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1. Introduction

The design and analysis of complex engineering systems that one can find
in major technical disciplines and industries (e.g., aerospace systems, nu-
clear power plants, bridges) rely intensely on both modeling and simulation.
Modeling often implies to start from mathematical and physical equations in
order to build relevant computer models. As for simulation, it aims at pro-
viding relevant and efficient numerical tools so as to simulate the systems’
behavior, especially when physical phenomena cannot be directly observed
nor measured experimentally. The computer models commonly used are said
to be deterministic, meaning that for two identical runs with the same input
values, the same model output will be obtained twice (i.e., there is no in-
trinsic stochasticity within the computer model). Such models are typically
encountered in industrial applications when dealing with ordinary or partial
differential equations solvers (e.g., finite element simulations in structural
analysis, finite volume schemes for computational fluid dynamics). As a re-
sult, these codes are often complex to run, potentially costly-to-evaluate and
sometimes, can be inserted in computational workflows. For these reasons,
they can be considered as black-box models, i.e., models that are just consid-
ered by the user as an input-output function. Assessing the reliability in such
a context requires to take the various sources of uncertainties which might
affect the behavior of the system into account. Uncertainties may occur in
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the initial conditions, in the physical properties of the system (i.e., variabil-
ity of mechanical properties of materials due the manufacturing process), in
some environmental variables (i.e., uncertain loadings due to stochastic wind
profiles) or finally, in the modeling itself (e.g., imperfect mathematical mod-
els of the real underlying physical phenoma, limited numerical accuracy). In
this chapter, one will consider a probabilistic framework for the input un-
certainty modeling assuming sufficient information is available to construct
a relevant input probabilistic model (i.e., through assigning a structure of
random variable to uncertain input variables). Once the sources of uncer-
tainties have been clearly identified, it seems relevant to characterize them
following whether the analyst can, in near-term and regarding a reasonable
budget, reduce them (or not) so as to improve the accuracy of the predic-
tions. From an engineering point of view, one can distinguish between two
types of uncertainties:

• aleatory uncertainty refers to natural randomness or any irreducible
uncertainty in a given context regarding a given maximum allowable
budget;

• epistemic uncertainty refers to the lack of knowledge of the analyst
and is potentially reducible by acquiring more information (i.e., data,
measurements, expert judgements);

Following [1], such a distinction between aleatory and epistemic uncertainty
should not be considered as a classification of phenomena, but only a prag-
matic way of distinguishing between the uncertainties on which the analyst
can allocate some budget for gaining knowledge and those for which it is im-
possible. Based on this classification, the analyst can take better information-
based choices. For the intested reader, more information about this topic can
be found in Chapter 1.

In this chapter, one considers that aleatory uncertainty is taken into ac-
count through the use of an input probabilistic model, i.e., by assuming
some probability distributions for the uncertain inputs (the type/shape
of the law is supposed to be known). As for epistemic uncertainty, it is
assumed to occur in the modeling of the input distributions (e.g., due to
a lack of knowledge about the distribution parameters). This distribution
parameter uncertainty potentially arises from statistical uncertainty (due
to a limited amount of data) or could appear due to the absence of con-
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sensus in the expert elicitation process. As a result, one has to consider a
bi-level input uncertainty composed of:

. the aleatory uncertainty modeled by random variables;

. the epistemic distribution parameter uncertainty.

Nonetheless, all these uncertainties have to be incorporated as soon as
possible in the design process to ensure an optimized, reliable and safe de-
sign regarding standards and customers’ requirements. This management of
uncertainties can be achieved following a general uncertainty quantification
methodology such as presented in Figure 1 [see, e.g., 2].

Uncertainty quantificationmethodology

Step A
Problem specification

Step B
Uncertainty modeling

Step C
Uncertainty propagation

Step D
Sensitivity analysis

Black-box model

↪→ SAMO

QoI→ Y / Var[Y ] / . . .

↪→ ROSA

QoI→ Pf / 1F(·) / . . .

Input probabilistic model
↪→ Input random vector

X ∼ fX(x;θ)

. Types of the marginals a

. Distribution parameters

. Copula b

a. Here, supposed to be known.
b. Here, the independent copula.

Goal-oriented output
↪→ Model output a

Y =M(X)

↪→ Reliability measure b

Pf = P(Y ≥ yth)

a. Or any quantity related to the global beha-
vrior of the output distribution (e.g., the first two
moments).

b. Or any other reliability-based quantity related
to the tail behavior (e.g., a quantile, a reliability
index, a LSF or an indicator function)

Figure 1: Illustration of the uncertainty quantification methodology.

Thus, starting from the black-box computer model and its specification
(Step A), one has to choose a mathematical framework to model the in-
put uncertainty (Step B). Then, the input uncertainties can be propagated
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through the computer model (Step C) so as to get the desired quantity of in-
terest (QoI). This step is mainly driven by the choice of the QoI to estimate:
for instance, one might be interested in the global characterization of the
model output distribution (e.g., by computing its first two moments), or by
the estimation of a high-order quantile (e.g., in the context of risk analysis),
or finally by estimating an exceedance probability with respect to (w.r.t.) a
safety threshold for reliability assessment. Such a probability is also denoted
“failure probability” in the reliability community. Usually, in many industrial
contexts, the sought failure probability is associated to a rare event, and is
thus difficult to estimate. Once the QoI has been statistically estimated, one
might be interested in performing a sensitivity analysis (SA) so as to inves-
tigate the robustness of the estimated QoI regarding the input uncertainty
(Step D). As stressed by several authors, SA should be performed according
to a range of general conceptual objectives, called “SA settings”, properly de-
fined in various references [see, e.g., 3]. As an example, one can mention the
Factor Prioritization (FP-setting) which stipulates that the aim of SA could
be to identify the key inputs driving the model behavior. Thus, a possible
reduction of the uncertainty affecting these inputs might lead to the largest
reduction of the output uncertainty. Another objective could be the Factor
Fixing (FF-setting) which aims at identifying the noninfluential inputs which
could be fixed at some given values without any loss of information about
the output.

As already pointed out by several authors [see, e.g., 4, 5, 6], performing
SA is subordinated to the choice of the QoI. Indeed, the key input variables
responsible for the central part of the output distribution can be very dif-
ferent from the ones responsible for the tails (i.e., extreme quantiles). Thus,
following the framework adopted in [7] 1, one can consider that SA can be
split into two types depending on the QoI being considered:

. Sensitivity Analysis of Model Output (SAMO): gathering the
set of methods for local, screening or global SA while considering
the model output (e.g., focusing on the first moments or the entire

1 Note that, in the paper from [8], the authors aim at developing a general approach for
SA, named “Goal Oriented Sensitivity Analysis” (GOSA). The term “Reliability-Oriented
Sensitivity Analysis” (ROSA) used in this work (not dedicated to a single method but to a
wider class of methods) has been mainly borrowed and adapted from this reference. Note
that the recent work of [9] adopted a similar semantics.
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range of the distribution) as the QoI. Comprehensive reviews about
SAMO methods can be found in [10, 11];

. Reliability-Oriented Sensitivity Analysis (ROSA): gathering
the set of methods (from local to global ones) that constrain the SA
to specific QoIs such as the typical reliability measures (e.g., fail-
ure probability, reliability index) or, in a broader sense, any restric-
tive QoI (e.g., binary indicator function of a failure event, values of
the limit-state function, high- or low-order quantile, union of failure
events). Such a definition is close to the notion of “target sensitiv-
ity analysis” recently proposed by [6]. More comprehensive reviews
about ROSA methods can be found in [5] and [7].

To be more specific, the core differences between SAMO and ROSA can
be briefly summarized as follows:

• the nature of the QoI: to make it simple, the idea is to not focus on
the variability of the model output over its whole support (as done in
SAMO), but on a more restrictive domain such as the left/right tail of
the distribution [6];

• the problem of rare event probability estimation: the second difference
is related to the fact that performing ROSA implies first to get “access”
to the reliability measure. In the context of rare event probability es-
timation, this specific task can be difficult and/or computationally ex-
pensive to achieve and may require dedicated techniques. Futhermore,
one needs to ensure the QoI has been accurately estimated so as to
no introduce any strong bias in the ROSA. This part often implies to
use properly tuned rare event probability estimation algorithms (see,
e.g., Chapter 6 for more information about this topic);

• a reinterpretation of the traditional SA settings: as highlighted in [12]
and [5], the specific context of ROSA implies to reinterpret the tra-
ditional SA settings listed previously. As an example, the FF-setting
should be carefully examined as a realization of an undesired failure
event might be due to a combination of several input effects, rather
than a strong effect from a sole input.

For a broader and deeper review of existing ROSA methods, the interested
reader is invited to refer to [5, 6] and [7].
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In this chapter, one will mainly focus on a specific class of ROSA methods
and its extension to reliability problems involving two uncertainty levels in
input. This chapter is therefore organized as follows. Section 2 introduces the
theoretical framework by introducing the core notations used in the following.
Section 3 aims at presenting the Sobol indices on the indicator function.
Section 4 proposes an extension of the previous indices to the case of a bi-
level input uncertainty. Section 5 investigates an efficient strategy based on
both simulation and kernel density estimation so as to get efficient estimators
for the indices. Section 6 illustrates the benefits of such a methodology on
different test-cases (two academic test-cases and one black-box computer
code issued from aerospace research). Finally, a conclusion gathering the
most important outcomes and some perspectives of this chapter are given in
Section 7.

2. Theoretical framework and notations

The black-box computer model under study can be modeled as follows:

M :

∣∣∣∣
DX ⊆ Rd −→ DY ⊆ R

X(ω) 7−→ Y =M(X(ω))
(1)

where X = (X1, . . . , Xd)
> is a d-dimensional second-order random vector

gathering the input random variables. In the present study, these random
variables are supposed to model the inputs affected by aleatory uncertainty
(basically, the natural variability which is considered as irreducible). This
continuous random vector is defined on a probability space (Ω,A,P) with
values in Rd. In the rest of this chapter, the dependence over the sample space
in X(ω) will be omitted and the notation x will be used to denote a realization
of the input random vector. One assumes that the joint probability density
function (PDF) of X exists and is given by fX : DX ⊆ Rd → R+. This joint
PDF is basically made of the marginal distributions (denoted by fXi

, i ∈
{1, . . . , d}) and a stochastic dependence structure (i.e., a copula) between
all these marginals. In this chapter, one assumes to be in the independent
copula case [13, 14], meaning that the input variables are independent and,
consequently, that the joint PDF is given by the product of the marginals.
Moreover, it is assumed that the joint PDF belongs to a parametric family
Pθ such that:

Pθ = {fX(·;θ) | θ ∈ Dθ ⊆ Rnθ} (2)
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where θ stands for the vector of distribution parameters. In the following,
the parametric dependence on θ will be explicitly mentioned when necessary.
Or else, it will be ommitted for the sake of conciseness.

Due to the uncertainties in input and by propagating them through the
modelM(·) (which is assumed to be deterministic), one obtains the model
output, denoted by Y . This quantity is a random variable (assumed to be
scalar in this chapter) and is characterized by its PDF fY : DY ⊆ R →
R+. The performance of the system of interest, modeled by M(·), can be
measured by a deterministic scalar function g : Rd → R called the limit-
state function (LSF). A standard formulation for the LSF in the context of
reliability assessment is given by:

g(X) = yth −M(X) = yth − Y (3)

where yth ∈ R is a characteristic threshold output value beyond the one
the system is considered as in a failure state. For any realization x of the
input random vector, one can distinguish between two canonical domains:
the failure domain given by F = {x | g(x) ≤ 0} and the safe domain
given by S = {x | g(x) > 0}. The zero values of the LSF represent an
hypersurface in Rd called the limit-state surface (LSS) which is defined by
F0 = {x | g(x) = 0}. Thus, by definition, the LSS belongs to the failure
domain.

Finally, a widely used QoI in reliability assessment is the failure probabil-
ity, denoted by Pf , and given by the following d-fold integral:

Pf = P(Y ≥ yth) = P (g(X) ≤ 0)

=

∫

F
fX(x)dx =

∫

DX

1F(x)fX(x)dx = EfX [1F(X)]

(4)

where dx = dx1 . . . dxd and 1F(·) is the indicator function of the failure do-
main defined such that 1F(x) = 1 if x ∈ F and 1F(x) = 0 otherwise. In the
rest of this chapter, it will be assumed that the failure event is rare, i.e., that
the failure probability Pf is small (e.g., Pf � 1

N
with N the available simu-

lation budget). In daily engineering practice, rare event failure probabilities
often vary from 10−2 to 10−9 [2]. The latter order of magnitude may often
characterize highly-safe complex engineering systems for which the safety re-
quirements are drastic (e.g., aerospace systems, nuclear power plants or civil
engineering structures).
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From a practical point of view, a failure probability as defined in Eq. (4)
can be estimated using various techniques: one the one hand, using approx-
imation-based techniques such as the first/second-order reliability methods
(FORM/SORM) or any metamodel-based technique such as, e.g., Gaussian
processes or kriging, support vector machines and polynomial chaos expan-
sions (see Chapter 7 for a review of a few kriging-based adaptive strate-
gies); on the other hand, sampling-based techniques such as crude Monte
Carlo sampling (CMC), importance sampling (IS), subset sampling (SS) (see
Chapter 6 and [15] for more comprehensive reviews). In the following of this
chapter, the two algorithms that will be used are crude Monte Carlo (CMC)
sampling and subset sampling (SS) 2.

For both CMC and SS, one needs to consider a sample {X(j)}Nj=1 of N
independent and identically distributed (i.i.d.) copies of the input random
vector X drawn according to fX (in the following, this sentence will be de-
noted by {X(j)}Nj=1

i.i.d.∼ fX). Therefore, one will consider the following elite set
E = {X(j), 1 ≤ j ≤ Nfail | 1F(X(j)) = 1}, i.e., the Nfail samples that lead to
failure regarding the indicator function (or, in other words, the samples which
belong to the failure domain F). These elite points are distributed according
to the theoretical conditional PDF fX|F , which is unknown in practice. As
a remark, in the specific context of rare event probability estimation, this
elite set only contains a few points as the failure domain might be difficult
to attain.

Once all the core necessary ingredients have been presented to achieve
reliability assessment (i.e., failure probability estimation), Section 3 aims
at presenting a class of global variance-based sensitivity indices adapted to
ROSA.

3. Global variance-based reliability-oriented sensitivity indices

Among several global ROSA indices, variance-based ROSA indices play
a major role as they have both strong theoretical and numerical properties
and, depending on the context, an easier interpretability feature compared to
ther indices [5, 7]. Known limits of variance-based indices are often related to
their estimation cost and their lack of ability to catch high-order relationships

2Note that the formulation of Subset Simulation used in this chapter is consistent with
the one proposed by [16]. This technique is detailed in Chapter 6.
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which are not based on the variance [17]. However, in the ROSA context,
their use has not been widely investigated till very recent works as shown in
the following subsections.

3.1. Introducing the Sobol indices on the indicator function
Following [18], one can notice the following link between failure probabil-

ities and mathematical expectations:

Pf − Pf|Xi
= E[1F(X)]− E[1F(X)|Xi] (5)

where Pf|Xi
is the conditional failure probability when Xi is fixed at its mean

value. Then, by squaring and taking the mean w.r.t. Xi:

EfXi
[(Pf − Pf|Xi

)2] = EfXi

[
(E[1F(X)]− E[1F(X)|Xi])

2] (6)

= Var [E[1F(X)|Xi]] . (7)

Finally, by dividing the last equation by the total variance Var [1F(X)], one
gets the following set of Sobol indices on the indicator function (proposed
independently by [18] and [5]):

S1Fi =
Var [E[1F(X)|Xi]]

Var [1F(X)]
(8)

S1FTi = 1− Var [E[1F(X)|X−i]]
Var [1F(X)]

(9)

where S1Fi is the first-order and and S1FTi the total index associated to the
variable Xi. Therefore, Var [1F(X)] = Pf(1 − Pf) and X−i stands for X
without the i-th component Xi. Moreover, note that, similarly to traditional
Sobol indices in the SAMO context, the total index can be rewritten as [3]:

S1FTi =
E [Var [1F(X)|X−i]]

Var [1F(X)]
. (10)

Advanced sampling-based estimation schemes for these Sobol indices have
been investigated in [19]. However, these numerical schemes still require a lot
of simulations so as to achieve convergence. Very recently, another efficient
estimation scheme using subset sampling has been proposed by [9]. This
work is detailed hereafter. In the following, one will denote by the generic
name“S1F -indices” the set of two indices given in Eq. (8) and Eq. (9).
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3.2. Rewriting Sobol indices on the indicator function using Bayes’ theorem
Following [9], it is proposed to rewrite the S1F -indices presented here-

above as in the following Proposition 1. Note that slightly similar derivations
have been proposed in [20] in the context of moment-independent reliability-
oriented sensitivity indices.

Proposition 1 (Perrin and Defaux, 2019). The first and total order S1F -
indices associated to each input Xi, ∀i ∈ {1 . . . , d}, can be rewritten as fol-
lows:

S1Fi =
Pf

1− Pf

Var

[
fXi|F(Xi)

fXi
(Xi)

]
(11)

S1FTi = 1− Pf

1− Pf

Var

[
fX−i|F(X−i)

fX−i(X−i)

]
(12)

where:

fX|F(x) =
1F(x)fX(x)

Pf

(13a)

fXi|F(xi) =

∫

DX−i

fX|F(x)
d∏

j=1

j 6=i

dxj, DX−i =
d×
j=1

j 6=i

DXj
(13b)

fX−i|F(x−i) =

∫

DXi

fX|F(x) dxi. (13c)

Proof. A sketch of proof can be found in [9]. However, more details are given
below for the sake of clarity. Recalling that Var [1F(X)] = Pf(1 − Pf) and
applying Bayes’ theorem to Eq. (7), one gets:

EfXi
[(Pf − Pf|Xi

)2] = EfXi

[(
Pf − Pf

fXi|F(xi)

fXi
(xi)

)2
]

(14a)

= P 2
f EfXi

[(
1− fXi|F(xi)

fXi
(xi)

)2
]
. (14b)

Hence, for the first order index, by applying the total variance theorem, one
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gets:

S1Fi =
EfXi

[(Pf − Pf|Xi
)2]

Pf(1− Pf)
(15a)

=
Pf

1− Pf

(
Var

[
1− fXi|F(xi)

fXi
(xi)

]
+ EfXi

[
1− fXi|F(xi)

fXi
(xi)

]2)
(15b)

=
Pf

1− Pf

(
Var

[
fXi|F(xi)

fXi
(xi)

]
+ 1− EfXi

[
fXi|F(xi)

fXi
(xi)

]2)
. (15c)

Moreover, one can notice that:

EfXi

[
fXi|F(xi)

fXi
(xi)

]
=

∫

DXi

fXi|F(xi)

fXi
(xi)

fXi
(xi)dxi (16a)

=

∫

DXi

∫

DX−i

fX|F(x)
d∏

j=1

j 6=i

dxj dxi (16b)

=

∫

DX

1

Pf

1F(x)fX(x)dx (16c)

= 1 (16d)

which finally allows to get the expected result. Similar derivations for the
total index can be achieved starting from:

EfX−i
[(Pf − Pf|X−i)2] = P 2

f EfX−i

[(
1− fX−i|F(x−i)

fX−i(x−i)

)2
]

(17a)

and noticing that EfX−i

[
fX−i|F (x

−i)

fX−i (x−i)

]
= 1.

As a result, the two estimators associated to the first-order and total
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indices are given by:

Ŝ 1F
i =

P̂f

1− P̂f

Var

[
f̂Xi|F(Xi)

fXi
(Xi)

]
(18)

Ŝ 1F
Ti

= 1− P̂f

1− P̂f

Var

[
f̂X−i|F(X−i)

fX−i(X−i)

]
(19)

where f̂Xi|F is the estimator of the marginal PDF ofXi at failure, while f̂X−i|F
is the estimator of the joint PDF of X−i at failure, i.e., a (d−1)-dimensional
PDF.

This set of estimators presents the main advantage of requiring only a
post-processing phase of a single elite set E obtained from a reliability analysis
using any sampling-based technique mentioned in Section 2. However, the
difficulty remains the accurate estimation of the densities, especially for the
total indices which involve the estimation of a multivariate density at failure.

In the following, one proposes to adapt the previous set of estimators and
the efficient estimation strategy to the bi-level input uncertainty problem.
This part consists in the core technical contribution of this chapter.

4. Sobol indices on the indicator function adapted to the bi-level
input uncertainty

4.1. Reliability analysis under distribution parameter uncertainty
In this chapter, two levels of uncertainty are considered: the first one

represents the variability in the basic input variables and thus affects the
input random vector X when the second one represents the lack of knowl-
edge affecting the distribution parameters. To do so, the following Bayesian
hierarchical model [21] is considered:

X ∼ fX|Θ(x|θ) : DX ⊆ Rd → R+ (uncertainty level #1) (20a)
Θ ∼ fΘ|ξ(θ|ξ) : DΘ ⊆ Rnθ → R+ (uncertainty level #2) (20b)
ξ = (ξ1, ξ2, . . . , ξnξ

)> ∈ Rnξ (deterministic level). (20c)

In this hierarchical representation, one can distinguish three layers of inputs:

• the first layer is constituted by the random vector X gathering the
basic stochastic variables. Based on prior knowledge, a probability
distribution can be assumed through the choice of a parametric model;
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• the second layer is constituted by uncertain and deterministic (i.e., sup-
posed to be known accurately enough) distribution parameters. Adding
such a layer is consistent with the Bayesian point of view of modeling
either “uncertain” (in the sense of stochastic) or “unknown but fixed”
parameters. In the present chapter, the prior distribution is mostly as-
sumed to be derived from expert judgment or from a limited set of data.
Thus, despite the fact that Bayes’ theorem is not used as an updating
procedure, one can consider that this prior distribution characterizes
the epistemic uncertainty affecting the distribution parameters;

• the third layer is composed of fixed hyper-parameters gathered in ξ.
These hyper-parameters, which can be either some moments or bounds,
characterize the prior distributions of uncertain parameters Θ.

The treatment of distribution parameter uncertainty in reliability assess-
ment has been originally described in several seminal works such as [22, 23].
Then, extensions of the previous works have been proposed in [24, 21, 1].
Therefore, in such a context of bi-level input uncertainty, an interesting re-
liability measure can be the predictive failure probability, defined such that:

P̃f(ξ)
def
= EfΘ|ξ [Pf(Θ)] = EfΘ|ξ

[
EfX|Θ [1F(X)|Θ] |ξ

]
(21a)

=

∫

DΘ

Pf(θ)fΘ|ξ(θ|ξ)dθ (21b)

where Pf(θ) is the conditional failure probability 3 given by:

Pf(θ) = P(g(X) ≤ 0 | Θ = θ) =

∫

DX

1F(x)fX|Θ(x|θ)dx (22a)

= EfX|Θ [1F(X) | Θ = θ] . (22b)

As highlighted in [25], an efficient way to estimate such a QoI can be achieved
by considering a so-called “augmented” random vector Z

def
= (X,Θ)> defined

on DZ = DX × DΘ (where × is the Cartesian product) with joint PDF

3Please note that the conditional failure probability defined here differs from the one
defined in Eq. (5).
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fZ|ξ(z|ξ)
def
= f(X,Θ)|ξ((x,θ)|ξ) = fX|Θ(x|θ)fΘ|ξ(θ|ξ) such that the expression

in Eq. (21b) can be rewritten as follows:

P̃f(ξ) =

∫

DΘ

∫

DX

1F(x)fX|Θ(x|θ)fΘ|ξ(θ|ξ)dxdθ (23a)

=

∫

DZ

1Fz(z)fZ|ξ(z|ξ)dz (23b)

= EfZ|ξ [1Fz(Z) | ξ] (23c)

where Fz = {z ∈ DZ | g(z) ≤ 0}. This formulation, named “Augmented
Reliability Approach” (ARA) numerically implies to estimate the expected
value in Eq (23c). The coupling between the ARA framework to handle
distribution parameter uncertainty and rare event probability estimation
(e.g., ARA/CMC and ARA/SS) has been studied in [25].

In the following, one will only focus on the first two layers in input,
i.e., X and Θ. Thus, for the sake of conciseness, the third layer (i.e., the
hyper-parameters ξ) will be omitted. The dependence on ξ is interesting in
the particular case of failure probability robustess analysis using local ROSA
such as proposed in [26].

4.2. Bi-level input uncertainty: aggregated vs. disaggregated types of uncer-
tainty

When dealing with the bi-level input uncertainty as contained in the
hierarchical model described previously, two cases can be considered:

• on the one hand, one might be interested in the combined effects of both
aleatory and epistemic uncertainties at failure, i.e., one might want to
“aggregate” both sources of uncertainty;

• on the other hand, one might be rather interested in distinguishing be-
tween the contributions of aleatory and epistemic uncertainties, i.e., one
might want to “disaggregate” (or “separate”) both sources of uncer-
tainty.

Concerning the first problem, adapting the previous S1F -indices can be
achieved by considering the equivalent indices evaluated on the augmented
vector Z = (X,Θ)>. Such indices would reflect the contribution of both the
variables X|Θ and distribution parameters Θ.
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In the second problem, the idea is to study the impact of aleatory and
epistemic uncertainties separately. Indeed, as stressed by several authors
such as [27, 28], separating both contributions of aleatory and epistemic
uncertainties may be of utmost importance if one desires to get a deeper
insight about which type of uncertainty plays a major role on the system at
failure (see Chapter 1). Moreover, it allows to build a well-informed decision
process in terms of budget allocation to possibly reduce epistemic uncertainty
if this one plays a significant role on the variability of the reliability measure.

In this chapter, it is proposed to consider a disaggregated version of
the augmented input vector to separate both types of uncertainty.
Moreover, the effects of both types of uncertainty on the indicator function
(in other words, “at failure”) are studied and taken into account in the
ROSA context, as presented in the following sections.

4.3. Disaggregated random variables
One possible manner to study the effects of distribution parameter un-

certainty and input variability separately is to transform the input variables
as proposed in [29] (in the context of p-boxes). As a preliminary example,
one can consider the Gaussian case as an illustrative example. Thus, under
a single-level type of uncertainty, a Gaussian random variable X can be split
as follows:

X = µX + σX UX (24)

where θ = (µX , σX)> are the distribution parameters and UX ∼ N (0, 1) is
a standard Gaussian variable which characterizes the inherent variability of
X. Note that such a transformation is not limited to the Gaussian case.
One can build similar transformations for random variables following, for
instance, lognormal, Gumbel or Weibull distributions. The interested reader
should refer to [29] for the presentation of these cases.

Under a bi-level input uncertainty, the idea is to consider a prior distri-
bution fΘ over the uncertain distribution parameters Θ = (MX , SX)>. As a
consequence, the previous decomposition can be rewritten as follows:

X = MX + SX UX (25)

where Vdis = (MX , SX , UX)> is a vector of independent variables denoted
as the “disaggregated augmented vector ”. Note that, for some cases, only the
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mean value or the standard deviation could be considered as uncertain. In
the following, the study will be limited to the Gaussian case as working in the
u-space will facilitate the calculations, without loss of generality. Finally, the
augmented input vector under a bi-level uncertainty will be composed of two
sorts of inputs: the inputs that are not affected by the bi-level uncertainty
(gathered in the vector Xsingle) and the disaggregated ones, such that Z =
(Vdis,Xsingle)

> with dZ = ddis + dsingle denoting the dimension of this vector.
As a final remark, one should notice that, in a multivariate setting, one has
fZ = fΘ × fU × fXsingle .

As a remark and to avoid any confusion for the reader, one should notice
that, despite the disaggregated inputs, only the basic variables X do play a
role in the physical model M(·). Thus, these disaggregated inputs are “re-
aggregated” within the code such that only X variables play a role in the
physical behavior. In the following, one will use the notation Z to deal with
input variables, but the reader should be aware that only the X variables
have a real physical sense from the failure point of view.

4.4. Extension to the bi-level input uncertainty and pick-freeze estimators
In this chapter, it is proposed to extend the previous S1F -indices to the

bi-level input uncertainty. To do so, the following pair of indices is proposed:

S1Fi =
Var [E[1Fz(Z)|Zi]]

Var [1Fz(Z)]
(26)

S1FTi = 1− Var [E[1Fz(Z)|Z−i]]
Var [1Fz(Z)]

=
E [Var [1Fz(Z)|Z−i]]

Var [1Fz(Z)]
. (27)

Pick-freeze estimators can be used to estimate these indices by MC simu-
lations. In the following, these estimators will be used to get the reference
results.

Computing S1Fi and S1FTi under a bi-level uncertainty using a single-loop
CMC sampling can be achieved in four steps. The procedure presented here-
below is adapted from the one proposed by [19].

16



4.4.1. Step #1
Generate 2N copies of the augmented vector {Z(j)}2Nj=1

i.i.d.∼ fZ. These
samples are stored in the following two matrices:

A =

Z1 Z2 . . . Zi . . . ZdZ





1 z
(1)
1 z

(1)
2 . . . z

(1)
i . . . z

(1)
dZ

2 z
(2)
1 z

(2)
2 . . . z

(2)
i . . . z

(2)
dZ...

...
... . . . ... . . . ...

N z
(N)
1 z

(N)
2 . . . z

(N)
i . . . z

(N)
dZ

(28)

B =

Z1 Z2 . . . Zi . . . ZdZ





N + 1 z
(N+1)
1 z

(N+1)
2 . . . z

(N+1)
i . . . z

(N+1)
dZ

N + 2 z
(N+2)
1 z

(N+2)
2 . . . z

(N+2)
i . . . z

(N+2)
dZ...

...
... . . . ... . . . ...

2N z
(2N)
1 z

(2N)
2 . . . z

(2N)
i . . . z

(2N)
dZ

. (29)

4.4.2. Step #2
Generate a set of matrices C(i), with i ∈ {1, . . . , dZ} where the i-th column

of C(i) comes for A and all other dZ − 1 columns come from B:

C(i) =

Z1 Z2 . . . Zi . . . ZdZ





z
(N+1)
1 z

(N+1)
2 . . . z

(1)
i . . . z

(N+1)
dZ

z
(N+2)
1 z

(N+2)
2 . . . z

(2)
i . . . z

(N+2)
dZ...

... . . . ... . . . ...
z
(2N)
1 z

(2N)
2 . . . z

(N)
i . . . z

(2N)
dZ

. (30)

4.4.3. Step #3
Compute the indicator function values for each sample in the matrices

A, B and C(i). Finally, one gets the following set of N -dimensional column
vectors:

1A = 1Fz(A), 1B = 1Fz(B), 1C(i) = 1Fz(C(i)). (31)
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4.4.4. Step #4
The S1F -indices, for i ∈ {1, . . . , dZ}, are computed using the following

CMC estimators:

Ŝ 1F
i =

D̂i − ̂̃P
2

f

D̂
(32)

Ŝ 1F
Ti

= 1− D̂−i − ̂̃P
2

f

D̂
(33)

where:

̂̃
P f =

1

2N

N∑

j=1

(1
(j)
A + 1

(j)
B ) (34)

̂̃
P

2

f =
1

N

N∑

j=1

1
(j)
A 1

(j)
B (35)

D̂ =
̂̃
P f − ̂̃P

2

f (36)

D̂i =
1

N

N∑

j=1

1
(j)
A 1

(j)

C(i) (37)

D̂−i =
1

N

N∑

j=1

1
(j)
B 1

(j)

C(i) (38)

where 1(j)
A , 1(j)

B and 1(j)

C(i) are, respectively, the j-th component of the column
vector 1A, 1B and 1C(i) .

In the following, reference values for S1F -indices will be estimated using
this four-step procedure. Note that, following [19], an extra step could be
added to compute analytical formulas to get the estimation error. However,
in the following, this error is controled by use of repetitions of the whole pro-
cedure. At this point, one should notice that this single-loop CMC sampling
procedure may become inefficient in the context of rare event probability
estimation as most of the indicator functions in Eq. (31) could be equal to
zero. Moreover, the simulation cost associated to this single-loop procedure
is Ncost = N(dZ +2) calls to the LSF. To avoid such a computational burden,
[19] proposes to use other importance sampling algorithms (in the context
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of single-level ROSA). In the next section, another way is investigated to
efficiently obtain the indices under a bi-level uncertainty by an efficient esti-
mation scheme coupling the estimators presented in Subsection 3.2, a subset
sampling technique and kernel density estimation.

5. Efficient estimation using subset sampling and kernel density
estimation

5.1. The problem of estimating the optimal distribution at failure
By adapting the expressions given in Eq. (18) and Eq. (19) to the bi-level

uncertainty, one gets the following estimators:

Ŝ 1F
i =

̂̃
P f

1− ̂̃P f

Var

[
f̂Zi|F(Zi)

fZi
(Zi)

]
(39)

Ŝ 1F
Ti

= 1−
̂̃
P f

1− ̂̃P f

Var

[
f̂Z−i|F(Z−i)

fZ−i(Z−i)

]
(40)

where ̂̃P f is the estimated value of the predictive failure probability as pre-
sented in Subsection 4.1, obtained here by ARA/SS. As suggested by these
estimators adapted to the bi-level uncertainty, the first and total sensitivity
indices require the estimation of fZi|F and fZ−i|F . These densities correspond,
respectively, to the marginal distribution w.r.t. Zi and to the “joint minus
one” (abbreviated as “joint−1”, the one corresponding to the i-th marginal)
distribution of the failure points. The estimation of these two quantities
exhibits a number of challenges that are detailed below in the dedicated
paragraphs.

As a remark, one should notice that these densities fZi|F and fZ−i|F are
closely related to the theoretical optimal densities required to achieve op-
timal variance reduction in the context of importance sampling and subset
sampling [see, e.g., 30]. Indeed, such densities are known to be challenging
to be estimated due to multiple reasons. Therefore, kernel density estima-
tion (KDE) techniques are very popular to tackle this kind of issue [see,
e.g., 31]. A brief review of multivariate KDE is given in the Info-box 1.

In the context defined hereabove, i.e., global ROSA with S1F -indices un-
der a bi-level input uncertainty, one needs to recall the major challenges
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arising from the estimation of the optimal distribution at failure using KDE,
and the new challenges induced by the use of the estimators in Eq. (39) and
Eq. (40).

5.1.1. Challenge #1: input dimension
It is known that the performance of KDE deteriorates with the input

dimension. However, in the estimators presented above, this issue is pre-
dominantly affecting the total index Ŝ 1F

Ti
as it requires the estimation of the

joint−1 density fZ−i|F at failure. However, this issue is intrinsically affected
by the fact that, under a bi-level uncertainty, one considers the augmented
vector Z = (Vdis,Xsingle)

> of size dZ > d due to the disaggregated vari-
ables contained in Vdis. This increased input dimension is the counterpart
of taking the bi-level input uncertainty into account.

5.1.2. Challenge #2: complex shape of the optimal density at failure
Another key issue arises from the fact that the shape of the optimal

density at failure may be complex. By complex, one means that it is a
truncated distribution (i.e., truncated by the LSS), which can be multimodal
and may thus arise from a complex combination of the inputs. Note that the
multimodality can be either smooth (close modes) or very sharp, especially
in the context of disconnected failure regions of almost equal importance.

5.1.3. Challenge #3: limited number of failure points in the elite set
In the context of rare event probability estimation, the number of fail-

ure points, i.e., samples that lie in the true failure domain, is often limited
(e.g., with the CMC technique). Even if variance reduction techniques such
as IS or SS can be used and may significantly increase the number of failure
points in the last iteration, the elite set E is often of rather small cardi-
nal compared to the total number of simulations used to get an estimate
of the failure probability. Finally, one can also add more samples by using
resampling within this failure domain by using, for instance, Markov Chain
Monte Carlo (MCMC) sampling techniques such as the Metropolis-Hastings
algorithm (or a modified version as proposed in [16]). A more detailed pre-
sentation of these algorithms is given in Chapter 6. In the context of costly-
to-evaluate computer codes, resampling may even become untractable. As
a result, the learning procedure of fZi|F and fZ−i|F by KDE has to be per-
formed over a limited elite set composed of, at least, a few hundred to a few
thousand failure points.
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5.1.4. Challenge #4: accuracy of the KDE
A last challenge concerns the fact that, in Eq. (39) and Eq. (40), not only

the estimations of fZi|F and fZ−i|F are required but also their evaluations
on samples Zi and Z−i. Moreover, these indices are based on the variance
of ratios of these density evaluations. Thus, one needs to ensure that the
KDE provides sufficiently accurate estimations for the densities to avoid large
estimation errors. Consequently, if a coarse KDE can be sufficient to get a
sampling density able to generate samples within a specific region such as a
failure region (see, e.g., the nonparametric importance sampling techniques
as proposed by [32]), getting a very accurate estimation of a multivariate
density over a limited set of samples is far more challenging.

If the traditional KDE formulation such as presented in the Info-box 1
may be sufficient for basic “estimation-sampling” tasks used in reliability as-
sessment (e.g., as used inxs nonparametric importance sampling algorithms),
it is definitely not efficient enough regarding the four challenges listed here-
above. To do so, one needs to focus on dedicated tools developed w.r.t. these
challenges. Recently, a modified formulation of a traditional G-KDE has
been proposed in [33]. This formulation is briefly reviewed below.

5.2. Data-driven tensorized kernel density estimation
Introduced by [33], a new data-driven tensorized G-KDE has been pro-

posed so as to overcome a few difficulties of traditional G-KDE. For the sake
of clarity and conciseness, only a few prerequisites and the core modifications
are presented below. The interested reader is invited to refer to [33] for any
further information.

5.2.1. Context and prerequisites
This data-driven tensorized G-KDE relies on the assumption that the

maximum available information consists of a set of independent realizations
{Z}Nj=1 of a random vector Z. In the reliability context, such a dataset
can be typically the elite set denoted by Ez, i.e., a N -dimensional vector of
realizations of the input vector whose coordinates fall in the failure domain.

Another prerequisite consists in assuming that the unknown underlying
distribution fZ of these data samples might be concentrated on an unknown
subset of Rd. This assumption may be particularly true when the distri-
bution of Z may exhibit a strong stochastic dependence structure. In the
reliability context, this case typically corresponds to the case of the optimal
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density at failure for complex LSFs (even if the input vector of basic variables
X is made of independent variables). This theoretical problem of probabil-
ity concentration is strongly linked with mathematical concepts related to
dimension reduction via diffusion maps theory [see, e.g., 34]. The basic
idea of diffusion maps is to identify the underlying manifold upon which the
data is embedded. Nonetheless, this theoretical topic is beyond the scope
of this chapter and the interested reader is invited to refer to the references
mentioned above for any further information.

5.2.2. Main features of the data-driven tensorized G-KDE
Regarding the potential constraints and challenges mentioned above, [33]

propose two main modifications to the traditional G-KDE. These two features
are detailed below:

• the data-driven feature: while considering a dataset Ez = {Z(1), . . . ,Z(Nfail)},
the idea is to modify the traditional G-KDE estimator so that the mean
and covariance matrix are equal to the empirical moments m̂Ez and Σ̂Ez
estimated from the dataset Ez. Moreover, it is proposed to replace the
“Silverman’s rule of thumb” (see the Info-box 1) characterized by the
bandwidth matrix given in Eq. (44) parametrized by a single scalar
bandwidth ηSilv given in Eq. (45). Instead, it is proposed to use the
maximum likelihood estimate HML based on the available data;

• the tensorization feature: to take into account the possible complex
dependence structure of the underlying distribution of interest, it is
proposed to consider a block-by-block decomposition to separate the
components of Z which can be reasonably assumed to be independent
from those which can be assumed dependent. Thus, two dependent
inputs should belong to the same block. This leads to consider a ten-
sorized version of the bandwidth matrix HML parametrized by a set of
bandwiths ηl with l ∈ {1, . . . , nblock}.

5.3. Methodology based on subset sampling and data-driven tensorized G-
KDE

The proposed methodology can be summarized as proposed in Figure 2.
Thus, it can be decomposed into two major phases:

• Phase #1: the first phase (cf. the blue blocks in Figure 2) corre-
sponds to a reliability analysis phase. The idea is to perform a rare
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event probability estimation using ARA/SS. To do so, one needs first
to set the augmented problem by constructing the augmented vector
using the disaggregated strategy. Then, one performs an augmented SS
(i.e., ARA/SS) which implies to set and tune several inner parameters
algorithms for ARA/SS (see Chapter 6) so as to get the an estimate of
the predictive failure probability and an elite set. A possible final step
consists, if necessary, in resampling within the failure domain (using a
dedicated MCMC algorithm as described in Chapter 6);

• Phase #2: the second phase (cf. the orange blocks in Figure 2) corre-
sponds to a learning and sensitivity analysis phase. To do so, one needs
first to estimate the empirical moments based on the available elite set.
Then, one can run the procedure of data-driven tensorized G-KDE as
set in [33]. Note that, in this chapter, the algorithm used to find the
block-dependence structure is a greedy algorithm. Another possibility
could be to use a genetic algorithm as achieved in [33]. Finally, one
can evaluate the S1F -indices using estimators given in Eq. (39) and
Eq. (40).

In the following, this methodology is applied and tested on two academic
test-cases and one realistic aerospace test-case.

6. Application examples

The numerical applications presented in this section are based on the
following tools:

• the rare event probability estimation has been implemented in Matlab R©

and performed using an in-house rare event simulation toolbox devel-
oped at ONERA;

• a PythonTM implementation of the data-driven tensorized G-KDE pro-
cedure proposed by [33].

The numerical testing of the methodology proposed in this chapter, as
summed up in Table 1, relies on the following settings:

• firstly, the idea is to highlight the fact that dealing with bi-level un-
certainty, especially with disaggregated random variables, may provide
more information about the way epistemic uncertainty plays a role on
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the variability of the indicator function. To do so, one proposes a com-
parison of S1F -indices under single- and bi-level uncertainty, obtained
using aboth CMC and ARA/CMC with large sample sizes;

• secondly, it is proposed to efficiently estimate the bi-level S1F -indices
using the methodology described in Subsection 5.3 (i.e., the coupling
between ARA/SS and the data-driven tensorized G-KDE, abbreviated
as “SS + G-KDE” in the following for the sake of conciseness), at a
lower computational cost than CMC (see Subsection 4.4). To do so,
one considers that several elite sets {E (j)z }nset

j=1 are obtained by repeating
nset times the ARA/SS algorithm. Then, based on these elite sets, one
can then repeat the overall procedure proposed in Subsection 5.3 so as
to estimate the indices. However, due to possible numerical instabilities
in the estimation of the S1F -indices (mainly due to the approximation
of the PDFs), the mean estimate is given together with a “success rate”
which indicates the percentage of estimated values that have been kept
to get the mean estimate. The rejected ones correspond to negative
values of the indices which are considered as outliers but are taken into
account in the score provided by the success rate.

• thirdly, after validation of the method, the impact of the increasing
rareness of the failure event (regarding a limited available simulation
budget) is studied as an extension of the first test-case (see the three
black stars F in Table 1).

Table 1: Overall strategy for the numerical tests of the proposed methodology.

Test-case Single-level Bi-level
CMC Ref. ARA/CMC ARA/SS

Example #1: Polynomial function a (cf. 6.1) � F � F � F
Example #2: Truss structure b (cf. 6.2) � F � F � F
Example #3: Launcher stage fallout c (cf. 6.3) � F � F � F

a dZ = 5.
b dZ = 7.
c 6 basic variables, 2 uncertain parameters, g(·) nonlinear.

As shown in Table 1, the proposed methodology is first applied on two
academic test-cases, respectively a polynomial toy-case and the failure of a
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roof structure modeled by a truss (the black squares stand for the performed
calculations). Finally, a numerical application on a realistic aerospace test-
case is then proposed so as to illustrate both the performances and the limits
of the proposed method.

6.1. Example #1: a polynomial function toy-case
6.1.1. Description

In a first example issued from [9], one considers an analytical toy-case
made of a polynomial function whose failure is given by the following LSF:

g(X) = yth −M(X) = yth − (1 +X1)(5 +X2)(10 +X3) (46)

where the Xi, for i = 1, . . . , d, are three independent standard Gaussian
variables. The failure is supposed to occur as soon as the output value
exceeds the threshold yth. In the following, two cases are treated:

• yth = 250: in this case, the reference failure probability estimated
using CMC (with N = 106 samples and Nrep = 100 replications) is
Pf,ref = 8.55× 10−4;

• yth = 350: in this case, the rareness of the failure event is increased so as
to reach a reference failure probability under a single-level uncertainty
of Pf,ref = 1.17× 10−5 (estimated using CMC with N = 107 samples
and Nrep = 100 replications). For this case, the values of the standard
deviation of the prior distributions are increased so as to get stronger
sensitivities (see the values marked with the symbol F in Table 2).

Under a bi-level uncertainty, one considers that the probabilistic model
of the first input variable X1 is not perfectly known (see Table 2). Thus, one
considers the following decomposition:

X1 = MX1 + SX1UX1 (47)

where MX1 and SX1 follow respectively some prior distributions described in
Table 2. As for UX1 , it represents the natural variability of the input X1.
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Table 2: Input probabilistic model for Example #1.

Variable Xi Distribution Mean µXi
S.d. σXi

X1 Normal µX1 uncertain a σX1 uncertain
X2 Normal 0 1
X3 Normal 0 1
MX1 Normal 0 0.1/0.7(F)
SX1 Normal 1 0.1/0.7(F)
UX1 Normal 0 1

a For fixed values µX1
= 0 and σX1

= 1,
Pf,ref = 8.55 × 10−4.

6.1.2. Results
Figure 3a and Figure 3b provide the reference results for the estimation of

both first-order and total S1F -indices under a single-level uncertainty. Based
on these plots, one can notice firstly that X1 is the most influential variable
on the indicator function, and second, that all the three variables show high
values for the total indices which indicates that these variables present strong
interactions at failure (which is a particular feature of the S1F -indices already
pointed out by [5, Chap. 1]).

Now, one can compare these results with the reference ones obtained
under a bi-level uncertainty using the ARA/CMC pick-freeze estimators pre-
sented in Subsection 4.4. The most influential input variable X1 has been
disaggregated. Thus, Figure 4a and Figure 4b show that it is UX1 which is the
most influential regarding first-order indices. Then, looking at total indices,
one can notice that, even if the ranking is still preserved (UX1 > X2 > X3),
SX1 is most influential than MX1 and is of the same order of magnitude as
X3. Consequently, considering an extra level of uncertainty plays, not only
a role on the reliability assessment (here, the failure probability slighty in-
creases from 8.55× 10−4 to 1.0× 10−3), but also on the relative influence of
the random variables at failure. Moreover, these results show that epistemic
uncertainty affecting distribution parameters might play a non-negligible role
compared to aleatory uncertainty of the basic variables.

Numerical results obtained by the proposed methodology are given in
Table 3. These results have been obtained for the following settings: nset = 10
elite sets of Nfail = 2.5×103 failure samples have been obtained by repetition
of the ARA/SS algorithm. In addition to that, one generates Ngen = 5× 104
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samples on which one evaluates the densities and compute the variance of the
ratio. Thus, one can notice, by comparing the second and third columns, that
the first order indices are rather correctly estimated, at a relative moderate
cost and with a high success rate. One can still note that the index associated
to UX1 is a little bit under-estimated. As for the total indices, even if the
orders of magnitude are almost correct, most of them are a little bit over-
estimated.

Table 3: Results for Example #1.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 1.4× 10−4 8.4× 10−5 (100 %) 0.145 0.224 (90 %)
SX1 4× 10−4 5.8× 10−4 (100 %) 0.366 0.476 (100 %)
UX1 0.118 0.069 (100 %) 0.987 0.981 (100 %)
X2 5.1× 10−3 4.1× 10−3 (100 %) 0.772 0.806 (100 %)
X3 1.4× 10−3 1.5× 10−3 (100 %) 0.487 0.604 (100 %)

Considering the influence of the failure event rareness (i.e., for yth = 350),
numerical results are given in Table 4. For this case, the reference predictive
failure probability is such that P̃f,ref = 2.05 × 10−5. Reference values for
S1F -indices have been obtained by ARA/CMC, with N = 108 samples and
Nrep = 100 replications. Numerical results for the proposed methodology
have been obtained for the following settings: nset = 10 elite sets of Nfail =
500 failure samples have been obtained by repetition of the SS algorithm
(with 5× 103 samples/step, an αSS-quantile set to 0.75 and a final MCMC-
based resampling step of 5× 103 samples whose only the first 10 % samples
are kept). In addition to that, one generates Ngen = 5×105 samples on which
one evaluates the densities and compute the variance of the ratio. Thus, one
can notice that the first order indices are rather correctly estimated, at a
relative moderate cost compared to CMC and high success rates. As for the
total indices, almost all of them have been correctly estimated. However, the
smallest one, associated to MX1 , is over-estimated at a low success rate of
50 %.
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Table 4: Results for Example #1 (F).

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 7.8× 10−8 2.6× 10−6 (100 %) 0.176 0.394 (50 %)
SX1 2.0× 10−5 3.5× 10−5 (100 %) 0.539 0.517 (100 %)
UX1 0.026 0.016 (100 %) 0.998 0.990 (100 %)
X2 4.6× 10−4 1.3× 10−3 (100 %) 0.902 0.906 (100 %)
X3 7.4× 10−5 8.7× 10−5 (100 %) 0.659 0.700 (100 %)

6.2. Example #2: a truss structure
6.2.1. Description

The second example (issued from [19]) is a roof structure whose behavior
is modeled by a truss as sketched in Figure 5. For the bars, two different
materials are assumed: the top boom and the compression bars are reinforced
by concrete (denoted by the subscript “c” in the mechanical characteristics)
while the bottom boom and the tension bars are made of steel (denoted by
the subscript “s” in the mechanical characteristics). A uniformly distributed
load q is applied to the roof. As a result of the modeling, one can reduce it to
nodal loads P = ql/4 applied respectively on nodes C, D and F . The failure
of such a structure can be attained if the deflection of node C (denoted by
∆C) reaches a given threshold ∆th. Such a scenario is given by the following
LSF:

g(X) = ∆th −M(X) = 0.025−∆C . (48)

The analytical formulation of ∆C can be derived from the basic principles of
structural mechanics applied to trusses. As a result, one has the following
deflection formula [19]:

∆C =
ql2

2

(
3.81

AcEc
+

1.13

AsEs

)
(49)

where l denotes the total length of the basis of the truss, Ac and As the
sectional areas of, respectively, the concrete and steel bars, and finally Ec
and Es the Young’s modulus of concrete and steel. Thus, one has to consider
a 6-dimensional input random vector, such that X = (q, l, As, Ac, Es, Ec)

>,
composed of independent Gaussian variables as described in Table 5.
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Considering a single-level of uncertainty in input, the reference failure
probability estimated using CMC (with N = 106 samples and Nrep = 100
replications) is Pf,ref = 1.27×10−2. Under a bi-level uncertainty, one assumes
that the probabilistic model of the first input variable X1 is not perfectly
known (see Table 2). Thus, one considers the following decomposition:

X1 = MX1 + σX1UX1 (50)

whereMX1 follow respectively a prior distribution described in Table 5, while
σX1 is supposed to be well known. As for UX1 , it represents the natural
variability of the input X1 and is thus modeled by a standard Gaussian
random variable.

Table 5: Input probabilistic model for Example #2.

Variable Xi Distribution Mean µXi
S.d. σXi

X1 = q (N.m−1) Normal µX1 uncertain a 0.08× 20 000
X2 = l (m) Normal µX2 = 12 0.02× µX2

X3 = As (m2) Normal µX3 = 9.82× 10−4 0.06× µX3

X4 = Ac (m2) Normal µX4 = 0.04 0.2× µX4

X5 = Es (N.m−2) Normal µX5 = 1.2× 1011 0.07× µX5

X6 = Ec (N.m−2) Normal µX6 = 3× 1010 0.08× µX6

MX1 Normal 20 000 0.05× 20 000
UX1 Normal 0 1

a For the fixed value µX1
= 20 000, Pf,ref = 1.27× 10−2.

6.2.2. Results
Figure 6a and Figure 6b provide the reference results for the estimation of

both first-order and total S1F -indices under a single-level uncertainty. Based
on these plots, one can notice first, that X4 presents the largest first order
index, and second, that the total indices indicate a partition into three groups
of inputs: (X4, X1) show the strongest indices, then (X2, X3, X5) have quasi-
similar values for their indices, and finally X6 (these results are coherent with
those obtained by [19]).

Under a bi-level uncertainty, it is assumed that the mean of X1 is af-
fected by epistemic uncertainty. Thus, X1 has been desaggregated into MX1

and UX1 . As a result, Figure 7a and Figure 7b show that it is UX1 is the
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second most influential input regarding first-order indices. As for total in-
dices, one can see that the group (X4, UX1) is the most influential, followed
by (MX1 , X2, X3, X5) and finally X6. Thus, again, the epistemic uncertainty
affecting the mean of X1 plays a non-negligible role on the variability of the
indicator function, mainly due to interactions with other inputs.

The numerical results obtained by the proposed methodology are given
in Table 6. These results have been obtained for the following settings:
nset = 50 elite sets of Nfail = 2 × 103 failure samples have been obtained
by repetition of the ARA/SS algorithm. In addition to that, one generates
Ngen = 1 × 104 samples on which one evaluates the densities and compute
the variance of the ratio. Thus, one can notice, by comparing the second
and third columns, that the first order indices are almost perfectly estimated
(only the strongest index associated to X4 is moderately over-estimated), at
a lower cost compared to ARA/CMC and with the highest success rates for
all the indices. As for the total indices, some of them are perfectly estimated
while others show a relative bias. Moreover, the ranking is slighty modified
between MX1 and X3. However, the reference values are also very close.
Thus, the proposed methodology is able to catch, at least, accurate orders
of magnitude. Finally, one can see that the success rates of total indices do
not reach values under 82 %.

Table 6: Results for Example #2.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

MX1 0.012 0.012 (100 %) 0.420 0.346 (98 %)
UX1 0.042 0.046 (100 %) 0.639 0.567 (100 %)
X2 8.8× 10−3 9.1× 10−3 (100 %) 0.374 0.297 (94 %)
X3 0.013 0.015 (100 %) 0.410 0.365 (94 %)
X4 0.114 0.145 (100 %) 0.672 0.643 (100 %)
X5 0.021 0.023 (100 %) 0.478 0.444 (100 %)
X6 3.2× 10−3 3.4× 10−3 (100 %) 0.229 0.207 (82 %)

6.3. Example #3: application to a launch vehicle stage fallback zone estima-
tion

6.3.1. Description
The role of a launch vehicle (a.k.a. space launcher) is to carry a payload

(e.g., a satellite) from the Earth’s surface to a given orbit. A traditional ex-
pendable space launcher is composed of multiple stages, equipped with their
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propulsion systems. During the flight, uncertainties can affect several vari-
ables in multiple disciplines (e.g., on the perturbation during trajectory or
propellant combustion). For instance, focusing on the optimal trajectory as-
sessment leads to consider the separation point as a key point in terms of
uncertainty analysis (see, e.g., [35] for an illustration). In practice, separation
altitudes may be lower than the Kármán line (which denotes the boundary
between the Earth’s atmosphere and outer space at around 100 km high).
Therefore, wind perturbations might affect the system dynamics. As a con-
sequence, the handling of uncertainties (e.g., arising from dynamic perturba-
tions, error measurements due to sensors or varying unburned propellant left
mass) plays a crucial role in the comprehension and prediction of the global
system behavior. That is the reason why it is of prime importance to take it
into account during the reliability analysis and the prediction of the fallout
zone. A misestimation can have dramatic consequences in terms of launcher
safety, human security and environmental impact.

The goal of this chapter is to present a simplified, but representative,
fallout trajectory simulation model. Indeed, this model is representative of
the phenomena encountered but with a reduced simulation cost (e.g., use of
mass point model) while remaining challenging enough regarding the use of
advanced rare event estimation techniques and sensitivity analysis methods.
For more realistic problems, one can refer to [36, 37]. In these studies, other
parameters are considered and investigated concerning the dynamics of the
vehicle (e.g., perturbation of atmospheric density, winds). In the present
chapter, they are not taken into account for the sake of simplicity and in-
terpretation of the given results, but they remain parameters that should be
incorporated in the model to get a full high-fidelity simulation model.

The launcher stage fallout simulation computer code may be represented
as an input-output black-box model. The input variables are, among others,
some characteristics of the launcher and some conditions (initial or arising
during the flight) of the fallout phase. These inputs are affected by uncer-
tainties and are gathered in a random vector with a given PDF. It is assumed
that this PDF is described by a parametric model of density. The output
corresponds to the position of fallout and is also a random variable because
of the input randomness. A typical safety measure can be the probability
that a stage (e.g., the first stage) falls at a distance greater than a given
safety limit. Indeed this estimation is strategic for the qualification of such
vehicles.

The simulation model used in this chapter can be considered as a black-

31



box model denoted by M : Rd=6 → R. Here, it is a simplified trajectory
simulation code of the dynamic fallout phase of a generic launcher first stage.
The avantage of a black-box model is to enlarge the applicability of the
proposed statistical approaches illustrated in this chapter to any test-cases in
this range of models. As a matter of fact, the following methods proposed in
this chapter are said to be “non-intrusive” w.r.t. the model under study. The
d-dimensional (here d = 6) input vector of the simulation code, denoted by X,
contains the following basic variables (i.e., physical variables) modeling some
initial conditions, environmental variables and launch vehicle characteristics:

X1: stage altitude perturbation at separation ∆a (m);

X2: velocity perturbation at separation ∆v (m.s−1);

X3: flight path angle perturbation at separation ∆γ (rad);

X4: azimuth angle perturbation at separation ∆ψ (rad);

X5: propellant mass residual perturbation at separation ∆m (kg);

X6: drag force error perturbation ∆Cd (dimensionless).

These variables are assumed to be independent for the sake of simplicity.
As an output, the code will give back the scalar distance Y =M(X) which
represents the distance Dcode between the theoretical fallout position into the
ocean and the estimated one due to the uncertainty propagation.

In the context of the launch vehicle fallout case, the input variables are
known to be affected by uncertainties (e.g., , due to the natural variability of
wind or due to lack-of-knowledge). Thus, applying UQ methodology leads to
consider a probabilistic model for the input vector X, i.e., by assuming the
existence of a joint PDF fX : DX ⊆ Rd → R+. Since the input variables are
assumed to be independent, this joint PDF corresponds to the product of
the marginal PDFs fXi

of the input variables Xi, i ∈ {1, . . . , d}. The input
probabilistic model for the launch vehicle fallout case is given in Table 7.
Note that the numerical values used in this test-case are hypothetic and
should not be used for industrial applications.
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Table 7: Input probabilistic model.

Variable Xi
a Distribution Mean µXi

S.d. σXi

X1 = ∆a (m) Normal 0 1650
X2 = ∆v (m.s−1) Normal 0 3.7
X3 = ∆γ (rad) Normal 0 0.001
X4 = ∆ψ (rad) Normal 0 0.0018
X5 = ∆m (kg) Normal 0 70
X6 = ∆Cd (1) Normal 0 0.1

a The input variables are independent.

The input probabilistic model is given in Table 7. The code output is the
distance Dcode between the theoretical fallback position into the ocean and
the estimated one. For the sake of clarity, one recalls that the LSF g(·) can
be written as follows:

g(X) = dsafe −M(X) = dsafe −Dcode (51)

for which the rareness of the failure event depends on the safety threshold
distance dsafe.

Table 8: Input probabilistic model under bi-level input uncertainty.

Variable a Distribution Mean S.d.

X1 = ∆h (m) Normal µX1 = 0 σX1 = 1650
X2 = ∆v (m.s−1) Normal µX2 uncertain b σX2 = 3.7
X3 = ∆γ (rad) Normal µX3 uncertain σX3 = 0.001
X4 = ∆ψ (rad) Normal µX4 = 0 σX4 = 0.0018
X5 = ∆m (kg) Normal µX5 = 0 σX5 = 70
X6 = ∆Cd (1) Normal µX6 = 0 σX6 = 0.1
Θ2 = µX2 (m.s−1) Normal ξ1 = µµX2

= 0 ξ2 = σµX2
= 3.7

Θ3 = µX3 (rad) Normal ξ3 = µµX3
= 0 ξ4 = σµX3

= 0.001

a The basic variables are independent.
b For fixed values µX2 = 0 and µX3 = 0, one has:

. for dsafe = 15 km, Pf,ref = 1.36× 10−4;

. for dsafe = 20 km, Pf,ref = 2.31× 10−7.
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Due to the presence of a bi-level input uncertainty and following the
methodology proposed in Subsection 4.3, it is proposed to consider the fol-
lowing disaggregated inputs:

X2 = MX2 + σX2 UX2 (52)
X3 = MX3 + σX3 UX3 (53)

where MX2 and MX3 follow the same prior distributions as previously pre-
sented in Table 8, UX2 and UX3 are two standard Gaussian variables, and
σX2 and σX3 are the two standard deviations defined in Table 8. Finally, one
considers the following augmented input vector:

Z = (Vdis,Xsingle)
> = (X1,MX2 , UX2 ,MX3 , UX3 , X4, X5, X6)

> (54)

For the numerical experiments, simulation settings have been defined as
follows. Firstly, concerning the LSF, two cases are treated to investigate the
influence of the rareness of the failure event:

• in the first place, the safety threshold distance is set to dsafe = 11 km
(associated to a reference failure probability under single-level input
uncertainty such that Pf,ref = 6.10× 10−3). This case is used to obtain
reference results (using CMC) in order to have a better insight of what
is at stake in terms of sensitivity indices.

• then, the safety threshold distance is set to dsafe = 15 km. In such a
case, only reference results in bi-level are provided and compared to
those obtained from the proposed methodology.

Finally, concerning the proposed methodology, mean estimates of the
sensitivity indices are provided together with a “success rate” which indicates,
in percentage of the total number of repetitions, the number of experiments
that have provided positive values of indices. If the index value is negative,
the numerical experiment is considered as “failed” and the estimated value is
removed.

6.3.2. Results
Figure 9a and Figure 9b provide the reference results for the estimation of

both first-order and total S1F -indices under single-level uncertainty. Based
on these plots, one can notice first, that X2 presents the largest first or-
der index, and second, that the total indices indicate a partition into two
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groups of inputs: (X2, X3, X6) show the strongest indices (above 0.50) while
(X1, X4, X5) have rather moderate values (around 0.15). Moreover, one can
see that first-order indices are, for most of them, very low while total order
indices are much stronger. This clearly indicates that variables interact a lot
at failure but do not contribute that much on their own to the variability of
the indicator function. Such a remark has been already pointed out in the
work of [5].

Under bi-level uncertainty, Figure 10a shows that, for X2, UX2 is more
influential than MX2 , while for X3, it is MX3 which is more influential than
UX3 . This clearly highlights that, due to the disaggregated version of the
augmented vector, one can analyze both effects from aleatory and epistemic
uncertainties. Again, the first order indices are low which indicates a poor
contribution of each variable to the overall variability of the indicator. As
for total indices displayed in Figure 10b, one can observe the same ranking
as for first-order indices. However, one can see the epistemic uncertainties
affecting the mean value of X2 and X3 play a major role on the variability
of the indicator function and have thus to be taken into account.

When considering the case where dsafe is set to 15 km, numerical results
obtained by the proposed methodology are given in Table 9. These results
have been obtained for the following settings:

• nset = 35 elite sets obtained after 35 repetitions of the SS algorithm;

• each elite set contains Nfail = 2× 103 failure samples resampled at the
end of each application of SS;

• in addition to that, one generates Ngen = 1×105 samples on which one
evaluates the densities and compute the variance of the ratio;

• the reference CMC is obtained by Nrep = 10 repetitions of Nsim = 105

samples;

• the “success rate” is obtained by counting the number of negative-valued
indices removed from the statistics.

Concerning the first-order indices, one can see that, most of them are cor-
rectly estimated (despite the fact they have small values). The strongest
first-order indices (i.e., those associated to MX2 and UX2) are rather well
estimated. As for the total order indices, the results show that the indice
associated to X1 can be correctly estimated but with a very low success rate.
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As for X6, its total index is well estimated but with a moderate success
rate. The group (MX2 , UX2 ,MX3 , UX3) are estimated in terms of order of
magnitude but not accurately. Finally, the indices associated to (X4, X5) are
completely over-estimated.

Table 9: Results for Step #3.

Variable First order indices Total indices
Ref. CMC SS + G-KDE Success rate Ref. CMC SS + G-KDE Success rate

X1 2.3× 10−3 1.1× 10−4 (100 %) 0.155 0.135 (3 %)
MX2 0.014 0.022 (100 %) 0.776 0.598 (66 %)
UX2 0.028 0.038 (100 %) 0.792 0.511 (77 %)
MX3 9.3× 10−3 0.012 (100 %) 0.697 0.523 (60 %)
UX3 4.7× 10−3 5.6× 10−3 (100 %) 0.620 0.540 (60 %)
X4 0 5.3× 10−4 (100 %) 0.137 0.608 (63 %)
X5 0 1.2× 10−4 (100 %) 0.132 0.407 (49 %)
X6 2.3× 10−3 2.0× 10−3 (100 %) 0.524 0.518 (51 %)

6.4. Synthesis about numerical results and discussion
As a synthesis, and according to the numerical results presented pre-

viously, one can highlight a few characteristics and perspectives about the
proposed methodology:

• the proposed methodology allows to investigate the impact of the rel-
ative part of epistemic uncertainty and aleatory uncertainty to the
variability of the indicator function (which is directly linked to the
variability of the failure probability as stated in Eq. (7));

• the coupling between ARA/SS and the data-driven tensorized G-KDE
seems to provide very promising results for global ROSA under a bi-
level uncertainty, especially concerning the reduction in terms of com-
putational cost compared to CMC, since this methodology only requires
a post-treatment of an elite set obtained after a reliability analysis;

• the methodology seems able to handle moderate dimensions, at least,
greater dimensions for which traditional KDE fails to estimate correctly
multivariate densities;

• this methodology is driven by several tuning parameters which may
influence drastically the results: the quality of the elite set (influenced
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by the tuning of the SS algorithm), the number Nfail of failure samples
in the elite set and the number Ngen of generated samples to compute
the variance. As for nset, it is important to notice that, in practice,
for costly-to-evaluate computer models (and rare event probability es-
timation), it might not be possible to get neither multiple not large-
sample-size elite sets.

7. Conclusion

In this chapter, a new methodology is proposed to estimate, at a lower
computational cost than CMC, a set of S1F -indices, in the context of bi-level
input uncertainty. This methodology relies on the combination of three main
components:

• first, a disaggregated structure of the inputs that are affected by epis-
temic uncertainty;

• second, the use of the SS algorithm to get an estimate of the predic-
tive failure probability and, jointly, to use the final elite set of failure
samples to estimate the S1F -indices;

• third, a data-driven tensorized G-KDE which allows to improve the
density estimation required to compute the indices.

The combination of these three tools allows to propose a methodology whose
efficiency has been observed on two numerical test-cases. As for the complex
aerospace test-case, very promising results have been obtained, even if several
difficulties remain in the estimation accuracy of small indices. Moreover, the
influence of the failure event rareness has been investigated too. However,
this work only provides promising preliminary results. Indeed as mentioned
in the results, some numerical experiments can lead to negative values of the
S1F -indices as indicated by the “success rate” scores. Thus, the proposed
methodology might be not suited as a one-shot methodology. Its robustness
should be improved, mainly by investigating the potential reasons for such a
failure in terms of estimation (e.g., possible insufficiency in terms of budget
allocation / inaccuracy of the KDE / inefficiency of the resampling phase
using MCMC creating correlated samples).
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In the multivariate setting, one can assume that a set X = {x(1), . . . ,x(N)} of
N i.i.d. observations of a d-dimensional random vector, drawn from an unknown
parent density denoted by fX, is available. Then, one would like to estimate this
unknown parent density. Its kernel density estimator is given by:

f̂X(x) =
det(H)−1/2

N

N∑

j=1

Kd

(
H−1/2(x− x(j))

)
(41)

where det(·) is the determinant operator, Kd(·) is a multivariate (d-dimensional)
kernel and H is a (d × d)-dimensional positive definite symmetric matrix, often
named the “bandwidth matrix ”. Among several widely used kernels, one can
mention the Gaussian one, defined such that:

Kd(x) =
1

(2π)d/2
exp

[
−1

2
x>x

]
. (42)

Using a Gaussian kernel corresponds to the traditional “Gaussian kernel density
estimation” (G-KDE). If the choice of the kernel Kd(·) may influence the perfor-
mance of the estimation in some specific cases, it remains that the most influent
parameter is the bandwidth matrix H. This matrix has to be tuned so as to find
an admissible trade-off between a global smoothing and capturing the peaks of
the density. It can be optimized following some optimality criteria, such that the
mean square integrated error (MISE) given by:

MISE(H) = E
[∫

Rd

(
f̂X(x)− fX(x)

)2
dx

]
. (43)

In common engineering practice (and when d increases), the Gaussian assumption
on fX is often considered. Thus, a widely used approximation for H is derived
from the so-called “Silverman’s rule of thumb” [31] which assumes that H takes
the following form:

H = η2Silv




σ̂21 0 . . . 0

0 σ̂22
. . .

...
...

. . . . . . 0
0 . . . 0 σ̂2d




(44)

where σ̂2i for i = 1, . . . , d is the empirical estimation of the variance of Xi and
ηSilv is a scalar factor given by:

ηSilv =

(
1

N

4

(d+ 2)

) 1
d+4

. (45)

This factor only depends on the input dimension and the number of available
samples.

Info-box 1: Basics of multivariate kernel density estimation.
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Start

Construct the augmented vector Z with :

. Vdis ≡ vector of disaggregated inputs

. Xsingle ≡ other inputs

↪→ Set prior distributions

Perform a rare event probability estimation

. ̂̃Pf

. Ez = {Z(j), 1 ≤ j ≤ Nfail | 1Fz(Z
(j)) = 1}

↪→ Use ARA/SS (+ set tuning parameters)

Are there enough
failure points in

the elite set ?

Resample within the failure domain
using a MCMC algorithm

↪→ Use MH or m-MH algorithms

Pre-processing of the data

. Estimate the empirical moments m̂Ez and Σ̂Ez

. Normalize and decorrelate the samples such that : m̂Ez = 0 and Σ̂Ez = IdZ

↪→ Use, e.g., a principal component analysis

Run the Data-driven tensorized G-KDE procedure

. Identification of the block-by-block decomposition

. Estimation of HML

↪→ Use a greedy algorithm

Evaluate the indices

. Distribution fitting using KDE

. Generate Ngen samples to evaluate the densities

. Estimation of the variance ratios of densities

↪→ Use the formulas of S1F -indices
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yes
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Figure 2: Flowchart of the proposed methodology to compute S1F -indices under a bi-level
uncertainty.
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Figure 3: Reference S1F -indices estimated for the Example #1 under a single-level uncer-
tainty (CMC of Nsim = 106 samples and Nrep = 100 repetitions, with pf,ref = 8.55×10−4).
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Figure 4: Reference S1F -indices estimated for the Example #1 under a bi-level uncertainty
(CMC of Nsim = 106 samples and Nrep = 100 repetitions, with P̃f,ref = 1.0× 10−3).

44



2As 3As3As

As As
Ac Ac

Ac Ac

0.75Ac 0.75Ac

A B

C

D

E

F

G

P

PP
l/12

l/12

0.278l 0.222l 0.25l 0.25l

Figure 5: A roof truss.
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Figure 6: Reference S1F -indices estimated for the Example #2 under a single-level uncer-
tainty (CMC ofNsim = 106 samples andNrep = 100 repetitions, with Pf,ref = 1.26×10−2).
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Figure 7: Reference S1F -indices estimated for the Example #2 under a bi-level uncertainty
(CMC of Nsim = 106 samples and Nrep = 100 repetitions, with P̃f,ref = 1.65× 10−2).
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Figure 8: Illustration scheme of a launch vehicle first stage fallout phase into the Atlantic
Ocean. Multiple fallout trajectories are drawn (red dotted lines), leading to the impact
zone (yellow circular surface). Due to uncertainties, one fallout trajectory may lead to a
failure impact point (red star).
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Figure 9: S1F -indices estimated under single-level uncertainty (CMC of Nsim = 105

samples and Nrep = 10 repetitions, with Pf,ref = 6.10× 10−3).
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Figure 10: S1F -indices estimated under bi-level uncertainty (ARA/CMC of Nsim = 105

samples and Nrep = 10 repetitions, with P̃f,ref = 3.98× 10−2).
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