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Entropy solutions for a two-phase transition model for vehicular traffic with metastable phase and time depending point constraint on the density flow

Introduction

Our work explores a particular instance of so-called phase transition models used in macroscopic descriptions of road traffic. It is a continuation and an extension of the work [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF]. Here we sharpen the definition of solution and prove an existence result for a constrained two-phase transition model of hyperbolic conservation laws introduced in [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF][START_REF] Dal Santo | General phase transition models for vehicular traffic with point constraints on the flow[END_REF]; we also consider a non-local variant of the model giving account of capacity drop phenomena.

Motivations

The model we deal with (see [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] below for for the short-cut PDE formulation and Definition 2.1 for the precise meaning given to it) is situated at the crossroads of two lines of research in macroscopic traffic modeling and model analysis. The first line consists in combining the classical LWR scalar equation (Lighthill, Whitham and Richards [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]) and the well-known ARZ system (Aw, Rascle and Zhang [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF]), within a unique model featuring transitions between the "free flow" phase Ω f described by LWR and the "congested flow" phase Ω c described by ARZ. The interest of this approach resides in the fact that LWR, as any first order model, does not capture completely the dynamics observed at high traffic flow densities, while ARZ features a degeneracy and instability when density approaches zero, see [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF]. Indeed, within the LWR framework the fundamental flow equation

ρ t + (v ρ) x = 0 (1) 
(ρ and v representing the density and the velocity of the flow, respectively) is closed with the functional dependence v = v(ρ), that appears as heuristically justified only at low densities; whereas the ARZ description features the closure relation v = w -p(ρ), where the velocity combines the reaction of agents to the surronding density, encoded in the function p, and the so-called "Lagrangian marker" w. The latter is (formally) transported along the flow as

w t + v w x = 0, (2) 
leading to a strictly hyperbolic 2 × 2 system, at least away from the vacuum ρ = 0. We give a historical account on such phase transition models in § 1.2 below. Next, the second line of research that underlies our work is the introduction, within macroscopic traffic models (1), of point constraints formally given as

(v ρ)| x=x0 F, (3) 
meaning that the location x = x 0 is considered as a bottleneck, where the flow is limited to the maximal value F. The value F is a function of time that can be given a priori or it can be computed in a time-discrete way from the solution itself, thus giving rise to non-local models with point constraint. The interest of the family of models [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks[END_REF], [START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF] resides in their ability to take into account small-scale inhomogeneities of the flow (traffic lights, tollgates, construction sites or obstacles on the road). The time dependence of F, which is technically very demanding (cf. [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for the ARZ case) allows to model the traffic in presence, for instance, of traffic lights or construction sites operating only during a part of the day. In the case of non-local dependence of F on ρ, these models allow for possible adaptive management of such situations; moreover, they are able to reproduce capacity drop and its avatars like "Faster is Slower", the Braess paradoxes, see [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks[END_REF], and self-organization phenomena, see [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux[END_REF][START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF]. We refer to [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF][START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF] for LWR and ARZ with point constraints, and to [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux[END_REF][START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF][START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for LWR with non-local point constraints and applications. Note that moving bottlenecks with local or non-local constraints can further be considered [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Gasser | Vehicular traffic flow dynamics on a bus route[END_REF][START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a PDE-ODE coupled model[END_REF][START_REF] Liard | The Riemann problem for the GARZ model with a moving constraint[END_REF][START_REF] Marcellini | The Riemann problem for a two-phase model for road traffic with fixed or moving constraints[END_REF][START_REF] Sylla | Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model[END_REF].

Positioning of the present model with respect to the existing literature

An informal way to describe our model [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] is to say that it combines the fundamental flow conservation relation [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks[END_REF], the point constraint [START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF] with specific assumptions on F, and (roughly speaking) transport equation ( 2) for the Lagrangian marker w along the flow. The closure relation is provided by linking the Lagrangian marker w to the state variables (ρ, v) in two distinct ways in the free phase Ω f and in the congested phase Ω c -compatible choices being made in the metastable phase Ω f ∩ Ω c .

In the congested phase the traffic is governed by a 2 × 2 system of conservation laws (a so-called second-order macroscopic model), whereas in the free phase it is governed by a scalar conservation law (a so-called first-order macroscopic model). The two phases are coupled via phase transitions, namely discontinuities between two states belonging to different phases and satisfying the Rankine-Hugoniot conditions. As a matter of fact, the coupling in phase transition models is usually prescribed in terms of the Riemann solver, i.e. of the local behavior of the solution at the points where the transitions occur rather than in pure PDE terms: this is a typical approach to non-classical solutions of hyperbolic systems of conservation laws, relying on the property of finite propagation speed. Prescribing a Riemann solver directly encodes the underlying modeling assumptions, as the conditions for phase transitions and the action of the constraint in the case of our model. We refer to [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] for the founding example of LWR with point constraint, and [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF] for a wide family of discontinuous-flux conservation laws defined via the Riemann solver approach.

The complete analysis of the Riemann problem is a necessary ingredient in the construction of a converging sequence of approximate solutions via the wave front tracking algorithm, but is not sufficient alone to characterize the weak solution obtained in the limit.

The question of characterization of such Riemann-solver-based solutions in the form of weak and entropy formulations (or more precisely, "adapted entropy" formulations) is of particular interest, because it permits to apply PDE analytical techniques and build even more complex models on the top of the well-understood ones (like [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux[END_REF][START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF], based upon [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF]). As successful examples of such characterization, we refer to [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] and [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] for LWR with point constraints and for discontinuous-flux conservation laws, respectively; see also [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for the "Kruzhkov-like" entropy characterization of solutions of the ARZ model, originally defined in [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] by means of the Riemann solver. Providing a characterization for model [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] in PDE terms is the main goal of our work.

The first two-phase model has been introduced by Colombo in [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF]. Later, Goatin proposed in [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF] a twophase model which couples the ARZ model for the congested phase Ω c , with the LWR model for the free-flow phase Ω f , see also [START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF] for its generalization.

Both Colombo [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF] and Goatin [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF] assume that Ω c ∩ Ω f = ∅. The first two-phase model with a metastable phase Ω c ∩Ω f = ∅ has been introduced in [START_REF] Colombo | A 2-phase traffic model based on a speed bound[END_REF]. Metastability is a well-known situation in models of fluid dynamics (see, e.g., [START_REF] Hagan | The viscosity-capillarity criterion for shocks and phase transitions[END_REF]); in the context of traffic flows, we refer to [34, Figure 1] for empirical evidences. Existence results for Cauchy problems for different phase transition models have already been established in [START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF][START_REF] Blandin | A general phase transition model for vehicular traffic[END_REF][START_REF] Colombo | Global well posedness of traffic flow models with phase transitions[END_REF][START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF] for the case without point constraints, and in [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF] for the case with point constraint; the Riemann problem has recently been studied in the case of moving constraints [START_REF] Marcellini | The Riemann problem for a two-phase model for road traffic with fixed or moving constraints[END_REF].

In the present paper we assume that metastable phase is present, i.e., Ω c ∩ Ω f = ∅. For this reason, see [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF]Remark 2], we assume that Ω f is characterized by a unique value V of the velocity. In other words, the scalar conservation law describing the LWR dynamics of the free phase can also be seen as the mere transport equation with constant velocity V . This choice is in accordance with typical experimental data for low traffic

Results, technical foundations and outline of the paper

With respect to the work [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF] of which our paper is a follow-up, our contribution is twofold.

First, we show that the classical wave-front tracking algorithm (see, e.g., [START_REF] Holden | Front Tracking for Hyperbolic Conservation Laws[END_REF]) gives at the limit an entropy solution in the sense of Definition 2.1 -the definition being strengthened with respect to [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF]. This allows us to characterize the bottleneck flow in a sharper way than what was achieved in [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF] (in particular, the technical assumption [9, (2.14)], which corresponds to [START_REF] Liard | The Riemann problem for the GARZ model with a moving constraint[END_REF] given below, can actually be bypassed). As a consequence, we can claim that non-classical shocks occur precisely at the level F of the flux f = v ρ imposed by the constraint (3); moreover, the Lagrangian marker w in (2) does not increase across the non-classical shock. Note that these two properties underlie the definition of the Riemann solver, that is the same as in [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF]. Thus, the sharp characterization of admissible solutions adequately reflects the modeling assumptions imposed while prescribing the Riemann solver.

Let us briefly describe the specific technical tools that allow us to achieve this flux characterization at the constraint. First, we rely upon a localized version (Definition 2.1 (S.3)) of the renormalization property which, with the reference to (1), (2) can be roughly stated as [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF][START_REF] Panov | Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients[END_REF] and Remark 2.2). Second, in order to make sense of the point constraint (3) (Definition 2.1 (S.5)), we indagate the value of the limit density flux at the constraint position through a classical application of the Green theorem. Note that the proof of our existence result exploits, in the passage to the limit, the careful choice of the entropy inequalities (or, more precisely, of the contribution of the point constraint to these inequalities) and relies again upon the renormalization property and upon the Green theorem.

" ρ t + (v ρ) x = 0, (ρ w) t + (v ρ w) x = 0 =⇒ ∀g ∈ C 0 0 0 (R, R) (ρ g(w)) t + (v ρ g(w)) x = 0 " (cf.
Second, our existence result opens way to the study of modeling situations where a non-local point constraint is imposed at the bottleneck, even if we had to impose an additional restriction on the range of possible values for the constraint function F in (3), see assumption (H.1) in Theorem 2.8. We restrict our attention to constraints updated at discrete times; note that analogous models based on LWR were constructed and analyzed in [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux[END_REF] (along with continuous-time models, which extensions to [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] we are unable to analyse in depth). Our restriction to piecewise constant in time constraints F is motivated by technical reasons. In particular, since our existence proof relies on wave-front tracking approximations, we need to control the increase in total variation of the approximate solutions at any time at which the constraint level changes. In practice this is possible provided changes only occur a locally finite number of times, and the updated constraint level lays in the interval where metastable states exist. In our opinion, the most promising direction to overcome these technical restriction requires different compactness techniques, e.g. of the compensated compactness type; work in this direction is the subject of ongoing research.

The paper is organized as follows. In Section 2 we introduce the needed notations, the model and the main result of the paper, which concerns constraint given beforehand. We defer the proofs of our main results to Sections 3 and 4. In Section 5 we briefly indicate how our results can be applied to a particular class of non-local point constraints.

Model and main result

In this section we introduce some notations, see Figure 1, state the two-phase transition model [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF], fix the notion of entropy solution (see Definition 2.1) and formulate our main result in Theorem 2.8.

ρ R ρ - ρ + f - f + f Ω - f Ω + f Ω c V ρ R f V u * (u , u r ) u r v -(u r ) v + (u r ) u ω(u ) v V w - w --1 w + w Ω - f Ω + f Ω c v -(u r ) v + (u r ) u * (u , u r ) ω(u ) u r u ρ Figure 1: Notations.
Let ρ 0 and v 0 be the density and the velocity of the vehicles, respectively. Denote u . = (ρ, v) and let

f (u) . = v ρ
be the density flux. If V > 0 is the unique velocity in the free-flow phase Ω f and ρ + is the maximal density in

Ω f , then Ω f . = u ∈ R 2 + : ρ ρ + , v = V , where R + . = [0, ∞).
We further consider that the segment

[ρ -, ρ + ] × {V } = Ω f ∩ Ω c
is the metastable phase ("metastable phase" meaning the intersection between the free phase Ω f and the congested phase Ω c , as typical in the literature on phase transition models), then the ARZ formalism [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF] leads us to set

Ω c . = u ∈ R 2 + : v V, w -w . =v + p(ρ) w + ,
where w ± . = p(ρ ± ) + V . In the congested phase Ω c governed by ARZ, the anticipation factor p ∈ C 2 ((0, ∞); R) is a nonlinearity whose role in the modeling is to take into account drivers' reactions to the state of traffic in front of them; the closure relation w = v + p(ρ) links the state variables (ρ, v) and the Lagrangian marker w of the ARZ phase. We assume that p (ρ) > 0, 2 p (ρ) + p (ρ) ρ > 0 for every ρ > 0,

and v < p (ρ) ρ for every (ρ, v) ∈ Ω c . (4) 
Typical choices for p are p(ρ) . = ρ γ with γ > V /(w --V ), see [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF], and p(ρ) . = V ref ln(ρ/ρ max ) with V ref > V and ρ max > 0, see [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF]. Denote f ± .

= V ρ ± and let R . = p -1 (w + ) > 0 be the maximal density (in the congested phase). Define

Ω . = Ω f ∪ Ω c , Ω - f . = u ∈ Ω f : ρ ∈ [0, ρ -) , Ω + f . = u ∈ Ω f : ρ ∈ [ρ -, ρ + ] , Ω - c . = Ω c \ Ω + f .
Notice that the metastable phase Ω f ∩ Ω c coincides with Ω + f . We extend the Lagrangian marker w : Ω c → [w -, w + ] defined by w(u) . = p(ρ) + v by introducing w : Ω → [w --1, w + ] and W : Ω → [w -, w + ] defined by

w(u) . =    v + p(ρ) if u ∈ Ω c , w --1 + ρ ρ -if u ∈ Ω - f , W(u) . = v + p(ρ) if u ∈ Ω c , w - if u ∈ Ω - f . (6) 
Both these extensions are exploited below to introduce several quantities; for instance, they are both needed to define u * in (19c). In poor words, w is involved when we need to distinguish in the (extended) (v, w)-coordinates states u belonging to Ω - f , whereas we use W if this is not the case. Remark (2.4) below specifies the dynamics of W(u) within our model.

In this paper we study the constrained Cauchy problem for the phase transition model

Free flow (linearly degenerate LWR)

     u ∈ Ω f , ρ t + (ρ V ) x = 0, v = V, Congested flow (ARZ)      u ∈ Ω c , ρ t + (ρ v) x = 0, ρ W(u) t + ρ W(u) v x = 0, (7a) 
with initial condition u(0, x) = u(x)

and local point constraint on the density flux at x = 0

f u(t, 0 ± ) F(t), (7c) 
where F : (0, ∞) → [0, f + ] is a given function. Note that in Section 5 we will explain how to deal with piecewise constant constraint functions F such that, if t i and t i+1 are two consequent times at which F is discontinuous, the value of

F(t) for t ∈ (t i , t i+1 ) depend on u | [0,t i ]×R . For u ∈ Ω, k ∈ [0, V ] and F ∈ [0, f + ] we define N k F (u) . = f (u) n k F W(u) if F = 0, k if F = 0, n k F (W ) . = k F - 1 p -1 (W -k) + , (8) 
and introduce the entropy-entropy flux pair

E k (u) . =    0 if v k, ρ p -1 W(u) -k -1 if v < k, Q k (u) . =    0 if v k, f (u) p -1 W(u) -k -k if v < k, (9) 
which is obtained by adapting the entropy-entropy flux pair introduced in [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for the ARZ model.

Definition 2.1. Let u ∈ BV(R; Ω). Let F ∈ L ∞ ∞ ∞ (0, ∞); [0, f + ]). We say that u ∈ L ∞ ∞ ∞ (0, ∞); BV(R; Ω) ∩ C 0 0 0 R + ; L 1 1 1 loc (R; Ω
) is an admissible solution to constrained Cauchy problem [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] if the following holds: (S.1) Initial condition (7b) holds for a.e. x ∈ R, namely (bearing in mind the time continuity with L 1 1 1 loc values) u(0, x) = u(x) for a.e. x ∈ R.

(S.

2) The function u . = (ρ, v) provides a weak solution to the mass conservation equation, namely, for any

φ ∈ C ∞ ∞ ∞ c (0, ∞) × R; R we have (recalling the notation f (u) = ρ v) ∞ 0 R ρ φ t + f (u) φ x dx dt = 0. ( 10 
) (S.
3) The function W(u) defined in (6) satisfies the weak formulation and the renormalization property away from the constraint, namely, for any

g ∈ C([w -, w + ]; R) and φ ∈ C ∞ ∞ ∞ c (0, ∞)×R; R such that φ(•, 0) ≡ 0, we have that ∞ 0 R E g (u) φ t + Q g (u) φ x dx dt = 0, ( 11 
)
where

E g (u) . = ρ g W(u) and Q g (u) . = v E g (u).
(S.4) Entropy inequalities are satisfied up to the constraint, namely, for any k

∈ [0, V ] and φ ∈ C ∞ ∞ ∞ c ((0, ∞) × R; R) such that φ 0 we have ∞ 0 R E k (u) φ t + Q k (u) φ x dx + N k F(t) u(t, 0 -) φ(t, 0) dt 0. ( 12 
)
(S.5) The constraint condition (7c) holds for a.e. t > 0, namely

f u(t, 0 ± ) F(t)
for a.e. t > 0.

Remark 2.2. It is possible to prove, using the delicate theory of [START_REF] Panov | Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients[END_REF], that as soon as [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF] holds with g = Id (which corresponds to the mere weak formulation) and ( 10) holds (that is, the field (ρ, ρv) is divergence-free), the formulation (11) holds with arbitrary g. We include the renormalization property [START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF] into the definition because of its importance in the derivation of entropy inequalities and also because it is easily proved at the level of approximate solutions constructed with the wave-front tracking algorithm. In [START_REF] Benyahia | Lack of BV bounds for approximate solutions to a twophase transition model arising from vehicular traffic[END_REF], the notation

E k (u), Q k (u), N k F(t) (u)
for "Kruzhkov-like" entropies, the associated entropy fluxes and the associated constraint-related interface terms, respectively, is borrowed from our work [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] on ARZ with point constraint. This choice reflects the fact that, in view of the linear degeneracy of LWR considered in the free phase, we can merely rely upon entropy characterization of solution admissibility borrowed from the ARZ playground. In [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF], the notation E g (u), Q g (u) for conserved entropies and the associated entropy fluxes also stems from [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]. We use it in order to underline the inerpretation of the renormalization property (11) within the usual entropy dissipation paradigm of hyperbolic conservation laws. We refer to [4, Section 2.3] for detailed description of entropies of ARZ.

Before turning to further comments on Definition 2.1, in the following proposition we state precisely which discontinuities are admissible for the solutions to [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF].

Proposition 2.3. Let u be a solution of constrained Cauchy problem [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] in the sense of Definition 2.1. Assume that F is a piecewise constant function. Then u has the following properties:

• At any Lipschitz curve of discontinuity x = δ(t) of u, the first Rankine-Hugoniot jump condition holds for a.e. t > 0:

ρ t, δ(t) + -ρ t, δ(t) -δ(t) = f u(t, δ(t) + ) -f u(t, δ(t) -) , (13) 
and if δ(t) = 0, then it satisfies also the second Rankine-Hugoniot jump condition

ρ t, δ(t) + W u t, δ(t) + -ρ t, δ(t) -W u t, δ(t) - δ(t) = f u t, δ(t) + W u t, δ(t) + -f u t, δ(t) -W u t, δ(t) -. (14) 
• Any discontinuity of u away from the constraint location x = 0 is classical, i.e., it satisfies the Lax entropy inequalities.

• Non-classical discontinuities of u may occur only at x = 0, and in this case the (density) flux f (u(t, 0 ± )) at x = 0 equals the maximal flux F allowed by the constraint. Moreover, whatever be the nature of the shock at x = 0, it holds

f (u(t, 0 ± )) W u(t, 0 -) -W u(t, 0 + ) 0 for a.e. t > 0. ( 15 
)
The proof is deferred to Section 4.

Remark 2.4. While the formal writing (7a) does not describe the dynamics W(u) in the free phase nor at the phase transitions, Definition 2.1(S.3) states that W(u) plays the role of a globally defined Lagrangian marker for our phase transition model [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF], up to the possible lack of conservativity at the constraint location. That is, a solution u to the constrained Cauchy problem [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] does not satisfy in general the second Rankine-Hugoniot condition (14) along x = 0 (condition that rewrites as

ρ(t, 0 -) W u(t, 0 -) v(t, 0 -) = ρ(t, 0 + ) W u(t, 0 + ) v(t, 0 + ) for a.e. t > 0
for jumps along the interface). Indeed the (extended) linearized momentum ρ W(u) is conserved across (classical) shocks and phase transitions, but in general it is not conserved across non-classical shocks even if they are between states in Ω c . As a consequence, a solution to [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] taking values in Ω c is not necessarily a weak solution to the 2 × 2 system of conservation laws in (7a) for the congested flow. For this reason in [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF] we consider test functions φ such that φ(•, 0) ≡ 0. This is in the same spirit of the solutions considered in [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF][START_REF] Dal Santo | General phase transition models for vehicular traffic with point constraints on the flow[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Dymski | Existence of BV solutions for a non-conservative constrained Aw-Rascle-Zhang model for vehicular traffic[END_REF][START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF] for traffic through locations with reduced capacity. However, differently from [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF], in this paper we do not require in (12) that φ(•, 0) ≡ 0. This allows us to better characterize the (density) flux at x = 0 associated to non-classical shocks. In fact, we can ensure that the flux of the non-classical shocks of any solution is equal to the maximal flux F allowed by the constraint without requiring the technical assumption [9, (2.14)], as pointed out in Proposition 2.3 below. We can also ensure that the lack of conservativity in the generalized momentum equation is sign-definite, namely R ρ(t, x) W(u(t, x)) dx is non-increasing with t: this is an immediate consequence of the above inequality [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF].

Note that the assumption of piecewise constancy of F can be weakened via localisation arguments (cf. [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]Prop. 3.2]); however, we do not go beyond the piecewise constant setting in the rest of this paper, because of the difficulty of controlling the variation of the approximate solutions constructed with wave-front tracking.

Remark 2.5. The characterization of non-classical shocks at x = 0 by the constraint saturation condition f (u(t, 0 ± )) = F(t), achieved in Proposition 2.3 for the model at hand, was the cornerstone of the uniqueness results in the LWR point constrained models, [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF], and it holds true for the constrained ARZ model, [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]. Note that for phase transition models without the metastable phase, the constraint saturation property can not be true in all situations, see [START_REF] Benyahia | Lack of BV bounds for approximate solutions to a twophase transition model arising from vehicular traffic[END_REF].

In order to describe precisely non-classical shocks and define the functional designed to control the total variation of the wave-front tracking solutions, let us introduce v ± F ∈ [0, V ] and w F ∈ [w --1, w + ] defined by the following conditions, see Figure 2:

if F = f + : v + F . = V, v - F . = V, w F . = w + , if F ∈ [f -, f + ) : v + F . = V, v - F + p(F/v - F ) = w + , w F . = p (F/V ) + V, if F ∈ (0, f -) : v + F + p(F/v + F ) = w -, v - F + p(F/v - F ) = w + , w F . = w --1 + F f -, if F = 0 : v + F . = 0, v - F . = 0, w F . = w --1. v V w - w F w --1 w + w v - F v + F ρ ρ R v - F v + F f F Figure 2: Geometrical meaning of w F , v ± F and Ξ F in the case F ∈ (0, f -).
The curve in the figure on the left is the graph of Ξ F , which corresponds to the horizontal solid segment in the figure on the right.

For any F ∈ (0, f + ), let Ξ F : [v - F , v + F ] → [w -, w + ] be given by Ξ F (v) . = v + p(F/v), see Figure 2.
Notice that Ξ F is strictly decreasing by [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] and is strictly convex by [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF].

For any

F ∈ (0, f + ), let [w --1, w + ] w → û(w, F ) = (r(w, F ), v(w, F )) ∈ Ω c and [0, V ] v → ǔ(v, F ) = (ř(v, F ), v(v, F )) ∈ Ω be defined in the (v, w)-coordinates by v(w, F ) . =      Ξ -1 F (w) if w > max{w -, w F }, v + F if w F < w w -, V if w w F , ŵ(w, F ) . =      w if w > max{w -, w F }, w -if w F < w w -, w F if w w F , v(v, F ) . =      V if v > v + F , v if v ∈ [v - F , v + F ], v - F if v < v - F , w(v, F ) . =      w F if v > v + F , Ξ F (v) if v ∈ [v - F , v + F ], w + if v < v - F , (16) 
where ŵ ≡ w • û and w ≡ w • ǔ, see Figures 3 and4.

The following lemma collects some useful properties of the maps defined above. In particular, it explains why we limit our study to the case of F taking values in [f -, f + ]. Lemma 2.6.

For any

F ∈ (0, f + ), w ∈ [w --1, w + ] and v ∈ [0, V ] we have f û(w, F ) = f ǔ(v, F ) = F. 2. The maps w → û(w, F ) and v → ǔ(v, F ) are Lipschitz continuous if and only if F f -. The Lipschitz constant is then uniform with respect to F ∈ [f -, f + ]. 3. If F < f -, then w → û(w, F ) and v → ǔ(v, F ) are only left-continuous. 4. ŵ(w, F ) w and v(v, F ) v.
5. w → ŵ(w, F ) and v → v(v, F ) are non-decreasing, while w → v(w, F ) and v → w(v, F ) are non-increasing.

Proof. We focus on the proof of 2, which is crucial for the analysis of increase of the Glimm-like functionals providing the variation control. The other properties can be assessed analogously, upon examination of the definitions. The uniform in F Lipschitz continuity of ŵ and v is obvious. The uniform Lipschitz regularity of v and of w requires uniform bounds on Ξ F (v) and (Ξ -1

F ) (w) for v ∈ [v - F , v + F ] and w max{w -, w F }. As w = Ξ F (v) = v + p(F/v) in these calculations, v cannot lie too close to zero. One readily computes Ξ F (v) = 1 -p (F/v)F/v 2 = v -p (ρ F (v))ρ F (v) v ,
where ρ F (v) = F/v. By assumption (5) (notice that the inequality v -p(ρ

F (v))ρ F (v) > 0 is strict and can be stengthened to v -p(ρ F (v))ρ F (v) δ > 0 since p is continuous and the domain Ω c is compact), the claimed uniform bounds follow. v V = v + F w - wF w --1 w + w v - F ρ w -wF w --1 w + v v - F V w w -wF w --1 w + ŵ w wF w + ρ v V V v v - F v - F w wF w + ρ v v - F Figure 3
: Geometrical meaning of û and ǔ defined in [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] 

in the case F ∈ (f -, f + ). v V v + F v - F w - wF w --1 w + w ρ wF w - w --1 w + w v v - F v + F V wF w - w --1 w + w ŵ wF w - w + ρ v V v + F v - F v V v - F v + F v V v + F v - F w wF w + w - ρ Figure 4
: Geometrical meaning of û and ǔ defined in [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] in the case F ∈ (0, f -).

Denote by TV + and TV -the positive and negative total variations, respectively. For any u : R → Ω and

F ∈ (0, f + ) let Υ(u, F ) . = TV + v w(u), F ; (-∞, 0) + TV -ŵ w(u), F ; (-∞, 0) , Υ(u, F ) . = TV + v(v, F ); (0, ∞) + TV -w(v, F ); (0, ∞) . ( 17 
)
Remark 2.7. Due to Lemma 2.6, if F ∈ [f -, f + ] and u ∈ BV(R; Ω), then Υ(u; F ) + Υ(u; F ) are uniformly bounded by a constant times the total variation of u.

We can now state our main result. Note that it contains essentailly the two cases: constant constraint F ≡ F (0) ∈ [0, f + ] with an additional restriction on nonlinear variations of u, and piecewise constant constraint taking values above the threshold f -. Note that the assumption F(t) f -corresponds to the presence of metastable states verifying the imposed constraint.

Theorem 2.8. Let u ∈ L 1 1 1 ∩ BV(R; Ω). Assume that F ∈ PC (0, ∞); [0, f + ] satisfies one of the following conditions:

(H.1) F takes its values in [f -, f + ]; (H.2) F(t) ≡ F(0) ∈ [0, f -) and Υ(u) + Υ(u) is finite.
Then the approximate solutions u n constructed in Section 3.4 converge to a solution u ∈ C 0 0 0 (R + ; L 1 1 1 loc (R; Ω)) of constrained Cauchy problem [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] in the sense of Definition 2.1. Moreover for all t, s ∈ R + the following estimates hold

TV u(t) K, u(t) -u(s) L 1 1 1 (R;Ω) L |t -s|, u(t) L ∞ ∞ ∞ (R;Ω) R + V, (18) 
where K and L are constants that depend on u and F. Furthermore, non-classical discontinuities of u can occur only at the constraint location x = 0, and in this case the (density) flow at x = 0 and time t > 0 is the maximal flow F(t) allowed by the constraint, moreover, (15) is fulfilled.

As in [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF][START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF][START_REF] Colombo | Global well posedness of traffic flow models with phase transitions[END_REF], the proof of the above theorem is based on the wave-front tracking algorithm, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Holden | Front Tracking for Hyperbolic Conservation Laws[END_REF] and the references therein. The details of the proof are deferred to Section 3.

Corollary 2.9. The conclusion of Theorem 2.8 still holds true under the following hypothesis

• u ∈ L 1 1 1 ∩ BV(R; Ω);
• F ∈ PC (0, ∞); [0, f + ] and there exists t 1 such that

-F takes values in [f -, f + ] for all t t 1 ; -F(t) ≡ F(0) ∈ [0, f -) for all t ∈ [0, t 1 )
, and Υ(u) + Υ(u) is finite.

3 Proof of Theorem 2.8

In this section we prove Theorem 2.8. Note that the justification of the very particular situation of Corollary 2.9 is immediate, the BV control being guaranteed by the successive application of the arguments used for the case (H.2) and then for the case (H.1) of Theorem 2.8.

Lax curves

In the (ρ, f )-plane the Lax curves in Ω c of the first and second characteristic families passing through ū = (ρ, v) ∈ Ω c are respectively described by the graphs of the maps

p -1 W(ū) -V , p -1 W(ū) ρ → L W(ū) (ρ) . = f ρ, W(ū) -p(ρ) ∈ R + , p -1 (w --v), p -1 (w + -v) ρ → v ρ ∈ R + .
Conditions (4) and ( 5) ensure that for any w ∈ [w -, w + ] the map ρ → L w (ρ) = (w -p(ρ)) ρ is strictly concave and strictly decreasing in [p -1 (w -V ), p -1 (w)].

We introduce the following functions, see Figure 1:

ω : Ω c → Ω + f , u = ω(ū) ⇐⇒ w(u) = w(ū), v = V, (19a) 
v ± : Ω → Ω c , u = v ± (ū) ⇐⇒ w(u) = w ± , v = v, (19b) 
u * : Ω 2 → Ω c , u = u * (u , u r ) ⇐⇒ w(u) = W(u ), v = v r , (19c) 
Λ : (u , u r ) ∈ Ω 2 : ρ = ρ r → R, Λ(u , u r ) . = f (u r ) -f (u ) ρ r -ρ . ( 19d 
)
Notice that:

• the point ω(ū) is the intersection of Ω + f and the Lax curve of the first characteristic family passing through ū;

• for any w ∈ [w -, w + ] the point (p -1 (w), 0) is the intersection of the Lax curve of the first characteristic family corresponding to w and the segment {(ρ, v) ∈ Ω c : v = 0};

• the point v ± (ū) is the intersection of the Lax curve of the second characteristic family passing through ū and {u ∈ Ω c : w(u) = w ± };

• for any u , u r ∈ Ω c the point u * (u , u r ) is the intersection between the Lax curve of the first characteristic family passing through u and the Lax curve of the second characteristic family passing through u r ;

• Λ(u , u r ) is the speed of a discontinuity (u , u r ), that in the (ρ, f )-coordinates coincides with the slope of the segment connecting u and u r .

Observe that by definition v ± (ū) = u * ((p -1 (w ± ), 0), ū) and ω(ū) = u * (ū, (0, V )).

Riemann solvers

For completeness, we recall the definitions of the Riemann solvers R and R F introduced in [START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF] and [START_REF] Dal Santo | General phase transition models for vehicular traffic with point constraints on the flow[END_REF], associated to Riemann problem (7a) and to constrained Riemann problem (7a), (7c) with F ≡ F constant belonging to [0, f + ], respectively, and used in Section 3.3 to define the approximate Riemann solvers R n and R F,n . We recall that Riemann problems for (7a) are Cauchy problems with initial condition of the form

u(0, x) = u if x < 0, u r if x 0. ( 20 
)
Definition 3.1. The Riemann solver R : Ω 2 → L ∞ (R; Ω) associated to Riemann problem (7a), ( 20) is defined as follows.

(R.1) If u , u r ∈ Ω f , then R[u , u r ] consists of a contact discontinuity (u , u r ) with speed of propagation V . (R.2) If u , u r ∈ Ω c , then R[u , u r ] consists of a 1-wave (u , u * (u , u r )) and of a 2-contact discontinuity (u * (u , u r ), u r ). (R.3) If u ∈ Ω - c and u r ∈ Ω - f , then R[u , u r ] consists of a 1-rarefaction (u , ω(u )) and a contact discontinuity (ω(u ), u r ). (R.4) If u ∈ Ω - f and u r ∈ Ω - c , then R[u , u r ] consists of a phase transition (u , v -(u r )) and a 2-contact discontinuity (v -(u r ), u r ).
Since (t, x) → R[u , u r ](x/t) does not in general satisfy constraint condition (7c) with F ≡ F constant belonging to [0, f + ], we introduce

D F . = (u , u r ) ∈ Ω × Ω : f R[u , u r ](t, 0 ± ) F = (u , u r ) ∈ Ω f × Ω f : f (u ) F ∪ (u , u r ) ∈ Ω c × Ω : f u * (u , u r ) F ∪ (u , u r ) ∈ Ω - f × Ω - c : min f (u ), f v -(u r ) F , D F . = Ω 2 \ D F ,
and the constrained Riemann solver R F in the following definition.

Definition 3.2. The constrained Riemann solver

R F : Ω 2 → L ∞ (R; Ω) associated to constrained Riemann problem (7a), (7c), ( 20 
) with F ≡ F constant belonging to [0, f + ] is defined as R F [u , u r ](x) . =        R[u , u r ](x) if (u , u r ) ∈ D F , R[u , û ](x) if x < 0, R[ǔ r , u r ](x) if x > 0, if (u , u r ) ∈ D F ,
where û . = û(w(u ), F ) ∈ Ω c and ǔr . = ǔ(v r , F ) ∈ Ω are defined by [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF].

In Figure 5 we clarify the selection criterion ( 16) for û and ǔr in the case (u , u r ) ∈ D F and F ∈ (0, f -). We point out that û and ǔr satisfy the following general properties.

If (u , u r ) ∈ D F , then w(u ) > w(ǔ r ) and v r > v . If (u , u r ) ∈ D F and u ∈ Ω - f , then w(û ) = w -. If (u , u r ) ∈ D F and u r ∈ Ω f , then vr = V .
We recall that both R and R F are L = ǔ(v r , F ) exploited in Definition 3.2 in the case (u , u r ) ∈ D F and F ∈ (0, f -). In the first picture u 1 , u 2 represent the left state in two different cases and û1 , û2 are the corresponding û . Second and third pictures have analogous meaning, with u 1 r , u 2 r and ǔ1 r , ǔ2 r .

The approximate Riemann solvers

For simplicity here and in the following we assume that n ∈ N is sufficiently large. For any F ∈ [0, f + ] we introduce below a grid G F,n in Ω and approximate Riemann solvers

R n , R F,n : G F,n × G F,n → PC(R; G F,n ).

The grid

We introduce in Ω a grid G F,n .

= Ω ∩ P F,n , see Figure 6, with P F,n given in the (v, w)-coordinates by

∪ M •2 n i=0 v i × ∪ N •2 n i=0 w i ,
where M , N , v i and w i , are defined as follows: • If F = 0, then we let M = 1, N = 2,

w v w 0 w 4 w 8 w 12 w + w - w F w --1 v 4 v 8 v 12 v - F v + F V ρ ρ F f
w i . = w --1 + i 2 -n if i ∈ {0, . . . , 2 n } , w -+ (i -2 n ) 2 -n (w + -w -) if i ∈ {2 n + 1, . . . , 2 • 2 n } , and 
v i . = i 2 -n V if i ∈ {0, . . . , 2 n } .
• If F ∈ (0, f -), then we let M = 3, N = 3,

w i . =      w --1 + i 2 -n (w F -w -+ 1) if i ∈ {0, . . . , 2 n } , w F + (i -2 n ) 2 -n (w --w F ) if i ∈ {2 n + 1, . . . , 2 • 2 n } , w -+ (i -2 • 2 n ) 2 -n (w + -w -) if i ∈ {2 • 2 n + 1, . . . , 3 • 2 n } , and v i . =      i 2 -n v - F if i ∈ {0, . . . , 2 n } , Ξ -1 F (w 4•2 n -i ) if i ∈ {2 n + 1, . . . , 2 • 2 n } , v + F + (i -2 • 2 n ) 2 -n (V -v + F ) if i ∈ {2 • 2 n + 1, . . . , 3 • 2 n } . • If F ∈ [f -, f + ], then we let M = 2, N = 3, w i . =      w --1 + i 2 -n if i ∈ {0, . . . , 2 n } , w -+ (i -2 n ) 2 -n (w F -w -) if i ∈ {2 n + 1, . . . , 2 • 2 n } , w F + (i -2 • 2 n ) 2 -n (w + -w F ) if i ∈ {2 • 2 n + 1, . . . , 3 • 2 n } , and 
v i . = i 2 -n v - F if i ∈ {0, . . . , 2 n } , Ξ -1 F (w 4•2 n -i ) if i ∈ {2 n + 1, . . . , 2 • 2 n } .
Notice that if F ∈ {f -, f + }, then we do not necessarily have w i = w i+1 .

The approximate Riemann solvers

An approximate solution u n ∈ PC(R; G F,n ) to ( 7) is constructed by applying the Riemann solvers R n , R F,n :

G F,n × G F,n → PC(R; G F,n
), in which rarefactions are replaced by piecewise constant rarefaction fans. More precisely, for any (u

, u r ) ∈ G F,n × G F,n such that w = w r and v = v h < v r = v h+k , we let R n [u , u r ](ξ) . =      u if ξ Λ(u , u 1 ), u j if Λ(u j-1 , u j ) < ξ Λ(u j , u j+1 ), 1 j k -1, u r if ξ > Λ(u k-1 , u r ),
where u 0 . = u , u k . = u r and u j ∈ G F,n is such that v j . = v h+j and w j = w . The Riemann solver R F,n is defined as follows:

1. If f (R n [u , u r ](0 ± )) F , then R F,n [u , u r ] ≡ R n [u , u r ]. 2. If f (R n [u , u r ](0 ± )) > F , then R F,n [u , u r ](ξ) . = R n [u , û ](ξ) if ξ < 0, R n [ǔ r , u r ](ξ) if ξ 0.

The approximate solution

In this section we apply a wave-front tracking algorithm to construct an approximate solution u n in the space PC of piecewise constant functions taking finitely many values.

By assumption

F ∈ PC (0, ∞); [0, f + ] . Therefore there exist F i ∈ [0, f + ] and t i 0, i ∈ {0, 1, . . . , N }, such that F i = F i+1 , t i < t i+1 , F(t) = F i ∀t ∈ (t i , t i+1 ),
with t 0 = 0 and t N +1 = ∞. We recall that in the assumptions of theorem 2.8 we allow F ≡ F (0) ∈ [0, f + ] when N = 0, while for N 1 we assume

F i ∈ [f -, f + ] for 0 i N .
As stated in Corollary 2.9, one can also consider the intermediate situation in which N 1, 7) can be constructed as follows, using at every time step the projection on the corresponding grid. As a first step we consider the grid G F0,n and approximate the initial datum u with u

F 0 ∈ [0, f -) and F i ∈ [f -, f + ] for 1 i N . An approximate solution u n ∈ PC(R + × R; ∪ N i=0 G Fi,n ) to (
0 n ∈ PC(R; G F0,n ) such that v 0 n L ∞ ∞ ∞ v 0 L ∞ ∞ ∞ , TV(v 0 n ) TV(v 0 ), v 0 n -v 0 L 1 1 1 (K) C(K) 2 n , w 0 n L ∞ ∞ ∞ w 0 L ∞ ∞ ∞ , TV(w 0 n ) TV(w 0 ), w 0 n -w 0 L 1 1 1 (K) C(K) 2 n , (21) 
where for every compact subset K of R, C(K) is a constant independent of n. Here

w 0 n ≡ w(u 0 n ).
The approximate solution u 0 n is then obtained by gluing together the approximate solutions computed by applying R F0,n at x = 0 at time t = 0 and at any time a wave-front reaches x = 0, and by applying R n at any discontinuity of u 0 n away from x = 0 or at any interaction between wave-fronts taking place away from x = 0. At time t = t 1 we restart the above construction by updating the constraint to F 1 and by using u 0 n (t 1 , •) as initial datum. More precisely, we consider the grid G F1,n and approximate u 0

n (t 1 , •) ∈ PC(R; G F0,n ) by u 1 n ∈ PC(R; G F1,n ) such that v 1 n L ∞ ∞ ∞ v 0 n (t 1 , •) L ∞ ∞ ∞ , TV(v 1 n ) TV(v 0 n (t 1 , •)), v 1 n -v 0 n (t 1 , •) L 1 1 1 (K) C(K) 2 n , w 1 n L ∞ ∞ ∞ w 0 n (t 1 , •) L ∞ ∞ ∞ , TV(w 1 n ) TV(w 0 n (t 1 , •)), w 1 n -w 0 n (t 1 , •) L 1 1 1 (K) C(K) 2 n ,
where

w 1 n ≡ w(u 1 n ). The approximate solution u 1
n is then obtained by gluing together the approximate solutions computed by applying R F1,n at x = 0 at time t = t 1 and at any time a wave-front reaches x = 0, and by applying R n at any discontinuity of u 1 n away from x = 0 or at any interaction between wave-fronts taking place away from x = 0. More in general, at time t = t i we update the constraint to F i , consider the grid G Fi,n , approximate

u i-1 n (t i , •) ∈ PC(R; G Fi-1,n ) with u i n ∈ PC(R; G Fi,n ) such that v i n L ∞ ∞ ∞ v i-1 n (t i , •) L ∞ ∞ ∞ , TV(v i n ) TV(v i-1 n (t i , •)), v i n -v i-1 n (t i , •) L 1 1 1 (K) C(K) 2 n , w i n L ∞ ∞ ∞ w i-1 n (t i , •) L ∞ ∞ ∞ , TV(w i n ) TV(w i-1 n (t i , •)), w i n -w i-1 n (t i , •) L 1 1 1 (K) C(K) 2 n , (22) 
where w i n ≡ w(u i n ). The approximate solution u i n is then obtained by gluing together the approximate solutions computed by applying R Fi,n at x = 0 at time t = t i and at any time a wave-front reaches x = 0, and by applying R n at any discontinuity of u 1 n away from x = 0 or at any interaction between wave-fronts taking place away from x = 0. By iterating the above procedure we obtain the approximate solution

u n (t, x) = N i=0 u i n (t -t i , x) • 1 (ti,ti+1] (t). ( 23 
)
As usual, in order to extend the construction globally in time we have to ensure that only finitely many interactions may occur in finite time. In Section 3.5 we prove that u n (t, •) is well defined for all t > 0 and belongs to PC(R + × R; ∪ N i=0 G Fi,n ). Finally, in Section 3.6 we prove that u n converges (up to a subsequence) in L 1 1 1 loc to a limit u, which results to be an admissible solution to [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] in the sense of Definition 2.1.

A priori estimates

In this section we prove the main a priori estimates on the sequence of approximate solutions {u n } n defined in [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF]. In Proposition 3.4 we state that u n (t, •) takes values in G Fi,n for any t ∈ (t i , t i+1 ] and estimate TV u n (t, •) uniformly in n and t. This together with Proposition 3.6 guarantee that the number of interactions and the number of the discontinuities of u n are both bounded globally in time.

We choose to study the total variation in the (v, w)-coordinates rather than in the (ρ, v)-coordinates. This choice is convenient to describe the grid, the approximate Riemann solvers and ease the forthcoming analysis, because the total variation of u n in these coordinates does not increase after any interaction away from x = 0. Furthermore, the entropy pairs defined in [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF] in the (v, w)-coordinates are well defined, but in the (ρ, v)coordinates are multi-valued at the vacuum.

Observe that any Contact Discontinuity (CD) has non-negative speed (of propagation), any Shock (S) or Rarefaction Shock (RS) has negative speed, all the Non-classical Shocks (NSs) are stationary and the speed of all the possible Phase Transitions (PTs) ranges in the interval (-f -/(p -1 (w -) -ρ -), V ). Below we say that Remark 3.5. At this point, let us make apparent the difficulty in extension of our result to the case where F i need not be restricted to values above the threshold f -. Consider, e.g., the first re-meshing time t 1 . Under the assumption F 1 ∈ [f -, f + ], we control Υ(u 1 n , F 1 ), Υ(u 1 n , F 1 ) by the variation of u 1 n via the uniform Lipschitz constant of the maps û, ǔ (see Lemma 2.6). When F 1 ∈ [0, f -), the discontinuity of the maps û, ǔ makes this control impossible. There remains the eventuality of controlling Υ(u 1 n , F 1 ), Υ(u 1 n , F 1 ) by the values

Υ(u 0 n (t 1 , •), F 0 ), Υ(u 0 n (t 1 , •), F 0 ), being understood that u 1 n is a projection of u 0 n (t 1 ,
•) due to re-meshing. At this point, it is the change of the constraint level from F 0 to F 1 that creates a major difficulty: we are unable to control, e.g., Υ(u 0 n (t 1 , •), F 1 ) by Υ(u 0 n (t 1 , •), F 0 ) without artificial restrictions. Note that the technique that was developed for handling the analogous difficulty in the case of the ARZ system (see [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]) does not extend to our case, due to the more complex definition of the interaction potentials Υ, Υ and to the fact that W(u) may fail to satisfy the conservation equation at x = 0.

Beside the bound on the number of wave-fronts proved in Proposition 3.4, we need to bound also the number of interactions. This is the aim of the next proposition, which together with Proposition 3.4 ensure the global existence of u n . Proposition 3.6. For any fixed n ∈ N sufficiently large, we have that the number of interactions occurring in the interval of time (0, ∞) is bounded. In particular u n is globally defined.

Proof. By [9, Proposition 3.2] we have that the number of interactions involved in the construction of each u i n is bounded. Therefore the statement of the proposition follows directly from the definition (23) of u n .

Convergence

The convergence is proved by following the traditional method of proving compactness via Helly's theorem.

We observe that

|ρ -ρ r | L ρ |v -v r | + |w -w r | , where L ρ . = max{ρ -, 1/p L ∞ ∞ ∞ ([p -1 (w -),p -1 (w + )];R) }, because ρ ,r = p -1 (w ,r -v ,r ) if w ,r ∈ [w -, w + ], (w ,r + 1 -w -) ρ -if w ,r ∈ [w --1, w -).
As a consequence TV(ρ) L ρ (TV(v) + TV(w)), hence TV(u) (1 + L ρ ) TV(v) + TV(w) .

Moreover, by Proposition 3.4 we have that for any t > 0

TV v n (t, •) + TV w n (t, •) T n (t) C T 0 , and therefore TV(u n (t, •)) K . = (1 + L ρ ) C T 0 . (26) 
Proposition 3.7. Fix i ∈ {0, 1, . . . , N }. For any s, t ∈ (t i , t i+1 ) we have

u n (t, •) -u n (s, •) L 1 1 1 (R;Ω) L |t -s|, (27) 
with L . = K max{V, R p (R)} which does not depend on i or n.

Proof. If no interaction occurs for times between s and t, then

u n (t, •) -u n (s, •) L 1 1 1 (R;Ω) i∈D(t) (t -s) δi n (t) ρ n t, δ i n (t) --ρ n t, δ i n (t) + + i∈D(t) (t -s) δi n (t) v n t, δ i n (t) --v n t, δ i n (t) + L |t -s|,
where δ i n (t) ∈ R, i ∈ D(t) ⊂ N, are the positions of the discontinuities of u n (t, •). The case when one or more interactions take place for times between t and s is similar, because by the finite speed of propagation of the waves the map

(t i , t i+1 ) t → u n (t, •) is L 1 1 1
loc -continuous across interaction times.

In general u n is not Lipschitz continuous in time with respect to the L 1 1 1 -norm in space, namely, ( 27) does not hod true for all s, t > 0. Indeed, the approximation at time t i of u i-1 n (t i , •) with u i n satisfies conditions listed in [START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF], which do not guarantee the continuity across t i . This prevents an application of Helly's theorem directly to u n . However, if we set ∆ i n (x)

. = u n (t + i , x) -u n (t - i , x
), we observe that the functions u Lip n defined as

u Lip n (t, x) . = u n (t, x) - N i=1 ∆ i n (x) • 1 [ti,∞) (t),
are Lipschitz continuous in time. The most significative situation is with t i+1 > t > t i > s > t i-1 for some i ∈ {1, . . . , N }, and in this case

u Lip n (t, •) -u Lip n (s, •) L 1 1 1 (R;Ω) = u n (t, •) -∆ i n (•) -u n (s, •) L 1 1 1 (R;Ω) u n (t, •) -u n (t + i , x) L 1 1 1 (R;Ω) + u n (t - i , x) -u n (s, •) L 1 1 1 (R;Ω) L |t -s|.
All other cases are similar.

From the construction of the solutions u n detailed in Section 3.4 and in particular from [START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF] (note that the constant C(K) in ( 22) depends neither on n nor on F i ) we have that u Lip n -u n converges to the null function in L 1 1 1 loc as n goes to infinity. At the same time the sequence {u Lip n } n satisfies all the requirement of Helly's Theorem, so that it converges (up to a subsequence) in

L 1 1 1 loc (R + × R; Ω) to a function u ∈ L ∞ ∞ ∞ (R + ; BV(R; Ω)) ∩ C 0 0 0 (R + ; L 1 1 1
loc (R; Ω)) and the limit satisfies the estimates listed in [START_REF] Colombo | A 2-phase traffic model based on a speed bound[END_REF]. Although the a.e. convergence is enough for the sake of the proof of Theorem 2.8, its extension sketched in Section 5 requires convergence of {u n } n in the topology of L ∞ ∞ ∞ (R + ; L 1 1 1 loc (R; Ω)). Observe that the above arguments do guarantee this convergence.

Characterization of the limit

We start by focusing on the renormalization property and the way it is used to handle entropy inequalities: these are the key arguments of the characterization of admissible discontinuities at the constraint. First, based on the fact that wave-front tracking solutions are piecewise constant weak solutions of the problem except at times t = t i and eventually at the constraint location x = 0, we readily assess the local renormalization property for approximate solutions.

Proposition 3.8. The approximate solution u n satisfies the renormalization property [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF] with test functions supported in {(t, x) :

t i < t < t i+1 , x = 0}. Proof. Let φ ∈ C ∞ ∞ ∞ c (t i , t i+1 ); R * be a test function.
Due to the discrete nature of u n , without loss of generality we can assume that its support intersects only one discontinuity curve x = δ(t) of u n . We denote u n + . = u n (t, δ(t) + ) and so on, and for simplicity of notation we drop the subscript n. The Rankine-Hugoniot conditions (13), [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF] 

along x = δ(t) give ρ + δ(t) -f (u + ) = ρ -δ(t) -f (u -), ρ + δ(t) -f (u + ) W(u + ) = ρ -δ(t) -f (u -) W(u -), ⇐⇒ ρ + δ(t) = f (u + ), ρ -δ(t) = f (u -), or W(u + ) = W(u -), ρ + δ(t) -f (u + ) = ρ -δ(t) -f (u -).
In both the cases, for any continuous function g : [w -, w + ] → R we have

ρ + δ(t) -f (u + ) g W(u + ) = ρ -δ(t) -f (u -) g W(u -) .
As a consequence we have that u satisfies the renormalization property in R 

φ ∈ C ∞ ∞ ∞ c (0, ∞) × R; R such that supp(φ) ⊂ (t i , t i+1 ) × R, for an i ∈ {1, . . . , N }, we have that ∞ 0 N k F(t) u n (t, 0 -) φ(t, 0) dt = ∞ 0 0 -∞ ρ n N k F(t) (u n ) ψ t ξ + f (u n ) N k F(t) (u n ) ψ ξ x dx dt
where N k F (u) is defined by [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF], ψ(t) = φ(t, 0) and ξ is an arbitrary C ∞ ∞ ∞ c (R; R) test function such that ξ(0) = 1.

Proof. By Proposition 3.8 with g(W )

.

= n k F (W ), see [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF], we have that u n satisfies the equation

ρ n n k F W(u n ) t + f (u n ) n k F W(u n ) x = 0,
in the sense of distributions in (t i , t i+1 ) × (-∞, 0). As a consequence by the Gauss-Green formula we have

∞ 0 0 -∞ ρ n n k F W(u n ) ψ t ξ + f (u n ) n k F W(u n ) ψ ξ x dx dt = ∞ 0 f u n (t, 0 -) n k F W u n (t, 0 -) ψ dx dt = ∞ 0 N k F W u n (t, 0 -) ψ dx dt.
Proposition 3.10. Let u ∈ L 1 1 1 ∩ BV(R; Ω) and F ∈ PC (0, ∞); [0, f + ] satisfy (H.1) or (H.2). If u is a limit of the sequence of approximate solutions {u n } n constructed in Section 3.4, then u is a solution to constrained Cauchy problem [START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF] in the sense of Definition 2.1.

Proof. We consider separately the conditions listed in Definition 2.1.

(S.1) Initial condition (7b) holds by ( 21), ( 27) and the L 1 1 1 loc -convergence of u n to u. (S.2) We prove now [START_REF] Benyahia | Entropy solutions for a traffic model with phase transitions[END_REF], that is for any test

function φ ∈ C ∞ ∞ ∞ c (0, ∞) × R; R we have ∞ 0 R ρ φ t + f (u) φ x dx dt = 0.
Choose T > 0 such that φ(t, x) = 0 whenever t T . Since u n is uniformly bounded and f is uniformly continuous on bounded sets, it is sufficient to prove that

T 0 R ρ n φ t + f (u n ) φ x dx dt → 0. (28) 
By the Gauss-Green formula the double integral above can be written as = f u n t, δ j n (t) + -f u n t, δ j n (t) -.

By construction any discontinuity of u n (t, •) satisfies the first Rankine-Hugoniot condition [START_REF] Blandin | A general phase transition model for vehicular traffic[END_REF], therefore δj n (t) ∆ρ j n (t) -∆f j n (t) = 0, j ∈ D(t).

Moreover we have

R N i=1 ρ n (t - i , x) -ρ n (t + i , x) φ(t i , x) dx φ L ∞ ∞ ∞ L ρ N i=1 v i n -v i-1 n (t i , •) L 1 1 1 loc + w i n -w i-1 n (t i , •) L 1 1 1
loc and ( 28) is trivial.

(S.3) Property [START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF] follows by Proposition 3.8, with the contribution of the restart times t i controlled in the same way as in the above proof of property (S.2).

(S.4) We prove now [START_REF] Benyahia | Lack of BV bounds for approximate solutions to a twophase transition model arising from vehicular traffic[END_REF], namely that for any k ∈

[0, V ] and φ ∈ C ∞ ∞ ∞ c ((0, ∞) × R; R) such that φ 0 we have ∞ 0 R E k (u) φ t + Q k (u) φ x dx + N k F(t) u(t, 0 -) φ(t, 0) dt 0,
where N k F (u), E k and Q k are defined in [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] and [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF]. From Proposition 3.9 follows that for all t / ∈ {t 1 , . . . , t N }

lim n→∞ ∞ 0 N k F(t) u n (t, 0 -) φ(t, 0) dt = ∞ 0 N k F(t) u(t, 0 -) φ(t, 0) dt, ( 29 
) lim n→∞ ∞ 0 N k F(t) u n (t, 0 + ) φ(t, 0) dt = ∞ 0 N k F(t) u(t, 0 + ) φ(t, 0) dt.
Choose T > 0 such that φ(t, x) = 0 whenever t T . By the a.e. convergence of u n to u and the uniform continuity of E k and Q k , it is sufficient to prove that lim inf

n→∞ T 0 R E k (u n ) φ t + Q k (u n ) φ x dx dt 0. ( 30 
)
By the Gauss-Green formula the double integral above can be written as

T 0 j∈D(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt + N i=1 R E k (u n (t - i , x)) -E k (u n (t + i , x)) φ(t i , x) dx T 0 j∈D(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt - N i=1 R E k (u n (t - i , x)) -E k (u n (t + i , x)) φ(t i , x) dx.
Since the last sum above converges to zero as n goes to infinity, to prove [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF] it is sufficient to show that

lim inf n→∞ T 0 j∈D(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt 0, (31) 
where

∆E k,j n (t) . = E k u n t, δ j n (t) + -E k u n t, δ j n (t) -, ∆Q k,j n (t) . = Q k u n t, δ j n (t) + -Q k u n t, δ j n (t) -.
To estimate the integral in [START_REF] Marcellini | The Riemann problem for a two-phase model for road traffic with fixed or moving constraints[END_REF] we have to distinguish the following cases.

• If the j-th discontinuity is a PT, then we let x . = δ j n (t) and observe that

ρ n (t, x -) < min ρ n (t, x + ), p -1 (w --k) , δj n (t) = Λ u n (t, x -), u n (t, x + ) , v n (t, x -) = V > v n (t, x + ), W u n (t, x -) = w -w u n (t, x + ) = W u n (t, x + ) , hence ∆E k,j n (t) =    ρ n (t, x + ) ρ k n,+ -1 if v n (t, x + ) < k V, 0 if k v n (t, x + ), -∆Q k,j n (t) =      k - f u n (t, x + ) ρ k n,+ if v n (t, x + ) < k V, 0 if k v n (t, x + ),
where

ρ k n,+ . = p -1 (w(u n (t, x + )) -k). If v n (t, x + ) < k V , then δj n (t) ∆E k,j n (t) -∆Q k,j n (t) = Λ u n (t, x -), u n (t, x + ) ρ n (t, x + ) ρ k n,+ -1 + k - f u n (t, x + ) ρ k n,+ = ρ n (t, x + ) ρ k n,+ -1 >0 Λ u n (t, x -), u n (t, x + ) -Λ (ρ k n,+ , k), u n (t, x + ) >0 > 0.
• If the j-th discontinuity is a CD, then we let x . = δ j n (t) and observe that δj n (t) = v n (t, x -) = v n (t, x + ) implies that δj n (t) ∆E k,j n (t) -∆Q k,j n (t) = 0. • If the j-th discontinuity is a S, then we let x . = δ j n (t) and observe that

ρ n (t, x -) < ρ n (t, x + ), f u n (t, x -) > f u n (t, x + ) , δj n (t) = Λ u n (t, x -), u n (t, x + ) < 0, v n (t, x -) > v n (t, x + ), w ± . = w u n (t, x -) = w u n (t, x + ) w -, because ρ n (t, x -) > p -1 (w ± -k) ρ n (t, x + ) ρ -and because by the concavity of L w± (ρ) = (w ± -p(ρ)) ρ we have 0 > Λ u n (t, x -), u n (t, x + ) > Λ u n (t, x -), p -1 (w ± -k), k > L w± ρ n (t, x -) = w ± -p ρ n (t, x -) -ρ n (t, x -) p ρ n (t, x -) L w± p -1 (w ± ) = -p -1 (w ± ) p p -1 (w ± ) . ρ f F v + 0 = V v - 0,F v - 0 k ρ f F v + 0 k v - 0 v - 0,F ρ f F v - 0,F v + 0 v - 0 v + 0,F k Figure 7: Above F ∈ (f -, f + ), v ± 0 . = v n (t, 0 ± ) and v ± 0,F . = F/p -1 (W(u n (t, 0 ± )) -k). With the first two pictures we show that if v - 0 < k < v + 0 , then v - 0,F < k.
In the last picture we consider the case v

- 0 < v + 0 < k and show that v - 0,F < v + 0,F < k. ρ f F v + 0 = V v - 0,F v - 0 k ρ f F v + 0 k v - 0 v - 0,F ρ f F v - 0,F v + 0 v - 0 v + 0,F k Figure 8: Above F ∈ (0, f -), v ± 0 . = v n (t, 0 ± ) and v ± 0,F . = F/p -1 (W(u n (t, 0 ± )) -k). With the first two pictures we show that if v - 0 < k < v + 0 , then v - 0,F < k.
In the last picture we consider the case v - 0 < v + 0 < k and show that v - 0,F < v + 0,F < k.

• If the j-th discontinuity is a NS occuring at x = 0, then

δ j n (t) = 0, f u n (t, 0 ± ) = F, v - F v n (t, 0 -) < v n (t, 0 + ), δj n (t) = 0, w u n (t, 0 -) = W u n (t, 0 -) W u n (t, 0 + ) , hence -∆Q k,j n (t) =                F p -1 w u n (t, 0 -) -k - F p -1 W u n (t, 0 + ) -k if v n (t, 0 -) < v n (t, 0 + ) < k, F p -1 w u n (t, 0 -) -k -k if v n (t, 0 -) < k v n (t, 0 + ), 0 if k v n (t, 0 -) < v n (t, 0 + ), N k F u n (t, 0 -) =            k - F p -1 W u n (t, 0 -) -k   + if F = 0, k if F = 0.
Notice that if F = 0, then u n (t, 0 + ) = (0, V ) and u n (t, 0 -) ∈ [p -1 (w -), R] × {0}. We observe, see Figures 7 and8, that -∆Q k,j n (t) < 0 and that -∆Q k,j n (t) + N k F (u n (t, 0 -)) 0 and therefore

δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) + N k F u(t, 0 -) φ(t, 0) = -∆Q k,j n (t) + N k F u n (t, 0 -) φ(t, 0) 0.
Thus, as in the cases above, we can conclude that (31) holds true. We underline that beside the NSs, the only possible stationary discontinuities at x = 0 are PTs and CDs, however in both of these cases we have f (u n (t, 0 -)) = 0 and therefore N k F (u n (t, 0 -)) = 0.

The above case by case study shows that

lim inf n→∞ T 0 R E k (u n ) φ t + Q k (u n ) φ x dx dt = lim inf n→∞ T 0 i∈RSn(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt - 2 ρ - max ρ∈[p -1 (w -),R] ρ p (ρ) lim inf n→∞ T 0 i∈RSn(t) ρ n t, δ j n (t) --ρ n t, δ j n (t) + φ t, δ j n (t) dt - 2 T ρ -φ L ∞ ∞ ∞ K max ρ∈[ρ -,R] ρ p (ρ) . = -M,
where δ j n (t) ∈ R, i ∈ RS n (t) ⊂ N, are the positions of the RSs of u n (t, •) and K is defined in [START_REF] Hagan | The viscosity-capillarity criterion for shocks and phase transitions[END_REF]. We claim that for any fixed h > 0, there exists a dense set

K h of values of k in [0, V ] such that lim inf n→∞ T 0 i∈RSn(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt - 1 h .
To prove it we fix a, b ∈ [0, V ] with a < b and show that there exists k ∈ (a, b) such that the above estimate is satisfied. Let l . = 2(M h + 1)/(b -a) and introduce the set

K h . = 2 N + 1 l ∩ (a, b).
Let E n > 0 be the maximal (v, w)-distance between two "consecutive" points in the grid G F,n having the same w-coordinate, namely, with a slight abuse of notations, we let

E n . = max (v j ,w), (v j+1 ,w)∈G F,n v j =v j+1 (v j+1 -v j ).
Let n h ∈ N be sufficiently large so that E n h < 2/l. Take n n h . We claim that for any j ∈ RS n (t) we have

K h ∩ v n t, δ j n (t) -, v n t, δ j n (t) +
has at most one element. Indeed, if K h has more than one element then for any i ∈ RS n (t) we have

v n t, δ j n (t) + -v n t, δ j n (t) - E n < 2 l = min k 1 , k 2 ∈K h k 1 =k 2 |k 1 -k 2 |.
As a consequence the sum

k∈K h δj n (t) ∆E k,j n (t) -∆Q k,j n (t)
has at most one nonzero element; moreover

-m ρ n t, δ j n (t) --ρ n t, δ j n (t) + k∈K h δj n (t) ∆E k,j n (t) -∆Q k,j n (t) , 4 
Proof of Proposition 2.3

We limit ourself to the proof of the last statement, which deals with non-classical discontinuities occurring at x = 0. Moreover, we consider only the case with F ≡ F constant belonging to [0, f + ]; the general case is analogous. The statement is obvious if F = 0, due to (S.5) and the fact that f (u) 0. We can therefore assume that F > 0 and that x → u(t 0 , x) has a (stationary) non-classical shock (u , u r ), with v < v r and f (u ) = f (u r ) . = f F . We want to prove that f = F . Consider the test function

φ(t, x) . = ∞ |x|-ε ϕ ε (z) dz t-t0+2ε t-t0+ε ϕ ε (z) dz ,
where ϕ ε is a smooth approximation of the Dirac mass centered at 0 + , δ D 0+ , namely

ϕ ε ∈ C ∞ ∞ ∞ c (R; R + ), ε > 0, supp(δ ε ) ⊆ [0, ε], ϕ ε L 1 1 1 (R;R) = 1, ϕ ε → δ D 0+ .
Observe that as ε goes to zero

φ(t 0 , x) ≡ 0 → 0, φ(t, 0) = t-t0+2ε t-t0+ε ϕ ε (z) dz → δ D t0-(t), φ t (t, x) = ∞ |x|-ε ϕ ε (z) dz ϕ ε (t -t 0 + 2ε) -ϕ ε (t -t 0 + ε) → 0, χ R ± (x) φ x (t, x) → ∓ δ D 0± (x) δ D t0-(t).
Then by [START_REF] Benyahia | Lack of BV bounds for approximate solutions to a twophase transition model arising from vehicular traffic[END_REF] for all k belonging to the interval (v(w , F ), v(v r , F )) we have

Q k (u ) -Q k (u r ) + f k F - 1 p -1 W(u ) -k + = f p -1 W(u ) -k -k + f k F - 1 p -1 W(u ) -k = f F -1 k 0.
Since f F , the above estimate implies that f = F and this concludes the proof of the constraint saturation claim.

It remains to prove that W(u n (t, •)) may only have decreasing jumps at x = 0, in the precise sense [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF]. To do so, let us observe that whatever be the jump in u n at time t across x = 0, there holds f u n (t, 0 -) = f u n (t, 0 + ) 0 and W u n (t, 0 -) W u n (t, 0 + ) .

It is possible to pass to the limit in [START_REF] Panov | Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients[END_REF] arguing in an indirect way. Indeed, we have the following weak form for comparing the fluxes of the generalized momentum at x = 0 -and x = 0 + : for all φ ∈ C 0 0 0 c (t i , t i+1 ); R + ) T 0 f u n (t, 0 -) W u n (t, 0 -) φ(t, 0) dt T 0 f u n (t, 0 + ) W u n (t, 0 + ) φ(t, 0) dt. [START_REF] Richards | Shock waves on the highway[END_REF] Arguing as in Proposition 3.9 or in the proof of the property (S.5) of the main theorem, we use the Gauss-Green theorem to convert each of the integrals at x = 0 ± into volumic terms (with integrals over (0, T ) × R ± ), and then pass to the limit as n → ∞ using the stong convergence of u n . This argument shows that (33) is inherited at the limit where u n is replaced by u. Localization with the test function ensures [START_REF] Colombo | Hyperbolic phase transitions in traffic flow[END_REF]. We supply E with the L ∞ ∞ ∞ R + ; L 1 1 1 loc (R; Ω) topology, while for F we consider the topology of pointwise a.e. convergence. We assume that Q satisfies the following properties: (Q.3) The operator Q is continuous with respect to the above mentioned topologies on E and F.

Examples of such operators and the underlying modeling motivations are detailed in [2, Section 1.4.1]. Typically, they reproduce the adaptation of the constraint level made at discrete times t i = i∆ in response to the upstream averaged density of agents measured by continuous or discrete in time observations. Let us sketch the extension of the preceding theory to such non-locally constrained problems; nontrivial details are discussed at each point.

• The definition of solution to such models is exactly the same as Definition 2.1 with the additional requirement that for all t > 0 there hold F(t) = Q[u](t).

• The construction of solutions is fully analogous to the one of Section 3.4 with the only difference that the constraint level F n i on the interval (t i , t i+1 ) = (i∆, (i+1)∆) (with the explicit dependence of the constraint level F i on the approximation parameter n) is computed as F n i =Q[u n ](t i ); note that (Q.2) makes this choice meaningful. This corresponds to the standard splitting procedure for approximation of coupled problems. At the practical level, the operator Q can also be discretized (see [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for typical examples and for the general view on consistency of such discretizations), however in principle the wave-front tracking procedure allows for the computation of Q on u n .

• The dependence of F n i on n is handled by the basic compactness argument, being understood that F n i ∈ [f -, f + ]. Let us stress that the switching time ∆ is independent of n. We denote by F i the limit (along the suitable subsequence) of F n i . We can consider a finite number of switches, or even afford for i ∈ N upon using the diagonal extraction argument.

• The uniformity of the bounds on the total variation of u n (at every fixed time horizon) is ensured by the uniformity of the Lipschitz constant in Lemma 2.6.

• In the passage to the limit, we have to care about the convergence F n i → F i . The constraint level F appears explicitly at points (S.4),(S.5) of Definition 2.1. Handling the dependence of F n on n is easy due to the continuity of N k F (u) with respect to f ∈ [f -, f + ], and to the obvious possibility to pass to the limit in (S.5).

• Finally, the link F n (t) = Q[u n ](t) is preserved at the limit, for a.e. t > 0, due to (Q.3) and the convergence of (the suitable subsequence of) {u n } n in the L ∞ ∞ ∞ R + ; L 1 1 1 loc (R; Ω) topology, see the conclusion of §3.6. In the case Q is replaced by fully discrete approximations Q n , consistency properties are also required at this step of the argumentation. For the sake of conciseness, we do not pursue this line here.

To sum up, the result of Theorem 2.8 readily extends to [f -, f + ]-valued non-local constraints verifying the structural properties (Q.1), (Q.2), (Q.3). While the two latter conditions are natural for the whole class of traffic models with non-local point constraint, the assumption (Q.1) and the restriction F f -result from the technical limitations of our BV -based approach. Further work on this kind of models requires either smoother interaction potential terms (the Υ terms) in the Glimm-like functional T , or less restrictive compactness tools such as compensated compactness.
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 5 Figure 5: The selection criterion (16) for û . = û(w(u ), F ) and ǔr .= ǔ(v r , F ) exploited in Definition 3.2 in the case (u , u r ) ∈ D F and F ∈ (0, f -). In the first picture u 1 , u 2 represent the left state in two different cases and û1 , û2 are the corresponding û . Second and third pictures have analogous meaning, with u 1 r , u 2 r and ǔ1 r , ǔ2 r .
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 6 Figure 6: The grid G F,n corresponding to F ∈ (0, f -) and n = 2. The curve in the figure on the left is the support of Ξ F , which corresponds to (a portion of) the horizontal line in the figure on the right.
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  Time-discrete non-local constraints in the phase transition modelAssume that we are given a mapQ : E → F, with E =L ∞ ∞ ∞ (0, ∞); BV(R; Ω) ∩ PC R + ; L 1 1 1 loc (R; Ω) , F =PC (0, ∞); [f -, f + ] .

(Q. 1 )(Q. 2 )

 12 The discontinuities of Q[u] can only occur at times t i = i∆, for some fixed ∆ > 0 (the minimal switching time) ; The value of Q[u](t) only depends on u | [0,t]×R ;
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(u , u r ) is a null wave if u = u r . Notice that if (u , u r ) is a PT then u ∈ Ω - f and u r ∈ Ω - c , moreover if (u , u r ) is a PT with w r > w -then ρ = 0.

Let u n be an approximate solution of the form [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF]. For any t > 0, let i n (t) and n (t) be the number of waves/discontinuities of u i n (t, •) and u n (t, •), respectively. By definition [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF] we have

Lemma 3.3. We have that n : (0, ∞) → R + is uniformly bounded.

Proof. We have by construction that u i n ∈ PC(R; G Fi,n ) and by assumption that F i ∈ [0, f + ]. We can therefore apply [START_REF] Benyahia | An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic[END_REF]Proposition 4.1] and obtain that i n : (0, ∞) → R + , i ∈ {1, . . . , N }, are uniformly bounded. Hence by [START_REF] Gasser | Vehicular traffic flow dynamics on a bus route[END_REF] the proof is complete.

We introduce T i n , T n : (0, ∞) → R + and T 0 0 defined as

where for any i ∈ {0, . . . , N } we define

Recall that Υ and Υ are defined in [START_REF] Colombo | Global well posedness of traffic flow models with phase transitions[END_REF]. Conventionally, we assume that u i n , i ∈ {1, . . . , N }, are left continuous in time, i.e., u i n (t, •) ≡ u i n (t -, •). Then by definition [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF] we have that also u n is left continuous in time. Hence by definition (25) also T n is left continuous in time.

The next lemma gives uniform bounds on the total variation of the approximate solution u n . For convenience, denote by C the uniform Lipschitz constant which existence is claimed in Lemma 2.6. We also need to guarantee that only finite number of fronts is generated by the algorithm in finite time. In order to count emerging fronts, let ε i n > 0 be the minimal (v, w)-distance between two points in the grid G Fi,n , namely

and define ε n . = min ε i n : i ∈ {0, . . . , N } .

Proposition 3.4. Fix n ∈ N sufficiently large. We have that:

(a) for all i ∈ {0, . . . , N }, the map (t i , t i+1 ) t → T n (t) ∈ R + is non-increasing and decreases by at least ε n any time the number of waves increases;

Proof. By [9, Proposition 4.1] we have that (i) the map (0, ∞) t → T i n (t) ∈ R + is non-increasing and decreases by at least ε i n any time the number of waves increases;

Therefore by ( 23) and ( 25) properties (a) and (c) hold true. Property (b) follows readily from the definition of T , the requirement that

• If the j-th discontinuity is a RS, then we let x . = δ j n (t) and observe that

Therefore we find

By exchanging the sums, multiplying by the test function and integrating in time we get

Moreover, by construction we have that K h is a non-empty set with a finite number of elements (it has at most h M elements), hence

In conclusion we proved that there exists k ∈ K h ⊆ (a, b) such that the above estimate is satisfied for any n n h ; therefore, since K h has a finite number of elements, we have

Since a and b are arbitrary, the above estimate holds true for a dense set of values of k in [0, V ].

Actually, the above estimate holds for any k in [0, V ] because the term in brackets in the above formula is continuous with respect to k. Finally, for the arbitrariness of h, we have that lim inf n→∞ T 0 i∈RSn(t) δj n (t) ∆E k,j n (t) -∆Q k,j n (t) φ t, δ j n (t) dt 0 and this concludes the proof of (30).

(S.5) We prove now that (7c) holds for a.e. t > 0, namely f u(t, 0 ± ) F for a.e. t > 0.

By construction f (u n (t, 0 ± )) F for any t > 0, namely the approximate solutions satisfy (7c). Since weak convergence preserves pointwise inequalities, it is sufficient to prove that f (u n (t, 0 ± )) weakly converges to f (u(t, 0 ± )). If φ is a smooth test function of time with compact support in (0, ∞) and ϕ is a smooth test function of space with compact support and such that ϕ(0) = 1, then

ρ n (t, x) φ(t) ϕ(x) + f u n (t, x) φ(t) φ(x) dx dt.

The right-hand side passes to the limit, yielding the analogous expression with u n replaced by u. By using again the Gauss-Green formula, one finally finds that lim n→∞ ∞ 0 f u n (t, 0 -) φ(t) dt = ∞ 0 f u(t, 0 -) φ(t) dt.

As a consequence f (u n (t, 0 -)) weakly converges to f (u(t, 0 -)), hence f (u(t, 0 -)) F for a.e. t > 0. At last, since we already proved that u satisfies the first Rankine-Hugoniot condition, we have f (u(t, 0 -)) = f (u(t, 0 + )), hence f (u(t, 0 ± )) F for a.e. t > 0.