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ABSTRACT
In nuclear engineering, the quantification of the input uncertainties and their propa-
gation through high-fidelity computer models in order to estimate relevant statistical
quantities of interest constitute the core phases of the so-called “best-estimate plus
uncertainty” (BEPU) methodology. However, several methodological and numeri-
cal issues can make the BEPU methodology difficult to execute in practice, and in
particular, the large number (e.g., up to one hundred in our case) of uncertain input
variables. Recently, an advanced BEPU methodology, called ICSCREAM, has been
proposed for the identification of penalizing configurations in high-dimensional
framework. The present work aims to detail the first step of the ISCREAM method
which consists in identifying and ranking the primary influential inputs. For this
purpose, global and target sensitivity analyses based on dependence measures are
performed. Their principles and estimation techniques are explained, as well as
their pragmatic implementation. Their use is then illustrated on an industrial use
case simulating an intermediate-break loss-of-coolant accident via the CATHARE2
simulator.

1. INTRODUCTION

Uncertainty quantification techniques [6] are gaining an increasing attention in the field of nuclear
engineering, not only to assess the reliability and safety of nuclear power plants (e.g., for pressur-
ized water reactors), but also to provide robust methodological tools to better identify the safety
margins. The “best-estimate plus uncertainty” (BEPU) methodologies [11] are now used to com-
plete and enhance the deterministic analyses already performed. As an example, one can mention
the various safety analyses performed for accident scenarios such as the intermediate-break loss-
of-coolant accident (IBLOCA), requiring best-estimate thermal-hydraulic numerical experiments
obtained with validated simulation codes. In France, for IBLOCA studies, the CATHARE2 sim-
ulator (developed by CEA, EDF, Framatome and IRSN) is used to simulate the transients and a
BEPU methodology, named “CathSBI” (Cathare Statistical Intermediate Break) is then applied to
assess the safety margins [2].

Several practical challenges of such a BEPU methodology may arise: firstly, the number of input
parameters that have to be treated can be large (e.g., around a hundred parameters); secondly,
these parameters can be of different nature (e.g., initial/boundary conditions, model parameters,
scenario parameters) and might require different statistical treatment regarding their nature and
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regulatory requirements; thirdly, the uncertainty propagation through the best-estimate computer
model can be difficult as the code is often complex, strongly nonlinear and costly-to-evaluate; and
fourthly, the quantity of interest (QoI) is often a statistical risk measure (e.g., a high-order quantile)
estimated from a limited number of output realizations. In such a context, it is widely recognized
that global sensitivity analysis (GSA) [6] can play a key role in the BEPU methodology to identify
the most influential inputs which constitute the effective input dimension as they strongly influence
the variability of the model output (see for example [9]). Furthermore, due to the nature of the QoI
(i.e., a high-order quantile far in the right tail of the output distribution), dedicated tools have to
be used to perform target sensitivity analysis (TSA). Finally, the use of metamodeling techniques
is another powerful tool to reduce the computational cost and to allow a better management of the
numerical experiments in the context of complex and costly-to-evaluate computer models [6].

From this perspective, a new methodology, called “ICSCREAM” (pronounced “ice-cream”, for
“Identification of penalizing Configurations using SCREening And Metamodel”) is proposed in
[10] to handle several of these issues and to enhance the first part of the CathSBI methodology [2].
The ICSCREAM method relies mainly on two parts: a first one whose aim is to use both GSA and
TSA to achieve screening and ranking of the most influential inputs; and a second one whose aim
is to build, based on the first part, a Gaussian process metamodel so as to facilitate the uncertainty
propagation for finding the penalizing configurations. The present paper aims at detailing the first
part only. For more information about the whole methodology, the interested reader is invited to
refer to [10].

Screening aims at qualitatively separating the inputs into two groups: the significantly influential
ones vs. the noninfluential ones. The first group, called here “primary influential inputs” (PII),
constitute the effective input dimension as they influence the variability of the model output. As
for ranking, it aims at providing a quantitative measure of this influence, in order to sort the PII
by order of influence. Among several GSA methods available in literature, a recent emphasis has
been put over the use of the Hilbert-Schmidt Independence Criterion (HSIC) which led to define
a sensitivity index which measures the statistical dependence between the model output and each
input under consideration [3]. The aim of the present paper is to provide more insights about the
theoretical tools involved in such an analysis, to describe their practical use and illustrate their
application on an industrial use case.

Thus, the main objectives of this paper can be listed as follows:

(O1) Identify the PII w.r.t. the model output and the QoI using screening;

(O2) Rank the PII according to their relative importance on the model output and the QoI.

However, these two objectives have to be achieved under the following core constraint:

(C1) Only a single (finite) Monte Carlo learning sample containing a set of input-output realiza-
tions of the complex computer model is available.

This paper is organized as follows: Section 2 aims at presenting the core concepts and algorithms
used to perform GSA and TSA using HSIC. Section 3 details the proposed methodology and
specifies the novelty of the approach. Section 4 aims at presenting a detailed application to an
industrial IBLOCA case. Finally, Section 5 draws a few conclusions and perspectives.
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2. SENSITIVITY ANALYSIS VIA HILBERT-SCHMIDT INDEPENDENCE CRITERION

2.1 Notation

Mathematically, a standard BEPU study can be modelled by assuming a deterministic input-output
best-estimate computer model M (·) given by:

M :
∣∣∣∣ X −→ Y

X 7−→ Y = M (X).
(1)

It is assumed that the methodology proposed in this paper is non-intrusive w.r.t. the model. The
uncertain inputs are supposed to be independent and are treated in a probabilistic framework by
assuming, first, a probability space (Ω,A ,P). The inputs are gathered in a d-dimensional random
vector X := (X1,X2, . . . ,Xd)

> distributed according to a continuous joint probability distribution
PX := ∏

d
i=1 PXi over a measurable space X :=×d

i=1 Xi with X ⊆ Rd . For each realization of
the input vector X(ω), denoted by x = (x1,x2, . . . ,xd)

> ∈ Rd , an observed scalar output value
y = M (x) is obtained. Thus, by propagating the uncertainties through M (·), one can assume a
probabilistic structure for the output which is a random variable characterized by a distribution PY
over a measurable space Y ⊆ R.

Finally, to stick with constraint (C1), one supposes that only a limited number of simulations
are available for the study. Moreover, these samples are obtained via crude Monte Carlo (CMC)
sampling. Thus, the learning sample used in the following is a n-sample of the couple (X,Y ) given
by: (

X( j),Y ( j)
)
(1≤ j≤n)

=
(

X ( j)
1 ,X ( j)

2 , . . . ,X ( j)
d ,Y ( j)

)
(1≤ j≤n)

(2)

with PX( j) = PX, meaning that the realizations are independent and identically distributed (i.i.d.)

and Y ( j) = M
(

X ( j)
1 ,X ( j)

2 , . . . ,X ( j)
d

)
, ∀ j ∈ {1, . . . ,n}.

2.2 Global sensitivity analysis using HSIC-based indices

GSA aims at providing several tools to analyze the behavior of computer models and to track the
effects of the inputs on the output variability [6]. Among several indices, one can mention the
well-known Sobol indices based on the output variance decomposition. However, Sobol indices
suffer from a few drawbacks such as a high computational cost and a lack of relevance for track-
ing other types of influence than those based on the output variance. Thereafter, various authors
investigated the use of “distributional” or “moment-independent” approaches to derive sensitivity
indices. However, these indices still suffer from a high computational cost which can be cumber-
some for complex computer codes.

Recently, a few authors proposed to adopt another point of view: quantifying the impact of each
input Xi on the output Y by means of a well-chosen dependence measure. This idea, originally
proposed in the machine learning community by [8], has been brought to the GSA community
with the work from [3]. More specifically, [3] proposed to use the Hilbert-Schmidt Independence
Criterion (HSIC) to measure and test the dependence between the output Y and an input Xi. To
do so, one will use a generalization of the notion of covariance between two random variables, by
considering the covariance between nonlinear transformations of Xi and Y .
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Formally, one needs to define a few core mathematical ingredients to properly present the HSIC.
Suppose Xi,∀i ∈ {1, . . . ,d} and Y are measurable spaces. Let Fi : Xi → R and G : Y → R
be two universal reproducing kernel Hilbert spaces (RKHS) [13]. These functional spaces are
equipped with their characteristic kernels: respectively, κi(·, ·) and κ(·, ·). These characteristic
kernels (e.g., Gaussian, exponential) present fundamental properties which enable a unique repre-
sentation in the RKHS embedding [5]. Together with Hilbert spaces come the scalar products given
by 〈·, ·〉Fi and 〈·, ·〉G . Under these hypotheses, one can consider the generalized cross-covariance
operator C(Xi,Y )[·] given, for any functions f ∈Fi and g ∈ G , by:

〈 f ,C(Xi,Y )[g]〉Fi = Cov( f (Xi),g(Y )) (3)

which generalizes the notion of covariance between Xi and Y . Therefore, a larger panel of input-
output dependency can be captured by this operator.

As a consequence, the HSIC measure can be theoretically defined as follows:

HSIC(Xi,Y )Fi,G = ||C(Xi,Y )||
2
HS = ∑

l,m
〈ul,C(Xi,Y )[vm]〉Fi (4)

where (ul)l≥0 and (vm)m≥0 are orthonormal bases of, respectively, Fi and G . However, due to
the relevant property of universality of the two underlying RKHSs, this approach exhibits a math-
ematical trick, known as the “kernel trick” [3], which implies that computing a distance between
the two probability distributions only requires to know the kernels κi(·, ·) and κ(·, ·). Thus, one
can show that the HSIC measure can be written, in an equivalent manner, using expected values of
kernels:

HSIC(Xi,Y )Fi,G = E
[
κi(Xi,X

′
i )κ(Y,Y

′
)
]
+E

[
κi(Xi,X

′
i )
]

E
[
κ(Y,Y

′
)
]

(5)

−2E
[
E[κi(Xi,X

′
i )|Xi] E[κ(Y,Y

′
)|Y ]
]

where (X
′
i ,Y

′
) is an i.i.d. copy of (Xi,Y ). This last equation highlights interesting estimation prop-

erties since it only involves expected values which are simpler to estimate than variances of con-
ditional expected values (such as in the Sobol indices). A fundamental property directly arises if
and only if one uses characteristic kernels:

HSIC(Xi,Y )Fi,G = 0⇔ Xi ⊥ Y (6)

which means that Xi and Y are independent. This property makes this measure naturally relevant
for GSA purposes as the independence corresponds to the nullity of the measure, which indicates
that Xi does not influence Y at all. Finally, another fundamental property which makes it relevant
for high-dimensional GSA is that it does not depend on the input dimension d.

A common estimator proposed by [8] (and based on V-statistics, i.e., meaning that it is biased but
asymptotically unbiased) is given by:

ĤSIC(Xi,Y ) =
1
n2 Tr(LiHLH) (7)
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where Li =
(

κi

(
X ( j1)

i ,X ( j2)
i

))
1≤ j1, j2≤n

and L =
(

κ

(
Y ( j1),Y ( j2)

))
1≤ j1, j2≤n

are two Gram matri-

ces, and H =
(
δ j1, j2− 1

n

)
1≤ j1, j2≤n a shift matrix, with δ j1, j2 the Kronecker operator (which gives 1

if j1 = j2, 0 otherwise).

A second estimator, cheaper than the first one, adapted from [15] by [4], is given by:

ĤSIC(Xi,Y ) =
1
n2

n

∑
j1, j2

A j1 j2B j1 j2 (8)

where A j1 j2 = (Li) j1 j2 − (Li) j1·− (Li)· j2 + (L̄i)·· and B j1 j2 = L j1 j2 − L j1·− L· j2 + (L̄)·· are linear
combinations of Gram matrices such that, ∀M ∈Mn(R), one gets M j1· = n−1

∑
n
j2=1 M j1 j2 , M· j2 =

n−1
∑

n
j1=1 M j1 j2 and M̄·· = n−2

∑
n
j1=1 ∑

n
j2=1 M j1 j2 . In the following, this estimator will be the one

used in practice for the numerical experiments.

Finally, [3] proposed to build a plug-in estimator to produce a normalized sensitivity index allowing
a better interpretation. This index is given by:

R̂2
HSIC,i =

ĤSIC(Xi,Y )√
ĤSIC(Xi,Xi) ĤSIC(Y,Y )

. (9)

As a last remark, one would like to insist on the following technical detail. As stated before, HSIC-
based indices rely on an a priori choice of characteristic kernels for the inputs and the output.
The most famous characteristic kernel for a real variable is the Gaussian one which is given by
(assuming x and x

′
two i.i.d. samples):

κ(x,x
′
) = exp

(
−θ

∥∥∥x− x
′
∥∥∥2

2

)
(10)

with θ = 1/σ2 (σ2 being the empirical variance of the sample x). If the choice of the type of the
kernel does not fundamentally influence the results (as soon as they are characteristic kernels), the

estimation of θ might influence the values of the estimated HSIC measures and the R̂2
HSIC estimates

(often used for ranking).

As a conclusion, the HSIC seems to be a relevant tool to achieve GSA, and especially for screening
purposes. In the following, one will see how one can provide a robust procedure to perform
screening with HSIC measures.

2.3 Statistical tests for screening with HSIC-based indices

Using HSIC measures for screening purposes has been proposed by [4]. Screening consists in
separating, in a qualitative manner, the inputs between two distinct groups: the noninfluential
ones vs. the others (which are influential with various intensities) [6]. HSIC measures seem well
dedicated for this task as their fundamental property is the equivalence between independence
and the nullity of the measure. Thus, zero-valued HSIC measures indicate independence and
correspond to statistically noninfluential inputs.

However, from the estimation point of view, one should keep in mind that, in practice, HSIC
measures are computed from a finite set of realizations. The estimates might fluctuate, and get
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values which are close to zero, but not properly equal to zero. As shown by [4], this framework can
benefit from the theory of statistical hypothesis testing in order to strengthen the decision process.
Indeed, starting back from the fundamental property of the HSIC, one can build the following
statistical test T :

T : Test ”(H0,i) : HSIC(Xi,Y ) = 0” vs. ”(H1,i) : HSIC(Xi,Y )> 0”. (11)

As a natural test statistic, one can choose ŜT := n× ĤSIC(Xi,Y ). Finally, the decision process is
driven by the p-value, which is the probability, under (H0,i), that ŜT becomes greater or equal to
the observed ŜT ,obs statistic on the learning sample. Formally, one reads:

pval = P
(

ŜT ≥ ŜT ,obs |H0,i

)
. (12)

To discriminate, one uses the significance level α (also known as “Type I error”, corresponding
to an error of rejecting the null hypothesis (H0,i) when it is true). This significance level is often
fixed at α = 0.05 (or α = 0.10). Finally, the decision rule is given by: if pval < α , then (H0,i)
(i.e., the independence) is rejected, which means that the input is influential.

HSIC-based independence statistical tests can be split into two different cases depending on the
size of the learning sample (i.e., depending on whether the asymptotic regime is reached or not).
Under asymptotic convergence (i.e., when n is sufficiently large), it can be proved that the asymp-
totic law of the n× ĤSIC(Xi,Y ) estimator can be reasonably approached by a Gamma distribution
parametrized by shape and scale parameters (γ,β ). The reader can refer to [7] and [4] for more
details on (γ,β ) and their estimation. This asymptotic property can be used to build a class of dedi-
cated tests, called asymptotic tests. For an asymptotic test Tasymp, the p-value can be approximated
as follows:

pval ≈ 1−FGa

(
n× ĤSIC(Xi,Y )obs

)
(13)

where FGa(·) is the CDF of the Gamma distribution and ĤSIC(Xi,Y )obs is the observed value of
the random variable ĤSIC(Xi,Y ).

In the non-asymptotic framework (i.e., when n is rather small), the Gamma approximation cannot
be used anymore without introducing a strong bias. Therefore, permutation-based tests can be
used instead [4]. A permutation-based test Tperturb can be summarized by the following procedure:

• Let Zn :=
(

X ( j),Y ( j)
)
(1≤ j≤n)

be the initial learning sample, and ĤSIC(Zn) the corresponding

HSIC estimator.

• Let {τ1, . . . ,τB} a set of B independent random permutations of {1, . . . ,n}, uniformly dis-
tributed, and independent of Zn.

• For each τb (b = 1, . . . ,B), consider the permuted sample Zτb
n =

(
X ( j),Y (τb( j))

)
(1≤ j≤n)

and

estimate the following statistic Ĥ∗b := ĤSIC(Zτb
n ).

• Under (H0,i), Zτb
n (∀b ∈ {1, . . . ,B}) and Zn are identically distributed. Thus, Ĥ∗b (∀b ∈

{1, . . . ,B}) and ĤSIC(X ,Y ) are also identically distributed. Consequently, one can consider
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the order statistic associated to the sample {Ĥ∗1, Ĥ∗2, . . . , Ĥ∗B} :

Ĥ∗(1) ≤ Ĥ∗(2) ≤ ·· · ≤ Ĥ∗(B) (14)

where brackets for the exponents denotes the order.

• Therefore, the p-value can be approximated as follows:

pval ≈
1
B

B

∑
b=1

1Ĥ∗b>ĤSIC(X ,Y ). (15)

As a conclusion, one can keep in mind that two distinct statistical tests (asymptotic vs. permutation-
based) are available to perform a robust screening with HSIC measures. However, some variables
which could have a very localized impact over some specific region of the output space, might not
be detected by the test (corresponding to a “Type II error”). Therefore, in the context of safety
analysis, complementary tools have to be considered to ensure the robustness of the screening
phase.

2.4 Target sensitivity analysis using HSIC-based indices

If the word “target” in TSA has been first introduced by [12], one can consider that a large panel of
TSA methods have already been proposed before, especially in the structural reliability community
(see, e.g., [1] for a recent review about these methods). The basic idea of TSA is to measure
the influence of the inputs on a critical domain of the model output (typically, in the tail of the
distribution). In particular, one could be interested in analyzing the most influential inputs that
lead to the occurrence of the critical phenomenon [12]. Thus, TSA focuses on specific QoIs such
as rare event probabilities, quantiles or any other risk measures.

Formally, a critical domain of interest can be modeled as a subset C ⊂ Y such that P(Y ∈ C ) is
small. Let Y → R(Y ) be a generic risk measure. Then, for a risk analysis, one can consider that
the critical event corresponds to getting an output value beyond, e.g., the 90%-order quantile of
Y denoted q0.9(Y ). Finally, one has C = {y ∈ Y | y ≥R(y)} with R(Y ) = q0.9(Y ). To perform
TSA, one needs to get a measure of occurrence of such a critical event. A first possible measure is
the indicator function 1C : Y →{0,1},y 7→ 1 if y ∈ C , 0 otherwise.

In the specific context of HSIC measures, the idea is to apply a “thresholding transformation” to
the output. Several transformations can be considered, from indicator-thresholding in [3, 14] to
smoother thresholding transformations. The choice of the transformation might impact the choice
of the kernel (e.g., for indicator-thresholding, one should use the linear kernel since the output
becomes a binary variable [14]). However, when focusing on a high-order quantile, only a few
samples of Y might be relevant regarding a binary thresholding, leading to a significant loss of
information, especially for samples which are close to the threshold. In the context of risk analysis,
one would prefer to improve conservatism of the statistical procedures. Thus, in the following, one
uses a weighted thresholding transformation proposed by [12]. The weight function is defined as
follows:

wC :

∣∣∣∣∣ Y −→ [0,1]

y 7−→ wC (y) = exp
(
−max(q0.9(Y )−y, 0)

s σY

) (16)
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with s = 1
5 a smoothness parameter which can be tuned [12] and σY the empirical estimation of

the standard deviation of Y . The underlying idea of such a function is to provide a measure that
preserves the contribution of the samples which are close to the critical domain and makes the
other vanish smoothly. Finally, the target HSIC measure (named “T-HSIC” in the following) is
defined such that:

T-HSICi := HSIC(Xi,wC (Y )). (17)

In the following, T-HSIC measures will be estimated with the same type of estimator as the HSIC.

3. COUPLING GSA AND TSA FOR BOTH SCREENING AND RANKING USING IN-
DEPENDENCE STATISTICAL TESTS

This section aims at highlighting the core contribution of this work: extending the statistical hy-
pothesis testing framework to T-HSIC and, jointly, extending the screening phase with a ranking
one.

One can first recall the two objectives of this paper: (O1) – Identify the PII w.r.t. the model output
and the QoI using screening and (O2) – Rank the PII according to their relative importance on the
model output and the QoI. However, one has to deal with the constraint which is (C1) – Require a
single CMC learning sample of input-output realizations.

As a preliminary remark, one should keep in mind that both screening and ranking phases here
do not imply any final dimension reduction. Indeed, this paper deals with the first step of the
ICSCREAM methodology [10] which only aims at identifying and ranking the PII. These inputs
will be the ones that will drive the metamodeling building phase. As for the other inputs (the
noninfluential ones), they will be used as a residual in the metamodeling but they will not be fixed
at deterministic values such as it could be in more standard GSA studies. Consequently, both
screening and ranking are not crucial phases that could lead to dramatic consequences in terms of
model bias.

Regarding (O1), identifying the PII w.r.t. to the model output can be achieved using HSIC-based
screening coupled with statistical hypothesis testing. The extension to the specific QoI such as a
high-order quantile can be achieved by extending the statistical tests to the T-HSIC measure, which
constitute the first contribution of this paper.

Regarding (O2), i.e., the qualitative ranking of the influential inputs, one needs to extend the pre-
vious tools established for screening. It is proposed here to use the p-values as a tool for ranking
since they provide a sort of “distance” to the independence.

Finally, concerning (C1), one should notice that both HSIC and T-HSIC measures are perfectly
dedicated to deal with such a finite CMC input-output sample. Moreover, such a constraint arises
in many industrial applications for which only a few number of model evaluations are available,
or for which only pure Monte Carlo analyses can be performed for technical and/or regulatory
reasons.

The proposed methodology can summarized into three steps:

• Step #1: Apply a {GSA + Independence Tests} strategy to perform a GSA-oriented screen-
ing using HSIC measures.
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• Step #2: Extend the use of statistical tests to T-HSIC estimators to apply a {TSA + Indepen-
dence Tests} strategy. Thus, perform a TSA-oriented screening.

• Step #3: Aggregate GSA and TSA results by considering the union of results with priority
given to the TSA results for conservatism reasons.

In practice, this methodology relies on a few set of rules for screening and ranking which are
detailed hereafter:

• About the nature of the test: if n is large (n > nth), use an asymptotic test; if not (n≤ nth),
use a permutation-based test.

• About the p-values: the lower pval, the stronger (H0,i) is rejected and the higher the influ-
ence of Xi.

• About screening: the influential inputs are those associated to a p-value such that pval < α .

• About ranking: the most influential inputs have the lowest p-values. If p-values are equal,
the inputs are ordered using their R2

HSIC indices.

• About aggregating: finally, the PII correspond to the union of the influential inputs kept
from both GSA- and TSA-oriented screening phases. Their ranking correspond to the previ-
ous rule applied to this set of PII.

As a final remark, one should notice that this methodology only depends on three tuning parameters
which have to be set: the sample size threshold nth which determines whether the asymptotic
regime is reached or not; if not, the number of permutations B has to be chosen; and the significance
level of the test α .

In the following section, this whole methodology is applied to a realistic industrial use case con-
cerning thermal-hydraulic simulations in nuclear accident simulation context.

4. APPLICATION TO A THERMAL-HYDRAULIC USE CASE

4.1 Presentation of the use case

This use case consists in simulating a loss-of-coolant accident appearing in the primary circuit of
a pressurized water reactor. The break in the piping structure is supposed to be of intermediate
size. Due to this accident, a thermal-hydraulic transient happens, leading to an increase of the
temperature into the core, especially, at the cladding level. During this process, several uncertainty
sources can be identified. Thus, a dedicated BEPU methodology has been defined for this specific
IBLOCA scenario [2]. Note that the present use case differs from the one presented in [10].

Numerically, the CATHARE2 (V2.5_3mod3.1) simulator, which is a thermal-hydraulic system
code, is used to generate high-fidelity thermal-hydraulic transients. The physical inputs of this best-
estimate code are, typically, critical flowrates, interfacial friction coefficients, condensation and
heat transfer coefficients, but also some initial/boundary conditions. The dimension of the input
vector is d = 97 here. A set of marginal probability distributions are assumed for the uncertain
inputs (mainly, uniform, log-uniform, normal and log-normal distributions). These distributions
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are either estimated from industrial/experimental datasets, calibrated from inverse problems, or
elicited from expert judgment.

Basically, the study consists first to propagate the uncertainties through the CATHARE2 simulator
so as to get a learning sample. This input-output dataset consists in a CMC experimental design of
ntot = 2988 simulations drawn according to the marginal distributions. The empirical distribution
of the output variable of interest, which is here the 2nd peak of cladding temperature (PCT), is
plotted in Figure 1a. From a risk analysis perspective, one is interested in estimating the 90%-order
quantile of the PCT. Here, the empirical quantile estimated from the whole dataset is q̂0.9 = 668◦C.
Figure 1b illustrates the convergence of the empirical estimation (together with bootstrap to get
confidence intervals) through the first n = 500 simulations. It can be seen that only a few hundred
of samples are sufficient to estimate q̂0.9 with enough accuracy.
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Figure 1 – Output statistics of interest.

4.2 Numerical results

Before presenting the HSIC-based results, one can first investigate basic relationships between
a few inputs and the model output with the help of scatter plots. As an illustration, Figure 2a
highlights the significant and nonlinear influence of input X15 while the scatterplot according to
X47, given by Figure 2b, seems to indicate that this latter input has little influence on the model
output.

The methodology detailed in Section 3 is now applied to this 97-dimensional IBLOCA use case.
Again, the goal here is to perform both screening and ranking. Two analyses are considered: a
GSA-oriented one and a TSA-oriented one. For TSA, the critical event to be characterized is the
occurrence of very large values of the PCT. Thus, with Y := PCT, one is interested in the specific
event of the type Y > q̂0.9(Y ).

For the sake of conciseness, only a single study is presented here. Indeed, with ntot = 2988 sim-
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(a) Couple (X15,Y ).
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(b) Couple (X47,Y ).

Figure 2 – Scatter plots with splines.

ulations, it has been chosen to illustrate the methodology here with a reduced dataset made of
only n = 500 samples. The idea is to illustrate the potential of the methodology under very lim-
ited simulation budget. In such a context, one will consider that the asymptotic regime is not valid.
Therefore, the use of permutation-based tests is a necessity. In the following, the tuning parameters
are set to B = 200 permutations and α = 0.05 for the significance level.

The GSA-oriented screening shown in Figure 3a illustrates the basic principles of the decision
process based on p-values. The lower the p-value, the stronger (H0,i) (i.e., the independence) is
rejected. Thus, variables that are below the redline (corresponding to α = 0.05) correspond to
influential variables. By comparing this plot to the one shown in Figure 3b, one can notice that
the influential variables differ from the previous ones. This clearly highlights the necessity of
dedicated tools to achieve TSA. As for the choice of the significance level, it is clear than choosing
α = 0.10 would change the threshold, and thus, the number of “influential” variables. However,
one should insist here on the core problem of this study: detecting the noninfluential variables,
not to remove them, but just to help for the metamodel building phase. Again, these results are
relative and do not imply any model simplification. As a remark, one should notice that, for the
sake of conciseness, a deeper study about the sensitivity of such a methodology to the prior choice
of various parameters (e.g., the quality of the quantile estimation, the choice of the significance
level, the kernel parameters for HSIC measures and the weight function for TSA) is not achieved
here and is left for future work.

Considering ranking purposes, Figure 4a provides a relative ranking of the most influential inputs
w.r.t. to their p-values. Similarly, Figure 4b provides another insight about the most influential
variables w.r.t. to the critical event Y > q̂0.9(Y ).

Finally, by aggregating and ranking, with priority given to TSA results, the variables detected, one
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Figure 3 – Screening based on GSA and TSA using p-values.

gets a final pool of influential variables which drive, not only the global behavior of the output
variability, but also and more importantly, the occurrence of the critical event.
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Figure 4 – Ranking based on GSA and TSA using p-values and R2
HSIC.
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5. CONCLUSION

Assessing risk and reliability of nuclear reactors through accident analysis requires to develop ad-
vanced BEPU methodologies in order to make robust the current deterministic approaches. How-
ever, the key challenges of those analyses remain the limited number of simulations available (due
to the computational cost of high-fidelity computer models), and a large input dimension.

Recently, a new methodology, called ICSCREAM, has been proposed to provide probabilistic and
statistical tools to overcome these methodological challenges and to enable the identification of
penalizing configurations regarding some inputs of interest. The first step of this methodology
consists in identifying the most influential inputs driving both the output variability and the vari-
ability of a risk measure estimated from this output.

In this paper, this first step of ICSCREAM methodology has been fully presented and has been
put into practice through an industrial thermal-hydraulic IBLOCA use case. The statistical tools
used here mostly focus on HSIC dependence measures (and variants of them to take specific QoIs
into account) and statistical hypothesis tests. Minimal theoretical arguments have been provided
to demonstrate the strong mathematical properties that make these tools relevant for the target
purposes (identifying the most influential inputs among a large number of variables) and constraints
(a single and limited CMC learning sample).

Finally, this paper also aimed at illustrating that the ICSCREAM methodology is based, at least
for this first step, on fully open source statistical tools. This study has been realized using the
’sensitivity’ package of the R statistical software. Moreover, most of these tools (HSIC, T-HSIC
and tests) are or will be soonly available in the open source uncertainty quantification platforms
URANIE (CEA) and OpenTURNS (EDF, Airbus, IMACS, Phimeca and ONERA).
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