
HAL Id: hal-02877342
https://hal.science/hal-02877342v1

Submitted on 22 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

[¬Rp] Stokes drag on conglomerates of spheres
Konrad Hinsen

To cite this version:
Konrad Hinsen. [¬Rp] Stokes drag on conglomerates of spheres. The ReScience journal, 2020,
�10.5281/zenodo.3889694�. �hal-02877342�

https://hal.science/hal-02877342v1
https://hal.archives-ouvertes.fr


R E S C I E N C E C
Reproduction / Fluid dynamics

[¬Rp] Stokes drag on conglomerates of spheres

Konrad Hinsen1,2, ID
1Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France – 2Synchrotron SOLEIL, Division Expériences, Gif sur
Yvette, France

Edited by
Tiziano Zito

Reviewed by
Roman Yurchak ID

Received
04 March 2020

Published
11 June 2020

DOI
10.5281/zenodo.3889694

Introduction

The article that is the subject of this reproduction attempt [1] describes the validation
(by comparison to experiments) of a new method for computing hydrodynamic inter‐
actions in colloidal suspensions [1] and its implementation as a published Fortran 77
library called HYDROLIB [2]. The latter is the first scientific software I ever published,
at a time when this was a well‐established possibility (the journal “Computer Physics
Communications” was launched as early as 1969), but not yet common practice. The
motivation for publishing this library was to make the method available to other re‐
searchers for inspection and use. Reproducibility was something that neither myself
nor anyone else in the lab had ever heard of. The code specific to the validation paper
was therefore not published. This turned out to be the major obstacle to reproducing
the results of the original paper, as I was unable to find a copy of that project‐specific
code in my collection of old computers and backups.
The validation of the new method consisted of computing the sedimentation velocities
of several assemblies of spheres for which experimental measurements were available
[3]. These nine assemblies were regularly shaped conglomerates of two to 167 plastic
spheres glued together. The description of the conglomerates provided by the experi‐
menters was detailed enough to permit a computational reconstruction. The code writ‐
ten for the validation did exactly that: define the configurations of spheres for each of
the nine conglomerates, then call a few subroutines from HYDROLIB to compute the
sedimentation velocity.

Historical context

The research project on the computation of hydrodynamic interactions was conducted
from 1992 to 1994 and combined theoretical work, software development, and computa‐
tional evaluations such as those ultimately published in the article that is the subject of
this reproduction attempt. The computers that were available to me at that time were a
DECstation 5000/260 in the lab, an IBM mainframe computer at RWTH Aachen Univer‐
sity’s computing center, a Cray Y‐MP at the nearby HLRZ Jülich (Höchstleistungsrechen‐
zentrum, now called Jülich Supercomputing Centre), and an Atari TT at home. The
only programming language available on all of these machines was Fortran 77, which
was also the dominant language for scientific computing at the time. Fortran 77 was

Copyright © 2020 K. Hinsen, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Konrad Hinsen (konrad.hinsen@cnrs.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/khinsen/rescience-ten-year-challenge-paper-4. – SWH
swh:1:dir:195b7890e84d3bcdc1fdbbbc351c63ac69a64ba0.
Open peer review is available at https://github.com/ReScience/submissions/issues/20.

ReScience C 6.1 (#7) – Hinsen 2020 1

https://orcid.org/0000-0003-0330-9428
https://orcid.org/0000-0002-2565-4444
mailto:konrad.hinsen@cnrs.fr
https://github.com/khinsen/rescience-ten-year-challenge-paper-4
https://archive.softwareheritage.org/swh:1:dir:195b7890e84d3bcdc1fdbbbc351c63ac69a64ba0/
https://github.com/ReScience/submissions/issues/20
https://rescience.github.io/


[¬Rp] Stokes drag on conglomerates of spheres

defined by ANSI standard X3.9‐1978, published in April 1978, to which specific compil‐
ers added various features that programmers had to avoid carefully in order to keep
their code portable. My main development machine was the DECstation 5000/260, with
regular tests performed on the three other computers to ensure portability.
A major limitation of standard‐conforming Fortran 77 is the lack of both dynamic mem‐
ory allocation and compile‐time definitions. For HYDROLIB, this raised the question
of how to deal with application‐dependent parameters such as the number of particles,
and with precision‐related parameters (with significant impact on runtime and mem‐
ory use) such as the multipole order to be used in approximations. Given the limited
resources of smaller computers of the time (such as the Atari TT I used at home, with
32 MB of memory), conditional compilation was also desirable to prevent including un‐
used code and data structures. The solution I adopted was not uncommon for the time:
run all Fortran code through a C preprocessor before passing it to the Fortran compiler.
Doing this portably and efficiently required scaffolding in the form of four scripts writ‐
ten in the csh language (which has since lost popularity but is still maintained) plus a
Makefile for compiling the library code. The use of the C preprocessor for Fortran
code was popular enough to be directly supported by some compilers at the time, and
today’s GNU Fortran still implements it. However, support was not universal. It was
missing e.g. from the compilers provided by IBM and HP. My scripts therefore have an
option for running the C preprocessor explicitly, producing a pure standard‐conforming
source code file specialized for an application’s specific parameters that is then fed into
the compiler.
The software development tools that I had at my disposal were Emacs and a source‐level
Fortran debugger. Version control already existed (CVS was published in 1990) but were
not widely available and, more importantly, mostly unknown in computational physics.
The same holds for automatized testing: the state of the art in the fieldwaswriting small
example programs and running them manually from time to time. The most advanced
aspect of my computing environment was backups: the lab’s DECstation had a DDS‐1
tape system, which made it straightforward to perform weekly backups of all user data.

Reproduction attempt

The GitHub repository for this reproduction attempt contains all the code, input data,
and instructions for running the code on a modern GNU/Linux system with the Guix
package manager [4, 5]. It also lists the exact version numbers of all the software in‐
volved in the reproduction. A total of 148 Guix package must be rebuilt identically to
guarantee bit‐for‐bit reproduction of the results.

Finding the code
Themain part of the code, HYDROLIB, is still available from theCPCProgramLibrary [6]
under the catalogue id ADBK, exactly as it was deposited in 1995. An updated version has
been available on GitHub since 2015 [7]. The update does not modify the Fortran code,
but only the compilation and installation scripts, which have in particular been adapted
to theGNUFortran compiler. The user guide has also been revised tomake it compatible
with modern LaTeX installations (a minor change to three lines of the preamble).
The search for the Fortran programs that compute the sedimentation velocities of the
nine conglomerates was more difficult and ultimately failed. Of the four computers
that I used at the time, only one has survived: my personal Atari TT. It is still in working
condition, even though it tends to crash after about 30 minutes of operation, and has a
copy of HYDROLIB on its disk, but not the programs for the nine conglomerates, most
of which would have exceeded the computer’s resources. The backup tapes from the
DECstation have been lost during the intercontinental moves of my postdoc years.

ReScience C 6.1 (#7) – Hinsen 2020 2

https://github.com/khinsen/rescience-ten-year-challenge-paper-4
https://rescience.github.io/


[¬Rp] Stokes drag on conglomerates of spheres

The oldest backups that I could find in my collection are a DDS‐1 tape from 1998 and a
DDS‐2 tape from 1999. Both are backups of the Linux PC that I used duringmy first years
at the Centre de Biophysique Moléculaire in Orléans. There is a good chance that these
tapes contain a backup of the programs, but I have not succeeded in finding a suitable
tape reader. It is of course also questionable if these 20 year old magnetic tapes can still
be read today. The lab had Linux PCs with DDS tape backup until about 2010, but they
were progressively less and less used as the lab members moved to macOS. When the
last of these PCs stopped working because of a disk failure, it was discarded without any
further thought about the long forgotten collection of backup tapes.

Running the code
Because of the loss of all the conglomerate‐specific programs, none of the results in the
original article could be reproduced. This leaves the option of checking if HYDROLIB
and its example application (a linear chain of spheres) can still be run on a modern
computer. This is indeed the case and the file notes.org in the companion GitHub
repository contains the detailed sequence of commands to compile and run the software
reproducibly using the Guix package manager. It also contains the full list of dependen‐
cies, including the versions that were used.

Conclusion

The main utility of a failed reproduction attempt is the occasion it represents to learn
from the mistakes of the past in order to do better in the future. From this perspective,
I propose three conclusions:

Backups are not archives. Backups are safeguards against information loss due to de‐
vice failures or operator errors, but only short‐term. Backup technologies are designed
for ease of use, not for longevity. In particular, backups suffer from the risks of mate‐
rial degradation (e.g. tapes not being readable any more) and technical obsolescence
(devices or software for restoring the data may no longer be available). Archives, in
contrast, are designed for ensuring the longevity of particularly important information,
at the cost of a higher effort for storing and retrieving data. Archives are managed by
professionals who know and continue to develop best practices for information preser‐
vation. Backups and archives are complementary. Back up everything, archive what is
most important.

Publication no longer implies archiving. Archiving the scientific record has been a joint
effort of scientific publishers and scientific libraries for centuries, and they have as‐
sumed this responsibility very well. Information technology has changed the scientific
publication system profoundly and will continue to do so. Libraries have lost impor‐
tance in the eyes of many scientists, and some would like to see the traditional publish‐
ers disappear completely because of their predatory attitude. However, it is important
not to lose archiving in the process. Platforms or services for rapid sharing, such as
preprint servers or collaborative coding platforms, generally don’t provide archiving.
On the other hand, new archiving platforms, such as Zenodo [8] or Software Heritage
[9], offer interesting replacements. While the scientific publication landscape remains
in flux, scientists have to be careful in ensuring that the information (articles, code,
data) they disseminate in electronic form does get archived by a competent and reliable
institution.

Standards ensure longevity. While this reproduction attempt ultimately failed because
small but critical parts of the total source code were lost, the fact that the surviving
archived core part of the code (HYDROLIB) still works illustrates the importance of
standards for the longevity of electronic artifacts. HYDROLIB was written in strictly

ReScience C 6.1 (#7) – Hinsen 2020 3

https://rescience.github.io/


[¬Rp] Stokes drag on conglomerates of spheres

standard‐compliant Fortran 77 for portability, in a world where computing hardware
and systems software were more diverse than they are today. This portability has stood
the test of time. In contrast,my other contribution to the ten‐year‐challenge [10] is about
Python code that is half as old as HYDROLIB but no longer executable without modifi‐
cations. The reasons for the shift from standardized to fragile technology as the basis
for scientific software are too complex to discuss here, but it’s clearly an aspect that the
scientific community will have to consider more seriously in the future.

References

1. B. Cichocki, B. U. Felderhof, K. Hinsen, E.Wajnryb, and J. Bławzdziewicz. “Friction andMobility ofMany Spheres
in Stokes Flow.” In: The Journal of Chemical Physics 100.5 (Mar. 1994), pp. 3780–3790.

2. K. Hinsen. “HYDROLIB: A Library for the Evaluation of Hydrodynamic Interactions in Colloidal Suspensions.”
In: Computer Physics Communications 88.2-3 (Aug. 1995), pp. 327–340.

3. I. A. Lasso and P. D. Weidman. “Stokes Drag on Hollow Cylinders and Conglomerates.” In: Phys. Fluids 29.12
(1986), p. 3921.

4. L. Courtès and R. Wurmus. “Reproducible and User-Controlled Software Environments in HPC with Guix.” In:
European Conference on Parallel Processing. Springer, 2015, pp. 579–591.

5. R. Wurmus, B. Uyar, B. Osberg, V. Franke, A. Gosdschan, K. Wreczycka, J. Ronen, and A. Akalin. “PiGx: Repro-
ducible Genomics Analysis Pipelines with GNU Guix.” In: GigaScience 7.12 (Dec. 2018).

6. CPC International Program Library (1969-2016). http://cpc.cs.qub.ac.uk/. 2016.
7. [SW] K. Hinsen, HYDROLIB, 2019. LIC: BSD. SWHID: ⟨swh:1:dir:44d2058da36431234e4d6607f5ff0013234725

11;origin=https://github.com/khinsen/HYDROLIB⟩.
8. Zenodo. http://www.zenodo.org/.
9. J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli. “Building the Universal Archive of Source Code.” In: Commun.

ACM 61.10 (Sept. 2018), pp. 29–31.
10. K. Hinsen. “[Rp] Structural Flexibility in Proteins - Impact of the Crystal Environment.” In: ReScience C (under

review) (2020). swh:1:dir:8a73b8438b411cc8a58a3db7789ff45690808afa.

ReScience C 6.1 (#7) – Hinsen 2020 4

http://archive.softwareheritage.org/swh:1:dir:44d2058da36431234e4d6607f5ff001323472511;origin=https://github.com/khinsen/HYDROLIB
http://archive.softwareheritage.org/swh:1:dir:44d2058da36431234e4d6607f5ff001323472511;origin=https://github.com/khinsen/HYDROLIB
https://rescience.github.io/

