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Data
,BS,. SIRTA-ReOBS: SIRTA

Re-expertise

Hourly long-term multi-variables Observatory located in a semi-urban area 20-km South-
dataset— NETCDF File: West of Paris
https://doi.org/10.5194/essd-10-

919-2018
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Re-averaging

Chiriaco et al. 2018

*» All the necessary variables requested by the current

Image Landsat/ Copernicus» & LRy Y oy

study are available for the period going from January 12020 GgO8IR, S

2009 to February 2014 in an hourly scale
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General approach

Creation of a model of temperature variability at 2m at SIRTA

0T,
at

=R+ + HA + Adv

R = Radiation = Rclear—sky ‘I'[Rcloud]
HG = Ground heat exchange

HA = Atmospheric heat exchange
Adv = Advection

(OMON

Main terms acting on the
surface

Estimated from

observations dataset

Study steps:

1. Creation of a model of temperature
variability

2. Statistical evaluation of the model

3. Which term is predominant, particularly in
relation to the seasons

4. The value of R,;,,, 4 and the conditions
under which it predominates over the other

terms

5. Cloud contribution and characterization



Term estimation
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Statistical evaluation of the model

(a) dT/dt mod vs dT/dt

obs.

_ Statistics by season:
(b) Hourly evolution

8 [ — ; |
[ | | | 3+ | Bias Standard deviation
6 _ - - Season Corr. Coeff. ¢C/hn) (°C/hr)
[ y=0.77*x-0.13 e
41 - g - Summer 0,82 -0,20 0,55
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v Good coefficient correlation between the

v The model follows quite well the

model and the observations (R = 0,79) (a)
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observations (b)
v Variability of T mainly driven by R radiation
on this time scale (b)
v Marked strong diurnal cycle for Rcg, and a
weak one for -/ (b) ~



Monthly-hourly cycle

(a) Observations

Hour [UTC]

Hour [UTC]

°/hr

(b) Model

 Weak mean residual values, with a max
absolute mean value around 0,45 °/hr

* The largest underestimation
(overestimation) is found in april (july)
during daytime

residual
dT
— (I?(ZS + Izcu + + HA + ) - ————'(7171;.
| | dt
|
dT ;
1t mod.



Results: 1) Relative weight of each term on

temperature variability
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Bootstrapped-aggregated decision trees

Main advantage: Reduce of overfitting
dT

Objective: Show the importance* of each term on Emod.
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Day:
v R contributes the most, followed by R¢; and
HA

Night:
v" R dominates temperature change
contributes by warming the surface

* For further information on how this value is calculated, please refer to:
https:.//www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-

complete-tutorial-scratch-in-python/
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dT/dt [°C/hr]

dT/dt [°/hr]

Results: 2) Diurnal cycle of each term
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v' Residual is generally weak

v" Clouds are the main modulator of the variability
of T at the SIRTA at this time scale (one hour).

v" HA term becomes important in spring and
summer in the late afternoon -> + of sensible
and latent heat fluxes



Results: 3) Monthly-hourly cycle of each term
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All terms have a clearly marked
monhtly-hourly cycle

Maximum positive (negative)
contribution of Rgs (R¢p) in June at
10h00 UTC

Clouds cool the surface up to
1,4°C/hr (in average)

HA term becomes important in
Spring and its contribution during

night is practically zero

All terms except Rc¢ warm the
surface during the night
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Results: 4) Specific cloud contribution in cloudy cases

(a) dT /dt mod vs RCL
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Scatterplot of Emod. Vs R¢p only

for cloudy cases* and creation of
four study categories (a)

Clouds can cool (warm) up to -
3,8°C/hr (1,8°C/hr) (a)

The treebagger analysis exposes a
continuos dominance from R term
for all the categories (b)

*Cloudy case: CRE gy /1w = 5 W/m?
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(g) Shortwave Cloud radiative effect
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(a) Temperature at 2m
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(b) Relative humidity at 2m

Results: 5) Diurnal cycle
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Solid lines represent all the data available from 2009 to 2014 for each category in cloudy cases, and

the dashed ones are for the moments when Lidar measurements are available
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R;<0: C1 and C3 -> Only day cases found

Slightly temperature and LWP change during
the day for C1 (a) except in the late afternoons
-> cloud cover (e) and precipitations (d)
increase

Important cloud cover (e) for C3 during
daytime: precipitable clouds with a max value
compared to the others categories (d) and an
important LWP (f) and a strong negative SW
and LWCRE (g,h)

Ry =0: C2 and C4 -> Mostly night cases, few
ones for the day

Marked temperature diurnal cycle for C2 with
the coolest temperatures for the night and the
highest at 10h00 and 13h00 (a): very low cloud
cover (e) and a strong seinsible heat flux (c) at
those hours

Smallest temperatures values during the day
for C4: very small CREsw and CRElw values
e,
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Summary

o Development of a model to estimate the different sources of temperature variability at SIRTA, based almost entirely on

observations.

- Estimates and adjustment of all components characterizing this local variability (SIRTA-ReObs + ERA5)

- Good results for the hourly temperature variability: good correlation coefficient and a weak residual for all seasons

- Overall, the model tends to underestimate the observations: probably because of the important lack on some variables

o For all seasons, clouds are the main modulator of temperature variability over the time scale considered, warming for both
night and day, whereas they never cool during night

o Other terms act as modulators of R.s but with a much lower contribution

o All terms remain necessary in order to obtain the best coefficient estimator between the directly measured observations and
the method

o Temperature diurnal cycle less marked when cloud cover is important, corresponding to clouds with high amount of liquid
water

@C-C;u 13 ’;"



Appendix




Variables used as inputs for the model

Variable, unit Notation | SIRTA-ReOBS

Available Data
from 2009 to

2014, in %

2 m air temperature, K

Soil temperature below the ground, K

Temperature at the mixing layer

height*, K

Surface downwelling LW radiation,

W/m?

Surface downwelling SW radiation,

W/m?

Surface upwelling LW radiation, W/m?

Surface upwelling SW radiation, W/m?

Surface downwelling LW radiation for

clear sky, W/m?

Surface downwelling SW radiation for

clear sky, W/m?

Surface upward sensible heat flux,

W/m?

Surface upward latent heat flux, W/m?

Mixing layer depth, m




Data availability

(a) Hourly available data (b) Seasonal available data

Spring Summer Winter
Seasons

EGU 2020



Term estimation

Radiative term

_a+1 e
c,pMLH ~— "*"

AFygr =SW 1 -SW T +LW | —LW 1
MLH: Mixed layer height

C,: Specific heat of air

p: Air density

a:Shape parameter of vertical
temperature profile

(Cmom

Ground heat
exchange term

HG=TS_T2m

Ts

T : Soil temperature below the
ground

T,,, : 2m air temperature

T, : relaxation timescale

Advection
aT, aT,
Adv = U10m axm + V1iom aym

u, v : Horizontal wind speeds

EGU 2020

Atmospheric heat
exchange term

T —T
HA — _MLH 2m
Ta

T y1y : Temperature at the mixed layer
height
T, : relaxation timescale*

T —T
o= MLH 2m pC,MLH

(Fsens+Flatent) (a + 1)

* See next slide
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TMLH — TZm a—+ 1

Tq B cp,PMLH

(Eeens + F latent)

_ TMLH _ T2m
(Fsens +Flatent) * (C{ + 1)

Tqg = * pC,MLH

EGU 2020




Why a lookup table for 7?
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