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________________________________________________________________________________________________________________ 

Abstract  

This paper presents a poromechanical model for drying of unsaturated porous media valid for a large range of relative humidity. Using the 
proper laws of thermodynamics, this model is derived and permits to account for different effects that contribute to the effective stress 
development: the average pore pressure effect, the energy of the interfaces effect, the surface adsorption effect and the Shuttleworth effect. 
The majority of the input parameters of this model are simply assessed by using two commonly known techniques for the characterization of 
pores structures applied on experimental desorption isotherms: the B.E.T theory (Brunauer et al., 1938) and the BJH technique (Barrett et al., 
1951). Another input parameter (linked to the Shuttleworth effect) is fitted on experimental drying shrinkage strains. This model is tested and 
validated with experimental data for different porous materials - hardened ordinary cement paste, high- performance concrete and Vycor 
glass - found in the literature. The obtained results show a satisfactory evaluation of the drying shrinkage strains for all three tested materials, 
with the possibility of considering zero fitting parameter. Compared to other poromechanical models found in the literature such as the 
classical Biot-Bishop (Biot, 1941) model and the (Coussy et al., 2003) model, our model appears to be exclusively capable of displaying the 
transition at a certain relative humidity between the capillary pressure effects and the surface adsorption effect, which manifests itself by a 
plateau in the drying shrinkage strains curve at this value of relative humidity.  
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______________________________________________________________________________________________________________ 

1 Introduction 
The macroscopic constitutive behavior of a porous material subjected to a variation of the pore fluid pressure has been 

widely investigated. In the 1920s, Terzaghi introduced the notion of effective stress �′ in a porous body, i.e. the difference 
between the total stress � applied on the considered body and the fluid pore pressure ��. Posteriorly, the works of (Biot, 1941) 
and (Biot and Willis, 1957) initiated the poroelasticity approach for isotropic elastic saturated porous bodies. In the absence of 
external stresses, the latter approach made it possible to evaluate the corresponding volumetric strains � by the mean of the 
pore pressure: � =  �	/��
 ∙ �∗  where �∗ is the pore pressure and is equal to �� for a fluid-saturated porous body, 	 is the Biot 
coefficient written as 	 = 1 −  ��/�� for a porous body with a homogeneous solid skeleton, in which case �� is the elastic 
bulk modulus of the material and �� is the elastic bulk modulus of the solid skeleton. For a partially saturated porous body with 
two or more fluids occupying the pores, the works of Terzaghi and Biot were extended afterwards by (Bishop and Blight, 1963). 
In this approach, the pore pressure was written as a weighted average sum of the fluid pressures with a weighting coefficient �. 
For instance, if we consider a porous body with a liquid phase (of a pressure ��) and a gas phase (of a pressure ��) occupying 
the pores volume, �∗  will be written as: 

�∗  = ��� + �1 − �
��  (1) 

� is known as the Bishop parameter. This parameter depends essentially on the saturation of the porous body: � = 1 if 
the porous body is fully saturated and � = 0 if the body is completely dried. It was replaced in the works of (Lewis and 
Schrefler, 1987), (Hassanizadeh and Gray, 1980), (Hutter et al., 1999), by the water degree of saturation Sw. This postulation 
was expansively examined by (Gawin et al., 2006), (Gawin et al., 2006) and (Pereira et al., 2010). 

By accepting this notion � = �� and defining a capillary pressure ��  as the difference between the gas pressure and 
the liquid pressure (i.e. �� = �� − ��), the volumetric strains can be assessed from the following equation (in which the 
reference state from which strains are calculated is a state in which the pore space is saturated with a fluid at atmospheric 
pressure, and in which the pressure of the gas is assumed to remain equal to the atmospheric pressure): 

� =  � 	
��� �∗ =  − � 	

��� �����
 (2) 

This equation is known as the Biot-Bishop model. An extension of this model was established by (Coussy et al., 2003) 
who substituted the average pore pressure with an equivalent pore pressure � that also takes into account the contribution of 
the interfaces energy, noted as U. This term could be calculated from sorption/desorption tests by considering its dependency 

solely on the water saturation ��: ����
 = � �����
 ∙  ��!
"# . The evaluation of the volumetric strains by the (Coussy et al., 

2003) approach is done with equation (3): 

� =  �	/��
� =  − � 	
��� ���  �� + �
 (3) 
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In the two previously introduced approaches (Biot-Bishop (Biot, 1941) and (Coussy et al., 2003)), the capillary 
pressure is considered to be the driving mechanism of the drying/wetting of the partially saturated porous materials. Similar 
approaches based on capillary mechanisms have been introduced by (Gawin et al., 2006), (Vlahinić et al., 2009), and (Rougelot 
et al., 2009). Nevertheless, the driving mechanisms of the drying/wetting of porous materials have been frequently debated in 
the literature. For instance, (Beltzung and Wittmann, 2005) considered that in hindered adsorption areas, the disjoining pressure 
(i.e. the difference between a mechanical pressure and thermodynamic pressure in the adsorbed layer of water) is hereby the 
principal mechanism of drying/wetting. Based on this approach, (Maruyama, 2010) elaborated an empirical relation that links 
the changes in the disjoining pressure in hardened cement pastes (calculated from drying shrinkage volume changes) to the 
experimental thickness of the adsorbed layer of water (assessed from sorption experiments while using a BET specific surface 
area). For mesoporous materials, (Ravikovitch and Neimark, 2006) first showed thermodynamically that adsorption induces a 
mechanical stress (sometimes called ‘adsorption stress’) whose magnitude is equal to the solvation pressure. 

All the previously cited models were compared in the works of (Wyrzykowski et al., 2017) and it was shown that for 
a low relative humidity (lower than 40%-50%) those models fail to describe drying shrinkage experiments on an extended 
range of relative humidity. A possible explanation has been given by the authors that linked this failure to experimental 
uncertainties in the assessment of the experimental water degree of saturation. But this failure could also at least be partly due 
to the fact that those models neglect the energy contribution of the presence of adsorbed water (also called the surface energy 
effect (Setzer and Duckheim, 2009)). In fact, when the relative humidity decreases, a fraction of the pores are emptied from 
their bulk water but an adsorbed film of water (with a thickness that can reach several molecules) is deposed at their solid 
surface. This adsorption can modify the surface energy $ of the solid walls of the pore (according to Gibbs’s isotherm (Gibbs, 
1928)) and the surface stress �� to which those pore walls are submitted. Following (Kovler and Zhutovsky, 2006), this surface 
stress is mainly responsible for the shrinkage of the porous body when the relative humidity becomes smaller than 40%-50%, 
(i.e. when the fraction of unsaturated pores becomes important). This effect was regularly acknowledged in the literature 
(Wittmann, 2008), (Setzer et al., 2006), (Lura et al., 2003). In order to evaluate the drying/swelling strains induced by those 
surface effects, many refer to the works of (Bangham, 1931) that link the strains to the change of the surface energy $. The 
empirical relation given in (Bangham et al., 1934) is written as: � = % ∙ ∆$ with % a proportionality factor that depends on the 
material properties. This relation was at first elaborated by Bangham for charcoal materials but has later shown prominent 
results when used for modelling the drying shrinkage of other porous material such as Vycor glass (Hiller, 1964), (Bentz et al., 
1998) and cementitious materials (Koenders and Van Breugel, 1997). This relation has been recently reviewed by (Gor and 
Bernstein, 2016a) who showed that, in the general case, Bangham’s law is only an approximation. Like (Kramer and 
Weissmüller, 2007), they emphasize the fact that surface energy and surface stress are different thermodynamic entities and 
that, in systems in which surface effects prevail, strains are governed by variations of surface stress rather than of surface 
energy. However, (Gor and Bernstein 2016) showed that Bangham’s equation should be verified for small strains and small 
adsorbed molecules with non-specific interactions, in which case the variations ∆$ of the surface energy are approximately 
equal to the variations ∆�� of the surface stress. 

Despite the success of the Bangham’s law in evaluating drying/swelling strains at low relative humidity range and in 
taking into account surface energy effects, this relation remains empirical. A thermodynamic extension of poromechanics  to 
account for surface energy effects in absence of capillary effects can be found in (Vandamme et al., 2010) and (Zhang, 2018). 
In materials with a wide pore size distribution in contact with a gas at a generic partial pressure, some (smaller) pores are filled 
with fluid while some other (larger) pores are not filled but have their surface covered with adsorbed fluid. Consequently, in 
the generic case, a proper model for fluid-induced deformation of partially saturated porous solids should take into account 
both capillary effects and the effect of fluid adsorption at the surface of already unsaturated pores. The main aim of this work 
is to derive such a model. It is important to point out that comparable attempts were earlier made in the literature. For instance, 
while treating porous materials with a unique size of pores, (Balzer et al., 2017) and (Gor et al., 2018) calculated the fluid-
induced strains by using surface-energy/stress-based models prior to the occurrence of the capillary condensation and by 
referring to capillary-based models after the capillary condensation takes place. On another hand, (Rahoui, 2018) accounted for 
both capillary and fluid adsorption effects with a phenomenological combination of the (Coussy et al., 2003) model and 
Bangham’s law. Finally, (Rahimi-Aghdam et al., 2019) proposed a thermodynamic formulation based on a Gibbs energy 
potential that considers both capillary and fluid adsorption effects. The latter formulation was extended in (Nguyen et al., 2020) 
so it could be valid for confined nanopores with hindered adsorbed water layers.    

The following section describes the porous system considered in this work along with the interfaces at play. The 
corresponding constitutive model is derived in section 3 and is then validated by experimental drying shrinkage strains results 
in section 4. 

2 Description of the porous system and thermodynamic considerations 

2.1 Distribution of water in pores 

In order to develop a poromechanical model that takes into account both the capillary and the fluid adsorption effects, 
we begin by defining the considered porous system. The derived thermodynamic model in this work is valid for systems formed 
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by mesopores and macropores (i.e. systems with pores larger than two nanometers). The derivation is established under the 
frame of thermodynamics of continuum medium while considering isothermal transformations ( ' = 0). The local state 
postulate allows us to address the thermodynamics of continuum medium while considering that the thermodynamic equations 
written for any system of volume V results from the combination of the thermodynamic equations written for infinitesimal 
elementary volumes extracted from the total system (Coussy, 2004). Therefore, the following thermodynamic derivation is 
considered to be written for a local elementary volume V0. It is important to note that all the posteriorly derived equations are 
written with physical quantities expressed per unit volume V0.    

The studied elementary volume is assumed to be formed by a solid matrix and a connected porous network formed by 
saturated pores and unsaturated pores (Fig. 1). This system is put into contact with a fluid at a given partial pressure. The 
reasoning can be applied to any fluid, but here we consider water. Some (smaller) pores may contain liquid water, while some 
(larger) pores may contain gas. 

  
Fig. 1 - Schematics of the considered porous medium 

We consider that the unsaturated pores have their bulk volume (� filled with a gas phase composed of Nvp moles of water 
vapor and Ndra moles of dry air (as we will see later on, an additional amount of water is adsorbed on the unsaturated pores 
surface).  As for the saturated pores, we consider that their bulk volume VL is filled with a liquid phase composed of Nlq moles 
of liquid water.  

It should be noted that between the previously considered phases α (gas or liquid phase) and ) (the solid surface of the 
unsaturated or saturated pores), there exists a transition zone or interface region in which the composition is not homogeneous 
and does not correspond to those of α and β (Maugis, 1980). Several physical quantities (e.g. the volume concentration) vary 
according to the distance from this interface region (Fig. 2-a). Hence, to model this system, (Gibbs, 1928) proposed to define 
an ideal system with a dividing surface or interface * located in the transition zone and to assume that the composition of the 
neighboring phases remains homogeneous until reaching this surface (Fig. 2-b).  

  

Fig. 2- (a) The system with the interface region (b) The Gibbs system for the interface, adapted from (Gyozo G. and Cesar A., 2012) 

In the Gibbs system, the total number + of moles (per unit volume) of the considered component in the system is equal to:  

+ =  +, + +- + +./ (4) 

where +, and +-  are the number of moles (per unit volume) of the component found in the phases α and β , respectively; +./  

is the number of moles of the component (per unit volume) placed in excess on the interface so that the total number of moles 
in the initial system and the Gibbs system is the same. 

By applying Gibbs’ vision to the porous system considered in this work, the interfaces * that will be put at play are: 
interfaces between solid and gas phases in the unsaturated pores, interfaces between solid and liquid in the saturated pores and 
interfaces between liquid and gas phases (see Fig. 3). Regarding the excess moles to be placed on those interfaces, two 
assumptions are made in the current framework.  First, at the solid surface of the saturated pores, no transition zone is to be 
considered (no water excess moles will be placed at the solid/liquid interface), which could be justified by relatively equal 
densities of the adsorbed water and the liquid water found in those pores (Powers and Brownyard, 1947) and by an appropriate 
choice of the location of the Gibbs’ interface. Second, at the solid/gas interfaces, the excess moles +./ are considered to be 
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principally composed of water (see Fig. 3). It could be finally noted that in the unsaturated pores, the number of water moles is 
+./+ +01, whereas the total number of water moles in the previously defined system is +./+ +01 + +23 . 

 

Fig. 3- Schematics of the considered porous medium 

2.2 Surface energy and surface stress  

The work of (Gibbs, 1928) makes it additionally possible to generalize equation (4) for any extensive physical quantity 4 and to define an excess physical quantity 4./  located on the interface. Subsequently, being an extensive quantity, an excess 
Helmholtz free energy 5./  (per unit volume) for the solid/gas interface can be defined. The latter free energy can be written as 
(Coussy, 2010): 

5./ =  $6"/� + 7+./ (5) 

where $ is the surface energy of the solid/gas interface, 6"/� its surface area per unit volume, +./ the number of water excess 
moles per unit volume and 7 the chemical potential of the corresponding excess moles of fluid. 

The variation  5./ of the free energy of the interface can be linked to the variation  6"/�  of the interface surface area 
and to the variation  +./  of the number of excess moles. According to thermodynamics (Maugis, 1980),(Weber et al., 
1988),(Andrieu and Muller, 2005), the surface area of an interface can be increased either by adding new moles to its surface 
or by straining the surface at a constant number of moles. We define 689. as the contribution (per unit volume) to the increment 
of the interface surface area linked to the process of creation of new moles and 6:.� as the contribution (per unit volume) 
corresponding to the deformation of the existing interface surface area. Accordingly  5./ can be written as (Weber et al., 1988):  

                              5./ =  �� 6:.� + $ 689. + 7 +./  (6) 

where �� is called the surface stress and $ is the surface energy (also known as the surface tension). 
It is important to distinguish between these two terms. This distinction  has been previously discussed in the literature (Kramer 
and Weissmüller, 2007). (Vandamme et al., 2010),(Gor and Bernstein, 2016b),(Schulman et al., 2018): while  $ is the energy 
needed to create a new surface of area A at a constant structure (by adding new moles to the surface or by cleavage), �� is the 
force that opposes an elastic strain of the surface, changing the intermolecular distance at a constant number of moles at the 
surface (Kramer and Weissmüller, 2007).  
 

By combining equation (6) with the derivative of equation (5) we obtain the Gibbs-Duhem relation                              
(Weber et al., 1988):  

−��� − $
6"/�   �� + 6"/� $ + +./ 7 = 0 (7) 

where  �� �=  6:.�/ 6"/�  ) is defined as the interface surface strain. In equation (7), we can identify two commonly used 
relations: 

i. If the surface is undeformable ( 6:.� = 0), then equation  (7) becomes simply: 

6"/� $ = −+./ 7 (8) 

Equation (8) is known as the Gibbs adsorption isotherm relation (Gibbs, 1928). It links the decrease of the surface 
energy to the adsorption. In this equation, we can define a density of excess moles at the interface per unit surface noted as     ; =  +.//6"/�. If the number of excess molecules does not depend on the deformation of the surface, i.e. if ; depends only 
on the chemical potential 7 of the adsorbate, equation (8) can be integrated from an initial (dry) state where no excess moles 
are found on the interface: 

$ = $!���
 − � ;�7
 7<
=>    =  $?�1 + @��
  − � ;�7
 7<

=>  (9) 
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$!���
 is the surface energy before adsorption that depends on the deformation state of the interface. In this work we consider 
that $!���
 is a linear function of �� with $!���
 = $?�1 + @��
, $? is the surface energy of the un-deformed surface and @ is a 
constant coefficient if surface strains are sufficiently small.  

 
ii. From equation (7), we can identify the Shuttleworth relation (Shuttleworth, 1950): 

�� = $ + A$
A��B

<
 (10) 

 
If we combine equation (9) and equation (10), we obtain the following equation (by considering only the zeroth-order terms 
and that Γ does not depend on the deformation of the surface, the latter being a reasonable assumption in the case of adsorption 
with non-specific interactions (Gor and Bernstein, 2016) ):   

�� = $?�1 + @
 - � ;�7
 7<
=>  (11) 

3 Constitutive model 

3.1 Notions of Lagrangian porosity and Lagrangian saturation   

When talking about a variable describing the system and evolving in time, it is important to indicate the reference state 
considered. In this frame, we write all equations within a Lagrangian approach. Accordingly, the Lagrangian porosity denoted 
by D is equal to the ratio of the current volume of pores (1 with respect to the initial volume (? (Coussy, 2004).  An increment 
E in the Lagrangian porosity can therefore be defined as: 

E =  D − D? (12) 

where D?  is the initial porosity of the system (i.e. the initial volume of pores (1,? divided by (?). Moreover, we define D� as 
the Lagrangian partial porosity filled with a liquid phase and D� as the one filled with the gas phase and  the adsorbed water 
film. Those partial porosities verify the relation: D =  D� + D� .  

The partial porosity D, can be written as in (Coussy, 2007) : 

D, =  �,D? + E, (13) 

where E, is the change of the partial Lagrangian porosity of the phase @. The term E, represents the contribution of the 
deformation process in the partial porosity D,. The term (�,D?) represents the contribution of the porous invasion by a phase @ in the partial porosity D, , or also the partial porosity before any deformation. �,  is the Lagrangian saturation, which can be 
defined as the ratio between the initial volume of pores that are currently filled by the phase @ (i.e., the volume of those pores 
prior to any deformation noted as (,,?) divided by the initial volume of pores (1,?. Under the frame of this work, �� is the 
Lagrangian volume fraction of the saturated pores and  ��  the Lagrangian volume fraction of the unsaturated pores. 

This definition for Lagrangian saturation will allow us in the following section to separate the contributions to the 
energy balance related to the invasion process and to the deformation process (see Equation (25)). 

3.2 Constitutive equations 

With the purpose of deriving the constitutive laws of poromechanics for the considered system, the energy balance of 
the solid matrix must be correctly written. To this end, the following procedure is adopted: 

i. We write the energy balance of the considered elementary volume V0.   
ii. We subtract the energy contribution of the different components considered in section 2.1 from the total energy balance 

of the system. 
iii. We subtract the energy contribution due to the presence of adsorbed water at the solid/gas interface. The balance 

energy for the solid skeleton (solid matrix + solid/gas, solid/liquid and liquid/gas interfaces) is obtained. 
iv. We subtract the energy contribution of the three interfaces: solid/gas – solid/liquid – liquid/gas. The energy balance 

of the solid matrix is obtained.  

The transformations in this system are considered to be reversible: first, because they are so slow that viscous 
dissipations are negligible and then because the solid skeleton is considered to be elastic. Hence, let us remind that the variation 
of the Helmholtz free energy d5 (per unit volume) for the system of interest, formed by multiple phases and undergoing  
reversible isothermal evolutions can be written as (Coussy, 2004): 

d5 = GH + ∑ 7J   +JJ  (14) 
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where GH is the quantity of mechanical work exchanged with the external environment (per unit volume), 7J is the chemical 
potential of the ith component and +J its number of moles (per unit volume). 

i. By referring to equation (14) the mechanical work provided to this volume is equal to the work of the external 
forces:GH = � �, � and � are respectively the stress and strain developed in the volume (? of the porous system.  

The number of moles components (per unit volume) present in the considered volume are as defined in section 2.1: +23  moles of liquid water, +01 moles of water vapor, +:9K moles of dry air and +./ excess water moles placed at the solid/gas 
interface. It is important to note that at thermodynamical equilibrium of the system, the water under its different phases (vapor, 
liquid, adsorbed) is at a given chemical potential 7�. Accordingly, equation (14) will be then written as:  

 5 = � � + 7� +23 + 7� +01 + 7:9K  +:9K + 7� +./ (15) 

ii. As a second step, we subtract from equation (15) the variation  5J  of the Helmholtz free energy (per unit volume) 
of each of the components. The latter can be written by analogy to equation (14) while considering that the corresponding 
mechanical work GH is purely hydrostatic and equal to −�J   DJ, with �J  being the thermodynamical pressure and DJ the 
Lagrangian volume fraction occupied by the LMN component.  d5J is then written as:  

d523 = −�23   D� + 7�   +23  (16) 

d501 = −�01  D� + 7�  +01 (17) 

d5:9K = −�:9K   D� + 7K  +:9K (18) 

In the above equations, the water vapor and the dry air occupy the same volume fraction D� of unsaturated pores while 
the liquid water occupies the volume fraction  D� of saturated pores. Equations (16) to (18) are subtracted from equation (15) 
while considering that the gas is ideal, so that the gas pressure ��  is equal to the sum of the vapor water pressure and the dry 
air pressure �� = �01 + �:9K: 

  5 −  523 −  501 −  5:9K = � � + �� D� + �� D�  + 7� +./ (19) 

iii. As a third step, we aim to subtract from the energy balance (19) the increment of the free energy (per unit volume) 
due only to the presence of adsorbed water at the solid/gas interface. This energy is noted as 5K:� and can be expressed as: 

5K:� = 5./ − 5"/� (20) 

5K:� is defined as the difference between the free energy 5./ of the solid/gas interface when the excess water molecules are 
adsorbed at its surface and the free energy 5"/� of the same interface when no adsorption occurs. 

In the purpose of correctly writing each of those energies, let us begin by defining the surface area of the considered 
solid/gas interface. As it has been indicated in section 2.2, the variation of this surface area 6"/�  could be linked to two 
processes:  

o The straining of the considered interface at a constant number of moles. This contribution (per unit volume) is noted as 6:.�.  
o The addition of new moles at the considered interface. This contribution (per unit volume)  689. will be written for what 

follows as a product of 6?O�  where 6? is the total surface area of the pores (per unit volume) at the un-deformed state and O�  a new variable that defines the Lagrangian surface fraction of the unsaturated pores in the porous body.  

This previous consideration leads us to write 6"/� as: 

6"/�  = 6?O� + 6:.� (21) 

It could be brought to attention that the previous expression of 6"/� is similar the expression of D, given in equation (13). Once 
the different contributions to the increment of AS/G are identified, by referring to equation (5), we can write                                           5./ = $6"/� + 7�+./ and 5"/�  = $?6"/�. In the expression of 5"/�, $? is the surface energy density prior to deformation and 
without adsorbed molecules. According to equation (6), we write  5./ as: 

 5./ =  $ �6?O�
 + �� 6:.� + 7� +./ (22) 

And by differentiating the expression of 5"/�, we obtain: 

 5"/� =  $? �6?O�
  + $? 6:.�   (23) 
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Once equation (20) is differentiated,  5K:� is then subtracted from equation (19). The obtained energy 5�P = 5 − 5� −5K: − 501 − 5:9K − 5K:� is defined as the free energy per unit volume of the solid skeleton (i.e. the solid matrix + all three 
interfaces with constant surface energy densities and with no water excess moles on the solid/gas interface).  5�P is then written 
as (after noting ∆$ = $ − $?): 

  5�P = � � + �� D� + �� D� − � �� − $?
 6:.� − ∆$ �6?O�
 (24) 

After substitution of each of the partial porosities D� and D� by their corresponding expression given in equation (13) and 
while noting that �� + �� = 1 and �8 =��  - �� , we derive: 

                5�P = � � + �� E� + �� E� − D?�8 �� − � �� − $?
 6:.� − 6?∆$ O�  (25)

In the energy balance given by (25), we can clearly observe that the definition of a Lagrangian porosity and saturation has 
allowed the separation of the terms related to the pores invasion process (the two terms −D?�8 ��  and −6?∆$ O�) from the 
terms related to the deformation process (� �, �� E� , �� E� and  −� �� − $?
 6:.�)).  

If we consider that  6:.� = 6:.���,  E�, E� , ��), we can write: 

   5�P = �� − �K
 � + ��� − ��K
 E� + ��� − ��K
 E� − D?�8 �� − 6?∆$ O�  (26) 

where: 

    �K = ��� − $?
 QRSTU
QV WXY,XZ,"Y

 (27) 

 ��K = ��� − $?
 QRSTU
QXY WV,XZ,"Y

 (28) 

 ��K = ��� − $?
 QRSTU
QXZ WV,XY,"Y

 (29) 

In equation (26), the term ��� − $?
 QRSTU
Q"Y WV,XY,XZ

was neglected because it is considered to be very small with respect to the 

term �D?�8
 . In fact, the variation of 6:.� with respect to the Lagrangian degree of saturation is negligible compared to the 
variation of 6:.� with �, E� , E� (i.e. 6:.� is a contribution to the increment of the interface surface area primarily linked to the 
deformation process)     

iv. By considering that constant surface energies are accounted for in the energy of the solid skeleton 5�P , the approach 
used in (Dangla and Pereira, 2014) can be used and 5�P can be subdivided as: 

                 5�P = 5�[2��, E� , E� , ��
 + 5J\M�E� , E� , ��
 (30) 

5�[2 is the free energy (per unit volume) stored in the solid matrix and 5J\M the free energy (per unit volume) stored at the 
interfaces. In equation (30), 5J\M is not a function of the porous material strains; in fact, it depends on them only indirectly 
through the pores volumes and the saturation. According to (Dangla and Pereira, 2014): 

5J\M�E� + %D?�� , E� + %D?�� , ��
 = ]1 + ^
_ %` 5J\M           ∀% ≪ 1  (31) 

Equation (31) indicates that from the current state, at a constant degree of saturation, any isotropic homothetic variation of the 
pore dimension by a factor (1+%/3) will induce a volume variation of  �1 + %
  and a surface variation of �1 + 2%/3
 (with D?�,  the initial volume of the considered pore in the undeformed state). This statement is valid regardless of the pores shape 
(see Appendix 2). The differentiation of equation (31) with respect to % leads to:  

D?��
A5J\MAE� B

XZ,eY
+ D?��

A5J\MAE� B
Xf ,eY

= 2
3 5J\M (32) 

We perform a first-order expansion of 5J\M with respect to E� and E� : 

                 5J\M  = ^
_ �����
E� + ^

_ �����
E� + D?����
 (33) 

with ����
 being the energy of the interfaces before any deformation process, per unit volume of porous solid. �����
 and �����
 are interfaces energies respectively associated with liquid and gas phases. By combining equations (32) and (33), we 
identify �� and �� as two functions that verify the following relation: �=���� + ���� .  
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By equating the expression given in (26) with the derivative of equation (30), and knowing that A5�[2/A��  is negligible 

compared to A5J\M/A�� and that the terms  
^
_ E� �����
 and 

^
_ E� �����
 are considered to be very small (assumption of small 

deformations and porosities), we obtain: 

                 
QgJ\M

Q"Y = D? :h�"Y

:"Y = −D?�8 − 6?Δ$ :jZ

:"Y  (34) 

After integration of the above equation from a reference saturated state (considered for a relative humidity of 100%), we write:  

����
 = − k �8���
  �� − 6?/ D? k Δ$  O�
jZ

jlmm
  "Y

"lmm
 (35) 

In the above equation, the volume fraction of saturated pores for a relative humidity of 100% is considered to be equal to �!?? 
(�!?? ≤ 1) and the surface fraction of unsaturated pores is equal to O!?? (O!?? ≥ 0). In fact, based on experimental observations 
of sorption tests found in the literature (Baroghel-Bouny et al., 1999),(Chen, 2013),(Mjahad, 2012), when a porous material is 
exposed to an atmosphere with a relative humidity approaching 100%,  the pores (especially the large ones) are not necessarily 
fully saturated. This point will be further discussed (see section 4.5.1). 

As a final step, we write the free energy (per unit volume) of the solid matrix as:  
 

                  � 5�[2
"Y = �� − �K
 � + ]�� − ��K − ^
_ ��`  E� + ]�� − ��K − ^

_ ��`  E� (36) 

where � 5�[2
"Ymeans that the differentiation is performed at constant liquid saturation ��. 

In equation (36), we define �� = ]�� − ��K − ^
_ ��` and �� = ]�� − ��K − ^

_ ��` as the equivalent pore pressures 

associated respectively to the liquid and gas phases. The above equation will be used in the following section to write the 
poromechanical constitutive laws.  

It should be noted that the above derived approach considers the presence of a “spreading pressure” (Gor et al., 2018) 
on the solid surface of the unsaturated pores. This is by considering a possible variation of both the longitudinal and transversal 
dimensions (radius and length in the case of a cylindrical pore) of a considered pore shape. However, according to equation 
(30) and appendix 2, in this approach this variation can only be identical for the different present dimensions (i.e.in the case of 
a cylindrical pore, the radius and length vary by the same factor (1+%/3) given that in this approach a unique thermodynamic 
variable E links the different dimensions of the pore). 

3.3 Constitutive laws of poromechanics and the equivalent pore pressure 

Once the free energy of the solid matrix is written, we define its Legendre-Frenchel conjugate function                                          5�[2∗ = 5�[2 − ��E� − ��E�  and  5�[2∗ = �� − �K
 � − E� �� − E� �� . Within the frame of linear elasticity, 5�[2∗  must be a 
quadratic function with respect to the variables �, ��  and �� . Therefore 5�[2∗  is written as (Coussy, 2004): 

                5�[2∗ = !
^ ���^ − 	�� π� − 	�� π� − !

^
qYr
sYY   − !

^
qZr
sZZ − tZ∙tY

sYZ    (37) 

After comparing the expression of  5�[2∗  with the derivative of equation (37), we will be able to write the following 
constitutive equations: 

 � − �K = ��� − 	�π� − 	�π� (38) 

E� = 	�� + π�+�� + π�+�� (39) 

E� = 	�� + π�+�� + π�+�� (40) 

where �� is the elastic bulk modulus of the porous medium; +��, +�� and +�� are the Biot moduli; 	� and 	� are the Biot 
coefficients associated respectively to the liquid and gas phases. The Biot coefficient of the porous medium is defined as             	 = 	� + 	�. When assuming that the saturated and unsaturated pores in the considered porous system undergo an iso-
deformation (this hypothesis states that porous volume filled by each of the two considered fluids (liquid and gas) deforms in 
the same way whenever they are subjected to volumetric stresses but to no pressure and temperature variations (Coussy, 2007)), 
we come to find that 	� = �� ∙ 	 and 	� = �� ∙ 	. Those two relations allow us to write equation (38) as: 

                 � −  �K = ��� − 	���π� + ��π�) = ��� − 	� (41) 

In the above equation, the equivalent pore pressure is defined as � = ���π� + ��π�).  After replacing π� and π� by 
their expressions given in section 3.2, we write: 



- 9 - 

 

� = ���� + ���� − 2
3 � − ��� − $?
���

A6:.�AE� B
V,XZ,"Y

+ ��
A6:.�AE� B

V,XY,"Y

 (42) 

We consider that 
QRSTU

QV WXY,XZ,"Y
 is small compared to 

QRSTU
QXY WV,XZ,"Y

and 
QRSTU

QXZ WV,XY,"Y
.By taking into account this 

assumption and by analogy with the approach adopted in (Dangla and Pereira, 2014): 

6:.��E� + %D?�� , E� + %D?�� , ��
 = ]1 + ^
_ %` 6?O�     ∀% ≪ 1 (43) 

The derivation of equation (43) with respect to % gives: 

2
3 6?O� = D?��

A6:.�AE� B
XZ,"Y

+ D?��
A6:.�AE� B

XY,"Y
 44) 

After substitution of equation 44) and (35) in the equivalent pore pressure expression given by equation (42), we derive: 

� = ���� + ���� + 2
3 k �8���
  ��

"Y

"lmm
+ 2

3 �6?/D?
�k Δ$  O� − ��� − $?
O�
jZ

jlmm
 (45) 

The last term of equation (45) can be integrated by parts (with Δ$ = $ − $?
: 

� = ���� + ���� + 2
3 k �8���
  ��

"Y

"lmm
+  23 �6?/D?
�k O����
 $u

?
 − ��� − $
 O����

 (46) 

We replace the Gibbs isotherm relation (equation (8)) and the Shuttleworth relation (equation (10)) in the above expression. 
By replacing ��  with 1 − ��, the equivalent pore pressure � can be written as: 

� = �� − ��  �� + ^
_ � �8���
 ��"Y"lmm + ^

_ �6?/D?
 �� O����
 Γ  7<
? − ] Qu

QVv`W< O����
) (47) 

Finally, from what has been mentioned in this section, we outline that the constitutive behavior law is given by equation 
(41) with the expression of the equivalent pore pressure given in (47). It should be noted that the assumption made earlier in 
this section of a negligible dependence of 6:.� with respect to the skeleton strains at constant partial Lagrangian porosities and 

saturation results in a zero adsorption stress in equation (41): �K = ��� − $?
 QRSTU
QV WXY,XZ,"Y

= 0. 

3.4 Contributions to the equivalent pore pressure w 

It is important to note that in expression (47), each term underlines a specific contribution to the development of the 
equivalent pore pressure: 

 
o The term xy − z{x| (written also as  z{x{ + zyxy 
 is the contribution of the average pore pressure. 

o The term 
}
~ � x��z{
 �z{z{z���  is the contribution of the interfaces energy. Capillary effects are a consequence of all three 

terms: xy − z{x| + }
~ � x��z{
�z{z{z��� . 

o The term 
}
~ ���/��
�� �y�z{
 � ��
�

�  is the effect of fluid adsorption.  

o The last term 
}
~ ���/��
�− ] ��

���`W� �y�z{
) is the Shuttleworth effect. 

By referring to other poromechanical models found in literature, it could be pointed out that the model by (Coussy et al., 2003) 
accounts only for the contribution of the average pore pressure and the interfaces energy. In contrast, the Bangham’s model 
stands on the unique contribution of the fluid adsorption effects. On another hand, for fully saturated porous materials, the 
model proposed in (Vandamme et al., 2010) allows to consider the contribution of both the average pore pressure and the fluid 
adsorption effects. Finally the phenomenological derivation made in (Rahoui, 2018) allows to consider all three contributions 
of the average pore pressure, the interfaces energy and the fluid adsorption effects. However, in the work of (Rahoui, 2018), 
the Shuttleworth effect was not taken into account due to the difficulty to intuit such an effect without a proper thermodynamic 
derivation.    

4 Application to drying shrinkage: comparison with experiments 

The previously derived poromechanical model is used in this section to predict the strains induced by the drying of a 
porous material. Those strains can be evaluated according to equation (41). Given that, in a drying shrinkage experiment, the 
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total stress � is equal to zero and that the material is considered to be isotropic, the drying shrinkage strain �: is equal to (1/3) 
of the total volumetric strain � and can be written as:  

�: = 1
3 � =  1

3
�	 �


��  (48) 

Equation (48) can be generalized to calculate a variation Δ�: with respect to any reference state as Δ�: = !
_ Δ� =  !

_
��∆t


�� , where 

∆� is the variation of equivalent pore pressure with respect to this same reference state. 

4.1 Evaluation of the model input parameters 

The assessment of the equivalent pore pressure �  requires the calculation of various input parameters. In this work, the input 
parameters are evaluated with respect to the relative humidity hR. The approaches or techniques adopted for this calculation are 
indicated in the list below. It should be noted that, to use the BJH method (Barrett et al., 1951) to calculate  O�  and ��, we 
assume the pores to be cylindrically shaped. 
o xy: the pressure of the gas phase is assumed to be constant and equal to the atmospheric pressure 

o z{���
: the Lagrangian saturation or volume fraction of the saturated pores at a given relative humidity is calculated with 
the BJH (Barrett et al., 1951) method (detailed in section 4.5) 

o x|���
: the capillary pressure for a given relative humidity is calculated with the Kelvin equation: ��   = �� − �� =
−����'
/�� �� �ℎ�
, where �� is the liquid water density, � is the constant of ideal gazes, ' is the ambient temperature 

o ��: the total surface of the pores or specific surface area of the material per unit volume (m2/m3). 6? is the product of the 
specific surface area (m2/g) determined with the B.E.T (Brunauer et al., 1938) method or the BJH technique, by the 
experimental dry density �:9� (g /m3). 

o �y���
: the surface fraction of the unsaturated pores at a given relative humidity is the ratio between the surface of the 
unsaturated pores at a given relative humidity obtained with the BJH method (see section 4.5) with respect to the total 
surface of pores (i.e. the specific surface area) calculated in section 4.3. 

o ��: the initial porosity assessed by the processing of experimental data 
o ��: the total differential of the chemical potential of the adsorbed water in the unsaturated pores, calculated with the 

following equation derived from Kelvin equation:  7 = �' ln �ℎ�
 

o ����
: the number of the water excess moles per unit surface at the solid/gas interface equal to 
�#
�# ��ℎ�
 where ��ℎ�
 is 

the thickness of the multimolecular adsorbed layer of water at the surface of the unsaturated pores. In the case of water 
adsorption at a solid surface, ��ℎ�
can be evaluated by empirical relations such as (Badmann et al., 1981), (Hagymassy et 
al., 1969). In this work, t(ℎ�) is evaluated using the (Badmann et al., 1981) relation (see section 4.4). We assume that the 
density of adsorbed water is that of bulk liquid water (Powers and Brownyard, 1947) 

o ] ��
���`W�: the Shuttleworth term. The value of this term depends highly on the morphology and the orientation of the solid 

surface (Weber et al., 1988). Although the (Shuttleworth, 1950) equation has been widely used (a review of this relation is 
given by (Cammarata, 1994)), how the surface energy $ varies with the skeleton strains is not obvious (Schulman et al., 
2018). In this work, we propose to fit this term on experimental drying shrinkage strains. 

o Kb: the elastic bulk modulus Kb of the porous medium is considered to be constant (i.e., not to depend on the skeleton strains 
or on chemical potential μ). It is assessed by the processing of experimental data (see section 4.6.1). 

4.2 Experimental results used for model validation 

The predicted drying shrinkage strains are compared with experimental results given in the literature for three different 
porous materials: 

o A hardened Portland cement paste with a water-to-cement ratio equal to 0.55, tested in (Maruyama et al., 2018). The 
corresponding experimental data are presented in section 4.2.1. 

o A high-performance concrete with a water-to-cement ratio equal to 0.26, tested in (Baroghel-Bouny et al., 1999). The 
corresponding experimental data are presented in section 4.2.2. 

o A Vycor glass (Corning 7930), tested by (Amberg and McIntosh, 1952) and reported by (Vlahinić et al., 2009). The 
corresponding experimental data are presented in section 4.2.3. 

The above experimental data were chosen owing to the fact that the measured experimental points extend over a wide 
range of relative humidity, since we aim at examining the ability of the elaborated poromechanical model to capture both 
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capillary effects (which are expected to be dominant in the high relative humidity range) and fluid adsorption effects (which 
are expected to be dominant in the low relative humidity range). 

For each of the considered experimental data, the experimental parameters and curves necessary for the model 
computation are:  
o The experimental porosity D?1 of the studied porous material. 
o The dry density of the porous material �:9�3 necessary for the computation of 6?. 

o The water desorption isotherm that represents the hygral equilibrium states of the porous material when exposed to a 
decreasing relative humidity. This experimental curve could be represented either in terms of the experimental water degree 
of saturation2 ���ℎ�
 or in terms of the experimental water content3 ��ℎ�
. The dry reference state considered in the 
calculation of  �� or � has been found to differ from one experimental work to another. This point will be further discussed 
in the following sections.  

It should be noted that for the experimental data of (Maruyama et al., 2018) and (Amberg and McIntosh, 1952), the 
used desorption isotherms correspond to a subsequent (second) drying branch which could eventually avoid any 
irreversibility of the drying shrinkage following the use of the first drying branch. Regarding the high performance concrete 
studied by (Baroghel-Bouny et al., 1999), even though the desorption isotherm corresponds to a first drying branch, it 
could be considered (as stated in (Di Bella et al., 2017)  and proven by (Maruyama, 2010)) that any possible observed 
irreversibility could be due to the presence of the well-known hysteresis in the sorption isotherm of cementitious materials 
and not due to the occurrence of a non-elastic phenomenon. Therefore, modelling drying shrinkage during a first drying 
by an elastic approach is considered to be acceptable (Di Bella et al., 2017).  

o The elastic bulk modulus Kb of the porous medium. 

4.2.1 Experimental results of (Maruyama et al., 2018)  

The hardened cement paste (noted as hcp) studied in this work is prepared with a Japanese white Portland cement with 
a water-to-cement mass ratio equal to 0.55. After mixing, the cement paste was poured into 3x13x300 mm3 molds. Following 
180 days of curing under lime-saturated water, the hcp samples were placed into a chamber with a relative humidity of 11% 
chamber and equilibrated for more than 6 years. Sorption isotherms were obtained with a volumetric sorption analyzer (using 
an hcp powder) at different temperatures and consisted of a humidification process followed by a drying process. In this work 
we refer to the desorption isotherm (in terms of water content) obtained at 20°C with a relative humidity ranging from 0.97 
down to 0 (Fig. 4-a). As for the dry reference state, the hcp samples were placed under vacuum at a temperature of 105°C at 
the end of the measurement. The experimental water content is normalized with respect to this mass. The water content when 
the relative humidity approaches zero, as seen in (Fig. 4-a), is not null, due to the fact that the drying of the sample at 105°C 
carries away more water than exposing the sample to a zero relative humidity at 20°C.  

The measurement of the drying shrinkage strains was done with a LVDT (Linear variable differential transformer) for 
3x13x300 mm3 samples that were incrementally dried from ℎ�  = 0.9 to ℎ�  = 0.11. The values of the drying shrinkage strains vs ℎ� are given in (Fig. 4-b). The length of the sample at ℎ�  =0.9 is considered to be the reference state. As for the porosity and 
the dry density of the considered hcp, no values for those parameters were given in the cited work. We referred to a porosity of 
a similar hardened cement paste (with a water-to-cement mass ratio of 0.5) studied by (Di Bella et al., 2017) where the dry 
reference state was equally taken by the authors for an oven drying at 105°C: in that case, the experimental porosity was D? =21% . As for the dry density of the hcp, an estimated value was later calculated and found to be compatible with the BJH 
calculation (details are shown in section 4.5). 

 

 

 

                                                           
1 The experimental porosity is defined as D? = 

 v¡¢= S£¤
�#¥m  with ¦�KM is the mass of the saturated sample and ¦:9� the mass of the 

dry sample, and �� the density of water. The dry density of the sample is defined as �:9� = 
 S£¤

¥m .   
2 The experimental degree of saturation is the volume fraction of the total water in pores (both the adsorbed water in unsaturated 

pores and the liquid water in saturated pores). It can be computed according to the relation: ����§
 =   ��¨
= S£¤
 v¡¢= S£¤  with ¦��§
 the mass 

at equilibrium of the sample exposed to a certain ℎ� . 
3 The experimental water content also relates to the total water in the pores and could be computed according to the relation:          

���§
 =   ��¨
= S£¤
 S£¤ .   Having the previous relations in mind, one could relate ��  and �  by: �� =   � �S£¤

©m �# .  
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4.2.2 Experimental results of (Baroghel-Bouny et al., 1999)  

 

 
Fig. 5 – (Baroghel-Bouny  et al., 1999): (a)  experimental water desorption isotherm 
– (b) experimental relative length variation 

 

 

 

 

Fig. 4 – (Maruyama et al., 2018): (a)  experimental water desorption isotherm – (b) 
experimental relative length variation 
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The high-performance concrete tested by (Baroghel-Bouny et al., 1999) was prepared with a normal Portland cement 
with a certain fraction of silica fume and of superplasticizers. The specimens were discs with a 3 mm thickness and a 90 mm 
diameter. At the beginning of the tests, the concrete had an age of 1 year. The sorption test consisted of a drying process 
followed by a re-humidification process at a temperature of T=23°C. In this work, we refer to the desorption isotherm. The 
relative humidity varied between 1 and 0.03. The dry reference state was chosen to be the mass of the sample at ℎ�=0.03 and 
at an ambient temperature of T=23°C. By doing so, the authors wanted to avoid submitting the concrete to a drying process 
with conditions that differed from those of the desorption process; in fact, the risk with oven drying is that it could damage the 
specimen and so increase its porosity. Fig. 5-a displays the variation of the experimental water content with respect to ℎ�. This 
desorption isotherm can also be found in terms of the experimental degree of saturation in the work of (Baroghel-Bouny et al., 
1999). 

The samples used for the measurement of the drying shrinkage strains were identical to the ones used for the sorption 
test. The diameter and length of the discs were measured with dial gauges. By considering the diameter and length at ℎ�= 0.904 
as an initial reference state, the values of the drying shrinkage strains vs. ℎ� are given in (Fig. 5-b). The porosity of the high-
performance concrete is provided and is equal to 8.2%. The dry density, given also in the referred article, is equal to 2382 
kg/m3. 

4.2.3 Experimental results of (Amberg and McIntosh, 1952) 

The Vycor glass cited in the work of  (Vlahinić et al., 2009) is a Vycor 7930 Corning glass that was originally tested 
by (Amberg and McIntosh, 1952). The desorption tests were done at a temperature of 11°C on rods of 11 cm length and 0.73 
cm in diameter. The dry reference state is defined by (Vlahinić et al., 2009) as the mass of the sample at ℎ�=0.05.The desorption 
isotherm is given in terms of the degree of saturation (Fig. 6-a). The drying shrinkage strains are given in  
(Fig. 6-b) with an initial measurement reference taken for ℎ�=0.99. The porosity of this material is given by the manufacturer 
and is equal to 28% (Vlahinić et al., 2009). The dry density is equal to 1450 kg/m3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Calculation of the specific surface area of the porous materials 

There exist various methods for computing the specific surface area of a porous material. One of them is the gas sorption 
analysis technique, which uses water vapor or nitrogen adsorption tests. A comparison of this technique with other methods is 
given in (Thomas et al., 1999). In the present paper, we calculate the specific surface area of the materials using water vapor 
sorption isotherms with the BET (Brunauer et al., 1938) method. Due to its simplicity and ability to accommodate different 

 

 

Fig. 6 – (Amberg and McIntosh, 1952): (a) experimental water desorption 
isotherm – (b) experimental relative length variation 
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isotherms types, this method continues to be the most commonly used one for gas sorption specific surface area analysis 
(Aligizaki, 2006). The BET theory describes multimolecular adsorption on solid surfaces. This theory assumes that there is no 
adsorbate-adsorbate interaction. It also assumes that the adsorption of the first layer (i=0) is done with an energy of interaction 
E0, while adsorption for all remaining layers (i>1) is done with an energy equal to the energy of liquefaction EL (energy of a 
bulk liquid). When approaching saturation, the theory considers that the number of adsorbate layers becomes infinite. The BET 
theory is based on the following relationship (Aligizaki, 2006): 

ℎ��1 − ℎ�
� = 1 + �ª − 1
ℎ�ª �   (49) 

where ª is the BET constant linked exponentially to the molar heat of adsorption of the surface adsorbed molecules and thus 
to the hydrophilicity of the solid surface, �  is the water content of the material when one layer of water covers the whole 

surface of the pores. Equation (49) allows for processing sorption experimental data so that the quantity 
N«

�!=N«
∙�  is plotted with 

respect to ℎ�. If the BET theory applies, a linear relationship must be obtained with a slope of  
��=!

� �¬  and a Y-intercept of 

!
��¬, 

so that it is possible to calculate � . In most cases, the BET theory applies in the region of ℎ� between 0.05 and 0.35 (Aligizaki, 
2006). Indeed, in this region the hypotheses on which the theory relies are most likely verified. It is important to note that the 
classical BET theory is only valid for free adsorbed water layers rather that hindered ones. A modification of the classical BET 
theory in the case of hindered water spaces is proposed in (Nguyen et al., 2019). In the current framework, we consider that the 
pore spaces can only be filled with free adsorbed layers of water. Thus the classical BET theory remains valid. 

Once �  is calculated, we can then proceed to the evaluation of the specific surface area �­®¯  using the following 
equation (Baroghel-Bouny, 1994): 

�­®¯ = +R 6  ( (�  (50) 

where +R is the number of Avogadro (6.023 1023 molecules/mol), 6  is the average area occupied by one molecule of the 
adsorbate: for water molecules, the value of 10.6 Å2  is used in the literature (Baroghel-Bouny, 1994),(Hagymassy et al., 1969). (� is the molar volume of water (18.10-6 m3/mol (NIST Chemistry WebBook, 2018)) and (  the volume of water (in m3/g) 
corresponding to the value of � . The value of the specific surface area for each of the studied materials with the range of ℎ� 

where the BET theory is applied is given in Table 1. 

Experimental Data 
Range of hR where the BET 

theory is applied 
Specific surface area SBET 

(Maruyama et al., 2018)  0.11 – 0.30 157 m2/g 

(Baroghel-Bouny et al., 1999)  0.11 – 0.33 27 m2/g 

(Amberg and McIntosh, 1952)  0.25 – 0.43 81 m2/g 

Table 1- Specific surface area of the materials calculated with the BET theory 

It is important to note that the value of the specific surface area calculated with the BET method depends highly on 
the number of experimental points used for the calculation. As far as the considered experimental data are concerned, the orders 
of magnitude obtained for the hardened cement paste and the high-performance concrete are in agreement with the literature: 
for a hardened cement paste, values of specific surface area are found to vary between 100 and 200 m2/g (Baroghel-Bouny, 
2007), while for high-performance concretes values are found to be around 20 m2/g  (Chen, 2013) (Baroghel-Bouny, 1994). As 
for the Vycor glass, the value calculated in Table 1 is lower than the values found in the literature. A value of 106 m2/g obtained 
from water vapor isotherms is noted in (Gor and Bernstein, 2016b) and values ranging from 100 m2/g to 173 m2/g are given in 
(Bentz et al., 1998). The latter values were assessed from experimental nitrogen isotherms (with nitrogen isotherms known to 
provide smaller BET specific surface areas than the ones assessed from water vapor isotherms (Baroghel-Bouny, 1994)). The 
small specific surface area obtained in this work for the Vycor glass may be due to the limited number of experimental points 
that served in its computation. Indeed, only two experimental points were used in the BET calculation: the first one at ℎ� = 
0.25 and the second one at ℎ� = 0.43. Therefore, for the experimental data of (Amberg and McIntosh, 1952), an alternative 
method for calculating the specific surface area is posteriorly proposed (see section 4.5.2).  

4.4 Calculation of the thickness of the adsorbed layer of water 

Concerning the thickness � of the adsorbed layer of water, the empirical relation given by (Badmann et al., 1981)  is 
used in this work: ��ℎ�
 =  �!  +  �^ln �− ln�ℎ�

. For each of the studied cementitious materials, we try to fit the values of �! and �^ on the thickness �./1  of the adsorbed layer measured experimentally: �./1 = (K:�/�­®¯   with (K:� the volume of 
adsorbed water assessed from the experimental water desorption isotherms. The obtained values are then compared to those 
given by (Badmann et al., 1981) for non-porous cement raw materials : �! = 0.385 nm and �^ = −0.189 nm. The comparison 
is shown in Fig. 7.  
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We come to find that the values fitted on each of the experimental results (�! = 0.42 nm and  �^ = −0.15 nm for the 
experimental data of  (Maruyama et al., 2018); �! = 0.40 nm and �^ = −0.21 nm for the experimental data of  (Baroghel-
Bouny et al., 1999)) are in the vicinity of the values given by (Badmann et al., 1981). This small difference could be due to the 
different dry reference state taken by each of the authors while calculating the experimental water content. Nevertheless, we 
can admit that the (Badmann et al., 1981) values are mostly respected: we use those values in what follows. 

As for the experimental data of the Vycor glass, no values for �! and �^ were found in the works of  (Badmann et al., 
1981) for a similar composition. Therefore, �! and �^ are fitted on the corresponding water isotherm. The values retained are:  �! = 0.33 nm and �^ = −0.31 nm. 

 

 
Fig. 7 – Experimental thickness of the adsorbed layer of water 
compared to the thickness given by the Badmann model:  
(a) experimental results of (Maruyama et al., 2018) with fitted values 
K1= 0.42 nm and K2=-0.15 nm – (b) experimental results of 
(Baroghel-Bouny et al, 1999) ) with fitted values K1= 0.40 nm and 
K2=-0.21 nm 

4.5 BJH method 

The BJH method proposed by (Barrett et al., 1951) is used for the determination of the pore size distribution for porous 
media. In this method, the authors used the desorption branch. The pores were assumed to be cylindrically shaped and their 
radius noted µ1 is equal to the sum of the Kelvin-Laplace radius4 noted µP and the thickness of the adsorbed layer t. The authors 
also assumed that the thickness of the adsorbed layer inside the pores is equal to that of an adsorbed layer on a flat surface. 

4.5.1 Description of the method 

The calculation process used in this method is detailed in (Rouquerol, 2003): 

- By taking the water volume (�,\ for each relative humidity ℎ� as an initial input (calculated from the experimental 
water desorption isotherm w(ℎ�))5, this method calculates the volume of desorbed water between two consecutive steps n-1 
and n. This volume is noted as G(�,\ = (�,\=! − (�,\.  It is important to note that seeking to avoid further integration 
complications, we tried fitting the experimental desorption isotherms with several models found in the literature (Van-
Genuchten, 1980), (Durner, 1994), (Morandeau et al., 2014). However, the tested models were found incapable of precisely 
fitting the data in the range of relative humidity between 0.3 and 0.6. This range is important to model to observe the transition 
between the contribution of the capillary pressure and the fluid adsorption effects in the drying shrinkage process. Therefore, 
we proposed to linearly interpolate the experimental desorption isotherms before using them in the BJH calculation. 

                                                           
4 The Kelvin-Laplace relation is written as  µP =  ^∙u

¶Z=¶Y where $ is the liquid-gas surface energy. The surface energy $ at a 

temperature T can be computed using the relation given in (IAPWS, 1992): $�¦+/¦
 =  235.8 ∙ ]1 − ¯
·̄`!.^¸¹ [1 − 0.625 ] ¯

·̄`] where ' and 

'8 are expressed in Kelvin. '8 being the critical temperature of water ('8 = 647.096 �
 
5 The volume of water in the pores can be calculated (per unit of dry mass) from the water content by (� = �/��.  
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- Using the corresponding pore size µ1,\�ℎ�
 = µP,\�ℎ�
 + �\�ℎ�
, the method calculates a volume (noted G(1,\
 and 
an area (noted G¾1,\
  that correspond to the class of pores that will be desaturated at a given ℎ�. The expression of G(1,\ is 
given by equation (51) where µ1,\¿¿¿¿  is the average radius of pores between two consecutive steps, G�\ = �\=! − �\ is the 
increment of the adsorbed layer thickness and G¾1,J = 2G(1,J/µ1,À¿¿¿¿  is the solid surface area under the assumption of cylindrical 
pores. 

G(1,\ = Á µ1,\¿¿¿¿
µ1,\¿¿¿¿ − �\Â

^
[ G(�,\ −  G�\ Ã G¾1,J�1 − �\µ1,À¿¿¿¿
]

\=!

JÄ!
 (51) 

- The cumulative sum of those volumes (∑ G(1,JJ 
  corresponds to the total volume of the unsaturated pores at a certain 
relative humidity ℎ�. Knowing the total volume of pores per unit dry mass (D?( ?) in the material (with ( ? the total volume 
of the sample per unit of dry mass), we can now compute the volume fraction of the unsaturated pores at a certain relative 
humidity ℎ� (previously noted as SG = ∑ G(1,JJ  /�D? ( ?
) and the volume fraction of the saturated pores at the same relative 
humidite (�� = 1 − ��  ). While the experimental degree of saturation �� indicates the total fraction of water (adsorbed water 
+ free liquid water) found in pores at a certain relative humidity, �� designates exclusively the fraction of the free liquid water 
found in the pores at this relative humidity. 

- The cumulative sum of areas (noted ∑ G¾1,JJ 
  corresponds to the total area of the unsaturated pores at a certain 
relative humidity. Knowing the total surface of pores (which is, close to a multiplying factor, equal to the specific surface area 
of the material), we can calculate the surface fraction of the unsaturated pores for a given relative humidity (previously noted 
as O� and equal to the ratio of ∑ G¾1,JJ  with respect to the specific surface area). The total area ∑ G¾1,JJ  calculated at the final 
stage of the computation corresponds to a specific surface area of the material calculated with the BJH method SBJH. It can be 
compared to the specific surface area SBET assessed with the BET method (Table 1). 

Before proceeding in the BJH computation, an important point on which relies this approach must be further discussed. 
This point consists on identifying the initial saturation state of the pores. In fact, for calculation purposes, this method assumes 
that in the initial reference state, the pores are completely saturated. Therefore, according to this technique, if the initial state is 
for a relative humidity approaching 1, the experimentally measured degree of saturation at this state ���ℎ� → 1
 must be equal 
to 1. However, as it can be seen in the literature, this constraint is not always experimentally verified. For cementitious materials, 
(Baroghel-Bouny et al., 1999) noted ���ℎ� → 1
=0.8 for the high-performance concrete studied in this work and ���ℎ� →1
=0.85 for other studied hardened cement pastes. Additionally, for high-performance concretes, (Chen, 2013) and (Mjahad, 
2012) measured Sw(ℎ� →1) of 0.8 and 0.9 respectively. Those experimental observations rely on the fact that submitting a 
porous material to a relative humidity approaching 1 may not induce a full saturation of the pores, which might only be reached 
by immersing the sample in liquid water.  

Consequently, to be consistent with those experimental observations, for each of the cementitious materials studied in 
this work, the BJH calculation will start from a virtual state where the sample is considered to be fully saturated and then 
followed by the initial experimentally measured state (where the sample is exposed to a relative humidity approaching 1). For 
the latter state, we can consider that no water is adsorbed on the unsaturated pore surface (i.e. SL (ℎ� →1) = Sw (ℎ� →1)). An 
example of the first steps of the BJH computation for the experimental data of (Baroghel-Bouny et al., 1999) is given in Table 
2. The corresponding BJH results in terms of SL and O�   are shown in the following section. 

Relative 
humidity 

Water 
content 

Water 
degree 
of 
saturati
-on 

Volume of 
water 

(cm3/g) 

Desorbed 
water 

volume  
(cm3/g) 

Volume of 
unsaturated 
pores 
(cm3/g) 

Area of 
unsaturated 
pores 
(m2/g) 

Total 
volume of 

unsaturated 
pores 

(cm3/g) 

Total area of 
unsaturated 

pores 
(m2/g) 

Lagrangi
-an gas 

saturation 

Lagran-
gian 
liquid 
saturation 

Lagrang-
ian 
surface 
fraction 

ℎ�  w    Sw (�,\ G(�,\ G(1,\ G¾1,\ Ã G(1,JJ  Ã G¾1,JJ  SG SL O�  

Under 
water 

- 1.0   D? ∙ (?   
=0.0343 

0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.00 

ℎ�  →1 0.0274 0.8 0.0274 0.00690 0.00690 0.00128 0.00690 0.00128 0.20 0.80 4.7 10-05 

0.99 0.0271 0.79 0.0271 0.00033 0.00033 0.00012 0.0072 0.00140 0.21 0.79 5.2 10-05 

0.98 0.0268 0.78 0.0268 0.00033 0.00034 0.00832 0.0075 0.00973 0.22 0.78 0.0004 

0.97 0.0265 0.77 0.0265 0.00033 0.00034 0.01511 0.0079 0.02485 0.23 0.77 0.0009 

Table 2 – BJH computation of the experimental data of (Baroghel-Bouny et al., 1999)  

Concerning the experimental data of (Maruyama et al., 2018), to calculate the fraction of the unsaturated/saturated 
pores, the total volume of pores per unit dry mass (D? (Æ?) must be known. However, as indicated previously (section 4.2.1), 
considering that the experimental porosity of the studied hcp was not cited in the mentioned article, we chose a value of D?=21% 
(Di Bella et al., 2017). On the other hand, given that sorption tests were done using powder samples, the volume (Æ? was not 
measured in this work. Therefore, according to what was mentioned earlier in this section, we can assume that in the initial 
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experimentally measured state (ℎ� = 0.97) the experimental degree of saturation can take a value between 0.85 (value given in 
(Baroghel-Bouny et al., 1999) for hardened cement pastes) and 0.99. Therefore, for  the experimental data of (Maruyama et al., 
2018), two calculations scenarios will be tested (named Sc1 and Sc2) for the calculation of the drying shrinkage strains: for 
scenario Sc1, we consider that ���ℎ� =  0.97
  =  0.85 and for scenario Sc2 we consider that ���ℎ� =  0.97
  =  0.99. The 
BJH results for both scenarios are shown in the following section. For each of those scenarios, we can calculate a volume (Æ? 
(per unit of dry mass) and respectively a dry density6. The calculated values for the dry densities are respectively 1120 kg/m3 
and 1320 kg/m3 for scenarios Sc1 and Sc2. Those dry densities will be used posteriorly to calculate the specific surface area 6? 

per unit volume (Table 3). 

4.5.2 Results of the BJH analysis applied to experimental data 

In this section, we show the obtained BJH results in terms of the saturated volume fraction of pores SL compared to 
the experimental water degree saturation Sw and in terms of the surface fraction of the unsaturated pores O� .  

For the experimental data of (Maruyama et al., 2018), the results are shown in Fig. 8-a and Fig. 8-b. In terms of 
saturation, for a relative humidity approximately equal to 0.35, the fraction of the saturated pores decreases sharply: the material 
loses a significant amount of the free liquid water. When the relative humidity ℎ� becomes smaller than 0.3, a small part of the 
pores remains saturated (�� ≈10%) until reaching approximately ℎ�=0.03. Below this relative humidity, all the water that 
remains in the pores is adsorbed water. In Fig. 8-b is shown the surface fraction O�  of the unsaturated pores as a function of 
the relative humidity ℎ�. The specific surface area used to compute O�  is the one obtained with the BET method (Table 1). For 
these curves, the same trends are observed as for ��. It should be noted that in the purpose of judging the consistency of the 
BJH results, (Rouquerol, 2003) indicates that one must check that the specific surface area SBJH calculated with the BJH method 
does not differ more than 10% from the specific surface area SBET calculated with the BET method. This verification has been 
done with a calculated BJH surface area of 154 m2/g compared to 157 m2/g to that obtained with the BET method, which results 
in a difference of 2%. As for the two tested calculation scenarios Sc1 and Sc2, we can note that in terms of saturation (Fig. 8-
a) the two scenarios differ principally in the high range of relative humidity (i.e., for ℎ� >0.3). In terms of the calculated surface 
fraction of the unsaturated pores (Fig. 8-b), the difference is negligible. 

 

 
Fig. 8 – (a) and (b): variations of Lagrangian liquid saturation SL, water 
degree saturation  Sw and Lagrangian surface fraction O�  of unsaturated 
pores, respectively, for the experimental data of (Maruyama et al., 
2018) 

 The obtained BJH results for the experimental data of (Baroghel-Bouny et al., 1999) are presented in Fig. 9: when the 
relative humidity reaches a value of 0.55, �� decreases sharply (Fig. 9-a) and the material loses a significant amount of liquid 
water from the saturated fraction of the pores. Below a relative humidity of 0.33, a small fraction of pores remains saturated 

                                                           
6  Sw = (�/(D?(Æ?) where the volume of water in the pores (� (per unit of dry mass) is calculated from the experimental water 

content (per unit of dry mass) given by (Maruyama et al., 2018) ((� = �/��
. For a given value of Sw (ℎ� = 0.97), w (ℎ� = 0.97) and D?=21%, we can calculate a volume (Æ? (per unit of dry mass). The dry mass will be equal to  �:9� = 1/( ? 
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(�� ≈10%) until reaching a value of ℎ�=0.11 at which all pores become unsaturated. For the calculation of O�  (shown in Fig. 
9-b), the specific surface area used is the one calculated with the BET method (Table 1). The specific surface area calculated 
with the BJH is equal to 26.5 m2/g, which results in a difference of 2% with respect to the 27 m2/g calculated with the BET 
method. 

 

 

Fig. 9- (a) and (b): – (a) and (b): variations of Lagrangian liquid 
saturation SL, water degree saturation Sw and Lagrangian surface 
fraction O�  of unsaturated pores, respectively, for the experimental 
data of (Baroghel-Bouny et al., 1999) 

Finally, for the experimental data of (Amberg and McIntosh, 1952) given in Fig. 10, when the relative humidity ℎ� 
reaches a value of 0.59 all the pores becomes unsaturated. Below this value, water will be found only under an adsorbed form. 
The main difference between the results obtained for the Vycor glass and for the previously tested cement materials is that 
Vycor glass tends to remain saturated during the initial stages and then to release sharply all the liquid water in a very narrow 
range of relative humidity ℎ� (in this example in a range between 0.7 and 0.59). (Vlahinić et al., 2009) linked this behavior to 
the morphology of the Vycor glass: contrary to cementitious materials, this material shows a narrow pore size distribution, with 
a majority of pores in the nanometer range (Scherer, 1986). On another hand, the specific surface area SBJH  calculated with the 
BJH method is 100 m2/g. A difference of 20% with the specific surface area SBET = 81 m2/g (see Table 1) calculated with the 
BET method is noted. As previously explained, this difference could be due to an underestimation of SBET linked to the limited 
number of experimental points used for the BET computation. Consequently, having an order of magnitude similar to specific 
surface areas of Vycor glasses found in the literature (see section 4.3), the specific surface area of 100 m2/g calculated with the 
BJH method will be retained for processing the (Amberg and McIntosh, 1952) experimental data. The corresponding calculated 
values of the Lagrangian surface fraction O�  (=∑ G¾1,JJ / SBJH ) of unsaturated pores is shown in Fig. 10-b and is compared to 
the calculated values of O�  (=∑ G¾1,JJ / SBET ). 
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Fig. 10- (a) and (b): variations of Lagrangian liquid saturation SL, 
water degree saturation Sw and Lagrangian surface fraction O�  of 
unsaturated pores, respectively, for the experimental data of (Amberg 
and McIntosh, 1952) 

Another important input parameter of the model is the specific surface area per unit volume A0 (m2/m3): this value is 
calculated from the product of the previously calculated specific surface area (m2/g) with the dry density (kg/m3) for each of 
the tested materials. The calculated values are shown in Table 3. 

Experimental Data 
Specific surface area 

(m2/g) 

Dry density 

(kg/m3) 
A0 (m2/m3) 

(Maruyama et al., 2018) – Sc1 157 1120 1.76 10+08 
(Maruyama et al., 2018) – Sc2 157 1320 2.07 10+08 
(Baroghel-Bouny et al., 1999) 27 2382 6.43 10+07 
(Amberg and McIntosh, 1952)  100 1450 1.45 10+08 

Table 3- Calculated specific surface areas per unit volume 

The previously computed quantities ���ℎ�
, O��ℎ�
 and A0 will be used as input parameters for the calculation of the 
equivalent pore pressure (equation (47)) and of the drying shrinkage strains (equation (48)). The corresponding results are 
shown in the following section. 

It should be noted that in (Maruyama et al., 2018), for the cement paste studied in this work (and other studied 
cementitious porous bodies) the sudden drop observed in the experimental water content for a relative humidity ℎ� near 0.35 
was explained by the cavitation phenomena, that causes no liquid water to be found in the pores for a relative humidity ℎ� 
below approximately 0.35: “During adsorption or desorption, the surface tension acting on the meniscus causes negative 
pressure in the condensed liquid water […].When the negative pressure in the liquid water becomes too large, the liquid water 
becomes unstable, the nucleation of vapor bubbles must occur and suddenly a certain amount of water is released from the 
sample.” Nonetheless, even though the previously presented BJH results (Fig. 8 and Fig. 9) showed a sharp decrease in the 
liquid water amount SL for a relative humidity near 0.35, no total desaturation of the pores (i.e. �� ≠ 0) was observed for this 
value of relative humidity. Therefore, aiming at studying the impact of considering such an allegation, an alternative BJH 
computation method is shown in the appendix. This method consists on using the BJH technique until reaching a ℎ� near 0.35 
and then to assume complete desaturation of the pores (��  =  0 and O�  = 1). The impact of this method on the calculation of 
the drying shrinkage strains is presented in the appendix. 

On another hand, as described earlier (§ 4.5.1), the BJH calculation could give an approximate value for the average 
radii of pores found in a studied porous material. Given that the poromechanical approach developed in this work is only valid 
for porous materials presenting macro and meso pores, the BJH calculation could therefore indicate approximately when 
micropores (if present) start to get emptied and hence under which relative humidity the developed model could lose its validity. 
According to the BJH results, micropores (with an average pore size < 2 nm) could be found for relative humidities smaller 
than approximately 20% for the studied hcp and high performance concrete and smaller than 25% for the Vycor glass. 
Therefore, it is important to note that while the stresses and strains are calculated (in the following section) for ranges of relative 
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humidities down to 3%, the calculated values for relative humidities smaller than 20%-25% could be considered only as 
approximate values. 

4.6 Results and discussion 

4.6.1 Equivalent pore pressure and drying shrinkage strains 

In order to compute the drying shrinkage strains, by referring to equation (48), two important parameters are needed: 
the Biot coefficient b and the elastic bulk modulus Kb of the porous medium. Due to the uncertainties in the value of the Biot 
coefficient, this parameter is not fixed but chosen to vary within a range, whereas the value of Kb is fixed. Results in terms of 
drying shrinkage strains are then given and discussed based on the defined range, by testing both the upper and the lower bound 
of b. 

In the article of (Maruyama et al., 2018), no values were provided for the two parameters Kb and b. Therefore, to be 
consistent with the previously assumed porosity of the studied hcp, we refer again to the work of (Di Bella et al., 2017), which 
provide for �� the value of 14.8 GPa. As for the elastic bulk modulus �� of the solid skeleton, (Di Bella et al., 2017) refer to 
the works of  (Grasley et al., 2007) and (Hashin and Shtrikman, 1963) and indicate a range of variation for this parameter: 38 GPa ≤ �� ≤ 55 GPa. Making use of the classical relation 	 = 1 − ��/��, the given range of variation of �� together with 
the adopted value of �� leads to a range of variation of the Biot coefficient 	:  0.61 ≤ 	 ≤ 0.73. 

In the same way, in the article of (Baroghel-Bouny et al., 1999), the values of �� and b for the studied concrete were 
not provided. We refer then to the work of (Brue et al., 2017) where for a similar high-performance concrete the authors note:           �� = 30.8 GPa and 	 = 0.55. We consider a range of variation of the Biot coefficient for the high-performance concrete 
between 0.55 and 0.7. 

Finally concerning the studied Vycor glass, in the works of (Vlahinić et al., 2009), a value of �� = 7.2 GPa is given 
based on the works of (Scherer, 1986). ��   is indicated in the range 19 GPa ≤ �� ≤ 23.6 GPa based on the works of (Amberg 
and McIntosh, 1952). This range of ��, for the given value of ��, leads to a range of variation of Biot coefficient b between 
0.62 and 0.7. 

 In what follows, results are given for each set of experimental data first in terms of drying shrinkage strains (Fig. 11-a, 
Fig. 12, Fig. 13-a and Fig. 14-a) and then of the equivalent pore pressure (see Fig. 11-b, Fig. 13-b and Fig. 14-b). As for the 
equivalent pore pressure, the contribution of each term is also shown, with the following notation: 

o Contribution of the average pore pressure effect ( �� − ����  ) also written as ( ���� + ����  ) in dark blue.  

o Contribution of the interfaces energy effect (
^
_ � �8���
  ��"Y"lmm  ) in orange. 

o Contribution of the fluid adsorption effect (
^
_ �6?/D?
�� O�  Γ  7<

?  )) in light blue. 

o Contribution of the Shuttleworth effect (
^
_ �6?/D?
�− ] Qu

QVv`W< O�))) in yellow.  

o Equivalent pore pressure � in green. 

Together with the equivalent pore pressure and individual contributions, the Lagrangian saturation �� (dashed magenta 
curve) and the Lagrangian surface fraction of unsaturated pores O�  (dashed blue curve) are also presented to associate them to 
the various contributions.  

First, we discuss the results obtained with the experimental data of (Maruyama et al., 2018) while taking scenario Sc1 
into account (Fig. 11). The calculated drying shrinkage strains compared to the experimental ones are given in Fig. 11-a. In 
solid lines, we represent the obtained model results for both tested values of Biot coefficient b while neglecting the Shuttleworth 

effect (i.e. by setting the term ] Qu
QVv`W<in expression (47) equal to zero). In dashed lines, we represent the results obtained for 

both tested values of Biot coefficient b while fitting the Shuttleworth term on the drying shrinkage experimental points. The 
obtained values for this term are 3.96 10-8 (MN/m) when b=0.61 and 7.29 10-10 (MN/m) when b=0.73. It is important to note 

that when b=0.73, the term  
Qu
QVv  is of a small order of magnitude compared to that of surface energies found in the literature 

(for instance, for a water-air interface at ambient temperature, $�� =73.10-03 (N/m) (Coussy, 2010)). By referring to the 
Shuttleworth equation given by (10), the previous observation leads to presume that the value of the surface stress σs at the 
solid/gas interface is very close to that of the interfaces surface energy $ and thus that the Shuttleworth effect at this interface 
is negligible. As for the obtained results, when b is taken equal to 0.61, fitting the Shuttleworth term allows to better model the 
drying shrinkage strains. In contrast, when b is taken equal to 0.73, fitting this parameter has no impact on the modeling results, 
which are already quite satisfactory. Due to the lack of information necessary to identify an exact value for the Shuttleworth 
term, both tested solutions shown in Fig. 11-a (considering zero fit parameter or fitting the Shuttleworth term) can be retained. 
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Fig. 11 – Results for the experimental data of (Maruyama et al., 2018) with 
the calculation scenario Sc1: (a) Calculated relative length variations with Qu
QVv = 3.96 10-8 (MN/m) when b=0.61 and 7.29 10-10 (MN/m) when b=0.73 

(b) Contributions to the equivalent pore pressure 
 
The equivalent pore pressure � with the different contributions are displayed in Fig. 11-b. The Shuttleworth 

contribution shown in this figure corresponds to a fit of the Shuttleworth term while taking an average value for the Biot 
coefficient (b=0.67). At first sight, it could be noticed that in the high relative humidity range (ℎ�>0.35), the average pore 
pressure contributes most importantly in the development of the equivalent pore pressure, whereas in the low relative humidity 
range (ℎ�<0.35) interfaces energy and adsorption effects contribute primarily.  

We can also observe that the average pore pressure and the interfaces energy contributions seem somehow correlated 
to the liquid saturation ��. In fact, when during desorption, the material loses sharply a significant amount of capillary water 
(�� drops sharply near ℎ�=0.35), the contribution of the interfaces energy increases in a similar way and the contribution of the 
average pore pressure decreases accordingly. In the range 0.03<ℎ�<0.3, the amount of liquid water in the pores becomes very 
small and varies very slightly, and similarly the interfaces energy effect and the average pore pressure effect in this range of 
relative humidity vary, but only slightly. When the relative humidity reaches 0.03, the material loses all the remaining liquid 
water and the liquid saturation �� becomes equal to 0. At this stage, the contribution of the average pore pressure drops to zero 
whereas the contribution of the interfaces energy increases sharply to reach a plateau.  

In regards to the contribution of the adsorption effect, the latter is controlled by two important parameters: the 
parameter O�  and the parameter ; which is directly linked to the thickness � of the adsorbed layer of water. The fact that the 
thickness � decreases with a decreasing relative humidity ℎ� on the whole range of relative humidity leads to a continuous 
increase of the adsorption stresses �� with a decreasing relative humidity.  

Concerning the Shuttleworth effect, the corresponding contribution to the equivalent pore pressure is found to be 
negligible when compared to those of the other effects, and that over the whole range of relative humidity.  

Finally, it may be concluded that, for this studied case, the proposed model appears to give satisfactory results 
(especially when b is near 0.73) even when the Shuttleworth effect is neglected. A small improvement of the results can be 
provided when a Shuttleworth parameter is fitted on experimental results.  

The same evaluation has been done for the calculation scenario Sc2 of the experimental data of (Maruyama et al., 
2018). The corresponding calculated drying shrinkage strains are shown in Fig. 12.  
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Fig. 12- Calculated relative length variation for the experimental data of (Maruyama et al., 2018) with  

the calculation scenario Sc2 with 
Qu
QVv = 4.95 10-9 (MN/m) when b=0.61 and -2.8 10-08 (MN/m) when b=0.73 

Similar to the previous considered scenario, the same conclusion could be drawn. The results given by the proposed 
model while assuming a negligible Shuttleworth effect appear to be quite satisfactory. Taking into account a fit parameter can 
lead to a small improvement of the results. On another hand, it can be deduced that taking into account a calculation scenario 
Sc1 (with an experimental degree of saturation Sw (ℎ� = 0.97) = 0.85) or a calculation scenario Sc2 (with an experimental 
degree of saturation ���ℎ� =  0.97
  =  0.99) for the studied experimental data of (Maruyama et al., 2018) shows a small 
impact on the modeling results. 

On another hand, the analysis done with the experimental data of (Baroghel-Bouny et al., 1999) leads to the results 
shown in Fig. 13.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 – Results for the experimental data of (Baroghel-Bouny et al., 1999): 

(a) Calculated relative length variation with  ] Qu
QVv`W<= 4.97 10-8 (MN/m) for 

b=0.55 and 6.88 10-9 (MN/m) for b=0.7- (b) Contributions to the equivalent 
pore pressure 



- 23 - 

 

Regarding the contributions to the equivalent pore pressure (see Fig. 13-b), the same comments done previously with 
the experimental data of (Maruyama et al., 2018) apply, while noting an important contribution of the average pore pressure 
for relative humidities larger than approximately 0.5 in this case. When the remaining amount of liquid water in the pores 
becomes small, the adsorption effects and the interfaces energy effect are the primordial contributions to the increase of the 
equivalent pore pressure. Regarding the Shuttleworth effect (that corresponds to a fit of the Shuttleworth term for an average 
value of b = 0.62), equally in this case, its contribution to the equivalent pore pressure is considered to be small with respect to 
other effects contributions. The previously drawn conclusions can be made: the model gives satisfactory results when neglecting 
the Shuttleworth effect (especially when we take a Biot coefficient of 0.7). Taking into account a parameter to fit the 
Shuttleworth effect can slightly refine the modeling results. 

 
Finally, the results obtained with the experimental data of (Amberg and McIntosh, 1952) are shown in Fig. 14. Fig. 

14-b indicates a major role of the average pore pressure when the relative humidity is larger than 0.7 (i.e. when the majority of 
the pores are filled with liquid water) whereas below this value the effect of the interfaces energy and the fluid adsorption 
effects take the lead. The Shuttleworth effect contribution (for an average value of 	 = 0.66) could also be considered negligible 
with respect to other effects contributions on the total range of ℎ�. As for the drying shrinkage strains in Fig. 14-a, identically 
in this case, we can conclude that, when neglecting the Shuttleworth effect, the model provided satisfactory results for the 
studied range of Biot coefficients b (especially when 	 is taken equal to 0.7). 

 

 
Fig. 14 – Results for the experimental data of (Amberg and McIntosh, 1952): 

(a) Calculated relative length variation with  ] Qu
QVv`W<= 1.51 10-8 (MN/m) for 

b=0.62 and -2.19 10-9 (MN/m) for b=0.7- (b) Contributions to the equivalent 
pore pressure 

            
   Last but not least, beyond the estimation of correct values for the Biot coefficient and the Shuttleworth parameter, it 
is shown in all previous results that the proposed model is able to correctly evaluate drying shrinkage strains on the whole range 
of relative humidity. Moreover, the proposed model is capable of capturing the remarkable plateau in drying shrinkage strains 
observed at intermediate relative humidity. This plateau represents a transition in the relative contribution to the increase of the 
equivalent pore pressure, from the average pore pressure effects (in the high ℎ� range) to the interfaces energy and the 
adsorption effects (in the low ℎ� range). 

On another hand, we believe that the stresses and pressures (of 100 MPa) created at the scale of the microstructure of 
the porous materials should not be interpreted as macro stresses which could eventually cause some micro cracks when then 
tension threshold of cementitious materials is exceeded. We believe that those micro stresses could be submitted to some kind 
of microstructural relaxation before acting on the macro scale. 
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4.6.2 Comparison of the proposed model with the Biot-Bishop and the (Coussy et al., 2003) models 

In this section, we aim to compare the newly proposed poromechanical with a classical Biot-Bishop model (equation 
(2)) and the (Coussy et al., 2003) model (equation (3)) in their ability to predict drying shrinkage strains.Comparisons are done 

while considering negligible Shuttleworth effect, i.e. by considering] Qu
QVv`W< = 0. Both the upper and lower bounds of the Biot 

coefficient were tested for each set of experimental data. The results (see Fig. 15) show a good estimation of the drying 
shrinkage strains by the three models in the higher range of relative humidity.  

In this range, the average pore pressure is the main contributor to the equivalent pore pressure. This range corresponds 
more precisely to relative humidities larger than approximately 0.4 for the cementitious material studied in (Maruyama et al., 
2018) and (Baroghel-Bouny et al., 1999) and than approximately 0.7 for those of (Amberg and McIntosh, 1952). 

Nevertheless, in the low range of relative humidity, the Biot-Bishop model shows less satisfactory results. In fact, this 
model is strongly impacted by the experimental method adopted to measure the experimental degree of saturation Sw. More 
specifically, it is affected  by the choice of the dry reference state (Di Bella et al., 2017). Indeed, as it can be seen in Fig. 15-c 
and Fig. 15-d, this model can even predict a swelling of the material instead of a shrinkage. On another hand, regarding the 
(Coussy et al., 2003) model, it is observed that the latter can lead to an over-estimation of the drying shrinkage strains in the 
low range of relative humidity. Moreover, it should be pointed out that this model predicts an approximately constant slope 
over the whole range of ℎ�. The latter observation has been previously made in the works of (Di Bella et al., 2017) and 
(Wyrzykowski et al., 2017). In contrast to the previous models, the proposed model provides a better estimation of the drying 
shrinkage strains especially when the Biot coefficient is near 0.7. In addition, this model permits to clearly capture the transition 
(pointed out with the dashed frames of Fig. 15) at which contributions to the effective pore pressure stem mostly from the 
average pore pressure on one hand, and mostly from the fluid adsorption and interfaces energy effects on the other hand. 

  

  

Fig. 15- Comparison of the current model with the Biot-Bishop and the (Coussy et al.,2003) models for the experimental data 
of: (a) (Maruyama et al., 2018) with the calculation scenario Sc1–  (b) (Maruyama et al., 2018) with the calculation scenario Sc2– (c) 

(Baroghel-Bouny et al., 2018)- (d) (Amberg and McIntosh, 1952) 

5 Conclusions 

In this work, the macroscopic poromechanical approach for unsaturated bodies has been revisited and extended to the low 
relative humidity ranges to model the drying processes. By adopting a proper thermodynamical derivation, we derived a new 
model that allows to account for different contributions in the development of the effective stresses such as the average pore 
pressure effects, the interfaces energy effects, the fluid adsorption effects and the Shuttleworth effect.  

Regarding the input parameters, this model requires essentially the use of two commonly known techniques for the 
identification of features of the pores structures: the BET theory (Brunauer et al., 1938) and the BJH technique (Barrett et al., 



- 25 - 

 

1951).  Even though the BJH technique does not always qualify as the best technique to characterize pores size, in the current 
framework this technique was used because of its coherence with the developed poromechanical approach.    

The poromechanical model has been tested and validated on experimental results (water desorption curves and drying 
shrinkage strains curves) found in the literature. Different porous materials are studied, such as an ordinary cement paste from 
the works of (Maruyama et al., 2018), a high-performance concrete tested by (Baroghel-Bouny et al., 1999) and a Vycor glass 
tested by (Amberg and McIntosh, 1952). 

By applying the newly developed model to the mentioned experimental data, we have shown that the average pore pressure 
is the main contributor to the strains/stresses development in the higher relative humidity range (i.e., for relative 
humidities larger than approximately 0.4 for cementitious materials and than 0.7 for Vycor Glass). In the low relative humidity 
range, both interfaces energy effects and fluid adsorption effects play an important role. Regarding the Shuttleworth effect 
(which captures the variation of the surface energy with respect to the skeleton strains), due to the fact that the magnitude of 
the effect cannot be assessed in an evident way a priori, we proposed to fit the parameter that governs its magnitude (i.e. the 

term ] Qu
QVv`W<) on experimental data drying shrinkage strains. From previous results, we came to realize that the contribution of 

the Shuttleworth effect to the development of the equivalent pore pressure is negligible when compared to the contribution of 
the other effects.  

As for the estimated drying shrinkage strains, for the experimental data on which we validated our model, exact values of 
the Biot coefficient were not provided. Hence, we considered a range for this parameter, based on literature works. Both the 
upper and the lower bounds of this range have been tested, for all studied materials. For the materials considered, even when 
neglecting the Shuttleworth term, our model can give a good estimation of the drying shrinkage strains when the coefficient of 
Biot is equal to 0.7. It should be noted that this approach does not take into account the long-term viscous deformations. 
However, those deformations could be accounted for by the adjustment of the Biot coefficient while checking that the value of 
the latter remains within reasonable limits. 

Finally, the drying shrinkage strains estimated with the proposed model when neglecting the Shuttleworth effect have 
been compared to those obtained with a classical Biot-Bishop model and the model of (Coussy et al., 2003). All three 
poromechanical models gave good results in the higher range of relative humidity. However, in contrast to those two models, 
we showed that the proposed model is not only capable of successfully evaluating drying shrinkage strains for low relative 
humidity but more specifically to predict a noticeable plateau in the evolution of the drying shrinkage strains, which also appears 
in the considered experimental data sets. In our model, this plateau represents the transition between a contribution to the 
effective pore pressure stemming mostly from the average pore pressure (at high relative humidity) on one hand, and stemming 
mostly from interfaces energy and adsorption of fluid (at low relative humidity) on the other hand.  

Appendix 1   

In this appendix, we show the results obtained when we consider that for a certain value of relative humidity ℎ� near 0.35, 
cavitation will take place (as stated in (Maruyama et al., 2018)). Below this value of relative humidity, all pores will be 
considered unsaturated. In terms of the model parameters, this corresponds to fixing SL (ℎ�
  = 0 and O��ℎ�
 = 1 for a relative 
humidity smaller than approximately 0.35.  

Concerning the experimental data of (Maruyama et al., 2018), the complete desaturation of pores is considered for  a 
relative humidity ℎ�=0.3. This value has been chosen based on previous observations (refer to Fig. 8 : when the relative 
humidity reaches a value near 0.3, the hcp is left with a value of SL near zero). As done previously, for the experimental data 
of (Maruyama et al., 2018), the two scenarios Sc1 (Fig A1.1) and Sc2 (Fig A1.2) were equally tested.  The obtained curves 
SL(ℎ�
 and O��ℎ�
from the BJH computation are presented respectively in Fig A1.1-b and Fig A1.2-b. The calculated drying 
shrinkage strains are shown Fig A1.-a for the calculation scenario Sc1 and Fig A1.1-a for the calculation scenario Sc2. The 
equivalent pore pressure and the corresponding contributions are shown in Fig A1.1-b and Fig A1.2-b respectively for scenarios 
Sc1 and Sc2. 
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Fig A1.1–Results for the experimental data of (Maruyama et al., 2018) 
with the calculation scenario Sc1: (a) Calculated relative length 
variations– (b) Contributions to the equivalent pore pressure 

 

 

 

Fig A1.2– Results for the experimental data of (Maruyama et al., 2018) 
with the calculation scenario Sc2: (a) Calculated relative length 
variations– (b) Contributions to the equivalent pore pressure  
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Regarding the experimental results of (Baroghel-Bouny et al., 1999), the BJH calculation was stopped at a relative 
humidity ℎ� of 0.33. Below this value, pores are assumed to be totally unsaturated. This value has been chosen based on 
previous observations (see Fig. 9: when the relative humidity reaches 0.33, the studied concrete is left with a very small amount 
of liquid water). The BJH curves SL(ℎ�
 and O��ℎ�
 and model results are shown in Fig A.3. From the previous results, we 
can conclude that if the BJH computation was stopped at a value of relative humidity ℎ� near 0.35 and total desaturation of 
pores was assumed for this value, this may lead (as seen in Fig A1.1-a) to a less satisfactory prediction of the drying shrinkage 
strains when neglecting the Shuttleworth effect and considering a value of b near 0.7. Therefore, the BJH method detailed in 
section 4.5 (where the BJH computation is maintained until approaching 0% of relative humidity) should be retained for further 
model predictions. 

 

 
Fig A.3– Results for the data of (Baroghel-Bouny et al., 1999):  
(a) Calculated relative length variations – (b)  Contributions to the 
equivalent pore pressure 

Appendix 2  

In this appendix, we verify the previous indication that states that any isotropic homothetic variation of the pore dimension 

by a factor (1+%/3
 will induce a volume increase of  �1 + %
  and a surface increase of �1 + ^Î
_ 
 regardless of the considered 

shape of the pore. For this purpose, let us consider first a spherical shaped pore with a radius r and lets us note the factor  %/3  
as ) : 

- The initial volume of the pore is (J = Ï
_ �µ_ and its initial surface is �J = 4�µ^ 

- If we consider an isotropic homothetic variation of the pores by a factor �1 + )
 then the final volume of the sphere will 
be equal to (� = Ï

_ ��µ�1 + )

_ = Ï
_ �µ_�1 + )
_. If we consider only the first order terms, we could write (� = Ï

_ �µ_�1 + 3)
 

and thus the increase of the volume of the sphere is of �1 + 3)
. 

- The final surface is �J = 4�Ðµ�1 + )
Ñ^ = 4�µ^�1 + )
^. If we consider only the first order terms, we could write �� =
4�µ^�1 + 2)
 and thus the increase of the surface of the sphere is of �1 + 2)
. 

The same demonstration could be done for pore with a shape of an infinite cylinder with a radius r and a height h: 

- The initial volume of the pore is (J = �µ^ℎ and its initial surface is �J = 2�µℎ 

- If we consider an isotropic homothetic variation of the pores by a factor �1 + )
 then the final volume of the cylinder 
will be equal to (� = ��µ�1 + )

^�ℎ�1 + )

 = �µ^ℎ�1 + )
_. If we consider only the first order terms, we could write 
  (� = �µ^ℎ�1 + 3)
 and thus the increase of the volume of the sphere is of �1 + 3)
. 

- The final surface is �J = 2��µ�1 + )

�ℎ�1 + )

 = 2�µℎ�1 + )
^. If we consider only the first order terms, we could 
write �� = 2�µℎ�1 + 2)
 and thus the increase of the surface of the sphere is of �1 + 2)
. 
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