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The saturation of air-entrained cementitious materials governs their resistance to freeze-thaw cycles. Upon immersion in water, water is sucked in the capillary porosity and part of the air initially present is trapped. This trapped air slowly dissolves and diffuses outward, leading to a slowly increasing saturation. Building on efforts in fields ranging from gas-liquid interfaces to multi-phase transport and cement sciences, a model is derived to describe the governing physics behind the long-term saturation rate in immersed cementitious materials due to the dissolution and diffusion of trapped gaseous air in a spherical air void. We model how liquid water continuously enters a single air void and how various material properties influence the time to complete dissolution of air trapped in the spherical void. The relative influence of advection, diffusion, and various materials properties are studied and the model results are found to agree with imaging studies and theoretical models.

Introduction:

In recent years, the critical saturation (Scr) of cementitious materials has gained significant attention [START_REF] Bentz | Sorptivity-based service life predictions for concrete pavements[END_REF][START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF][START_REF] Smith | Service-life of Concrete in Freeze-Thaw Environments: Critical Degree of Saturation and Calcium Oxychloride Formation[END_REF][START_REF] Weiss | Concrete Pavement Joint Durability: A Sorption-Based Model for Saturation, the Role of Distributed Cracking, and Calcium Oxychloride Formation[END_REF][START_REF] Ghantous | Examining the Influence of the Degree of Saturation on Length Change and Freeze-Thaw Damage[END_REF] due to its ability to predict when freeze-thaw-induced damage will initiate [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF][START_REF] Macinnis | Effect of Degree of Saturation on the Frost Resistance of Mortar Mixes[END_REF][START_REF] Fagerlund | Critical degrees of saturation at freezing of porous and brittle materials[END_REF][START_REF] Fagerlund | Significance of critical degrees of saturation at freezing of porous and brittle materials[END_REF]. The time it takes for fully water-immersed concrete specimens to reach Scr, referred to as time to critical saturation (tcr), has recently been incorporated in AASHTO PP84 [START_REF]Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures[END_REF] to ensure a minimal service life in freezing-and-thawing environments. Beginning in [START_REF] Bentz | Sorptivity-based service life predictions for concrete pavements[END_REF] and extended in [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF][START_REF] Weiss | Concrete Pavement Joint Durability: A Sorption-Based Model for Saturation, the Role of Distributed Cracking, and Calcium Oxychloride Formation[END_REF], it was recognized that experimentally obtained long-term saturation rate values can be used to estimate tcr assuming an experimental Scr value of 85% [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF][START_REF] Macinnis | Effect of Degree of Saturation on the Frost Resistance of Mortar Mixes[END_REF][START_REF] Fagerlund | Significance of critical degrees of saturation at freezing of porous and brittle materials[END_REF]. The long-term saturation of air-entrained cementitious materials, idealized as a heterogenous porous solid with dispersed spherical voids as shown in Figure 1a, refers to the slow and time-dependent process in which air-entrained cementitious material move from its matrix saturation, Sm, to its critical saturation Scr [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF]. Although significant progress has been made experimentally in understanding how Scr can be leveraged as a service-life assessment tool, the fundamental mechanism by which single air voids in cementitious materials become slowly water-filled needs to be better understood theoretically.

The long-term saturation rate, S2, is hypothesized to occur due to the dissolution and diffusion of compressed air in the entrapped and entrained air voids [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF][START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF], as shown in Figure 1b. Once the material reaches its matrix saturation (i.e., when the capillary porosity of the cement matrix is saturated with liquid water), trapped air is compressed by the Laplace pressure resulting from surface tension effects which induces dissolution of the compressed air into the fluid within or in the vicinity of the air void [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF][START_REF] Hall | Topics in Water Transport[END_REF]. This dissolved air slowly diffuses outward while liquid water flows toward the air void, resulting in a slowly increasing saturation of the air void and the complete dissolution of the initially trapped air [START_REF] Hall | Topics in Water Transport[END_REF]. However, despite previous efforts, the coupled mechanism of dissolution, diffusion, and advection that lead to the saturation of a single air void, or as group of air voids (i.e., a realistic 3D system), has yet to be clearly expressed in a single, physics-based model [START_REF] Smith | Service-life of Concrete in Freeze-Thaw Environments: Critical Degree of Saturation and Calcium Oxychloride Formation[END_REF]. For the purposes of the efforts presented, the theoretical waterfilling mechanisms for a single air void surrounded by a cement paste shell will be developed.

Figure 1 -a). Idealized air-entrained cementitious material system that is fully immersed in water and single air void-shell system, at the moment when it is immersed b). standard bi-linear saturation curve for air-entrained cementitious materials [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF] and idealized saturation behavior of the air-void shell system which is initialized by the compression of gaseous air and its resulting dissolution into the surround saturated capillary porosity [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF].

In effort to ensure that the governing physics of how air voids become increasingly water-filled is captured, theoretical and experimental efforts made in various fields, ranging from macroscale investigations of water-immersed mortars [START_REF] Liu | Moisture uptake in concrete under freezing-thawing exposure[END_REF] to micro-fluidic studies on the dissolution of trapped gas bubbles [START_REF] Sahloul | Dissolution of residual non-aqueous phase liquids in porous media: Pore-scale mechanisms and mass transfer rates[END_REF], are critically reviewed. The review will first assess macro-scale phenomena and progressively move in the direction towards the void scale -as the long-term saturation of cementitious materials occurs due to the slow saturation of large porosity [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF][START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] (i.e., spherical air voids which range on the order from 10µm to 1mm in radius and are interconnected by irregular capillary pores which are orders of magnitude smaller [START_REF] Mehta | Concrete: microstructure, properties, and materials[END_REF]).

Additionally, fundamental questions are identified which are central to understanding the governing dynamics of time-to-full-dissolution of air within a single spherical air void.

With respect to the model's derivation, a representative air-void and hardened shell system is first defined and the necessary geometry to describe the temporal evolution of a realistic waterair interface during saturation is detailed. As shown in Figure 1b, it is assumed that all of the capillary pores which connect the spherical air voids to each other, and the surface, are completely water saturated -suggesting that any air-void-and-shell system is at its matrix saturation. Attention is given to initial system assumptions, ensuring that the initial amount of trapped air within a void is known. Following this, mass balance equations for liquid water and dissolved air within the porous hardened cement paste shell are developed in addition to the mass conservation of gaseous air and liquid within the spherical air void. The result is a set of four coupled partial differential equations which are solved using various state equations and assumptions which treat the gaseous air as ideal, the liquid water as incompressible, and the entire system as isothermal.

Solutions to the set of equations -called the single void dissolution kinetics (SVDK) model -are then used to determine the saturation kinetics of the air void and the relative importance of the various transport mechanisms (i.e., diffusion and advection). Based on boundary conditions, the single void dissolution kinetics (SVDK) model allows for the description of how liquid water continuously enters air voids from the surrounding capillary porosity while maintaining thermodynamic equilibrium at the gaseous air -liquid interface. Results are compared to: validated models of simple systems [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF] (i.e., a gas bubble suspended in an infinite amount of liquid), micro-fluidic studies [START_REF] Sahloul | Dissolution of residual non-aqueous phase liquids in porous media: Pore-scale mechanisms and mass transfer rates[END_REF][START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Sirivithayapakorn | Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface[END_REF][START_REF] Kentish | The dissolution of a stationary spherical bubble beneath a flat plate[END_REF], and to findings of imaging studies [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] which provide a temporal sense of when near-surface air voids of a given size should become completely saturated.

Literature Review:

The literature review provided for the formulation of the SVDK models is divided into theoretical and experimental sections. Section 2.1 details the seminal theoretical contributions that serve as the physics-based background for the formulation of the SVDK model, beginning with simple systems (i.e., a gas bubble surrounded by an infinite amount of liquid) and increasing in complexity. Additionally, these previous studies are reviewed and used as a means of comparison for how the derived SVDK model advances the state-of-the-art in predicting the long-term saturation rate of air-entrained cementitious materials. Experimental Section 2.2 is organized into two sections. The first section treats specimen-scale phenomena, where the behavior of cementitious materials immersed in a fluid is studied using a variety of experimental techniques. The second section evaluates known void-scale phenomena, where micro-fluidic models are used to provide insight into the phenomenology that would occur within a saturating air void.

-Theoretical Modeling

In 1950, Epstein and Plesset [START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF] developed a model for the evolution over time of a single bubble of gas suspended in a liquid solution. They displayed that by considering mass-balance at the bubble-liquid interface the reduction, growth, or stability of the bubble could be explained. In summary, their derivation was formed around the equivalence of mass-fluxes at the gas-liquid interface where thermodynamic equilibrium must be maintained. Equation 1 displays their final partial differential equation and Table 1 defines its terms. A detailed derivation can be found in [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF]. Additionally, multiple forms of the original Epstein-Plesset equations can be obtained when neglecting temporal and surface-tension effects, as shown in [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Kapodistrias | Scattering measurements from a dissolving bubble[END_REF]. From Equation 1, it can be directly seen that the term f, which represents the ratio of the initial dissolved gas concentration in the surrounding infinite fluid to the saturated concentration, will dictate whether the bubble with radius, R, will grow or shrink. With respect to gas bubbles that have surrounding liquids that are not saturated with dissolved gas species (i.e., a value of f ≤ 1), the model predicts that a gas bubble with initial radius R0 will completely dissolve due to an internal pressure (given by the Laplace equation) larger than that of the surrounding fluid, which drives the dissolution of gaseous species, understood by Henry's Law, followed by Fickian transport. Density of the gas at atmospheric pressure and at the initial temperature (kg/m 3 )
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Recognizing the applicability of the work in [START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF] to the long-term saturation of air-entrained cementitious materials in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF], G. Fagerlund proposed three ways in which air voids in cementitious materials could become fully water-saturated. To initiate the dissolution-driven system, Fagerlund assumed that air is trapped in the voids due to the fast imbibition of water into the capillary porosity, characterized by saturation rate S1 in Figure 1b. Once the gaseous air is trapped in the void it is then compressed to satisfy Laplace effects -given by the size of the void and taking the water in the surrounding capillary pores to be at atmospheric pressure. As a result, the system is a spherical air bubble that is surrounded by a porous paste shell in which the capillary porosity is completely water-saturated, as shown in Figure 2a. Figure 2 shows a general schematic of the models discussed in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF]. The first mechanism suggested that the compressed air will rapidly diffuse into the paste shell if enough water exists in the surrounding capillary pores and that the water is not already saturated with dissolved air.

Although this mechanism considers the influence of the initial state of the surrounding capillary water, similar to the term f in Equation 1, it provides no insight into how water enters the void or the time-dependent mass conservation of air and water in the total system. In the second model, shown in Figure 2b, it was suggested that the dissolved air diffuses from small to progressively larger air voids that are nearby, in the spirit of Ostwald ripening. Seeing as how the concentration at the gaseous air-liquid interface is proportional to the inverse of the compressed air bubble size, a concentration gradient of dissolved air would exist between a small and large air void, as shown in Mechanism #2 in Figure 2b, and result in diffusive flow of dissolved air through the water-saturated paste. In the third model, Fagerlund proposed that the saturation of air-entrained cementitious materials depends on the diffusion of the dissolved air within the voids to the surface of the specimen where the concentration of dissolved air is low (assuming that the entire specimen is immersed in water) -see Mechanism #3 in Figure 2c. In [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF], it was additionally displayed how to leverage Mechanism #2 to predict the concurrent filling of a system of air voids and the resulting long-term saturation.

While the work in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF] [START_REF] Eriksson | A Hygro-Thermo-Mechanical Multiphase Model for Long-Term Water Absorption into Air-Entrained Concrete[END_REF] derived a multi-phase (i.e., solid, liquid, gas) transport and mechanics model to assess the entire saturation curve for air-entrained cementitious materials. Until the idealized specimen arrived at its value of matrix saturation, Sm, the model follows a similar imbibition study found in [START_REF] Li | Modeling capillary water absorption in concrete with discrete crack network[END_REF]. Once a representative elementary volume (REV) in the analysis arrives at its matrix saturation Sm, Erikkson et al. assumes that the air voids, which are homogenized within a REV, are filled with compressed air. The compression, as in Fagerlund's work, results in dissolution of air and diffusion of dissolved air through the system and leads to a slow increase of water saturation. The results of the model were found to agree very well with experimental results taken from [START_REF] Liu | A geometrical model for void saturation in air-entrained concrete under continuous water exposure[END_REF] and suggested that air void systems with more coarse, or broad, air void size distributions saturate more slowly. Additionally, it is important to note that in the work of Erikkson et al. the air voids within an REV are assumed to fill in order of increasing size from [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF].

A multitude of other models exist which aim to predict the time to critical saturation of airentrained cementitious materials but use experimental data as the basis for which to do so. In [START_REF] Bentz | Sorptivity-based service life predictions for concrete pavements[END_REF][START_REF] Weiss | Concrete Pavement Joint Durability: A Sorption-Based Model for Saturation, the Role of Distributed Cracking, and Calcium Oxychloride Formation[END_REF][START_REF] Weiss | Toward performance specifications for concrete: Linking resistivity, RCPT and diffusion predictions using the formation factor for use in specifications[END_REF] the time to critical saturation is predicted using the value of secondary saturation rate, which is related to the secondary sorptivity, following the work presented in [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF]. This method is reliable and can be done to validate that specific concrete or mortar mixtures have a desired minimal service-life. The approach has been adopted by AASHTO [START_REF]Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures[END_REF]. Additionally, based on the assumptions presented and found in [START_REF] Fagerlund | Significance of critical degrees of saturation at freezing of porous and brittle materials[END_REF][START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF][START_REF] Eriksson | A Hygro-Thermo-Mechanical Multiphase Model for Long-Term Water Absorption into Air-Entrained Concrete[END_REF], recent efforts have shown how a simple geometric model can be used to predict the evolution in Powers' spacing factor [START_REF] Powers | The Air Requirement of Frost-Resistant Concrete[END_REF][START_REF]Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing[END_REF] between remaining air-filled voids, as more and more air voids become water-saturated [START_REF] Liu | A geometrical model for void saturation in air-entrained concrete under continuous water exposure[END_REF]. The presented efforts have provided significant insight and advancement with respect to how airentrained cementitious materials may become increasingly saturated. Nonetheless, numerous gaps remain with respect to governing mechanisms at the air void-scale. The central intention of the SVDK model is to then build on what has been presented in a complementary manner in effort to provide fundamental insight into the water-saturation mechanism for single air voids that occur below the REV scale for models similar to [START_REF] Eriksson | A Hygro-Thermo-Mechanical Multiphase Model for Long-Term Water Absorption into Air-Entrained Concrete[END_REF].

-Experimental Results

-Specimen Scale Phenomena

In 2012, based on a series of highly controlled sorption tests, Li et al. [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF] displayed that the secondary saturation rates, S2, as shown in Figure 3, were approximately equivalent irrespective of the total air content or the relative humidity at which the mortar specimens were conditioned at prior to conducting ASTM C1585-04 -the standard sorption experiment. This finding served as the justification for a series of models, similar to those found in [START_REF] Bentz | Sorptivity-based service life predictions for concrete pavements[END_REF][START_REF] Bentz | Wingpigler, Service Life Prediction for Concrete Pavements and Bridge Decks Exposed to Sulfate Attack and Freeze-Thaw Deterioration[END_REF], that predicted the time to critical saturation [START_REF] Weiss | Concrete Pavement Joint Durability: A Sorption-Based Model for Saturation, the Role of Distributed Cracking, and Calcium Oxychloride Formation[END_REF][START_REF] Weiss | Toward performance specifications for concrete: Linking resistivity, RCPT and diffusion predictions using the formation factor for use in specifications[END_REF]. Figure 3 displays the concatenated findings from [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF] and shows the similarity in secondary saturation rate S2 for the respective sorption tests. Figure 3 -Concatenated sorption findings from [START_REF] Li | Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints[END_REF] for mortar specimens.

Figure 3 shows that as the relative humidity at which the samples were conditioned prior to conducting sorption testing increases the matrix saturation point (identified as a kink in the saturation versus square-root-of-time curve) is not clearly identifiable. In [START_REF] Lucero | Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar[END_REF], using neutron radiography, it was displayed that after 12 hours of fluid exposure, air-entrained and non-airentrained mortars remained below their matrix saturation point from depths of 5mm to 25mm within the specimen. Additionally, at twelve hours of testing it was found that the degree of saturation for all of the specimens were within 5% of the matrix saturation, but not above it at any point, irrespective of the degree of cement hydration. This finding suggests that the initial saturation regime is exclusively driven by capillary action leading to a saturation state at which the capillary pores are fully liquid-saturated and the air voids remain air-filled. It follows then that for long-term fluid exposure the entrained and entrapped air voids will begin to saturate and make the material progress toward a critically saturated state as shown in Figure 1b.

In 2017, Moradllo and Ley [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] published a series of 8.8µm/voxel µCT results obtained by ponding a potassium iodide solution on top of a cement paste for up to 60 days. Although the paste was not air-entrained, a distribution of spherical voids was found in the hardened specimen and a final analysis was done with respect to their final saturation state. In [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] the cylindrical specimen, size distribution of air voids within the first 6mm of the sample, and which voids became saturated and remained air-filled were displayed. It is important to note that the first 6mm was selected because of a homogeneous concentration in potassium iodide solution within that region (i.e., it was uniformly solution-saturated). Based on their results, it is clear that the air voids, which ranged from 20µm to 500µm in radius, did not fill solely as a function of increasing size. This finding suggests that further efforts are needed to investigate the nature of how air voids become saturated by considering the effect of the relative location of the air voids with respect to one another and their respective distance to a free surface of the specimen.

-Pore Scale Phenomena

As detailed in Section 2.2.1, an experimental investigation capturing the saturation dynamics of a single air void in a cementitious material has yet to be conducted. A great deal of understanding can be gained by studying proxy systems, as idealized in Figure 4a, of trapped air or immobile bubbles undergoing a temporal process of dissolution, diffusion, and advection that leads to complete liquid saturation. Proxy system 1, idealized from the work conducted in [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Kapodistrias | Scattering measurements from a dissolving bubble[END_REF],

provides a simplistic gas-liquid system and was used as a basis to evaluate Epstein and Plesset's original model presented in Section 2.2.1. Proxy systems 2 and 3, in which a gas bubble is resting underneath a flat plate [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Kentish | The dissolution of a stationary spherical bubble beneath a flat plate[END_REF] or within a well [START_REF] Li | Entrapment and Dissolution of Microbubbles Inside Microwells[END_REF] have also been extensively studied experimentally and numerically. Lastly, proxy system 4 provides the closest 2D approximation of how a highly tortuous micro-model can be idealized and used to study the in-place dissolution dynamics of trapped gases [START_REF] Sahloul | Dissolution of residual non-aqueous phase liquids in porous media: Pore-scale mechanisms and mass transfer rates[END_REF][START_REF] Sirivithayapakorn | Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface[END_REF][START_REF] Buchgraber | A Study of Microscale Gas Trapping Using Etched Silicon Micromodels[END_REF]. A series of images capturing the dissolution of a trapped isobutanol bubble within a silica micro-model is shown in Figure 4b. In addition to gaining a qualitative understanding of how compressed gases dissolve in gassaturated liquids, it is well-established [START_REF] Carrier | Evaporation of water: evaporation rate and collective effects[END_REF] that the temporal evolution of droplets and bubbles often follow a universal power-law scaling (i.e., that the radius evolves as a power-law of the difference between the time-to-full-dissolution and the actual time, see Figure 5a). As displayed in [START_REF] Carrier | Evaporation of water: evaporation rate and collective effects[END_REF][START_REF] Jambon-Puillet | Singular sublimation of ice and snow crystals[END_REF], for steady-state and diffusion-controlled conditions, the radius and time of liquid droplets have such ½ power law relationship. Referring to Equation 1, when the temporal term and surface tension are neglected and f is unity, it can be shown that the size reduction of a gas bubble surrounded by an infinite amount of fluid follows such a ½ power law. However, when these assumptions are not made, the exponent of the power-law relationship can significantly vary. Figure 5a displays a concatenated group of experiments representing proxy systems 1 to 4, for which time-to-full-dissolution was fit so that power-law relationships were obtained. Based on these analyses, it can be seen that the determined exponents of the power-law relationship, found in the legend and denoted by C, range from 0.33 to 0.86. Figure 5b displays the determined exponents of the power-laws for solutions to the Epstein-Plesset equation for various values of f and surface tension. From Figure 5b it can be seen that the exponent of the power-law ranges from 0.36 to 0.52 for the Epstein-Plesset model. For proxy systems 1-3, the exponents found for the radius-time relationship agree well. The exponents found for proxy system 4 are generally higher, which we attribute to the influence of dealing with a non-3D system. Exponent of power-law fits for solutions to the Epstein-Plesset model for initial bubble radius of 15µm.

It is also important to note that the Epstein-Plesset model has been experimentally validated. In 2004 and 2006, Duncan and Needham [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Duncan | Microdroplet dissolution into a second-phase solvent using a micropipet technique: Test of the epstein-plesset model for an aniline-water system[END_REF] displayed the ability of the model presented in [START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF] to predict the size reduction of gas bubbles placed on the tip of a micro-pipette or against a flat, impermeable wall. Original results for the validation can be found in [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF]. Additionally, the exponent of the power-law relationship between the radius and time history was found to be 0.37 and 0.33, for the bubble on the micro-pipette and resting on a flat wall, respectively. Based on the reduction in exponent, the presence of the wall causes the radius of the bubble to reduce in size slower than if it was suspended in an infinite liquid, which is a state of isotropic diffusion.

Although the presented proxy systems are significantly more ideal than what can be expected in air-entrained cementitious materials, their analysis still provides profound insight into the qualitative and quantitative nature of how trapped gases reduce in size as a function of their surroundings. As displayed in Figure 1a, the macro-system of interest is a porous cementitious paste in which spherical air voids can be found -analogous to the µCT specimen assessed in [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF]. For the purposes of the ensuing section, the macro-system is considered to be fully immersed in water and when a spherical region is taken around a single air void, the capillary pores connect the air voids to the surface of the specimen and one another. 

Void

System Definition and Initial Geometry

The initial step to developing and understanding the dissolution of compressed gas within a single air void, and its resulting saturation, is idealizing the system, and in particular its geometry, so that it can be mathematically represented. Figure 6 shows the bilinear saturation regime common for air-entrained cementitious materials where saturation rate S2 characterizes the dissolution-driven regime. As detailed, it is of interest to understand this long-term saturation phenomenon at the void-scale as the matrix saturation represents the saturation state at which all of the capillary pores are filled with liquid water and the larger spherical voids contain trapped gaseous air.

The contact angle of the liquid at the surface of the air void is denoted θ and is assumed to remain constant over time. From the fluid-immersed macro-scale system, a spherical region of interest is defined around a single air void. The air bubble in the air void is considered to rest at the top of the air void because of gravity. Equation 2 displays the mathematical representation of the volume of the gaseous air region, Vg, trapped within the spherical void, which is the volume of intersection of two spheres of radius Rv (which is the radius of the air void) and Rgl (which is the radius of curvature of the air-liquid interface) [START_REF] Weisstein | Sphere-Sphere Intersection[END_REF]. Following this equation, for a given contact angle θ of the liquid-air-solid interface, there is a unique relationship between the liquid saturation of the air void with radius RV and the radius of the gas-liquid interface, Rgl (see Figure 6). It is important to note that because Vg will evolve as a function of time during the saturation process, the radius Rgl will also vary temporally, which governs the Laplace pressure in the air bubble. Lastly, d, the lineal distance between the centers of the spheres of radius Rv and Rgl(t) is written in Equation 3. The volume of the liquid can then be directly calculated as the difference in the volume of the spherical void, given by (4/3)π(Rv) 3 , and Vg. , , !, "
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The porous solid shell surrounding the spherical void shown in Figure 6 is considered to be saturated at all times and the capillary pores are no longer displayed since they are orders of magnitude smaller than the voids [START_REF] Mehta | Concrete: microstructure, properties, and materials[END_REF]. The stipulation that the capillary pores are always completely liquid-saturated implies that saturation states below Sm are not considered in the SVDK model. Because the initial imbibition of liquid through the surrounding capillary pores is assumed to be complete, it is uncertain if all of the original air in the void remains present or if more, or less, air is present than was present in the void's volume before immersion, when air was still at atmospheric pressure. For example, it is possible that, during the imbibition process, some of the air initially present in the capillary pores was forced into the spherical voids.

Conversely, it is also possible that, during the imbibition process, part of the air initially in the air void could have escaped outward. Consequently, in our study, we consider a large domain of initial gaseous air mass trapped in the air void.

To define the initial geometry of the system at time t = 0 (corresponding to the moment when all capillary porosity is saturated), for a given contact angle θ of the liquid on the solid, two parameters of the void-scale system need to be defined: the mass of the trapped gas in the void, and the initial pressure at time t = 0 of the liquid, Pl, or of the gas, Pg. We introduce a normalized trapped mass of gas, mt, where the mass used for normalization is that of air (considered as an ideal gas) at atmospheric pressure filling the spherical air void. The mass of gas trapped in the void, mg, can then be calculated by Equation 4. Definitions for other terms presented in Equation 4can be found in Table 1. To determine the initial geometry for a given normalized mass, mg(t=0), of trapped air, Equation 5 is numerically solved where Rgl(t=0) is the only unknown, as θ is prescribed. Additionally, as is done in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF], we assume that at time t = 0 the liquid pressure, Pl, is at atmospheric pressure, Patm, so the pressure of the trapped gas (whose volume is given by , = 0 , !, "), is Patm plus the Laplace pressure -which is inversely proportional to the radius of the gas-liquid interface, = 0 . It is important to note that other assumptions could have been made: for instance, we could have assumed that the pressure of the trapped gas at time t = 0 is equal to Patm. This assumption on initial pressure, and its implications on the dissolution dynamics of the trapped gas, will be discussed within Section 3.4.
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Figure 7 displays a contour plot of initial normalized masses, mt, of trapped gas, as a function of the contact angle, θ, and of the radius of curvature, Rgl(t=0), of the gas-liquid interface. Figure 7's contour plot can be understood as a 'look-up' chart for initial system geometries based on the previously presented assumptions. Next to the contour plot are a series of 6 different initial geometries, identified by letters A -F. Figure 7 shows that, for a given non-zero contact angle, θ, if the trapped mass of air is larger than a critical value, there exists no solution to Equations 4 and 5: such states cannot exist physically under the assumption of liquid water at atmospheric pressure. For instance, for θ > 32° and a normalized trapped mass, mt, of 1, Figure 7 shows that there are no initial geometries.

No contour plot can be drawn for trapped masses greater than the value given by Equation 6, which, in the present case of spherical voids with a radius of 10µm, corresponds to a normalized trapped mass of 1.13. If a larger mass of air is initially trapped in the air voids, i.e. if, at time t = 0, air in the capillaries pores was pushed into the spherical void during the fast liquid water imbibition process, the air void would be completely filled with gaseous air and the gas-liquid interface would be located inside the capillary pores rather than inside the air void. In such case, the geometry of the gas-liquid interface would no longer be governed by Equations 4 and 5. It is possible that air would dissolve and diffuse until the pressure of the air (which would still occupy the full air void) reaches atmospheric pressure, at which point thermodynamic equilibrium would be reached and the radius of curvature of the gas-liquid interface, still located in the capillary pores, would be infinite: the air void would remain full of air and would never fill with liquid, even when left indefinitely under water. 

Figure 7 also shows that there exist combinations of contact angle θ and normalized initial trapped mass mt for which more than one potential initial geometry exists (for example for mt = 1 and θ = 25 degrees, for which there are two potential values of Rgl(t=0)). In this case, for subsequent calculations, we considered that the system adopted the configuration with the lower free energy, where the free energy, Esum, of an initial geometry is calculated based on Equation 7.

Note that, if the other configuration (with high free energy) is adopted as the initial configuration, the model would predict that air would dissolve until the radius of curvature of the gas-liquid interface would be infinite. Starting from this other configuration, one would hence find out that the air void would remain at least partially filled with air and would never become full saturated with a liquid, even when left indefinitely under water. Equations 8 through 10 display how the gas, Eg, surface, Esurf, and bulk liquid, Evol, free energies are respectively calculated, where in Equation 9σ is the gaseous air -liquid interfacial surface tension, 6 07 78 9: is the gaseous air -solid paste interfacial surface tension, and 6 9;<9: 78 9: is the liquid -solid paste surface tension. = 7<1 = 0 , !" = = 07 > = 0 ? + = 7<@A = 0 , !" + = $8 = 0 , !"
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Finally, it is important to note that due to the fact that the capillary pores are orders of magnitude smaller than the spherical voids, the trapped gaseous air cannot 'escape' under the form of tiny gas bubbles by rising through the saturated capillary porosity, as can be directed evaluated from a calculation of the breakthrough pressure presented in [START_REF] Espinoza | CO2 Breakthrough -Caprock Sealing Efficiency and Integirty for Carbon Geological Storage[END_REF]. The only way for the air to escape outward and for the air void to become saturated is through dissolution and diffusion, which are modeled in the next section.

Model Formulation and Assumptions

For the purpose of modeling the saturation of the void-shell system presented in Figure 6, it is of principal interest to understand the transport of the liquid water within the porous solid shell into the spherical void and the resulting dissolution dynamics of the trapped gas. As detailed in the review of the model presented by Epstein and Plesset, the liquid also contains dissolved gas which fluxes into the fluid to maintain thermodynamic equilibrium at the gas-liquid interface.

By writing the continuity of the diffusive mass fluxes of dissolved air in the liquid at the surface of the air void (i.e., within the void and within the saturated porous solid shell), we show with Equation 11 that the gradient of concentration of dissolved gas (this concentration is denoted as Cg) is orders of magnitude smaller in the liquid in the air void than in the porous shell. Indeed, the diffusivity of air in liquid water, Dg l , has a value of 10 -8 cm 2 /s [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF] whereas the diffusivity of dissolved air in saturated hydrated cement paste, Dg s , is on the order from 10 -10 to 10 -13 cm 2 /s [START_REF] Zhang | Computational Investigation on Mass Diffusivity in Portland Cement Paste Based on X-ray Computed Tomography[END_REF]. Based on this result, we assume that the concentration of dissolved gas, Cg, is homogeneous in the liquid within the air void and must satisfy thermodynamic equilibrium of the gas-liquid interface. Thanks to this assumption, the concentration of dissolved gas, Cg, is the same everywhere around the surface of the spherical void (i.e. at r = RV).
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As a result, the 3D system of interest can be simplified into a 1D system (see Figure 8), where the concentration of dissolved gas in the liquid saturated porous shell will be evaluated as a function of time in the shell (of thickness L), i.e. from r = RV to r = RV + L. As a consequence of the evolution of the size and mass of the trapped gaseous air within the spherical void during the saturation process, the concentration Cg of dissolved gas at the surface of the air void (i.e. at r=RV) will need to be properly integrated into the system of equations to be solved. By conserving all phases present in the porous shell (i.e. liquid water and dissolved gas), the mass conservation of liquid water, l, and dissolved gaseous air, g, can be written by the advection-diffusion equation following [START_REF] Derluyn | Modelling of Moisture and Salt Transport Incorporating Salt Crystallizattion in Porous Media[END_REF]. Equation 12shows the advection-diffusion equation for the liquid, l, where is the liquid density, κ is the intrinsic permeability of the porous solid shell, ϕ0 is the porosity of the shell, η is the dynamic viscosity of the liquid, and Pl is the liquid pressure. Equation 13 displays the advection-diffusion equation for the dissolved air within the liquid in the porous solid shell where Cg is the concentration of dissolved gas in the liquid. In Equations 12 and 13, the material parameters (i.e., κ, ϕ0, η, and Dg s , whose meaning is given in Table 3) in the porous shell are taken as homogeneous in space and constant over time.

Additionally, it is assumed that the liquid flow is incompressible and that the density of the liquid, , is not a function of the dissolved gas concentration [START_REF] Bignell | The Effect of Dissolved Air on the Density of Water[END_REF], implying that this density, , is assumed constant. As shown in Equation 14, the incompressible flow condition of the liquid in the porous solid shell results in P % N/ /NP being constant from r = RV to r = RV + L. The final governing equation for the mass transport of the dissolved gas in the liquid saturated porous shell is written as Equation 15, where P % N/ /NP is homogeneous in space, but varies over time.
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To solve Equation 15, the boundary conditions for the liquid pressure, Pl, and dissolved gas concentration, Cg, must be known. At r = RV + L, the liquid pressure is taken equal to the atmospheric pressure, Patm, and the concentration in dissolved gas is considered to be equal to that in water in equilibrium with air at atmospheric pressure, such that, with Henry's law, the concentration of dissolved gas, Cg, at r = RV + L, is given by the product, kHPatm [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF][START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF], where kH is Henry's constant for air. To understand how Cg and Pl vary at r = RV, they are written as a function of the mass of the gas, mg(t), and the mass of the liquid, ml(t), within the spherical void.

To do so, it is assumed that the mass of dissolved gas in the liquid within the spherical void is negligible based upon [START_REF] Bignell | The Effect of Dissolved Air on the Density of Water[END_REF] -implying that the mass of gas is exclusively given by the trapped volume defined by Rgl(t), which, for a given contact angle θ, is a function of ml(t). Based on this assumption, the concentration of the dissolved gas at r = Rv can be expressed for all times by combining Henry's Law and the Ideal Gas law as displayed in Equation 16. Additionally, the liquid pressure at r = RV can also be expressed, as shown in Equation 17, by combining Henry's law, the ideal gas law, and Laplace equation.
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To have a solvable system of equations, mg(t) and ml(t), the masses of gaseous air and of liquid water within the spherical void, can be determined by evaluating the respective mass fluxes through the spherical void surface. Equation 18 20.
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As a result, Equations 15 to 17, 19, and 20 represent a complete system of equations. This system can then be solved, given the initial condition mt, and the previously defined boundary conditions for Cg and Pl at r = RV + L, thus making it possible to understand the dissolution kinetics of trapped gaseous air due to coupled-transport of fluid and dissolved gas by advection and diffusion. It is important to note that the gradients of liquid pressure Pl in equations 18 and 20 also appear in Equation 14. It can be seen that if the liquid pressure within the spherical void is imposed to be equal to the atmospheric pressure at all times at the surface of the air void then a purely diffusive-driven dissolution model for the trapped gaseous air is obtained.

SVDK Model Results and Discussion

Comparison with Epstein-Plesset Model

As motivated in the review and detailed in the SVDK model formulation, understanding how the air voids become liquid filled and how various modes of mass transport (i.e., diffusion and advection) influence the dissolution dynamics and resulting saturation of the spherical void is of central importance to fundamentally understanding the long-term saturation of air-entrained cementitious materials and other materials with similar multi-scale pore structures. Prior to displaying and discussing these phenomena for cementitious materials and other analogous porous media, it is first of interest to evaluate the SVDK model in the context of the Epstein-Plesset model. Although the formulations are notably different and departures can be expected due to the presented assumptions, if the porous solid shell surrounding the spherical air void is treated as liquid water and the initial amount of trapped air, mt, is equal to 1 and the contact angle, θ, is zero, then systems at time t = 0 are analogous.

Figure 9a displays results for the Epstein-Plesset model and the SVDK model when the porous solid is treated as liquid water and when advection is neglected (i.e., the liquid pressure at r = RV is considered equal to Patm for all times), for an initial air bubble with a radius of 15µm. Table 2 displays the necessary input values for the respective models. It can clearly be seen that the initial linear portion of the two models agree well in terms of rate. Once the radius of the trapped gas reduced below 12µm, the models and experimental behavior of the trapped air becomes increasingly non-linear. Ultimately, because the SVDK model assumes that the concentration of the dissolved gaseous air in the liquid is homogeneous within a sphere of radius of 15µm (which is a reasonable assumption for tortuous porous media as shown in Equation 11, but not a reasonable assumption for a bubble surrounded solely by liquid water) and satisfies thermodynamic equilibrium of the liquid-air interface, the SVDK model logically predicts a collapse of the air bubble being faster than that given by the Epstein-Plesset model. Otherwise, in terms of comparison, the SVDK model agrees very well with the Epstein-Plesset model in terms of order of magnitude but eventually predicts -as could be expected-a smaller (by about 22%) time to full dissolution. Figure 9b displays the evolution of the air-liquid interface with the SVDK model, which is qualitatively very comparable to Figure 4b. Henry's law of for air in water 1.9*10 -7 kg/(m 3 *Pa) [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF] 1. In this evaluation Dg s is equivalent to the D defined and given in this table.

Discussion of the Role of Advection

For the purposes of the remaining results section, the findings of the SVDK model will be reported for material values expected for well-hydrated cement pastes and the kinetics of the trapped air geometry are compared to behavior seen for the proxy systems presented in Section 2.2.2. Additionally, the system is assumed to be at room temperature. Table 3 displays specific values, or ranges of values, that are taken for the SVDK model inputs that are not held constant or already given in Table 2. In terms of organization, Figures 10 and 11 display the influence of advection and the order of magnitude of the intrinsic permeability, κ, while the diffusivity of the dissolved gas in the liquid saturated porous shell is taken as the mean value of the range presented Table 3 (i.e., a value of 5x10 -12 m 2 /s). The size of the spherical air void is also taken as RV = 10µm, representing the absolute lower bound for entrained air voids in cementitious materials [START_REF] Mehta | Concrete: microstructure, properties, and materials[END_REF] and L is set to 1mm. More specifically, in Figure 10, the influence of the liquid pressure, Pl, boundary condition is evaluated and κ is set to 10 -19 m 2 . As detailed in the formulation, the influence of advection on the transport of the dissolved air can be not solved for when Pl is required to be equivalent to Patm at r = RV and within the liquid in the void. Figure 10a displays the change in radius of the trapped air when mt = 1 and θ = 0. The findings in Figure 10a display that when advection is considered the total time to dissolution increases by approximately 15%. Upon reviewing Figure 10b, which displays the evolution in the liquid pressure at r = RV, it can be seen that when advection is considered, the liquid pressure at the surface of the air void drops below the atmospheric pressure. The reduction in the liquid pressure at r = RV results in a pressure gradient that pulls liquid into the air void and slows the diffusion of the dissolved gas through the porous solid shell (because it slows the increase of pressure in the gas bubble), causing a longer time to full dissolution of the trapped air. Figure 11a displays the influence of the value of intrinsic permeability, κ, on the dissolution kinetics of the same trapped air. Interestingly, as κ approaches the maximum usual value for cementitious materials as shown in Table 3, it begins to approximate the solution in which advection is neglected (i.e., not solved for) whereas when κ approaches the minimum usual value for cementitious materials the time to dissolution significantly increases. This phenomenon can be understood by considering the implications of the results presented in Figure 11b. When the value of κ is large, the pressure gradient quickly reduces because the liquid can quickly flow into the spherical void. When κ is high, a pressure gradient, as seen for smaller values of κ, between r = RV and r = RV+L cannot be sustained and is mostly diffusion-driven. This finding is in line with the drying asymptotics of quite permeable porous media as developed in [START_REF] Coussy | Mechanics and Physics of Porous Solid[END_REF] (i.e., the initial gas pressure gradient cannot be sustained due to the rapid rate of advective transport through the material as compared to the slow transport of gas due to diffusion). Figure 12 displays the influence of the order of magnitude of the diffusivity of dissolved air in liquidsaturated cement paste on the dissolution kinetics when advection is considered. 

Results on Time to Full Dissolution and Dissolution Kinetics

From the previously displayed outcomes and results, the influence in initially trapped mass of air, mt, and the contact angle, θ, can be evaluated. Figure 13a displays a contour plot for time to full dissolution, when advection is considered, as a function of mt and θ for a spherical void of radius 10µm and where the diffusivity Dg s of dissolved air in the shell is equal to 5x10 -12 m 2 /s and the permeability κ is equal to 10 -20 m 2 . It can be clearly seen that the amount of trapped air significantly influences the total time to full dissolution whereas the effect of the contact angle to the time to full dissolution becomes notably pronounced when above a value of 20 degrees.

Corresponding with Section 3.1, on Figure 13a we delimitate regions that are not physically possible under the assumption of a liquid pressure equal to the atmospheric pressure in the initial state (in blue) and regions for which multiple initial geometries are possible (in pink). In this latter case, we chose the initial geometry with the lowest free energy (see Eq. 

Comparison with Experimental Data

As discussed and displayed in Section 2.2.2 and Figure 5, fitting power law relationships to the temporal size reduction of the trapped air can provide significant insight into the governing physics of the model. For the following findings the fit relation is given by Rgl

(t) = A(B-t) C ,
where A is a constant, B represents the time to full dissolution, and C is the exponent of the power-law relation [START_REF] Carrier | Evaporation of water: evaporation rate and collective effects[END_REF][START_REF] Jambon-Puillet | Singular sublimation of ice and snow crystals[END_REF]. As displayed in Figure 16a, for systems with a zero contact angle (i.e. θ=0°), the determined power (i.e., value of C) is ~0.25, independent of whether advection is considered or neglected, and is found to be mostly independent of the initial trapped mass mt. As a means of comparison, the Epstein-Plesset and experimental results for similar systems give a power-law fit of ~0.33. The lower value found by the SVDK model is expected and its explanation coincides with that given for the difference in solutions to the SVDK and Epstein-Plesset model shown in Figure 9 (i.e., the concentration of dissolved gas in the liquid within the air void is homogeneous and required to satisfy thermodynamic equilibrium of the air-liquid interface which increases the rate of dissolution as compared to [START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF] leading to a lower value of exponent in a power-law relation). Figure 16b Having evaluated the general outcomes of the model and its comparison to proxy systems, it is also of interest to understand how it relates to the experimental data that is available relating to the long-term saturation of air void in cementitious materials. As initially presented in Section 2.2.1, Moradllo and Ley conducted a series of long-term ponding experiments [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] on cement pastes with a similar pore structure used to formulate the model presented herein. A primary conclusion was that after 60 days of ponding and within the first 6mm of the sample (i.e., depth from the ponded surface) air voids with radii less than 100µm were found to be saturated whereas larger air voids remained air-filled. Figure 17 displays that for acceptable values of Dg s and κ, it can be directly shown that air voids smaller than 100µm in radius will be completely saturated, while voids larger than 100µm will remain partially air-filled. Similar to the comparison made to the Epstein-Plesset model presented in Figure 9, this finding does not directly validate the model but improves the likelihood that it is capturing the governing physics of the phenomena, seeing as how it agrees very well within that same order-of-magnitude of each comparison.

Also, it is important to note that if air-voids are well-spaced and do not influence the dissolution kinetics of one-another, Figure 17 suggests that the air voids roughly fill in order of increasing size, as postulated in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF]. This calculation neglected interactions between air voids. In real systems, interactions may happen: small air voids, subjected to larger Laplace pressures, should empty into larger air voids, akin to Oswald ripening. Therefore, in real materials, interactions may make the air voids fill in order of increasing size in a still more pronounced manner. 

Discussion on Impact of Initial Pressure Assumptions

As mentioned in the formulation section, the previously presented results have assumed that at time t = 0 the liquid pressure Pl at r = RV, and within the spherical void, is equal to Patm and the gas pressure is then given by the Laplace Equation. It could also be reasonably assumed that the gas pressure is equal to the atmospheric pressure Patm. Figure 18a With the SVDK model, we looked at the time to full dissolution of pores that end up being fully saturated with liquid. However, based on our theoretical considerations, it is possible that, depending on the configuration of the gas-liquid interfaces right after capillary imbibition, some air voids never fill fully with liquid, even if left indefinitely under water.

SVDK Model Conclusions

As displayed in the previous section, the formulated SVDK model advances the current state-ofthe-art in the field, reviewed in Section 2, by clearly detailing how single air voids become liquid-saturated due to dissolution, diffusion, and advection of the trapped gaseous air. The SVDK model results were compared to previous efforts [START_REF] Duncan | Test of the Epstein-Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution[END_REF][START_REF] Epstein | On the Stability of Gas Bubbles in Liquid-Gas Solutions[END_REF][START_REF] Duncan | Microdroplet dissolution into a second-phase solvent using a micropipet technique: Test of the epstein-plesset model for an aniline-water system[END_REF] for simple systems (i.e. as spherical gas bubble surrounded by an infinite amount of liquid) as shown in Figure 9 and found to agree well in terms of solution form and the order of magnitude of time to full dissolution. As noted, the departures in the results can be readily explained due to assumptions present in the model that are applicable to porous media with highly tortuous capillary porosity. Additionally, the SVDK model results were compared to experimental findings presented in [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] and found to agree very well. Outcomes of this comparison were also used to evaluate a postulation made by G. Fagerlund in [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF] that the voids in cementitious material fill in order of increasing sizelikely this is the case when considering a polydisperse air void system (i.e., small air voids preferentially diffuse into larger voids).

Along with the comparisons made to previous efforts, it was displayed how the SVDK model can evaluate the dissolution kinetics of trapped gases over a very large domain of trapped masses of air and contact angle in addition to the influence of when advection is considered and neglected. Notably, it was found that as the intrinsic permeability of the porous paste shell increased the SVDK model begins to approximate the solution when advection is not solved for (i.e., when the dissolution of the dissolved air in the porous shell is exclusively limited by diffusion). This finding, alongside the influence of the contact angle and value of the diffusivity on time to full dissolution, is significant as it provides novel insight into how such a system might behave and could be manipulated for design purposes. For example, using the outcomes of this model, the diffusivity and intrinsic permeability can be designed into the material through selection of appropriate values of water/cement (w/c) ratio and a minimal curing time, in the case of cementitious materials, and reliably provide a desired time to critical saturation. Also, by impacting the time to full dissolution, the contact angle between the pore solution and the solid surfaces could influence the freeze-thaw resistance, which might explain why hydrophobic agents can impact freeze-thaw durability of concrete [START_REF] Liu | Effect of hydrophobic surface treatment on freeze-thaw durability of concrete[END_REF].

Although the SVDK model has resulted in numerous insights into the slow saturation of air void in cementitious materials, its direct validation is still necessary. To do so, small specimens of airentrained cement pastes could be prepared and evaluated using high resolution nanoCT as it saturates over time. The efforts and results found in a similar experiment [START_REF] Khanzadeh Moradllo | Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[END_REF] have provided insight into the global saturation of a sample, but it is necessary to study only a selection of air voids at finer time steps and resolution below 8.8µm/voxel in effort to see the evolution of the air-liquid interface. Additionally, it could be envisioned that a microfluidic device could be constructed as in [START_REF] Sahloul | Dissolution of residual non-aqueous phase liquids in porous media: Pore-scale mechanisms and mass transfer rates[END_REF] to provide similar insight and is left as future work.

The SVDK model answers how air voids saturate over time by the dissolution-and transportdriven collapse of trapped gaseous air. An extension could make it possible to understand and model 3D systems in which the air void system is polydisperse -allowing for the prediction of the long-term saturation rate, S2, given a known air void size distribution and various material properties without assumptions on how air voids fill in relation to one another [START_REF] Fagerlund | The long time water absorption in the air-pore structure of concrete[END_REF][START_REF] Eriksson | A Hygro-Thermo-Mechanical Multiphase Model for Long-Term Water Absorption into Air-Entrained Concrete[END_REF][START_REF] Liu | A geometrical model for void saturation in air-entrained concrete under continuous water exposure[END_REF].

Additionally, it is important to note that the following work has been found to have a broad range of application and contribution. The dissolution of trapped gases has major relevance and significance in fields ranging from carbon capture [START_REF] Cubaud | CO2 Dissolution in Water Using Long Serpentine Microchannels[END_REF] to drug delivery [START_REF] Azmin | Dissolution of coated microbubbles: The effect of nanoparticles and surfactant concentration[END_REF] and bioremediation [START_REF] Fry | Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation[END_REF], but is directed here to progress the field's understanding of how the long-term saturation rate of cementitious materials is linked to air void-scale phenomena.
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 2 Figure 2 -General mechanisms developed by G. Fagerlund in [10] for how air voids in cement
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  Figure1b, building on Figure1a, then shows that the following work is interested in understanding how the secondary saturation rate occurs due to the saturation of single spherical air voids. The pore-scale image below the saturation curve in Figure1bqualitatively displays how compressed air is expected to behave once the void-scale system has reached the matrix saturation, Sm. The evolution of the air-liquid interface was informed by experimental outcomes that captured the dissolution of trapped gas in infinite liquid or micro-models -displayed in Figure4b-which serve as proxy systems of study for air-entrained cementitious materials.From now on, an individual air void surrounded by a spherical shell of saturated cement paste is considered. The modeling of the progressive saturation of this air void will lead to what we call the single-void dissolution kinetics (SVDK) model. Within Sections 3.1 to 3.3 the single-void dissolution kinetics (SVDK) model is derived to provide insight into how air voids in cementitious materials, and other analogous porous media, become saturated over time. Section 3.1 defines a system which can be mathematically evaluated and how the gaseous air-liquid interface can be represented at any level of air-void saturation. Within this section, specific attention is given to how the system can be initiated at time t = 0 and the implications that the initial geometry will have on the long-term dissolution kinetics. Section 3.2 contains the model formulation and presents assumptions. Detail is given to how the assumptions can be expected to influence the model outcomes with corresponding justifications. Section 3.3 provides the results and an extended discussion of the model outcomes. Lastly, Section 4.0 contains conclusions, implications of the model outcomes for the broader field of cementitious-material durability research, and opportunities for future work.
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 6 Figure 6: Spherical void-shell system and representation of the gas liquid interface which, for a given contact angle, θ, can be parametrized by the radius of the interface, Rgl.
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 7 Figure 7: Contour plot of normalized mass of air initially trapped, as a function of contact angle, θ, and initial radius of the gas-liquid interface, Rgl(t=0) with associated visualization of
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 8 Figure 8: Simplification of problem to 1D.

  calculates the rate of change of the mass of gaseous air in the spherical void by summing the advective and diffusive mass fluxes through the spherical void surface. Equation 19 is written in a similar form to calculate the rate of change of liquid in the spherical void. In Equation 19, the term, Cl, denotes the concentration of liquid in the pore solution and thus is equal to the difference between the liquid density, , and the dissolved gas concentration, Cg, at r = Rv at any time. When replacing Cl with this difference, Equation 19 becomes Equation
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 9 Figure 9: a). comparison of SVDK model to Epstein-Plesset solution (i.e., Equation 3-1) and
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 10 Figure 10: Influence of advection on time to complete dissolution displayed by a). radius of air-
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 11 Figure 11: Influence of intrinsic permeability on time to complete dissolution of the trapped air. Model inputs: mt = 1, θ = 0°, Dg s = 5x10 -12 m 2 .s -1 , L = 1mm.
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 12 Figure 12: Influence of diffusivity of dissolved air in saturated hydrated cement paste on trapped air dissolution kinetics. Model inputs: mt = 1, θ = 0°.
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 7 to calculate the time to full dissolution. Figures 13b to 13d evaluate other material and system inputs: values of intrinsic permeability, the diffusivity of dissolved air in saturated cement paste, and the air void size. Figure 14 displays examples of evolutions for various contact angles and Figure 15 displays the influence of the thickness, L, of surrounding cement paste shell and the spherical air void radius, RV, on time to full dissolution, tf, of the trapped gaseous air.

Figure 13 :

 13 Figure 13: Time to full dissolution, tf, contours of a large domain of normalized trapped mass, mt, and a). contact angles, θ, where RV = 10µm, Dg s = 5x10 -12 m 2 /s, κ = 10 -20 m 2 , and L = 1mm, b). intrinsic permeability, κ, where θ = 0°, RV = 10µm, Dg s = 5x10 -12 m 2 /s, and L = 1mm, c).

Figure 14 :

 14 Figure 14: Examples of gas-liquid surface evolution for normalized trapped mass, mt, of 0.5 and

Figure 15 :

 15 Figure 15: Influence of spherical air void radius, RV, and porous solid shell thickness, L, on time to full dissolution for mt = 1, θ = 0°, Dg s = 5x10 -12 m 2 /s, and κ = 10 -20 m 2 .

  displays a contour plot of fitted exponents of the power-law relation for various values of mt and θ. As expected, the power-law strongly depends on the value of θ, which can be understood by the influence of Laplace pressure applied to the system (i.e., for a larger value of θ larger values of Rgl are obtained, reducing the Laplace-driven dissolution effects of the trapped air).

Figure 16 :

 16 Figure 16: a). Power law evaluation for a system with θ = 0°, where RV = 10µm and mt = 1,for

Figure 17 :

 17 Figure 17: Comparison plot of SVDK model results with experimental conclusion from [14]. Model Inputs: mt =1, θ = 0°, Dg s = 1.5x10 -12 m 2 /s, and κ = 10 -20 m 2 .

  displays the outcomes of setting the gas pressure initially equal to Patm on the evolution of the radius of the air-liquid interface and Figure18bdisplays the evolution in liquid pressure at r = RV. It is clear that the assumption does not significantly influence the outcome due to the fact that the liquid pressure gradient in the system quickly equilibrates, resulting in very similar dissolution kinetics of the trapped gaseous air.

Figure 18 :

 18 Figure 18: Assessment of initial liquid and gas pressures at r = RV on dissolution kinetics of trapped air. Model inputs: mt =1, θ = 0°, Dg l = 5x10 -12 m 2 /s, and κ = 10 -20 m 2 , L = 1mm.

Table 1 :

 1 Definition of terms for the Epstein-Plesset Equation found in Equation1.

	Term: Definition (Units):
	R	Bubble radius (m)
	T	Time (s)
	D	Diffusivity of dissolved gas in surround liquid (m 2 /s)
	kH	Henry's constant (kg/m 3 /Pa)
	G	Universal Gas Constant (m 3 .Pa/mol/K)
	T	Temperature (K)
	f	Ratio of initial concentration to saturated concentration (-)
	Mw	Molar mass of the gas (kg/mol)

σ Surface tension of the gaseous air -liquid interface (N/m) ρ

-Scale Model: Single Void Dissolution Kinetics (SVDK)

  By considering the following pore-scale and specimen-scale findings presented in Section 2.2 in a consistent framework, it is clear that many open questions still exist. Regarding the long-term

saturation phenomenon, a central question that remains is: by what physics-based mechanism do the spherical air voids become water-, or liquid-, saturated? Section 3 is oriented around deriving a model which advances current answers to this void-scale question. Pending an improved understanding of the pore-scale phenomenology, it is also of interest to see how its behavior compares to the Epstein-Plesset model detailed in Section 2.2.1 and the proxy systems displayed in Section 2.2.2.

Table 2 :

 2 Required inputs for SVDK model and Equation 3-1 to results displayed in Figure 13a/b.

	Symbol	Definition	Value
	T	Temperature	295.15 K
	Mw	Molar mass of air	28.97 g/mol
	G	Universal Gas Constant	m 3 *Pa/(mol*K)
	f	Ratio of initial concentration to	1
		saturated concentration	
	σ	Air-water surface tension with a	40 mN/m [16]
		surfactant used in [16]	
	D 1	Diffusivity of air in water	1.8*10 -9 m 2 /s [16]
	ρ	Density of air	1.225 kg/m 3
	kH		

Table 3 :

 3 SVDK model inputs for cementitious material systems.

	Symbol	Definition	Value
	Dg s	Diffusivity of dissolved air in	10 -10 -10 -13 m 2 /s [41]
		saturated hydrated cement paste	
	κ	Intrinsic permeability of	10 -18 to 10 -22 m 2 [42]
		hydrated cement paste	
	η ϕ0 σ ρl	Dynamic viscosity of water Porosity of cement paste Air-water surface tension Density of water	8.9x10 -4 Pa*s 0.20 -0.30 (-) [42] 70 mN/m [16] 997 kg/m 3
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