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Abstract: 8 

The saturation of air-entrained cementitious materials governs their resistance to freeze-thaw 9 

cycles. Upon immersion in water, water is sucked in the capillary porosity and part of the air 10 

initially present is trapped. This trapped air slowly dissolves and diffuses outward, leading to a 11 

slowly increasing saturation. Building on efforts in fields ranging from gas-liquid interfaces to 12 

multi-phase transport and cement sciences, a model is derived to describe the governing physics 13 

behind the long-term saturation rate in immersed cementitious materials due to the dissolution 14 

and diffusion of trapped gaseous air in a spherical air void. We model how liquid water 15 

continuously enters a single air void and how various material properties influence the time to 16 

complete dissolution of air trapped in the spherical void. The relative influence of advection, 17 

diffusion, and various materials properties are studied and the model results are found to agree 18 

with imaging studies and theoretical models.  19 
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1.0 Introduction: 24 

 25 

In recent years, the critical saturation (Scr) of cementitious materials has gained significant 26 

attention [1–5] due to its ability to predict when freeze-thaw-induced damage will initiate [2,6–27 

8]. The time it takes for fully water-immersed concrete specimens to reach Scr, referred to as time 28 

to critical saturation (tcr), has recently been incorporated in AASHTO PP84 [9] to ensure a 29 

minimal service life in freezing-and-thawing environments. Beginning in [1] and extended in 30 

[2,4], it was recognized that experimentally obtained long-term saturation rate values can be used 31 

to estimate tcr assuming an experimental Scr value of 85% [2,6,8]. The long-term saturation of 32 

air-entrained cementitious materials, idealized as a heterogenous porous solid with dispersed 33 

spherical voids as shown in Figure 1a, refers to the slow and time-dependent process in which 34 

air-entrained cementitious material move from its matrix saturation, Sm, to its critical saturation 35 

Scr  [10]. Although significant progress has been made experimentally in understanding how Scr 36 

can be leveraged as a service-life assessment tool, the fundamental mechanism by which single 37 

air voids in cementitious materials become slowly water-filled needs to be better understood 38 

theoretically.  39 

 40 

The long-term saturation rate, S2, is hypothesized to occur due to the dissolution and diffusion of 41 

compressed air in the entrapped and entrained air voids [2,10], as shown in Figure 1b. Once the 42 

material reaches its matrix saturation (i.e., when the capillary porosity of the cement matrix is 43 

saturated with liquid water), trapped air is compressed by the Laplace pressure resulting from 44 

surface tension effects which induces dissolution of the compressed air into the fluid within or in 45 

the vicinity of the air void [10,11]. This dissolved air slowly diffuses outward while liquid water 46 



flows toward the air void, resulting in a slowly increasing saturation of the air void and the 47 

complete dissolution of the initially trapped air [11]. However, despite previous efforts, the 48 

coupled mechanism of dissolution, diffusion, and advection that lead to the saturation of a single 49 

air void, or as group of air voids (i.e., a realistic 3D system), has yet to be clearly expressed in a 50 

single, physics-based model [3]. For the purposes of the efforts presented, the theoretical water-51 

filling mechanisms for a single air void surrounded by a cement paste shell will be developed. 52 

 53 

 54 

 55 

Figure 1 – a). Idealized air-entrained cementitious material system that is fully immersed in 56 

water and single air void-shell system, at the moment when it is immersed b). standard bi-linear 57 

saturation curve for air-entrained cementitious materials [2] and idealized saturation behavior of 58 

the air-void shell system which is initialized by the compression of gaseous air and its resulting 59 

dissolution into the surround saturated capillary porosity [10]. 60 



  61 

In effort to ensure that the governing physics of how air voids become increasingly water-filled 62 

is captured, theoretical and experimental efforts made in various fields, ranging from macro-63 

scale investigations of water-immersed mortars [12] to micro-fluidic studies on the dissolution of 64 

trapped gas bubbles [13], are critically reviewed. The review will first assess macro-scale 65 

phenomena and progressively move in the direction towards the void scale –as the long-term 66 

saturation of cementitious materials occurs due to the slow saturation of large porosity [10,14] 67 

(i.e., spherical air voids which range on the order from 10µm to 1mm in radius and are 68 

interconnected by irregular capillary pores which are orders of magnitude smaller [15]). 69 

Additionally, fundamental questions are identified which are central to understanding the 70 

governing dynamics of time-to-full-dissolution of air within a single spherical air void.  71 

 72 

With respect to the model’s derivation, a representative air-void and hardened shell system is 73 

first defined and the necessary geometry to describe the temporal evolution of a realistic water-74 

air interface during saturation is detailed. As shown in Figure 1b, it is assumed that all of the 75 

capillary pores which connect the spherical air voids to each other, and the surface, are 76 

completely water saturated – suggesting that any air-void-and-shell system is at its matrix 77 

saturation. Attention is given to initial system assumptions, ensuring that the initial amount of 78 

trapped air within a void is known. Following this, mass balance equations for liquid water and 79 

dissolved air within the porous hardened cement paste shell are developed in addition to the mass 80 

conservation of gaseous air and liquid within the spherical air void. The result is a set of four 81 

coupled partial differential equations which are solved using various state equations and 82 



assumptions which treat the gaseous air as ideal, the liquid water as incompressible, and the 83 

entire system as isothermal.  84 

 85 

Solutions to the set of equations – called the single void dissolution kinetics (SVDK) model - are 86 

then used to determine the saturation kinetics of the air void and the relative importance of the 87 

various transport mechanisms (i.e., diffusion and advection). Based on boundary conditions, the 88 

single void dissolution kinetics (SVDK) model allows for the description of how liquid water 89 

continuously enters air voids from the surrounding capillary porosity while maintaining 90 

thermodynamic equilibrium at the gaseous air - liquid interface. Results are compared to: 91 

validated models of simple systems [16,17] (i.e., a gas bubble suspended in an infinite amount of 92 

liquid), micro-fluidic studies [13,16,18,19], and to findings of imaging studies [14] which 93 

provide a temporal sense of when near-surface air voids of a given size should become 94 

completely saturated. 95 

 96 

2.0 Literature Review:  97 

 98 

The literature review provided for the formulation of the SVDK models is divided into 99 

theoretical and experimental sections. Section 2.1 details the seminal theoretical contributions 100 

that serve as the physics-based background for the formulation of the SVDK model, beginning 101 

with simple systems (i.e., a gas bubble surrounded by an infinite amount of liquid) and 102 

increasing in complexity. Additionally, these previous studies are reviewed and used as a means 103 

of comparison for how the derived SVDK model advances the state-of-the-art in predicting the 104 

long-term saturation rate of air-entrained cementitious materials. Experimental Section 2.2 is 105 



organized into two sections. The first section treats specimen-scale phenomena, where the 106 

behavior of cementitious materials immersed in a fluid is studied using a variety of experimental 107 

techniques. The second section evaluates known void-scale phenomena, where micro-fluidic 108 

models are used to provide insight into the phenomenology that would occur within a saturating 109 

air void. 110 

 111 

2.1 – Theoretical Modeling 112 

 113 

In 1950, Epstein and Plesset [17] developed a model for the evolution over time of a single 114 

bubble of gas suspended in a liquid solution. They displayed that by considering mass-balance at 115 

the bubble-liquid interface the reduction, growth, or stability of the bubble could be explained. In 116 

summary, their derivation was formed around the equivalence of mass-fluxes at the gas-liquid 117 

interface where thermodynamic equilibrium must be maintained. Equation 1 displays their final 118 

partial differential equation and Table 1 defines its terms. A detailed derivation can be found in 119 

[16]. Additionally, multiple forms of the original Epstein-Plesset equations can be obtained when 120 

neglecting temporal and surface-tension effects, as shown in [16,20]. From Equation 1, it can be 121 

directly seen that the term f, which represents the ratio of the initial dissolved gas concentration 122 

in the surrounding infinite fluid to the saturated concentration, will dictate whether the bubble 123 

with radius, R, will grow or shrink. With respect to gas bubbles that have surrounding liquids 124 

that are not saturated with dissolved gas species (i.e., a value of f ≤ 1), the model predicts that a 125 

gas bubble with initial radius R0 will completely dissolve due to an internal pressure (given by 126 

the Laplace equation) larger than that of the surrounding fluid, which drives the dissolution of 127 

gaseous species, understood by Henry’s Law, followed by Fickian transport.  128 



 129 
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 130 

Table 1: Definition of terms for the Epstein-Plesset Equation found in Equation 1. 131 

Term: Definition (Units): 

R Bubble radius (m) 

T Time (s) 

D Diffusivity of dissolved gas in surround liquid (m2/s) 

kH Henry’s constant (kg/m3/Pa) 

G Universal Gas Constant (m3.Pa/mol/K) 

T Temperature (K) 

f Ratio of initial concentration to saturated concentration (-) 

Mw Molar mass of the gas (kg/mol) 

σ Surface tension of the gaseous air – liquid interface (N/m) 

ρ Density of the gas at atmospheric pressure and at the initial temperature (kg/m3) 

 132 

Recognizing the applicability of the work in [17] to the long-term saturation of air-entrained 133 

cementitious materials in [10], G. Fagerlund proposed three ways in which air voids  in 134 

cementitious materials could become fully water-saturated. To initiate the dissolution-driven 135 

system, Fagerlund assumed that air is trapped in the voids due to the fast imbibition of water into 136 

the capillary porosity, characterized by saturation rate S1 in Figure 1b. Once the gaseous air is 137 

trapped in the void it is then compressed to satisfy Laplace effects – given by the size of the void 138 

and taking the water in the surrounding capillary pores to be at atmospheric pressure. As a result, 139 

the system is a spherical air bubble that is surrounded by a porous paste shell in which the 140 

capillary porosity is completely water-saturated, as shown in Figure 2a. 141 

 142 



 143 

Figure 2 - General mechanisms developed by G. Fagerlund in [10] for how air voids in cement 144 

pastes become water-saturated. 145 

 146 

Figure 2 shows a general schematic of the models discussed in [10]. The first mechanism 147 

suggested that the compressed air will rapidly diffuse into the paste shell if enough water exists 148 

in the surrounding capillary pores and that the water is not already saturated with dissolved air. 149 

Although this mechanism considers the influence of the initial state of the surrounding capillary 150 

water, similar to the term f in Equation 1, it provides no insight into how water enters the void or 151 

the time-dependent mass conservation of air and water in the total system. In the second model, 152 

shown in Figure 2b, it was suggested that the dissolved air diffuses from small to progressively 153 

larger air voids that are nearby, in the spirit of Ostwald ripening. Seeing as how the concentration 154 

at the gaseous air-liquid interface is proportional to the inverse of the compressed air bubble size, 155 

a concentration gradient of dissolved air would exist between a small and large air void, as 156 

shown in Mechanism #2 in Figure 2b, and result in diffusive flow of dissolved air through the 157 

water-saturated paste. In the third model, Fagerlund proposed that the saturation of air-entrained 158 

cementitious materials depends on the diffusion of the dissolved air within the voids to the 159 

surface of the specimen where the concentration of dissolved air is low (assuming that the entire 160 



specimen is immersed in water) – see Mechanism #3 in Figure 2c. In [10], it was additionally 161 

displayed how to leverage Mechanism #2 to predict the concurrent filling of a system of air voids 162 

and the resulting long-term saturation.  163 

 164 

While the work in [10] suggested how air voids could fill with water (i.e., into surrounding 165 

porosity, into one another, and to the surface), clear systems of equations, state equations, and 166 

boundary conditions were not developed to aid in the fundamental understanding of how air 167 

voids become progressively saturated. Moving from the air-void scale to the specimen-scale, 168 

numerous efforts have been put forth to explain the fast initial imbibition of a surrounding fluid 169 

into cementitious materials, characterized by saturation rate S1 [21–23]. For the purposes of this 170 

work, understanding the slow secondary saturation rate, S2, is of greater interest. In 2018, 171 

Erikkson et al. [24] derived a multi-phase (i.e., solid, liquid, gas) transport and mechanics model 172 

to assess the entire saturation curve for air-entrained cementitious materials. Until the idealized 173 

specimen arrived at its value of matrix saturation, Sm, the model follows a similar imbibition 174 

study found in [23]. Once a representative elementary volume (REV) in the analysis arrives at its 175 

matrix saturation Sm, Erikkson et al. assumes that the air voids, which are homogenized within a 176 

REV, are filled with compressed air. The compression, as in Fagerlund’s work, results in 177 

dissolution of air and diffusion of dissolved air through the system and leads to a slow increase 178 

of water saturation. The results of the model were found to agree very well with experimental 179 

results taken from [25] and suggested that air void systems with more coarse, or broad, air void 180 

size distributions saturate more slowly. Additionally, it is important to note that in the work of 181 

Erikkson et al. the air voids within an REV are assumed to fill in order of increasing size from 182 

[10]. 183 



 184 

A multitude of other models exist which aim to predict the time to critical saturation of air-185 

entrained cementitious materials but use experimental data as the basis for which to do so. In 186 

[1,4,26] the time to critical saturation is predicted using the value of secondary saturation rate, 187 

which is related to the secondary sorptivity, following the work presented in [2]. This method is 188 

reliable and can be done to validate that specific concrete or mortar mixtures have a desired 189 

minimal service-life. The approach has been adopted by AASHTO [9]. Additionally, based on 190 

the assumptions presented and found in [8,10,24], recent efforts have shown how a simple 191 

geometric model can be used to predict the evolution in Powers’ spacing factor [27,28]  between 192 

remaining air-filled voids, as more and more air voids become water-saturated [25]. The 193 

presented efforts have provided significant insight and advancement with respect to how air-194 

entrained cementitious materials may become increasingly saturated. Nonetheless, numerous 195 

gaps remain with respect to governing mechanisms at the air void-scale. The central intention of 196 

the SVDK model is to then build on what has been presented in a complementary manner in 197 

effort to provide fundamental insight into the water-saturation mechanism for single air voids 198 

that occur below the REV scale for models similar to [24]. 199 

 200 

2.2 – Experimental Results  201 

 202 

2.2.1 – Specimen Scale Phenomena 203 

 204 

In 2012, based on a series of highly controlled sorption tests, Li et al. [2] displayed that the 205 

secondary saturation rates, S2, as shown in Figure 3, were approximately equivalent irrespective 206 



of the total air content or the relative humidity at which the mortar specimens were conditioned 207 

at prior to conducting ASTM C1585-04 –the standard sorption experiment. This finding served 208 

as the justification for a series of models, similar to those found in [1,29], that predicted the time 209 

to critical saturation [4,26]. Figure 3 displays the concatenated findings from [2] and shows the 210 

similarity in secondary saturation rate S2 for the respective sorption tests.  211 

 212 

 213 

Figure 3 - Concatenated sorption findings from [2] for mortar specimens.  214 

 215 

Figure 3 shows that as the relative humidity at which the samples were conditioned prior to 216 

conducting sorption testing increases the matrix saturation point (identified as a kink in the 217 

saturation versus square-root-of-time curve) is not clearly identifiable. In [30], using neutron 218 

radiography, it was displayed that after 12 hours of fluid exposure, air-entrained and non-air-219 

entrained mortars remained below their matrix saturation point from depths of 5mm to 25mm 220 

within the specimen. Additionally, at twelve hours of testing it was found that the degree of 221 

saturation for all of the specimens were within 5% of the matrix saturation, but not above it at 222 



any point, irrespective of the degree of cement hydration. This finding suggests that the initial 223 

saturation regime is exclusively driven by capillary action leading to a saturation state at which 224 

the capillary pores are fully liquid-saturated and the air voids remain air-filled. It follows then 225 

that for long-term fluid exposure the entrained and entrapped air voids will begin to saturate and 226 

make the material progress toward a critically saturated state as shown in Figure 1b. 227 

In 2017, Moradllo and Ley [14] published a series of 8.8µm/voxel µCT results obtained by 228 

ponding a potassium iodide solution on top of a cement paste for up to 60 days. Although the 229 

paste was not air-entrained, a distribution of spherical voids was found in the hardened specimen 230 

and a final analysis was done with respect to their final saturation state. In [14] the cylindrical 231 

specimen, size distribution of air voids within the first 6mm of the sample, and which voids 232 

became saturated and remained air-filled were displayed. It is important to note that the first 233 

6mm was selected because of a homogeneous concentration in potassium iodide solution within 234 

that region (i.e., it was uniformly solution-saturated). Based on their results, it is clear that the air 235 

voids, which ranged from 20µm to 500µm in radius, did not fill solely as a function of increasing 236 

size. This finding suggests that further efforts are needed to investigate the nature of how air 237 

voids become saturated by considering the effect of the relative location of the air voids with 238 

respect to one another and their respective distance to a free surface of the specimen.  239 

 240 

2.2.2 – Pore Scale Phenomena 241 

 242 

As detailed in Section 2.2.1, an experimental investigation capturing the saturation dynamics of a 243 

single air void in a cementitious material has yet to be conducted. A great deal of understanding 244 

can be gained by studying proxy systems, as idealized in Figure 4a, of trapped air or immobile 245 



bubbles undergoing a temporal process of dissolution, diffusion, and advection that leads to 246 

complete liquid saturation. Proxy system 1, idealized from the work conducted in [16,20], 247 

provides a simplistic gas-liquid system and was used as a basis to evaluate Epstein and Plesset’s 248 

original model presented in Section 2.2.1. Proxy systems 2 and 3, in which a gas bubble is 249 

resting underneath a flat plate [16,19] or within a well [31] have also been extensively studied 250 

experimentally and numerically. Lastly, proxy system 4 provides the closest 2D approximation 251 

of how a highly tortuous micro-model can be idealized and used to study the in-place dissolution 252 

dynamics of trapped gases [13,18,32]. A series of images capturing the dissolution of a trapped 253 

isobutanol bubble within a silica micro-model is shown in Figure 4b. 254 

 255 

Figure 4 - a). proxy system examples, b). example of dissolution of isobutanol in water as a 256 

function of time [13].  257 

 258 



In addition to gaining a qualitative understanding of how compressed gases dissolve in gas-259 

saturated liquids, it is well-established [33] that the temporal evolution of droplets and bubbles 260 

often follow a universal power-law scaling (i.e., that the radius evolves as a power-law of the 261 

difference between the time-to-full-dissolution and the actual time, see Figure 5a). As displayed 262 

in [33,34], for steady-state and diffusion-controlled conditions, the radius and time of liquid 263 

droplets have such  ½ power law relationship. Referring to Equation 1, when the temporal term 264 

and surface tension are neglected and f is unity, it can be shown that the size reduction of a gas 265 

bubble surrounded by an infinite amount of fluid follows such a ½ power law. However, when 266 

these assumptions are not made, the exponent of the power-law relationship can significantly 267 

vary. Figure 5a displays a concatenated group of experiments representing proxy systems 1 to 4, 268 

for which time-to-full-dissolution was fit so that power-law relationships were obtained. Based 269 

on these analyses, it can be seen that the determined exponents of the power-law relationship, 270 

found in the legend and denoted by C, range from 0.33 to 0.86. Figure 5b displays the 271 

determined exponents of the power-laws for solutions to the Epstein-Plesset equation for various 272 

values of f and surface tension. From Figure 5b it can be seen that the exponent of the power-law 273 

ranges from 0.36 to 0.52 for the Epstein-Plesset model. For proxy systems 1-3, the exponents 274 

found for the radius-time relationship agree well. The exponents found for proxy system 4 are 275 

generally higher, which we attribute to the influence of dealing with a non-3D system. 276 

 277 



 278 

 279 

Figure 5: a). Outcomes of fit-power laws to a large class of proxy-systems [13,16,18,19], b). 280 

Exponent of power-law fits for solutions to the Epstein-Plesset model for initial bubble radius of 281 

15µm.   282 

 283 

It is also important to note that the Epstein-Plesset model has been experimentally validated. In 284 

2004 and 2006, Duncan and Needham [16,35] displayed the ability of the model presented in 285 

[17] to predict the size reduction of gas bubbles placed on the tip of a micro-pipette or against a 286 

flat, impermeable wall. Original results for the validation can be found in [16]. Additionally, the 287 

exponent of the power-law relationship between the radius and time history was found to be 0.37 288 

and 0.33, for the bubble on the micro-pipette and resting on a flat wall, respectively. Based on 289 

the reduction in exponent, the presence of the wall causes the radius of the bubble to reduce in 290 

size slower than if it was suspended in an infinite liquid, which is a state of isotropic diffusion. 291 

Although the presented proxy systems are significantly more ideal than what can be expected in 292 

air-entrained cementitious materials, their analysis still provides profound insight into the 293 



qualitative and quantitative nature of how trapped gases reduce in size as a function of their 294 

surroundings. 295 

 296 

3.0 Void-Scale Model: Single Void Dissolution Kinetics (SVDK) 297 

 298 

By considering the following pore-scale and specimen-scale findings presented in Section 2.2 in 299 

a consistent framework, it is clear that many open questions still exist. Regarding the long-term 300 

saturation phenomenon, a central question that remains is: by what physics-based mechanism do 301 

the spherical air voids become water-, or liquid-, saturated? Section 3 is oriented around deriving 302 

a model which advances current answers to this void-scale question. Pending an improved 303 

understanding of the pore-scale phenomenology, it is also of interest to see how its behavior 304 

compares to the Epstein-Plesset model detailed in Section 2.2.1 and the proxy systems displayed 305 

in Section 2.2.2.  306 

 307 

As displayed in Figure 1a, the macro-system of interest is a porous cementitious paste in which 308 

spherical air voids can be found - analogous to the µCT specimen assessed in [14]. For the 309 

purposes of the ensuing section, the macro-system is considered to be fully immersed in water 310 

and when a spherical region is taken around a single air void, the capillary pores connect the air 311 

voids to the surface of the specimen and one another. Figure 1b, building on Figure 1a, then 312 

shows that the following work is interested in understanding how the secondary saturation rate 313 

occurs due to the saturation of single spherical air voids. The pore-scale image below the 314 

saturation curve in Figure 1b qualitatively displays how compressed air is expected to behave 315 

once the void-scale system has reached the matrix saturation, Sm. The evolution of the air-liquid 316 



interface was informed by experimental outcomes that captured the dissolution of trapped gas in 317 

infinite liquid or micro-models - displayed in Figure 4b – which serve as proxy systems of study 318 

for air-entrained cementitious materials.  319 

 320 

From now on, an individual air void surrounded by a spherical shell of saturated cement paste is 321 

considered. The modeling of the progressive saturation of this air void will lead to what we call 322 

the single-void dissolution kinetics (SVDK) model. Within Sections 3.1 to 3.3 the single-void 323 

dissolution kinetics (SVDK) model is derived to provide insight into how air voids in 324 

cementitious materials, and other analogous porous media, become saturated over time. Section 325 

3.1 defines a system which can be mathematically evaluated and how the gaseous air-liquid 326 

interface can be represented at any level of air-void saturation. Within this section, specific 327 

attention is given to how the system can be initiated at time t = 0 and the implications that the 328 

initial geometry will have on the long-term dissolution kinetics. Section 3.2 contains the model 329 

formulation and presents assumptions. Detail is given to how the assumptions can be expected to 330 

influence the model outcomes with corresponding justifications. Section 3.3 provides the results 331 

and an extended discussion of the model outcomes. Lastly, Section 4.0 contains conclusions, 332 

implications of the model outcomes for the broader field of cementitious-material durability 333 

research, and opportunities for future work.  334 

 335 

3.1 System Definition and Initial Geometry 336 

 337 

The initial step to developing and understanding the dissolution of compressed gas within a 338 

single air void, and its resulting saturation, is idealizing the system, and in particular its 339 



geometry, so that it can be mathematically represented. Figure 6 shows the bilinear saturation 340 

regime common for air-entrained cementitious materials where saturation rate S2 characterizes 341 

the dissolution-driven regime. As detailed, it is of interest to understand this long-term saturation 342 

phenomenon at the void-scale as the matrix saturation represents the saturation state at which all 343 

of the capillary pores are filled with liquid water and the larger spherical voids contain trapped 344 

gaseous air. 345 

 346 

The contact angle of the liquid at the surface of the air void is denoted θ and is assumed to 347 

remain constant over time. From the fluid-immersed macro-scale system, a spherical region of 348 

interest is defined around a single air void. The air bubble in the air void is considered to rest at 349 

the top of the air void because of gravity. Equation 2 displays the mathematical representation of 350 

the volume of the gaseous air region, Vg, trapped within the spherical void, which is the volume 351 

of intersection of two spheres of radius Rv (which is the radius of the air void) and Rgl (which is 352 

the radius of curvature of the air-liquid interface) [36]. Following this equation, for a given 353 

contact angle θ of the liquid-air-solid interface, there is a unique relationship between the liquid 354 

saturation of the air void with radius RV and the radius of the gas-liquid interface, Rgl (see Figure 355 

6). It is important to note that because Vg will evolve as a function of time during the saturation 356 

process, the radius Rgl will also vary temporally, which governs the Laplace pressure in the air 357 

bubble. Lastly, d, the lineal distance between the centers of the spheres of radius Rv and Rgl(t) is 358 

written in Equation 3. The volume of the liquid can then be directly calculated as the difference 359 

in the volume of the spherical void, given by (4/3)π(Rv)3, and Vg. 360 

 361 



 362 

Figure 6: Spherical void-shell system and representation of the gas liquid interface which, for a 363 

given contact angle, θ, can be parametrized by the radius of the interface, Rgl.  364 

 365 
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 367 

The porous solid shell surrounding the spherical void shown in Figure 6 is considered to be 368 

saturated at all times and the capillary pores are no longer displayed since they are orders of 369 

magnitude smaller than the voids [15]. The stipulation that the capillary pores are always 370 

completely liquid-saturated implies that saturation states below Sm are not considered in the 371 

SVDK model. Because the initial imbibition of liquid through the surrounding capillary pores is 372 

assumed to be complete, it is uncertain if all of the original air in the void remains present or if 373 

more, or less, air is present than was present in the void’s volume before immersion, when air 374 



was still at atmospheric pressure. For example, it is possible that, during the imbibition process, 375 

some of the air initially present in the capillary pores was forced into the spherical voids. 376 

Conversely, it is also possible that, during the imbibition process, part of the air initially in the air 377 

void could have escaped outward. Consequently, in our study, we consider a large domain of 378 

initial gaseous air mass trapped in the air void.  379 

 380 

To define the initial geometry of the system at time t = 0 (corresponding to the moment when all 381 

capillary porosity is saturated), for a given contact angle θ of the liquid on the solid, two 382 

parameters of the void-scale system need to be defined: the mass of the trapped gas in the void, 383 

and the initial pressure at time t = 0 of the liquid, Pl, or of the gas, Pg. We introduce a normalized 384 

trapped mass of gas, mt, where the mass used for normalization is that of air (considered as an 385 

ideal gas) at atmospheric pressure filling the spherical air void. The mass of gas trapped in the 386 

void, mg, can then be calculated by Equation 4. Definitions for other terms presented in Equation 387 

4 can be found in Table 1. To determine the initial geometry for a given normalized mass, 388 

mg(t=0), of trapped air, Equation 5 is numerically solved where Rgl(t=0) is the only unknown, as 389 

θ is prescribed. Additionally, as is done in [10], we assume that at time t = 0 the liquid pressure, 390 

Pl, is at atmospheric pressure, Patm, so the pressure of the trapped gas (whose volume is given by 391 

�����, ����� = 0 , !, �"), is Patm plus the Laplace pressure - which is inversely proportional to 392 

the radius of the gas-liquid interface, ����� = 0 . It is important to note that other assumptions 393 

could have been made: for instance, we could have assumed that the pressure of the trapped gas 394 

at time t = 0 is equal to Patm. This assumption on initial pressure, and its implications on the 395 

dissolution dynamics of the trapped gas, will be discussed within Section 3.4.  396 

 397 



 398 
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 400 

 401 

Figure 7 displays a contour plot of initial normalized masses, mt, of trapped gas, as a function of 402 

the contact angle, θ, and of the radius of curvature, Rgl(t=0), of the gas-liquid interface. Figure 403 

7’s contour plot can be understood as a ‘look-up’ chart for initial system geometries based on the 404 

previously presented assumptions. Next to the contour plot are a series of 6 different initial 405 

geometries, identified by letters A - F. Figure 7 shows that, for a given non-zero contact angle, θ, 406 

if the trapped mass of air is larger than a critical value, there exists no solution to Equations 4 407 

and 5: such states cannot exist physically under the assumption of liquid water at atmospheric 408 

pressure. For instance, for θ > 32° and a normalized trapped mass, mt, of 1, Figure 7 shows that 409 

there are no initial geometries.  410 

 411 

No contour plot can be drawn for trapped masses greater than the value given by Equation 6, 412 

which, in the present case of spherical voids with a radius of 10µm, corresponds to a normalized 413 

trapped mass of 1.13. If a larger mass of air is initially trapped in the air voids, i.e. if, at time t = 414 

0, air in the capillaries pores was pushed into the spherical void during the fast liquid water 415 

imbibition process, the air void would be completely filled with gaseous air and the gas-liquid 416 

interface would be located inside the capillary pores rather than inside the air void. In such case, 417 

the geometry of the gas-liquid interface would no longer be governed by Equations 4 and 5. It is 418 



possible that air would dissolve and diffuse until the pressure of the air (which would still occupy 419 

the full air void) reaches atmospheric pressure, at which point thermodynamic equilibrium would 420 

be reached and the radius of curvature of the gas-liquid interface, still located in the capillary 421 

pores, would be infinite: the air void would remain full of air and would never fill with liquid, 422 

even when left indefinitely under water. 423 

 424 

 425 

 426 

Figure 7: Contour plot of normalized mass of air initially trapped, as a function of contact angle, 427 

θ, and initial radius of the gas-liquid interface, Rgl(t=0) with associated visualization of 428 

corresponding initial system geometries. All calculations are made for Rv = 10µm. 429 

 430 

-.105 = /0.1 + 2��$/0.1  
(6) 

 431 



Figure 7 also shows that there exist combinations of contact angle θ and normalized initial 432 

trapped mass mt for which more than one potential initial geometry exists (for example for mt = 1 433 

and θ = 25 degrees, for which there are two potential values of Rgl(t=0)). In this case, for 434 

subsequent calculations, we considered that the system adopted the configuration with the lower 435 

free energy, where the free energy, Esum, of an initial geometry is calculated based on Equation 7. 436 

Note that, if the other configuration (with high free energy) is adopted as the initial 437 

configuration, the model would predict that air would dissolve until the radius of curvature of the 438 

gas-liquid interface would be infinite. Starting from this other configuration, one would hence 439 

find out that the air void would remain at least partially filled with air and would never become 440 

full saturated with a liquid, even when left indefinitely under water. Equations 8 through 10 441 

display how the gas, Eg, surface, Esurf, and bulk liquid, Evol, free energies are respectively 442 

calculated, where in Equation 9 σ is the gaseous air – liquid interfacial surface tension, 6�0778�9: is 443 

the gaseous air – solid paste interfacial surface tension, and 6�9;<9:78�9:  is the liquid – solid paste 444 

surface tension.  445 

 446 =7<1������ = 0 , !"= 	=�07 >����� = 0 ? + =7<@A������ = 0 , !" + =$8������� = 0 , !"		 (7) 

 447 

=�07 >����� = 0 ? = 	4�3 �$2/0.1BC D1 + 2������ = 0 /0.1E (8) 

 448 



=7<@A������ = 0 , !, �" = =�07�9;<9:+=�0778�9: + =�9;<9:78�9:
= 2������� = 0 % D1 − FGH 3! sinK* 3�$� 44E
+ 2�6�0778�9:�$% L1 − FGH D! sinK* D����� = 0 � EEM
+ 2�6�9;<9:78�9: �$%FGH D! sinK* D����� = 0 � EE	 

(9) 

 449 

=$8������� = 0 , !" = /0.1�����, ����� , !, �" (10) 

 450 

Finally, it is important to note that due to the fact that the capillary pores are orders of magnitude 451 

smaller than the spherical voids, the trapped gaseous air cannot ‘escape’ under the form of tiny 452 

gas bubbles by rising through the saturated capillary porosity, as can be directed evaluated from 453 

a calculation of the breakthrough pressure presented in [37]. The only way for the air to escape 454 

outward and for the air void to become saturated is through dissolution and diffusion, which are 455 

modeled in the next section.  456 

 457 

3.2 Model Formulation and Assumptions 458 

 459 

For the purpose of modeling the saturation of the void-shell system presented in Figure 6, it is of 460 

principal interest to understand the transport of the liquid water within the porous solid shell into 461 

the spherical void and the resulting dissolution dynamics of the trapped gas. As detailed in the 462 

review of the model presented by Epstein and Plesset, the liquid also contains dissolved gas 463 

which fluxes into the fluid to maintain thermodynamic equilibrium at the gas-liquid interface.  464 

By writing the continuity of the diffusive mass fluxes of dissolved air in the liquid at the surface 465 

of the air void (i.e., within the void and within the saturated porous solid shell), we show with 466 

Equation 11 that the gradient of concentration of dissolved gas (this concentration is denoted as 467 



Cg) is orders of magnitude smaller in the liquid in the air void than in the porous shell. Indeed, 468 

the diffusivity of air in liquid water, Dg
l, has a value of 10-8 cm2/s [16] whereas the diffusivity of 469 

dissolved air in saturated hydrated cement paste, Dg
s, is on the order from 10-10 to 10-13 cm2/s 470 

[38]. Based on this result, we assume that the concentration of dissolved gas, Cg, is homogeneous 471 

in the liquid within the air void and must satisfy thermodynamic equilibrium of the gas-liquid 472 

interface. Thanks to this assumption, the concentration of dissolved gas, Cg, is the same 473 

everywhere around the surface of the spherical void (i.e. at r = RV).   474 

 475 NO�NP Q@RSTU NO�NP Q@RSTV
W = ��7��� ≪ 1 (11) 

 476 

As a result, the 3D system of interest can be simplified into a 1D system (see Figure 8), where 477 

the concentration of dissolved gas in the liquid saturated porous shell will be evaluated as a 478 

function of time in the shell (of thickness L), i.e. from r = RV to r = RV + L. As a consequence of 479 

the evolution of the size and mass of the trapped gaseous air within the spherical void during the 480 

saturation process, the concentration Cg of dissolved gas at the surface of the air void (i.e. at 481 

r=RV) will need to be properly integrated into the system of equations to be solved. 482 

 483 

 484 



 485 

Figure 8: Simplification of problem to 1D. 486 

 487 

By conserving all phases present in the porous shell (i.e. liquid water and dissolved gas), the 488 

mass conservation of liquid water, l, and dissolved gaseous air, g, can be written by the 489 

advection-diffusion equation following [39]. Equation 12 shows the advection-diffusion equation 490 

for the liquid, l, where �� is the liquid density, κ is the intrinsic permeability of the porous solid 491 

shell, ϕ0 is the porosity of the shell, η is the dynamic viscosity of the liquid, and Pl is the liquid 492 

pressure. Equation 13 displays the advection-diffusion equation for the dissolved air within the 493 

liquid in the porous solid shell where Cg is the concentration of dissolved gas in the liquid. In 494 

Equations 12 and 13, the material parameters (i.e., κ, ϕ0, η, and Dg
s, whose meaning is given in 495 

Table 3) in the porous shell are taken as homogeneous in space and constant over time. 496 

Additionally, it is assumed that the liquid flow is incompressible and that the density of the 497 

liquid, ��, is not a function of the dissolved gas concentration [40], implying that this density, ��, 498 

is assumed constant. As shown in Equation 14, the incompressible flow condition of the liquid in 499 

the porous solid shell results in P%N/�/NP being constant from r = RV to r = RV + L. The final 500 



governing equation for the mass transport of the dissolved gas in the liquid saturated porous shell 501 

is written as Equation 15, where P%N/�/NP  is homogeneous in space, but varies over time.  502 

 503 N��N� − �� YZ[\ 1P% NNP 3P% N/�NP 4 = 0 (12) 

 504 

NO�N� − YZ[\ 1P% NNP 3P% N/]NP O�4 − ��7Z[
1P% NNP DP% NO�NP E = 0 (13) 

 505 

P% N/�NP = FGCH = �/��P = �$ + ^, � − /��P = �$, � " 11�$ − 1�$ + ^ 
(14) 

 506 

NO�N� − Y�$��$ + ^ Z[\ �/��P = �$ + ^ − /��P = �$, � "P%^ NO�NP − ��7Z[
1P% NNP DP% NO�NP E= 0 

(15) 

 507 

To solve Equation 15, the boundary conditions for the liquid pressure, Pl, and dissolved gas 508 

concentration, Cg, must be known. At r = RV + L, the liquid pressure is taken equal to the 509 

atmospheric pressure, Patm, and the concentration in dissolved gas is considered to be equal to 510 

that in water in equilibrium with air at atmospheric pressure, such that, with Henry’s law, the 511 

concentration of dissolved gas, Cg, at r = RV + L, is given by the product, kHPatm [10,17], where 512 

kH is Henry’s constant for air. To understand how Cg and Pl vary at r = RV, they are written as a 513 

function of the mass of the gas, mg(t), and the mass of the liquid, ml(t), within the spherical void. 514 

To do so, it is assumed that the mass of dissolved gas in the liquid within the spherical void is 515 

negligible based upon [40] - implying that the mass of gas is exclusively given by the trapped 516 

volume defined by Rgl(t), which, for a given contact angle θ, is a function of ml(t). Based on this 517 

assumption, the concentration of the dissolved gas at r = Rv can be expressed for all times by 518 



combining Henry’s Law and the Ideal Gas law as displayed in Equation 16. Additionally, the 519 

liquid pressure at r = RV can also be expressed, as shown in Equation 17, by combining Henry’s 520 

law, the ideal gas law, and Laplace equation.  521 

 522 O��P = �$, � = O��-��� ,-��� " = ��-��� 	
�� 34�3 �$2 − -��� �� 4 
(16) 

 523 

/��P = �$, � = /��-��� ,-��� " = -��� 	
�� 34�3 �$2 − -��� �� 4 − 2�����-���   (17) 

 524 

To have a solvable system of equations, mg(t) and ml(t), the masses of gaseous air and of liquid 525 

water within the spherical void, can be determined by evaluating the respective mass fluxes 526 

through the spherical void surface. Equation 18 calculates the rate of change of the mass of 527 

gaseous air in the spherical void by summing the advective and diffusive mass fluxes through the 528 

spherical void surface. Equation 19 is written in a similar form to calculate the rate of change of 529 

liquid in the spherical void. In Equation 19, the term, Cl, denotes the concentration of liquid in 530 

the pore solution and thus is equal to the difference between the liquid density, ��, and the 531 

dissolved gas concentration, Cg, at r = Rv at any time. When replacing Cl with this difference, 532 

Equation 19 becomes Equation 20.  533 

 534 

N-�N� = 4��$% L��7 NO�NP _@RSTV
+ Y\ O� N/�NP Q@RSTVM (18) 

 535 

N-�N� = 4��$% D��7 NO�NP Q@RSTV + Y\ O� N/�NP Q@RSTVE (19) 

 536 



N-�N� = 4��$% L−��7 NO�NP _@RSTV
+ Y\ ��� − O�" N/�NP Q@RSTVM (20) 

 537 

As a result, Equations 15 to 17, 19, and 20 represent a complete system of equations. This 538 

system can then be solved, given the initial condition mt, and the previously defined boundary 539 

conditions for Cg and Pl at r = RV + L, thus making it possible to understand the dissolution 540 

kinetics of trapped gaseous air due to coupled-transport of fluid and dissolved gas by advection 541 

and diffusion. It is important to note that the gradients of liquid pressure Pl in equations 18 and 542 

20 also appear in Equation 14. It can be seen that if the liquid pressure within the spherical void 543 

is imposed to be equal to the atmospheric pressure at all times at the surface of the air void then a 544 

purely diffusive-driven dissolution model for the trapped gaseous air is obtained.  545 

 546 

3.3 SVDK Model Results and Discussion 547 

 548 

3.3.1 Comparison with Epstein-Plesset Model 549 

 550 

As motivated in the review and detailed in the SVDK model formulation, understanding how the 551 

air voids become liquid filled and how various modes of mass transport (i.e., diffusion and 552 

advection) influence the dissolution dynamics and resulting saturation of the spherical void is of 553 

central importance to fundamentally understanding the long-term saturation of air-entrained 554 

cementitious materials and other materials with similar multi-scale pore structures. Prior to 555 

displaying and discussing these phenomena for cementitious materials and other analogous 556 

porous media, it is first of interest to evaluate the SVDK model in the context of the Epstein-557 

Plesset model. Although the formulations are notably different and departures can be expected 558 



due to the presented assumptions, if the porous solid shell surrounding the spherical air void is 559 

treated as liquid water and the initial amount of trapped air, mt, is equal to 1 and the contact 560 

angle, θ, is zero, then systems at time t = 0 are analogous.  561 

 562 

Figure 9a displays results for the Epstein-Plesset model and the SVDK model when the porous 563 

solid is treated as liquid water and when advection is neglected (i.e., the liquid pressure at r = RV 564 

is considered equal to Patm for all times), for an initial air bubble with a radius of 15µm. Table 2 565 

displays the necessary input values for the respective models. It can clearly be seen that the 566 

initial linear portion of the two models agree well in terms of rate. Once the radius of the trapped 567 

gas reduced below 12µm, the models and experimental behavior of the trapped air becomes 568 

increasingly non-linear. Ultimately, because the SVDK model assumes that the concentration of 569 

the dissolved  gaseous air in the liquid is homogeneous within a sphere of radius of 15µm (which 570 

is a reasonable assumption for tortuous porous media as shown in Equation 11, but not a 571 

reasonable assumption for a bubble surrounded solely by liquid water) and satisfies 572 

thermodynamic equilibrium of the liquid-air interface, the SVDK model logically predicts a 573 

collapse of the air bubble being faster than that given by the Epstein-Plesset model. Otherwise, in 574 

terms of comparison, the SVDK model agrees very well with the Epstein-Plesset model in terms 575 

of order of magnitude but eventually predicts –as could be expected– a smaller (by about 22%) 576 

time to full dissolution. Figure 9b displays the evolution of the air-liquid interface with the 577 

SVDK model, which is qualitatively very comparable to Figure 4b. 578 

 579 

 580 



 581 

Figure 9: a). comparison of SVDK model to Epstein-Plesset solution (i.e., Equation 3-1) and 582 

experimental data of Duncan 2004 [16], b). evolution of air-liquid interface as predicted by the 583 

SVDK model. 584 

 585 

Table 2: Required inputs for SVDK model and Equation 3-1 to results displayed in Figure 13a/b. 586 

Symbol Definition Value 

T Temperature 295.15 K 

Mw Molar mass of air 28.97 g/mol 

G Universal Gas Constant m3*Pa/(mol*K) 

f Ratio of initial concentration to 

saturated concentration 

1 

σ Air-water surface tension with a 

surfactant used in [16] 

40 mN/m [16] 

D1 Diffusivity of air in water 1.8*10-9 m2/s [16] 

ρ Density of air 1.225 kg/m3 

kH Henry’s law of for air in water 1.9*10-7 kg/(m3*Pa) [16] 
1. In this evaluation Dg

s is equivalent to the D defined and given in this table.  587 

 588 

3.3.2 Discussion of the Role of Advection  589 

 590 

For the purposes of the remaining results section, the findings of the SVDK model will be 591 

reported for material values expected for well-hydrated cement pastes and the kinetics of the 592 



trapped air geometry are compared to behavior seen for the proxy systems presented in Section 593 

2.2.2. Additionally, the system is assumed to be at room temperature. Table 3 displays specific 594 

values, or ranges of values, that are taken for the SVDK model inputs that are not held constant 595 

or already given in Table 2. In terms of organization, Figures 10 and 11 display the influence of 596 

advection and the order of magnitude of the intrinsic permeability, κ, while the diffusivity of the 597 

dissolved gas in the liquid saturated porous shell is taken as the mean value of the range 598 

presented Table 3 (i.e., a value of 5x10-12 m2/s). The size of the spherical air void is also taken as 599 

RV = 10µm, representing the absolute lower bound for entrained air voids in cementitious 600 

materials [15] and L is set to 1mm.  601 

 602 

Table 3: SVDK model inputs for cementitious material systems.   603 

Symbol Definition Value 

Dg
s Diffusivity of dissolved air in 

saturated hydrated cement paste 

10-10 – 10-13 m2/s [41] 

κ Intrinsic permeability of 

hydrated cement paste 

10-18 to 10-22 m2 [42] 

η Dynamic viscosity of water 8.9x10-4 Pa*s 

ϕ0 Porosity of cement paste 0.20 – 0.30 (-) [42] 

σ Air-water surface tension  70 mN/m [16] 

ρl Density of water 997 kg/m3 

 604 

More specifically, in Figure 10, the influence of the liquid pressure, Pl, boundary condition is 605 

evaluated and κ is set to 10-19 m2. As detailed in the formulation, the influence of advection on 606 

the transport of the dissolved air can be not solved for when Pl is required to be equivalent to Patm 607 

at r = RV and within the liquid in the void. Figure 10a displays the change in radius of the 608 

trapped air when mt = 1 and θ = 0. The findings in Figure 10a display that when advection is 609 

considered the total time to dissolution increases by approximately 15%. Upon reviewing Figure 610 



10b, which displays the evolution in the liquid pressure at r = RV, it can be seen that when 611 

advection is considered, the liquid pressure at the surface of the air void drops below the 612 

atmospheric pressure. The reduction in the liquid pressure at r = RV results in a pressure gradient 613 

that pulls liquid into the air void and slows the diffusion of the dissolved gas through the porous 614 

solid shell (because it slows the increase of pressure in the gas bubble), causing a longer time to 615 

full dissolution of the trapped air.  616 

 617 

 618 

 619 

Figure 10: Influence of advection on time to complete dissolution displayed by a). radius of air-620 

liquid interface. b). Evolution of liquid pressure at r = RV for when advection is neglected (i.e., 621 

not solved for) and considered, respectively. Model inputs: mt = 1, θ = 0, Dg
s = 5x10-12 m2/s, κ = 622 

10-20 m2. 623 

 624 

Figure 11a displays the influence of the value of intrinsic permeability, κ, on the dissolution 625 

kinetics of the same trapped air. Interestingly, as κ approaches the maximum usual value for 626 

cementitious materials as shown in Table 3, it begins to approximate the solution in which 627 

advection is neglected (i.e., not solved for) whereas when κ approaches the minimum usual value 628 



for cementitious materials the time to dissolution significantly increases. This phenomenon can 629 

be understood by considering the implications of the results presented in Figure 11b. When the 630 

value of κ is large, the pressure gradient quickly reduces because the liquid can quickly flow into 631 

the spherical void. When κ is high, a pressure gradient, as seen for smaller values of κ, between r 632 

= RV and r = RV+L cannot be sustained and is mostly diffusion-driven. This finding is in line 633 

with the drying asymptotics of quite permeable porous media as developed in [43] (i.e., the 634 

initial gas pressure gradient cannot be sustained due to the rapid rate of advective transport 635 

through the material as compared to the slow transport of gas due to diffusion). Figure 12 636 

displays the influence of the order of magnitude of the diffusivity of dissolved air in liquid-637 

saturated cement paste on the dissolution kinetics when advection is considered. 638 

 639 

 640 

Figure 11: Influence of intrinsic permeability on time to complete dissolution of the trapped air. 641 

Model inputs: mt = 1, θ = 0°, Dg
s = 5x10-12 m2.s-1, L = 1mm. 642 

 643 



 644 

Figure 12: Influence of diffusivity of dissolved air in saturated hydrated cement paste on trapped 645 

air dissolution kinetics. Model inputs: mt = 1, θ = 0°. 646 

 647 

3.3.3 Results on Time to Full Dissolution and Dissolution Kinetics 648 

 649 

From the previously displayed outcomes and results, the influence in initially trapped mass of 650 

air, mt, and the contact angle, θ, can be evaluated. Figure 13a displays a contour plot for time to 651 

full dissolution, when advection is considered, as a function of mt and θ for a spherical void of 652 

radius 10µm and where the diffusivity Dg
s of dissolved air in the shell is equal to 5x10-12 m2/s 653 

and the permeability κ is equal to 10-20 m2. It can be clearly seen that the amount of trapped air 654 

significantly influences the total time to full dissolution whereas the effect of the contact angle to 655 

the time to full dissolution becomes notably pronounced when above a value of 20 degrees. 656 

Corresponding with Section 3.1, on Figure 13a we delimitate regions that are not physically 657 

possible under the assumption of a liquid pressure equal to the atmospheric pressure in the initial 658 



state (in blue) and regions for which multiple initial geometries are possible (in pink). In this 659 

latter case, we chose the initial geometry with the lowest free energy (see Eq. 7) to calculate the 660 

time to full dissolution. Figures 13b to 13d evaluate other material and system inputs: values of 661 

intrinsic permeability, the diffusivity of dissolved air in saturated cement paste, and the air void 662 

size. Figure 14 displays examples of evolutions for various contact angles and Figure 15 displays 663 

the influence of the thickness, L, of surrounding cement paste shell and the spherical air void 664 

radius, RV, on time to full dissolution, tf, of the trapped gaseous air.  665 

 666 

 667 

Figure 13: Time to full dissolution, tf, contours of a large domain of normalized trapped mass, 668 

mt, and a). contact angles, θ, where RV = 10µm, Dg
s = 5x10-12 m2/s, κ = 10-20 m2, and L = 1mm, 669 

b). intrinsic permeability,  κ, where θ = 0°, RV = 10µm, Dg
s = 5x10-12 m2/s, and L = 1mm,  c). 670 



diffusivity, Dg
s, where θ = 0°, RV = 10µm, κ = 10-20 m2, and L = 1mm,  and d). air void radius, 671 

RV, where θ = 0°, Dg
s = 5x10-12 m2/s, κ = 10-20 m2, L = 1mm. 672 

 673 

  674 

Figure 14: Examples of gas-liquid surface evolution for normalized trapped mass, mt, of 0.5 and 675 

various contact angles: a). 0°, b). 25°, c). 50°, d). 75°. Inputs: RV = 10µm, Dg
s = 5x10-12 m2/s, 676 

and κ = 10-20 m2. 677 

 678 



 679 

Figure 15: Influence of spherical air void radius, RV, and porous solid shell thickness, L, on time 680 

to full dissolution for mt = 1, θ = 0°, Dg
s = 5x10-12 m2/s, and κ = 10-20 m2. 681 

 682 

3.3.4 Comparison with Experimental Data 683 

 684 

 As discussed and displayed in Section 2.2.2 and Figure 5, fitting power law relationships 685 

to the temporal size reduction of the trapped air can provide significant insight into the governing 686 

physics of the model. For the following findings the fit relation is given by Rgl(t) = A(B-t)C, 687 

where A is a constant, B represents the time to full dissolution, and C is the exponent of the 688 

power-law relation [33,34]. As displayed in Figure 16a, for systems with a zero contact angle 689 

(i.e. θ=0°), the determined power (i.e., value of C) is ~0.25, independent of whether advection is 690 

considered or neglected, and is found to be mostly independent of the initial trapped mass mt. As 691 

a means of comparison, the Epstein-Plesset and experimental results for similar systems give a 692 



power-law fit of ~0.33. The lower value found by the SVDK model is expected and its 693 

explanation coincides with that given for the difference in solutions to the SVDK and Epstein-694 

Plesset model shown in Figure 9 (i.e., the concentration of dissolved gas in the liquid within the 695 

air void is homogeneous and required to satisfy thermodynamic equilibrium of the air-liquid 696 

interface which increases the rate of dissolution as compared to [17] leading to a lower value of 697 

exponent in a power-law relation). Figure 16b displays a contour plot of fitted exponents of the 698 

power-law relation for various values of mt and θ. As expected, the power-law strongly depends 699 

on the value of  θ, which can be understood by the influence of Laplace pressure applied to the 700 

system (i.e., for a larger value of θ larger values of Rgl are obtained, reducing the Laplace-driven 701 

dissolution effects of the trapped air). 702 

 703 

 704 

Figure 16: a). Power law evaluation for a system with θ = 0°, where RV = 10µm and mt = 1,for 705 

when convection is neglected (i.e., not solved for) and considered, b). contour plot of power-law 706 

exponents (i.e. values of C) as a function of contact angle for when advection is considered. 707 

 708 



Having evaluated the general outcomes of the model and its comparison to proxy systems, it is 709 

also of interest to understand how it relates to the experimental data that is available relating to 710 

the long-term saturation of air void in cementitious materials. As initially presented in Section 711 

2.2.1, Moradllo and Ley conducted a series of long-term ponding experiments [14] on cement 712 

pastes with a similar pore structure used to formulate the model presented herein. A primary 713 

conclusion was that after 60 days of ponding and within the first 6mm of the sample (i.e., depth 714 

from the ponded surface) air voids with radii less than 100µm were found to be saturated 715 

whereas larger air voids remained air-filled. Figure 17 displays that for acceptable values of Dg
s 716 

and κ, it can be directly shown that air voids smaller than 100µm in radius will be completely 717 

saturated, while voids larger than 100µm will remain partially air-filled. Similar to the 718 

comparison made to the Epstein-Plesset model presented in Figure 9, this finding does not 719 

directly validate the model but improves the likelihood that it is capturing the governing physics 720 

of the phenomena, seeing as how it agrees very well within that same order-of-magnitude of each 721 

comparison. 722 

 723 

Also, it is important to note that if air-voids are well-spaced and do not influence the dissolution 724 

kinetics of one-another, Figure 17 suggests that the air voids roughly fill in order of increasing 725 

size, as postulated in [10]. This calculation neglected interactions between air voids. In real 726 

systems, interactions may happen: small air voids, subjected to larger Laplace pressures, should 727 

empty into larger air voids, akin to Oswald ripening. Therefore, in real materials, interactions 728 

may make the air voids fill in order of increasing size in a still more pronounced manner. 729 

 730 



 731 

Figure 17: Comparison plot of SVDK model results with experimental conclusion from [14]. 732 

Model Inputs: mt =1, θ = 0°, Dg
s = 1.5x10-12 m2/s, and κ = 10-20 m2. 733 

 734 

3.3.5 Discussion on Impact of Initial Pressure Assumptions 735 

 736 

As mentioned in the formulation section, the previously presented results have assumed that at 737 

time t = 0 the liquid pressure Pl at r = RV, and within the spherical void, is equal to Patm and the 738 

gas pressure is then given by the Laplace Equation. It could also be reasonably assumed that the 739 

gas pressure is equal to the atmospheric pressure Patm. Figure 18a displays the outcomes of 740 

setting the gas pressure initially equal to Patm on the evolution of the radius of the air-liquid 741 

interface and Figure 18b displays the evolution in liquid pressure at r = RV. It is clear that the 742 

assumption does not significantly influence the outcome due to the fact that the liquid pressure 743 

gradient in the system quickly equilibrates, resulting in very similar dissolution kinetics of the 744 

trapped gaseous air.  745 

 746 



 747 

Figure 18: Assessment of initial liquid and gas pressures at r = RV on dissolution kinetics of 748 

trapped air. Model inputs: mt =1, θ = 0°, Dg
l = 5x10-12 m2/s, and κ = 10-20 m2, L = 1mm. 749 

 750 

With the SVDK model, we looked at the time to full dissolution of pores that end up being fully 751 

saturated with liquid. However, based on our theoretical considerations, it is possible that, 752 

depending on the configuration of the gas-liquid interfaces right after capillary imbibition, some 753 

air voids never fill fully with liquid, even if left indefinitely under water. 754 

 755 

4.0 SVDK Model Conclusions 756 

 757 

As displayed in the previous section, the formulated SVDK model advances the current state-of-758 

the-art in the field, reviewed in Section 2, by clearly detailing how single air voids become 759 

liquid-saturated due to dissolution, diffusion, and advection of the trapped gaseous air. The 760 

SVDK model results were compared to previous efforts [16,17,35] for simple systems (i.e. as 761 

spherical gas bubble surrounded by an infinite amount of liquid) as shown in Figure 9 and found 762 

to agree well in terms of solution form and the order of magnitude of time to full dissolution. As 763 



noted, the departures in the results can be readily explained due to assumptions present in the 764 

model that are applicable to porous media with highly tortuous capillary porosity. Additionally, 765 

the SVDK model results were compared to experimental findings presented in [14] and found to 766 

agree very well. Outcomes of this comparison were also used to evaluate a postulation made by 767 

G. Fagerlund in [10] that the voids in cementitious material fill in order of increasing size – 768 

likely this is the case when considering a polydisperse air void system  (i.e., small air voids 769 

preferentially diffuse into larger voids).  770 

 771 

Along with the comparisons made to previous efforts, it was displayed how the SVDK model 772 

can evaluate the dissolution kinetics of trapped gases over a very large domain of trapped masses 773 

of air and contact angle in addition to the influence of when advection is considered and 774 

neglected. Notably, it was found that as the intrinsic permeability of the porous paste shell 775 

increased the SVDK model begins to approximate the solution when advection is not solved for 776 

(i.e., when the dissolution of the dissolved air in the porous shell is exclusively limited by 777 

diffusion). This finding, alongside the influence of the contact angle and value of the diffusivity 778 

on time to full dissolution, is significant as it provides novel insight into how such a system 779 

might behave and could be manipulated for design purposes. For example, using the outcomes of 780 

this model, the diffusivity and intrinsic permeability can be designed into the material through 781 

selection of appropriate values of water/cement (w/c) ratio and a minimal curing time, in the case 782 

of cementitious materials, and reliably provide a desired time to critical saturation. Also, by 783 

impacting the time to full dissolution, the contact angle between the pore solution and the solid 784 

surfaces could influence the freeze-thaw resistance, which might explain why hydrophobic 785 

agents can impact freeze-thaw durability of concrete [44]. 786 



 787 

Although the SVDK model has resulted in numerous insights into the slow saturation of air void 788 

in cementitious materials, its direct validation is still necessary. To do so, small specimens of air-789 

entrained cement pastes could be prepared and evaluated using high resolution nanoCT as it 790 

saturates over time. The efforts and results found in a similar experiment [14] have provided 791 

insight into the global saturation of a sample, but it is necessary to study only a selection of air 792 

voids at finer time steps and resolution below 8.8µm/voxel in effort to see the evolution of the 793 

air-liquid interface. Additionally, it could be envisioned that a microfluidic device could be 794 

constructed as in [13] to provide similar insight and is left as future work.  795 

 796 

The SVDK model answers how air voids saturate over time by the dissolution- and transport-797 

driven collapse of trapped gaseous air. An extension could make it possible to understand and 798 

model 3D systems in which the air void system is polydisperse – allowing for the prediction of 799 

the long-term saturation rate, S2, given a known air void size distribution and various material 800 

properties without assumptions on how air voids fill in relation to one another [10,24,25]. 801 

Additionally, it is important to note that the following work has been found to have a broad range 802 

of application and contribution. The dissolution of trapped gases has major relevance and 803 

significance in fields ranging from carbon capture [45] to drug delivery [46] and bioremediation 804 

[47], but is directed here to progress the field’s understanding of how the long-term saturation 805 

rate of cementitious materials is linked to air void-scale phenomena. 806 

 807 
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