
HAL Id: hal-02877319
https://hal.science/hal-02877319

Submitted on 22 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Staged computation: the technique you didn’t know you
were using
Konrad Hinsen

To cite this version:
Konrad Hinsen. Staged computation: the technique you didn’t know you were using. Computing in
Science and Engineering, 2020, 22 (4), pp.99-103. �10.1109/MCSE.2020.2985508�. �hal-02877319�

https://hal.science/hal-02877319
https://hal.archives-ouvertes.fr

COMPUTING IN SCIENCE AND ENGINEERING 1

Staged computation: the technique you didn’t
know you were using

Konrad Hinsen

F

A quick Web search for “staged computation” will con-
vince you that it refers to an exotic technique of interest
mainly to programming language designers and imple-
menters. Nothing could be further from the truth. It’s a
technique that everybody is using all the time, and it’s
one of the main reasons why reproducible results are so
difficult to achieve. In other words, it’s something that every
computational scientist should know about.

By definition, a staged computation is a computation
that proceeds as a sequence of multiple stages, in which
each stage produces the code for the next stage, except for
the last stage that produces the final result. Most of the
references you will find in a Web search are about so-called
meta-programming techniques, in which a program’s source
code is transformed before actually being compiled into
an executable. The most widely used meta-programming
technique in scientific computing is the use of macros in the
C and C++ languages. These macros are rules for rewriting
the source code before compilation that are used for special-
izing the code, or for adapting it different platforms. Other
languages have more elaborate metaprogramming tools, in
particular the languages of the Lisp family.

However, the kind of staged computation that I will
discuss here is something quite different: it is the very use
of compilers. A compiler transforms a program from one
notation (“source code”) to another notation (“executable
binary”). Executing a piece of source code thus requires
two stages: the first stage, compilation, produces the code
that is run in the second stage, execution. But that is not
the end of the story. The compiler you run is typically an
executable binary stored somewhere in your computer’s file
system, and so are the libraries that a program makes use
of. These binaries have been produced by someone else,
on another computer, using yet another compiler. So our
two-stage computation is really a many-stage computation,
with the results of the initial stages stored on some server
for downloading by people like you. Package managers,
such as apt used by Linux distributions such as Debian
or Ubuntu, or Homebrew for macOS, make this approach
straightforward in practice.

1 MULTI-STAGE REPRODUCIBILITY

Fig. 1 provides a visual illustration of a staged computation.
Each box in this diagram corresponds to data stored in a

Fig. 1. The final stages of a typical staged computation. Items shown in
blue are human input. Items shown in magenta are other input, typically
from experiments. Items shown in green are the output of a computation.

file, but there are three distinct categories of data. The first
category, shown in blue, is input authored by humans, i.e.
mostly program source code. The second category, shown
in magenta, is observational input, typically coming from
experimental equipment. The third and dominant category,
shown in green, is results of computations. The computa-
tions that produce them are indicated by arrows that link
inputs to outputs.

What we would like to be reproducible is the box in
the bottom right, i.e. the figures and tables we put into
our publications. The important message of Fig. 1 is that
reproducing these results requires all the other items in the
diagram to be precisely identified and either archived or themselves
reproducible. And since even a modest computation can
accumulate hundreds of little boxes, this is not a trivial
requirement.

Let’s look at what this means for our three categories
of items. Human input is the easiest case: it cannot be
reproduced, so it must be archived. Note that “archiving”
means more than just storing a copy in a safe place. That
would be a backup, not an archival copy. Archiving requires
producing a safely guarded copy plus a handle via which
this copy can be retrieved unambiguously. That handle
could be a file name or a URL (both very fragile), a Digital
Object Identifier (DOI), which is already more robust, or
ideally a handle computed from the content itself [1], such as
the identifiers used by Software Heritage [2]. Since human

COMPUTING IN SCIENCE AND ENGINEERING 2

input tends to evolve in the course of a research project,
it is also advisable to keep it under version control [3].
Both Zenodo (https://zenodo.org/) and Software Heritage
(https://www.softwareheritage.org/) provide facilities for
easily archiving version-controlled human input.

It is more difficult to give general recommendations for
observational input, because that is a very diverse category.
Like human-authored input, observational input is not re-
producible, and must therefore be archived. For choosing
an adequate archiving technique and platform, the nature
and size of the data matters, but also legal criteria such as
ownership or privacy.

For the computed results, in particular compiled soft-
ware, we have the choice between archiving and repro-
ducing. Unfortunately, the tools we have been using for
decades to manage software support neither option satis-
factorily. They have been designed for installing, updating,
and deploying software, but not for tracking provenance
or reproducing earlier states. These tasks must therefore be
assumed by humans, who are not very good at managing
hundreds of items. This is why reproducible computations
remain such a tough challenge. The good news is that
computers are very good at dealing with large problems,
meaning that we can delegate the management of staged
computations to software tools, as I will show later.

2 THE STATE OF THE ART

Consider the very simple program shown in Fig. 2, which
does a few computations and prints the results. On a typical
Linux system, you would run it using

gcc pi.c -o pi
./pi

assuming you are using the popular GNU Compiler Collec-
tion. The few lines of text printed by the program are the
final result. That’s what goes into the bottom-right box in
Fig. 1. The executable binary pi is the “Program” in the box
on the left end of the arrow. There is no “Input data” in
this case. The source code file pi.c is the “Source code” in
the box above. The “Compiler” is gcc. And it looks like we
have no libraries, so we have properly identified everything
in the rightmost three boxes of Fig. 1. That’s a good start!

The bad news is that appearances are deceptive: we do
have libraries, the compiler is merely hiding them from us.
Under the hood, the compiler runs additional programs
such as as or collect2, and adds libraries from the C
language runtime system. We need to add this hidden stuff,
with version numbers, to the “Compiler” and “Library”
fields of the box. And with compilers playing hide-and-
seek, we need a more reliable way to figure out all of our
dependencies!

I suspect that many readers think that I am exaggerating.
We are talking about a minuscule C program. All it takes to
run it is a toolchain for compiling C programs. It doesn’t
matter if I use version 7 or version 9 of gcc. It matters even
less what the version number of collect2 is, whatever it
may do. And all the stages before the compilation of pi.c
shouldn’t matter at all. If the gcc that I am running has
passed its test suite, all should be fine.

This reasoning is, in fact, correct most of the time, when
applied to C compilers and other stable tools and libraries.
But most of the time is not all of the time. One particular
subtle point is floating-point arithmetic, which has the repu-
tation of being fundamentally irreproducible [4]. And yet, at
the level of the operations defined by the standard IEEE-754
(which all processors and compilers today respect), floating-
point arithmetic is perfectly deterministic. The problem is
that programmers don’t write their code in terms of IEEE-
754 operations. The C language doesn’t even give access to
that level. It’s the compiler that generates those low-level
instructions, and it assumes that the programmer doesn’t
care about the differences due to round-off. So if you want
reproducible floating-point results, their full specification is
your code plus the C compiler plus the compilation options.

More importantly, the “details don’t matter” reasoning
fails for large software assemblies, in which pieces you have
never heard about but which have an impact on the final
results may change because of bugs or voluntary decisions
to break backwards compatibility. Under the Guix package
manager, about which I will say more below, running the C
program in Fig. 2 requires four packages (gcc, binutils, glibc,
ld-wrapper, the last one being a Guix-specific package).
That’s what takes the green-colored slots in the rightmost
“Compiler” box in Fig. 1. For a Python script using the
popular NumPy and SciPy extensions, that’s already 24
packages. If you include all the packages from the earlier
stages of the computation, you get 89 packages for a C
program, but 501 for Python + NumPy + SciPy. Figuring
out which of these packages should be irrelevant details
becomes a serious challenge.

Let’s move on for now, assuming that we can somehow
keep track of hundreds of dependencies. We must then
either archive the compiled code, or make it reproducible.
But we can immediately eliminate “archiving” because there
is no practically usable infrastructure for this. Sure, package
managers download compiled code from servers, but these
servers are caches, designed for increasing the efficiency of
software distribution. They are not archives from which
binaries could be retrieved at arbitrary later times via an
unambiguous handle. That also applies to services such as
DockerHub that hold container images.

The situation looks more promising for making all com-
piled code reproducible. Package managers are based on
build recipes, which is the code that is run to re-build the
package. Likewise, containers are usually built from such
recipes, e.g. the well-known Dockerfiles. Unfortunately, a
closer look reveals that most of these build recipes are
not reproducible. They say something like “download the
current Python source code and compile it with the current
version of gcc.” That’s great for regularly updating software,
which is after all what package and container managers
were designed for, but it’s not reproducible.

3 GUIX TO THE RESCUE

The Guix package manager (http://guix.gnu.org/) for
GNU/Linux was designed from the start with reproducibil-
ity in mind, and offers the best support for reproducible
research that is currently available. More specifically, it is
based on two fundamental concepts:

COMPUTING IN SCIENCE AND ENGINEERING 3

include <math . h>
include <s t d i o . h>

i n t main ()
{

p r i n t f (”M PI : %.10 l f \n” , M PI) ;
p r i n t f (”4 ∗ atan (1 .) : %.10 l f \n” , 4 .∗ atan (1 .)) ;
p r i n t f (” Leibniz ’ formula (four terms) : %.10 l f \n” , 4 .∗ (1 . −1 . / 3 . + 1 . / 5 . −1 . / 7 .)) ;
return 0 ;

}

Fig. 2. A very simple computation in C.

• An explicit representation of the full staged compu-
tation graph of Fig. 1, for all software packages, con-
taining all information that can potentially impact
results, and referring to specific versions of all source
code.

• Execution in restricted environments. Guix can run
programs in environments where only explicitly
listed software is available, providing a guarantee
that the programs have no other dependencies. These
restricted environments are used for building soft-
ware packages, but are also available to users for
running their own code.

To run the example from Fig. 2 in a restricted environ-
ment in Guix, I would type

$ guix environment --container \
--ad-hoc gcc-toolchain

[env]$ gcc pi.c -o pi
[env]$./pi

The first line creates a restricted environment with access to
a single software package (gcc-toolchain), a single direc-
tory (the current one), and no network access at all. It then
starts a shell in that environment, into which the following
two lines are typed. The option --container provides
the strongest possible isolation of that environment, but
less restrictive versions are also available. The fact that my
program works correctly in that environment proves that
it has no dependencies other than gcc-toolchain, which
is a package specifically designed for C programming and
contains the gcc compiler plus the utilities and libraries it
requires to function. To make computations in such environ-
ments reproducible, all I need to do is note the exact version
of Guix that I am using:

$ guix describe -f recutils
name: guix
url: https://git.savannah.gnu.org/git/guix.git
commit: 769b96b62e8c09b078f73adc09fb860505920f8f

The Guix version is given by the commit field, which is
a unique and persistent handle. I can then at any time
in the future reproduce the environment, and thus my
computation:

$ guix time-machine \
--commit=769b96b62e8c09b078f73adc \
-- \
environment --container \

--ad-hoc gcc-toolchain

[env]$ gcc pi.c -o pi
[env]$./pi

If you think that the first line is rather long, consider that it
replaces a whole Docker container!

Like other package managers, Guix downloads pre-
compiled binary versions of its packages from a caching
server if available. Otherwise, or upon explicit user request,
Guix recompiles everything from source code. Well, almost
everything: a minimal archived core package called the
bootstrap seed is always downloaded in binary form. It
contains a basic compiler that is used to get the staged com-
putations started. You can’t avoid having to download that
bootstrap seed in binary form, but if you are particularly
paranoid, you can then recompile it yourself, and verify that
you get the same files, bit for bit.

Since Guix stores the complete staged computation
graph, you can also explore it using Guix’ command line
tools for standard tasks such as querying the version num-
bers of the packages. For more advanced needs, you can
write scripts in Guile, the dialect of Scheme that Guix is
written in. This is what I did to obtain the dependency
counts that I quoted earlier. For readers interested in the
technical details, there is a post on the Guix blog [6].

At this time, Guix is still a tool for early adopters.
Its package collection is not nearly as complete as those
of well established distributions, and its tools still evolve
rather rapidly. However, it shows that reproducible staged
computations are possible, and it is actually already very
usable in practice if all the software you need is in there.
Check it out for yourself!

REFERENCES

[1] K. Hinsen, The magic of content-addressable storage, Computing in Sci-
ence & Engineering, early access, DOI: 10.1109/MCSE.2019.2949441

[2] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, Identifiers for Digital
Objects: The Case of Software Source Code Preservation, iPRES 2018
- 15th International Conference on Digital Preservation, Sep 2018,
Boston, United States. DOI:10.17605/OSF.IO/KDE56

[3] K. Hinsen, K. Läufer, G.K. Thiruvathukal, Essential Tools: Version
Control Systems, Computing in Science & Engineering 11, 81–91
(2009)

[4] K. Hinsen, The approximation tower in computational science: why test-
ing scientific software is difficult, Computing in Science & Engineering
17, 72 (2015)

[5] K. Thompson, Reflections on trusting trust, Communications of the
ACM 27, 761 (1984)

[6] K. Hinsen, Reproducible computations with Guix,
https://guix.gnu.org/blog/2020/reproducible-computations-
with-guix/, published January 14, 2020

http://doi.org/10.17605/OSF.IO/KDE56
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/

COMPUTING IN SCIENCE AND ENGINEERING 4

Konrad Hinsen is a researcher at the Centre de Biophysique
Moléculaire in Orléans and at the Synchrotron SOLEIL in Saint Aubin.
His research interests include protein structure and dynamics and sci-
entific computing. Hinsen has a PhD in theoretical physics from RWTH
Aachen University. Contact him at konrad.hinsen@cnrs.fr.

	Multi-stage reproducibility
	The state of the art
	Guix to the rescue
	References
	Biographies
	Konrad Hinsen

