ α )

= −−→ ∇ × ( 
−→ ∇ 

2 −→ α ) (28) 

The 3rd order VC scheme is therefore obtained by taking the Lapla- 

cian of the original VC one. An interesting property of the Lapla- 

cian is that it is rotationally invariant, following the same ideas 

used by Steinhoff in the development of the VC method. Because 

our model equation is the vorticity transport equation, we are in- 

terested into the curl of the new confinement term, equal to: 

−→ ∇ × −→ 

f 3 = 

−→ ∇ × ( 
−→ ∇ × ( 

−→ ∇ × −→ 

f )) 

= −−→ ∇ ( 
−→ ∇ · ( −→ ∇ 

2 −→ α )) + −→ ∇ 

2 ( 
−→ ∇ 

2 −→ α ) (29) 

As for the original VC2 case, the first term on the right hand side 

of (29) vanishes for a 2D isolated vortex in inviscid flow since: 

−→ ∇ 

2 −→ 

w = −→ ∇ 

−→ ∇ · −→ 

w − −→ ∇ × −→ ∇ × −→ 

w 

)
(30) 

The first term on the right hand side of (30) was found to be 

zero due to relation (20) , while the second one obviously van- 

ishes when applying the divergence operator to the first term on 

the right hand side of (29) . Therefore the confinement term (29) is 

fully similar to (21) , with the sum of a dissipation and a confine- 

ment term. The successive applications of the curl operator natu- 

rally introduce the alternate sign of the dissipative terms with the 

increasing order of the derivatives. Finally, using undivided differ- 

ences in the computation of the Laplacian of the components of 

the original VC2 term will naturally provide the correct order of 

discretization: 

−→ 

f 3 = εIJK 
δI 

�x I 
(δ2 

1 + δ2
2 + δ2 

3 )(μω J − εw J ) 
−→ 

e K (31) 

where the directional difference operators are defined by: 

(δ1 u ) j+1 / 2 ,k,l = u j+1 ,k,l − u j,k,l 

(δ2 u ) j,k +1 / 2 ,l = u j,k +1 ,l − u j,k,l 

(δ3 u ) j,k,l+1 / 2 = u j,k,l+1 − u j,k,l (32) 

Here we have used index notations and Einstein summation con- 

vention, with I, J, K varying from 1 to 3, εIJK the Levi-Civita al- 

ternating symbol and 

−→ 

e 1 , 
−→ 

e 2 , 
−→ 

e 3 the unit vectors along the three 

directions of the Cartesian frame. Since the original VC2 scheme is 

1st-order accurate, the proposed VC term is now 3rd-order accu- 

rate. 

2.3. Numerical method 

The confinement schemes described above have been imple- 

mented in the Cassiopée Cartesian solver of the elsA suite [25] , 

which solves the Euler and Navier-Stokes equations in a finite- 

volume approach. Various discretization schemes are available, in- 

cluding the centered 2nd-order space discretization with Jameson’s 

artificial viscosity term, and the non-compact 3rd-order and 5th- 

order directional schemes described by Saunier et al. in [26] and 

derived by Lerat et al. in [27] . These schemes can be assimilated to 

3rd-order and 5th-order MUSCL schemes using high-order extrap- 

olation of the fluxes. Thanks to the equivalence between the finite- 

volume and finite-difference approach on Cartesian grids, their im- 

plementation can be greatly simplified with respect to curvilinear 

grids, writing in the case of the 2D Euler equations in semi-discrete 
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�x
δ1 I − 1 
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30 

δ4 
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μ1 F 

+ 1

�y
δ2 I − 1 
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δ2 
2 +
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30
δ4 

2 

)
μ2 G = 0 (33) 

W is the vector of conservative variables, F and G are the flux vec- 

tors along the x and y directions respectively, δ1 and δ2 are the 

difference operators defined in (32) and: 

(μ1 F ) j+1 / 2 ,k = 

1 

2 

(F j,k + F j+1 ,k ) 

(μ2 G ) j,k +1 / 2 = 

1 

2 

(G j,k + G j,k +1 ) (34) 

are the classical averaging operators along the grid directions. The 

discretisation (33) is 6th-order accurate, non-dissipative. For stabil- 

ity, a 5th-order artificial viscosity term is added to the right hand 

side:(
1 

�x 
δ1 

( | A R | 
60 

δ5 
1 

)
+ 1

�y 
δ2 

( | B R | 
60 

δ5 
2 

))
W (35) 

where A R and B R are Roe linearizations of the Jacobian matrices 

A = 

∂F 
∂W

and B = 

∂G 
∂W

. The 3rd-order scheme is similarly obtained 

by dropping the 4th derivatives in (33) and modifying the artificial 

dissipation accordingly. 

The vorticity confinement term (31) is added to the right hand 

side of the momentum equation, using standard 2nd-order finite- 

differences. The VC method was implemented in a Cartesian solver 

only. The regions of the flowfield where the confinement term 

is applied are selected by the Q criterion: all parts of the flow- 

field for which the Q criterion is above a user-prescribed thresh- 

old value are selected as regions of concentrated vorticity to con- 

fine. To compute the flow around obstacles, curvilinear body grids 

are required and the Chimera overset grid method is used [28,29] . 

Computations with confinement thus require three user-prescribed 

input quantities: ε, μ and the threshold value for the Q criterion. 

In practice, the influence of this last parameter is quite small as it 

is only used for selecting regions of concentrated vorticity in the 

flowfield. 

3. Application of the method

3.1. Steady 2D isentropic vortex 

As a first test case, we perform a grid convergence study for 

the steady isentropic 2D vortex already considered by Yee et al. in 

[30] . The objective is to check that the confinement terms follow

the expected convergence rate according to the baseline scheme

used. The vortex is set in the fluid at rest, and the Euler equations

are solved for a fixed period of time. The final solution is then

compared to the initial one in order to estimate the error intro- 

duced by the numerical scheme, assuming that the results should 

be identical. This would indeed be the case if the isentropic vor- 

tex was an exact solution to the Euler equation, but it is only ap- 

proximate. Indeed, Crocco’s form of Euler’s momentum equation 

for steady-state homentropic flow reduces to: 

−→ 

U × −→ ω + T 
−→ ∇ s = 0 (36) 

Since the vorticity and velocity vectors are perpendicular, the flow 

cannot remain fully isentropic, but the entropy gradient is small, 

thus justifying the analysis below. 

The computed flow domain is square [ 0 , 10 ] × [ −5 , 5 ] , and the 

vortex is set in the middle at x = 5 , y = 0 . Six grids of increasing 

fineness have been considered, halving the mesh cell size from one 

mesh to the following one. The coarsest mesh has 441 points, cor- 

responding to a mesh cell size �x = �y = 0 . 5 , and the finest one 

has 410,881 points and a mesh cell size of �x = �y = 0 . 015625 . 

All computations were run between time t = 0 and t = 1 with a 

time step �t = 2 · 10 −4 �x sufficiently small to introduce negligible 

time-discretization errors. The L2 norm of the difference between 

the initial and final solutions was then computed for the conser- 

vative variables and entropy. The L2 error for entropy is plotted 

in Fig. 7 for the 2nd, 3rd and 5th-order schemes alone (baseline 

versions) and with 1st-order and 3rd-order confinement. When 

confinement is applied, the confinement parameters are constant 

and set to ε = 0 . 16 and 

ε 
μ = 1 . 67 . These values are based on a 

small parametric study in order to check that they allow a good 

preservation of vorticity for a sufficienly long period of time with 

the coarse grid. This grid convergence study was also repeated 

for other values of the confinement parameters and did not show 

any difference on the convergence rates, so that the plotted re- 

sults are meaningful. The corresponding theoretical convergence 

orders of the schemes are also plotted in dashed lines for con- 

venience. As expected, the nominal order of convergence of the 

baseline schemes is recovered by the numerical solutions as soon 

as the mesh is fine enough. For all cases, confinement reduces the 

order of convergence to the order of the confinement term (first 

or third order respectively), thus showing the interest of increas- 

ing the order of the confinement term when higher-order flux dis- 

cretizations are used. Again, sufficiently fine meshes are necessary 

to get approximately the nominal order of convergence of the dis- 

cretization. 

3.2. Advection of an inviscid 2D vortex 

For assessing the capability of confinement to maintain concen- 

trated vorticity in the numerical solution, we consider a test case 

similar to that computed by Yee et al. in [31] , namely the advec- 

tion of an isolated 2D vortex in an inviscid flow, but instead of 

using the isentropic vortex of the previous section, a vortex model 

described by Visbal et al. was used [32] . The exact solution is just 

the passive advection of the initial vortex at the freestream veloc- 

ity if this initial vortex is an exact solution to the Euler equation. 

As this is not the case, the vortex will be modified and converge to 

a true solution of the Euler equations which is advected across the 

flow domain. Since the goal of this application is to investigate the 

vortex preservation capability of the numerical schemes, the dif- 

ference between the initial and final structure of the vortex is of 

minor importance. 

In the following, the capability of the baseline 2nd-, 3rd- and 

5th-order schemes for this problem is first assessed. The dissi- 

pative and dispersive properties of the schemes with and with- 

out confinement are investigated through their capability to cap- 

ture the trajectory and the strength of the vortex during its ad- 

vection. The error in trajectory is due to dispersion and the error 

in strength comes from the dissipation of the schemes. The mini- 

mum density at the vortex center is used to characterize the vortex 

strength and position. Then the effect of 1st- and 3rd-order con- 

finement with these baseline schemes is investigated for constant 

values of the confinement parameters. These empirical values were 

determined again from a preliminary parametric study. A sensitiv- 

ity study to confinement parameters is then performed and its ef- 

fect on the vortex solutions is analyzed. Since the role of vorticity 

confinement is to contribute a negative dissipation in vortical re- 

gions, it is expected that both 1st- and 3rd-order confinement have 

little effect on vortex trajectory, but reduce vortex dissipation sig- 

nificantly. Furthermore, the initial structure of the vortex should 

be better preserved with 3rd-order confinement as convergence to 

the asymptotic state of the confinement term is slower. On the 

contrary, for very long advection times, both 1st- and 3rd-order 

confinement are expected to converge towards similar asymptotic 
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Fig. 7. L2 error for entropy with 2nd (a), 3rd (b) and 5th-order schemes (c) without and with confinement.

solutions which are transported across the grid without being 

modified. 

The computational domain consists of a box [ 0 , 110 ] × [ −5 , 5 ] 

with periodicity conditions applied along all four boundaries. Three 

grid levels are considered: fine, medium and coarse with a reso- 

lution corresponding to the three coarsest meshes of the preced- 

ing grid convergence study. The cell size of the Cartesian mesh 

is thus equal respectively to �x = �y = 0 . 125 / 0 . 25 / 0 . 5 for the 

fine/medium/coarse grids. The initial vortex is set at x = 5 , y = 0 , 

and the number of grid points in the vortex core radius is roughly 

equal to 12/6/3 for the fine/medium/coarse grids. The initial condi- 

tion discretized on the three grids is presented in Fig. 8 . Note that, 

because too large vortex diffusion without confinement led to an 

interaction of the vortex with the upper and lower periodicity con- 

ditions after a while, the upper and lower boundaries were set at 

y = ±10 for the coarse mesh computations. 

The compressible Euler equations are solved using a freestream 

Mach number of 0.2. The solution is explicitly advanced in time 

using a classical 4-step Runge-Kutta scheme, using a time step 

equivalent to U ∞ 

�t = 0 . 02 , so that a distance L = 100 is trav- 

eled in 25,0 0 0 time steps. Computations were run over 30 0,0 0 0 

time steps, corresponding to a travel length of L = 1200 at the 

freestream velocity (a distance roughly similar to that computed by 

Yee et al. in [31] ). The density contours are plotted every 25,0 0 0 

time steps so that, considering the length of the grid box and 

the periodicity conditions, the vortex is switched back by �X = 10 

from plot to plot, starting at X = 105 after 25,0 0 0 time steps, and 

the final solution after 30 0,0 0 0 time steps should be located again 

at X = 105 and superimposed with the one after 25,0 0 0 time steps. 

An example of result is shown in Fig. 9 for the 2nd-, 3rd and 

5th-order baseline schemes, clearly showing the effect of dissi- 

pation and dispersion on the solution. From 2nd- ( Fig. 9 (c)) to 

3rd-order ( Fig. 9 (b)), the large reduction of dispersion error re- 

sults in an improved vortex trajectory, while both schemes have 

similar dissipation properties resulting in a loss of the vortex af- 

ter 5 to 6 passages. Switching to 5th-order ( Fig. 9 (a)) significantly 

reduces the dissipation errors, and the vortex is reasonably well 

captured all along the period of time considered. Note however 

that, even with the 5th-order scheme and the fine mesh vorticity 

is dissipated over time. Another measure of vortex dissipation is 

the time evolution of minimum density, plotted in Fig. 10 for the 

three grids. Density at the vortex centre tends to rise up to val- 

ues close to the freestream density. The 5th-order scheme keeps 

a more concentrated vortex much longer than lower order ones, 

albeit the effect of numerical dissipation becomes evident after a 

sufficiently long time elapsed ( Fig. 10 (a)). When considering the 

medium ( Fig. 10 (c)) and the coarse mesh ( Fig. 10 (e)), the vortex is 

rapidly dissipated whatever the order of the numerical scheme. 

The introduction of vorticity confinement changes the situa- 

tion drastically. With the 2nd-order scheme only 1st-order confine- 

ment was used, while both 1st-order and 3rd-order confinement 

were used with the 3rd-order and 5th-order schemes. For the 

2nd- and 3rd-order schemes, the confinement parameters were set 

to ε = 0 . 16 , ε/μ = 1 . 67 . For the 5th-order scheme, values of ε = 

0 . 02 , ε/μ = 1 . 67 were used except with the coarse mesh where 

we had to double ε = 0 . 04 with 1st-order confinement in order 

to maintain the vortex in the solution, the lower value ε = 0 . 02 

leading to a progressive dissipation of the vortex in the simulation. 

When considering fine mesh results ( Fig. 10 (b)), all solutions com- 

puted with confinement converge towards a more concentrated 

vortex profile than the original one with smaller value of den- 

sity. A similar asymptotic state is reached whatever the order of 



0.7

0.7

0.
7

0.9

0.
9

0.9

0.9

0.9

(a) Fine mesh

0.7

0.7

0.7

0.9

0.
9

0.9

0.
9

0.9

(b) Medium mesh

0.5
0.

7 0.7

0.7
0.9

0.
9

0.9

0.
9

0.9

(c) Coarse mesh
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Fig. 9. Snapshots of iso-density contours at fixed time intervals on the fine mesh with the 5th-order (a), 3rd-order (b) and 2nd-order (c) schemes - the computed number

of passages (N) across the domain is labelled below each vortex.

confinement and scheme. However, computations with 3rd-order 

confinement converge slower to their asymptotic state, more es- 

pecially when the 5th-order scheme is used. The situation with 

the medium mesh is different ( Fig. 10 (d)). With 1st-order confine- 

ment, all numerical schemes also converge towards a same asymp- 

totic state, but at a slower rate than with the fine mesh. The re- 

sulting vortex is also more concentrated than the original one, 

but less than with the fine mesh. On the contrary, computations 

with 3rd-order confinement remain much closer to the initial vor- 

tex over the computed period of time. Nevertheless, the slow de- 

crease of density at the vortex centre over time gives an indica- 

tion that the vortex is asymptotically converging towards the same 

structure as with 1st order confinement. Finally, for the coarse 

mesh ( Fig. 10 (f)), the vortex is maintained in the solution with all 
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Fig. 10. Time evolution of the minimum density at the vortex centre on the fine (a-b), medium (c-d) and coarse (e-f) mesh.

confinement schemes. Again, all computations with 1st-order con- 

finement seem to converge towards the same asymptotic state, 

but the asymptote is yet longer to reach than with the medium 

mesh. The computations with 3rd-order confinement have not yet 

reached their asymptotic state. 

In order to better analyze the solutions, two examples of den- 

sity profiles across the vortex are plotted after 25,0 0 0 time steps, 

i.e. after the vortex has crossed the computational domain. In

Fig. 11 , the effect of the confinement order is compared for the

same 5th-order scheme. Generally, the 3rd-order confinement term

provides solutions in closer agreement with the exact one dur- 

ing this “early” phase of the computation, whatever the mesh 

used. The fine and coarse mesh show a small overestimation of 

vortex strength while the agreement is almost perfect with the 

medium grid. On the contrary, with 1st-order confinement, the 

vortex strength is strongly overestimated with the fine mesh and 

underestimated with the coarse mesh, although the value of ε was 

doubled in this last case. As a matter of fact, only the medium 

mesh provides a moderate overestimation of vortex strength at 

this time of the computation. The results obtained without con- 

finement are also plotted, showing the benefits of confinement 

schemes, especially for the medium and the coarse mesh. 

The density profiles obtained with the 2nd-order, 3rd-order and 

5th-order schemes with 1st-order confinement and 3rd-order con- 

finement are compared in Fig. 12 . Again, the better capability of 

3rd-order confinement to maintain the initial vortex during this 

early phase of the advection can be noted. Furthermore, for the 

same 3rd-order confinement term, the superiority of the 5th-order 
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Fig. 11. Density profiles across the vortex after 25,0 0 0 time steps with the 5th-order scheme for the fine (a), medium (b) and coarse (c) grids.

scheme over the 3rd-order scheme is also clear. The reason is 

that, because the numerical dissipation of the 5th-order scheme 

is lower, the magnitude of the confinement parameters is also re- 

duced by a factor of 4 to 8 with respect to the 3rd-order scheme. 

Finally, the lower dispersion error of the 5th-order scheme results 

in a more accurate prediction of vortex position at this time of the 

computation. 

When very long periods of time are considered (30 0,0 0 0 time 

steps, Fig. 13 ), confinement has a stronger effect on the vortex den- 

sity profile. As already noted before, computations with 1st-order 

confinement are in their asymptotic range and the computed vor- 

tex is significantly stronger than the original one with a minimum 

density much smaller than the exact solution. The solution is also 

fairly similar for all of the three grids considered. However, the cu- 

mulated dispersion error over time is different from grid to grid 

with a phase lead for the fine and medium grid and an apparent 

phase lag for the coarse grid (as will be discussed below, the com- 

puted vortex position is actually ahead of the exact one of a little 

less than one mesh domain length). With 3rd-order confinement, 

the vortex position is generally more accurate, due to the reduced 

dispersion error of the underlying 3rd- and 5th-order scheme. For 

the medium and the coarse mesh, the density profiles are also 

close to the exact solution, while the fine mesh solution is close 

to that obtained with 1st-order confinement. In this last case, this 

is because both 1st-order and 3rd-order confined solutions have 

reached their asymptotic shape, as was found in Fig. 10 (b). 

The trajectory error of the vortex for the three grids is pre- 

sented in Fig. 14 for the various cases presented above (2nd-order 

scheme with 1st-order confinement, 3rd-order scheme with 3rd- 

order confinement, 5th-order scheme without and with 1st- and 

3rd-order confinement). Without confinement (i.e. with the 5th- 

order scheme), the vortex is rapidly dissipated on the coarser 

mesh, therefore the predicted vortex trajectory shows very large 

errors. This is no more the case with the medium and the fine 
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Fig. 12. Density profiles across the vortex after 25,0 0 0 time steps for the fine (a), medium (b) and coarse (c) grids and vorticity confinement ( ε = 0 . 16 , ε/μ = 1 . 67 for 2nd- 

and 3rd-order schemes, ε = 0 . 02 / 0 . 04 , ε/μ = 1 . 67 for 5th-order scheme). 

grids for which the error remains very small all along the com- 

puted period of time (the plotted errors are normalized by the vor- 

tex core radius). When confinement is applied, the error also re- 

mains small for all computations with the 5th-order scheme, gen- 

erally less than one core radius. Small deviations in longitudinal 

vortex position are nevertheless obtained after a while with the 

fine grid, contrary to what is obtained without confinement. How- 

ever, as is also the case for all grids, 3rd-order confinement reduces 

this error with respect to 1st-order confinement. The results ob- 

tained with the 3rd-order scheme and 3rd-order confinement and 

with the 2nd-order scheme and 1st-order confinement are less sat- 

isfactory since significantly larger errors in vortex position are ob- 

tained. They are due to the larger dispersion error of the under- 

lying 2nd- and 3rd-order scheme, so that the 3rd-order confine- 

ment reduces the error with respect to the 1st-order confinement. 

An exception is noticeable for the axial position error with the 

coarse mesh where the 3rd-order scheme and 3rd-order confine- 

ment produces a larger error than the 2nd-order scheme and 1st- 

order confinement. However, this is only for relatively short times 

of advection as the 2nd-order scheme with 1st-order confinement 

predicts a much larger error for larger times (see Fig. 13 (c) where 

the vortex computed with the 2nd-order scheme has almost trav- 

elled once more across the grid). Furthermore, this larger error 

of the 3rd-order scheme with 3rd-order confinement is probably 

related to an unnecessarily large confinement parameter with re- 

spect to the truncation error of the underlying 3rd-order scheme, 

this parameter being set at the same value as that of the 2nd-order 

scheme and 1st-order confinement. 

Finally, typical results of a parametric study on the sensitivity of 

vortex solutions to confinement parameters are shown in the fol- 

lowing four figures. First, the effect of the parameter ε is presented 

for a fixed value of ε 
μ = 1 . 67 . The density profiles computed with 
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Fig. 13. Density profiles across the vortex after 30 0,0 0 0 time steps for the fine (a), medium (b) and coarse (c) grids and vorticity confinement ( ε = 0 . 16 , ε/μ = 1 . 67 for 2nd- 

and 3rd-order schemes, ε = 0 . 02 / 0 . 04 , ε/μ = 1 . 67 for 5th-order scheme). 

the fine mesh are compared after 25,0 0 0 time steps in Fig. 15 with 

1st-order and 3rd-order confinement. For 1st-order confinement, 

the confinement parameter was varied over the range 0.0 0 015625 

≤ ε ≤ 0.005, and with third-order confinement it was varied over 

the range 0.0 0 0625 ≤ ε ≤ 0.02. The solutions with 3rd-order con- 

finement are less dependent on the choice of ε and closer to the 

exact one. After 30 0,0 0 0 time steps ( Fig. 16 ), both 1st-order and 

3rd-order confinement methods behave similarly. Vortex strength 

increases with the confinement parameter ε, and if the value of ε 
is too small, the resulting vortex is weaker than the original one. 

In that case, the magnitude of the confinement terms is too small 

with respect to the artificial viscosity of the 5th-order scheme. For 

the larger values of ε used, the vortex is slightly moved ahead of 

its exact position, more particularly with 3rd-order confinement, 

and discrepancies with respect to the exact solution begin to be 

significant. 

For a fixed value of the confinement parameter ε = 0 . 01 , the ef- 

fect of the diffusion/confinement ratio μ/ ε is now investigated. The 

density profiles are shown in Fig. 17 after 25,0 0 0 time steps. The 

3rd-order confinement provides results in closer agreement with 

the exact solution, whatever the value of μ/ ε, which is an effect of 

the higher accuracy of 3rd-order confinement. After 30 0,0 0 0 time 

steps ( Fig. 18 ), the solutions are closer to their asymptotic state 

and very similar results are obtained with 1st-order and 3rd-order 

confinement. The only difference actually appears for the lower 

values of μ/ ε. For μ/ε = 0 . 9 , the confinement parameter ε = 0 . 01 

is slightly too small with 3rd-order confinement and the vortex is 

weaker than the exact solution. 

The results of this parametric study thus show that the effect 

of confinement parameters is reasonably small for short to moder- 

ate times of advection (corresponding to 100 vortex radii in terms 

of advection distance). From this aspect, 3rd-order confinement 
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Fig. 14. Error in vortex trajectory on fine (a,b), medium (c,d) and coarse (e,f) grids without and with vorticity confinement ( ε = 0 . 16 , ε/μ = 1 . 67 for 2nd- and 3rd-order 

schemes, ε = 0 . 02 / 0 . 04 , ε/μ = 1 . 67 for 5th-order scheme). 
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Fig. 15. Effect of confinement parameter on density profiles across the vortex after 25,0 0 0 time steps for the fine grids, 5th-order scheme, and 1st-order (a) or 3rd-order (b)

vorticity confinement ( ε/μ = 1 . 67 ). 
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Fig. 16. Effect of confinement parameter on density profiles across the vortex after 30 0,0 0 0 time steps for the fine grids, 5th-order scheme, and 1st-order (a) or 3rd-order

(b) vorticity confinement ( ε/μ = 1 . 67 ).
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Fig. 17. Effect of dissipation/confinement ratio on density profiles across the vortex after 25,0 0 0 time steps for the fine grids, 5th-order scheme, and 1st-order (a) or 3rd- 

order (b) vorticity confinement ( ε = 0 . 01 ). 
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Fig. 18. Effect of dissipation/confinement ratio on density profiles across the vortex after 30 0,0 0 0 time steps for the fine grids, 5th-order scheme, and 1st-order (a) or

3rd-order (b) vorticity confinement ( ε = 0 . 01 ). 

is superior to 1st-order because the asymptotic state imposed by 

the confinement terms is reached later and thus computed solu- 

tions are closer to the exact one. When very long periods of time 

are computed, both methods converge towards similar asymptotic 

states where the confinement parameters drive the solution. Too 

small values of the confinement parameter lead to a progressive 

dissipation of the vortex during its advection, but at a lower rate 

than without confinement. Too large values of the confinement pa- 

rameters lead to a moderate increase of the dispersion errors. As a 

consequence, it is recommended to take this parameter as low as 

possible. 

3.3. Airfoil-vortex interaction 

3.3.1. Test case 

The final step consists in a validation of the method in a re- 

alistic 2D unsteady BVI application. For this purpose the experi- 

ment of parallel blade-vortex interaction carried out by Kitaplioglu, 

Caradonna et al. in [33,34] for a rotor blade equipped with a con- 

stant NACA0012 airfoil section was chosen. Here, a 2D computa- 

tion of the interaction for a blade section located at r/R = 87 . 6% is 

considered. Similar configurations are commonly studied in aeroa- 

coustics since airfoil-vortex interaction is a major source of aero- 

dynamic noise. This case was previously studied in [24] and in 

the frame of the ONERA-JAXA cooperation [35] . The airfoil is set 

at 0 ° incidence with a freestream Mach number M ∞ 

= 0 . 626 . The 

clockwise-rotating vortex is initialized at x = −10 c, y = −0 . 25 c us- 

ing the Scully model [36] . The intensity is � = 0 . 2536 and the core 

radius δ = 0 . 162 c. 

Meshing was performed by utilizing a C-type curvilinear mesh 

for the NACA airfoil constructed using tools of the Cassiopée suite 

[37] and a set of Cartesian background meshes communicating

via Chimera interpolation [38,39] . Views of the computational do- 

main are presented in Fig. 19 . The background mesh is divided 

into four zones of varying density. To minimize mesh size, the 

vortex path is not covered by a uniform Cartesian region, but 

the mesh is refined only close to the airfoil so that a reasonable 

size ratio between the NACA and background mesh is maintained 

( Fig. 19 (b)). Studies were performed for varying background mesh 

density �x min = 0 . 025 / 0 . 0125 on the coarse and fine grids respec- 

tively, where �x min refers to the thickness of the finest background 

region. The NACA mesh is composed of 228 × 10 points for the 

coarse mesh and 450 × 18 points for the fine mesh. The cell size 

ratio is 1/2 between the two finest background zones that cover 

the vortex advection path and 1/3 for the other cases. The coarse 

and fine grids contain a total of 66.147 and 254.057 cells respec- 

tively. The approximate number of cells per vortex radius is 3 and 

6 during the main part of the advection, thus corresponding to the 

coarse and medium mesh of the previous inviscid vortex advec- 

tion study. A finer mesh of 3.252.720 cells with �x = 0 . 00625 in 

the vortex advection region and a 914 × 36 point mesh for the 

NACA was also generated and studied as a higher-accuracy refer- 

ence solution. For this case, the finest background region covers 

the complete vortex path during the interaction, and not only the 

area close to the airfoil. 

3.3.2. Solution algorithm 

Presented studies are based on the compressible Euler equa- 

tions since they are representative of the problem and have been 

shown to produce similar results to the Navier-Stokes equations 

for similar applications. The same 2nd, 3rd and 5th-order centered 

schemes of Saunier et al. [26] as the previous studies have been 

used for space discretization. For each case the order of accuracy 

in the Cartesian and curvilinear regions is the same except for the 

5th-order scheme, which is combined with a 3rd-order accurate 

weighted curvilinear scheme [40] . Time integration is performed 

using an implicit 2nd-order backward Euler algorithm and the re- 

sulting Gear equation is solved using an LU factorization. The time 

step is �t = 0 . 01 / 0 . 0 05 / 0 . 0 025 for the coarse, fine and reference 

meshes respectively, so that the maximum CFL number is the same 

for all cases. Computations were run for non-dimensional time 

t = −10 to t = 10 so that interaction occurs approximately at t = 0 . 

Finally, Chimera interpolations are 2nd-order accurate for the 2nd- 

order scheme and 3rd-order accurate for higher order schemes. 

The reference solution is computed using the 5th-order scheme. 

Lastly, for cases with VC, the source term is applied in Cartesian re- 

gions only and the confinement parameters were set to μ/ε = 0 . 6 

and ε = 0 . 02 . 

3.3.3. Baseline case 

Reference results for the finer mesh with �x min = 0 . 00625 us- 

ing the 5th-order baseline scheme are shown in Fig. 20 and show 

satisfactory preservation of the vortex shape during the advec- 

tion phase. Profile extractions, performed horizontally for x = 0 . 5 

in both directions from the position of maximum absolute vor- 

ticity value, show an amplification of core vorticity by approxi- 

mately 7%. This might be caused by the downstream presence of 

the airfoil combined with the fact that the initial vortex is not an 
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Fig. 19. Details of the coarse computational domain ( �x = 0 . 025 in the finest Cartesian region). The background mesh is divided in four zones of varying density. 

exact solution of the Euler equations, meaning that it will need 

to deform in order to eventually relax towards an exact solution. 

Figs. 20 (c)- 20 (d) display the time evolution of pressure on the air- 

foil surface in the upper and lower sides respectively at x/c = 0 . 02 . 

Results are compared with experimental measurements of Kitapli- 

oglu, Caradonna et al. at the same positions. Computational re- 

sults are different from the experimental measurements, probably 

as a result of the 3D effects of the experiment that are not ac- 

counted for in the computational study. For comparison, the com- 

putational curves are displaced so that they match the measured 

pressure coefficient at time t = −7 , as in [35] . Computations pro- 

duce a good approximation of the pressure evolution close to the 

moment of interaction, for both sides. However, a slight miscalcu- 

lation of the interaction time due to phase approximation error can 

be observed. 

Results for different scheme orders on the coarse and fine grids 

underline the effect of numerical error in lower-accuracy numer- 

ical schemes ( Fig. 21 ). Diffusion of the vortex core is severe for 

the coarse mesh, especially for the 2nd-order computation. Iso- 

vorticity contours show that the vortex shape is noticeably dis- 

torted while additional regions of lower vorticity magnitude ap- 

pear upstream of the vortex position. 

Even though vorticity is better preserved as the order of the 

scheme increases, Table 1 shows that the pressure peaks achieved 

on the airfoil are less intense when the vortex is better preserved, 

or equivalently when a higher-accuracy scheme is used. This be- 

haviour is related to the improved phase approximation of the 

scheme, rather than the reduced dissipation error, as can be seen 

from the vortex core position at t = 0 as a measure of dispersion 

error of numerical schemes. The x-position of the vortex is related 

to the interaction time and the y-position is related to the interac- 

Table 1

Vortex position at t = 0 and interaction pressure peaks at x/c = 0 . 02 for the stan- 

dard case.

Case Scheme order x core y core max ( C pU ) min ( C pL )

Experiment - - - 0 .3939 -0 .4715

Reference 5th -0 .2094 -0 .2781 0 .3921 -0 .4583

Coarse mesh 2nd -0 .2125 -0 .0375 0 .4565 -0 .5908

3rd -0 .0875 -0 .1875 0 .4 4 45 -0 .5530

5th -0 .0875 -0 .1875 0 .4334 -0 .5468

Fine mesh 2nd -0 .0563 -0 .1938 0 .4413 -0 .5194

3rd -0 .0688 -0 .2688 0 .4114 -0 .4895

5th -0 .0813 -0 .2688 0 .4098 -0 .4869

tion intensity. The small vertical displacement of the vortex for the 

reference computation with regard to the initialization can be at- 

tributed either to the airfoil presence in the flow field or to the dis- 

persion error of the 5th-order scheme. For the 2nd-order scheme, 

the vortex is positioned closer to the airfoil in the y-direction than 

for the other cases, both for the coarse and fine mesh. Especially 

for the 2nd-order scheme on the coarse mesh, increased dispersion 

error leads to significant amplification of the interaction. The effect 

of this error can be observed as an increase of the interaction pres- 

sure peak on both sides. For higher orders the dispersion error is 

lower, so the interaction pressure peaks are reduced even if vortex 

intensity is better-preserved. 

The computed vortex of the lower-accuracy 2nd-order com- 

putation on the coarse mesh is positioned further from the 

airfoil in the x-direction, which is fortuitously in agreement 

with the reference computation. This error is consistent with 

the miscalculation of the time of the interaction pressure peak 
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Fig. 20. Reference solution with �x = 0 . 00625 during the complete advection distance, 5th-order scheme. 

( Figs. 20 (c)- 20 (d)). All other cases show a different vortex position, 

meaning that for the reference solution this error might be con- 

nected to the relaxation of the vortex shape towards an exact so- 

lution of the Euler equations, an effect that is observed when the 

simulation precision is high enough. For the 2nd-order computa- 

tion on the coarse mesh, the miscalculation is a result of disper- 

sion error of the lower-accuracy scheme. 

3.3.4. Effect of confinement 

The original 1st-order confinement term acts rapidly on vor- 

ticity regions and dominates the solution thus compromising the 

higher precision of the underlying 5th-order scheme ( Fig. 22 ). This 

overly confining property of the original method is more appar- 

ent on the fine mesh, where the vortex is already better preserved, 

while 3rd-order confinement presents increased compatibility with 

the higher-order underlying scheme. Indeed, iso-vorticity contours 

and profile extractions show that the higher-order confinement 

formulation confines vortical regions at a rate that better matches 

the precision of the high-order underlying scheme, thus allowing 

to preserve vorticity without altering the structure of the vortex 

( Figs. 22 - 23 ). 

For the case of a 2D isolated vortex it was found that confine- 

ment does not introduce any modification to the dispersive parts 

of the flow equations. The simplifcations made in the vorticity 

transport equation (leading to a simple advection equation for a 2D 

isolated vortex) do not necessarily apply for more complex applica- 

tions, but the vortex position at t = 0 , presented in Table 2 , shows 

that confinement introduces small or no modification in vortex tra- 

jectory. Specifically, a difference is observed only in the x-direction 

on the coarse mesh and is the same for both orders of confine- 

ment while the y-position, which determines the strength of the 

interaction, is not modified. On the fine mesh, where the case is 

better-resolved, confinement does not modify the vortex position 

at the moment of interaction. 

The values of pressure peaks on the upper and lower side of 

the airfoil are presented in the same table. As expected, absolute 

values of the interaction pressure increase when confinement is 

applied, or equivalently when the vortex intensity is stronger. It 

is important to note that the interest of this case is to show that 

confinement is compliant with the physics of the airfoil-vortex in- 

teraction rather than significantly improve the calculation of the 

peak pressure, since the computed pressure itself is not directly 
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Fig. 21. Iso-vorticity contours at t = 0 for 2nd-order (left), 3rd-order (middle) and 5th-order schemes (right). 
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Fig. 22. Iso-vorticity contours at t = 0 using the 5th-order scheme without confinement (left), with 1st-order confinement (middle) and 3rd-order confinement (right), 

μ/ε = 0 . 6 and ε = 0 . 02 . 

comparable to the 3D experiment as mentioned above. Similarly 

to the baseline schemes without confinement, the absolute peak 

values of computed pressure are increased compared to the ref- 

erence case due to the dispersion error of the underlying 5th- 

order scheme, especially in the y-direction, which results in a 

stronger interaction. Finally, Fig. 24 shows that confinement does 

not disturb the stabilization of the flow after t = 0 , further prov- 

ing the compliance of the method with the interaction physics. 

Even though the use of a VC term of the same order of accu- 

racy as the baseline scheme would be preferable, this application 
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Fig. 23. Vorticity profile over time using the 5th-order scheme and vorticity confinement, μ/ε = 0 . 6 and ε = 0 . 02 . 

Table 2

Vortex position at t = 0 and interaction pressure peaks at x/c = 0 . 02 with vorticity confine- 

ment.

Case Scheme order VC order x core y core max ( C pU ) min ( C pL )

Experiment - - - - 0 .3939 -0 .4715

Reference 5th - -0 .2094 -0 .2781 0 .3921 -0 .4583

Coarse mesh 5th - -0 .0875 -0 .1875 0 .4334 -0 .5468

” 1st -0 .0625 -0 .1875 0 .4360 -0 .5487

” 3rd -0 .0625 -0 .1875 0 .4346 -0 .5479

Fine mesh 5th - -0 .0813 -0 .2688 0 .4098 -0 .4869

” 1st -0 .0813 -0 .2688 0 .4113 -0 .4884

” 3rd -0 .0813 -0 .2688 0 .4105 -0 .4877
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Fig. 24. Time evolution of pressure coefficient on the lower side at x/c = 0 . 02 using the 5th-order scheme and vorticity confinement, μ/ε = 0 . 6 and ε = 0 . 02 . 

demonstrates that the third-order VC scheme can achieve im- 

proved vorticity preservation without deteriorating the solution 

due to the introduction of lower-order terms in the flow equations. 

4. Conclusions

A third-order accurate vorticity confinement scheme has been 

developed for the Euler and RANS equations on Cartesian grids. It 

is a generalization of previously developed high-order confinement 

schemes for the scalar advection equation. In this last case, the- 

ory and numerical experience show that computed structures relax 

asymptotically to an analytical shape that depends on the compu- 

tational grid. Furthermore, higher-order confinement schemes re- 

lax to the asymptotic solution in a slower rate than lower-order 

ones, a property that is in line with their reduced numerical error. 

In the case of the Euler/RANS equations, the procedure is 

simply based on the Laplacian of the original VC2 term and is 

conservative. The analogy of the VC formulation with the linear 

advection case was shown by an analysis of the vorticity transport 

equation, resulting to a similar form for the asymptotic solution. A 



grid convergence study demonstrates the actual order of accuracy 

of the developed scheme and shows that the application of VC 

does not have a negative effect on any particular flow variable 

such as entropy. 

Further numerical tests prove that the new scheme combines 

the confinement capability of the original VC2 scheme with the in- 

creased precision of the higher-order. An advection study of a 2D 

vortex over very long distances shows that vortices eventually dif- 

fuse, even for high-order schemes, but VC allows to preserve vor- 

ticity without altering the vortex structures. Additionally, the third- 

order VC scheme was shown to be more precise in terms of pre- 

dicted vortex intensity and trajectory than its first-order counter- 

part, both for short and long advection distances. Finally, an ap- 

plication of the method in an airfoil-vortex interaction case shows 

that third-order VC presents increased compatibility with higher- 

order schemes and produces consistent results with the previous 

studies without modifying the interaction physics. 

The developed method allows for preservation of vortical struc- 

tures over long distances with little cost compared to finer mesh 

computations and without special treatment for different applica- 

tions. Due to its increased precision, the third-order VC scheme 

acts in a rate that better matches the numerical error of high-order 

schemes. As such, it can be a useful tool for problems dominated 

by dissipation, even if it can introduce small dispersion errors. Fur- 

thermore, the derivation procedure of 3rd-order VC can be recur- 

sively performed to obtain even higher orders for use with higher- 

order baseline schemes. 
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