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vulnerability and a proof-of-concept
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Abstract

I/O attacks have received increasing attention
during the last decade. These attacks are
performed by malicious peripherals that make read
or write accesses to DRAM memory or to memory
embedded in other peripherals, through DMA
(Direct Memory Access) requests. Some protection
mechanisms have been implemented in modern
architectures to face these attacks. A typical
example is the IOMMU (Input Output Memory
Management Unit). However, such mechanisms
may not be properly configured and used by the
firmware and the operating system. This paper
describes a design weakness that we discovered in
the configuration of an IOMMU and a possible
exploitation scenario that would allow a malicious
peripheral to bypass the underlying protection
mechanism. The exploitation scenario is
implemented for Intel architectures, with a PCI
Express peripheral FPGA, based on Intel
specifications and Linux source code analysis.
Finally, as a proof of concept, a Linux rootkit
based on the attack presented in this paper is
implemented.

Keywords: Security; IOMMU; Firmware; Linux;
Vulnerability; Attack

1 Introduction
Historically, early personal computers and their pe-
ripherals were mostly designed and built by the same
company. The peripherals used to be much less com-
plex than today (microcode, firmwares, etc.) and the
processor manufacturers used to trust the peripher-
als. However, with the increasing demand for higher
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performance levels and hardware services, more so-
phisticated architectures have emerged with multiple
input/output communication channels. In particular,
normalized communication buses have been specified
to allow tier manufacturers to complement bare ar-
chitectures with complex peripherals. Then, to relieve
the host processor from performing certain data copies
and operations, DMA cycles have been added to these
external buses, allowing peripherals to perform read-
/write accesses to other peripherals and RAM memory
segments. These communication channels raise serious
security concerns as they offer opportunities to attack-
ers to corrupt the system and the hosted applications
using some malicious peripherals. To cope with such
attacks, also called I/O attacks, some hardware pro-
tection components, such as the IOMMU, have been
included in modern computers.

In order to really take advantage of these security
components, they have to be properly configured and
activated by the firmware and the kernel at boot time.
The security of the boot process is crucial, as weakness
at this stage may lead to a serious security flaw, de-
spite the reliable design of these components. To the
best of our knowledge, the security of the boot pro-
cess has not been thoroughly investigated in the liter-
ature. This paper focusses on the security analysis of
the IOMMU activation process at boot time. In par-
ticular, it is shown, that even if this component has
been introduced 10 years ago, some serious security
concerns may be raised about its actual efficiency to
prevent malicious I/O attacks. Briefly, this paper high-
lights a novel attack scenario that is related to the fact
that the IOMMU configuration tables are initialized in
a DRAM region which is not protected from DMA
at startup. As a consequence, a malicious peripheral
may modify these tables just before the activation of
the IOMMU by the hardware. To illustrate the feasibil-
ity of this scenario, a proof-of-concept is implemented
and presented in this paper.

A preliminary description of the vulnerabilities and
the exploitation scenario of the IOMMU was presented
in [1]. In this paper, more technical details are pro-
vided, in particular, regarding the related work, the
description of the proof-of-concept, and the experi-
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ment carried out to illustrate the IOMMU vulnera-
bility and its exploitation. The potential impact of the
identified vulnerability and the main limitations are
also discussed.

This paper is organized as follows. The next two
Sections describe fundamental components of the ar-
chitecture involved in the identified design weakness.
Section 2 presents some basic technical background
about PCI Express bus and communications that are
used to perform DMA, while Section 3 presents the
IOMMU component as well as some of its internals,
that are necessary for the reader to understand the
vulnerability and its potential exploitation. Section 4
briefly presents some examples of I/O attacks. Section
5 describes the vulnerability that we discovered in the
configuration of the IOMMU and a scenario illustrat-
ing its possible exploitation. Section 7 proposes some
countermeasures to cope with this vulnerability. Fi-
nally, Section 8 concludes and discusses future work.

2 Technical background
This section presents basic background concepts re-
lated to the PCI Express bus and communications that
are useful to understand the rest of the paper.

2.1 PCI Express bus
Several bus specifications like Industry Standard
Architecture or Peripheral Component Interconnect
(PCI) have been implemented to support the com-
munications between the CPU and the peripherals.
Today, the PCI Express bus is used in most personal
computers and servers. There are three main types
of PCI Express devices. The root of the bus hierar-
chy, called the root complex, is connected to the CPU
thanks to the host bridge and to first level PCI Ex-
press children devices. These devices can be endpoints
(so-called peripherals in the paper) and bridges. A
bridge connects two different logical bus domains with
an upstream and a downstream port.

2.2 Communications
Each PCI Express device is identified with a PCI log-
ical bus, a device and a function identifier (id), noted
bus:dev.fun. This identification is used to route PCI
Express messages between devices.

The receiver of a message is either identified by its
identifier or by an address. Thus, an address has two
purposes. Either, it corresponds to an element in the
main memory and the memory controller redirects the
corresponding access to the DRAM or it corresponds
to a register of another device and the memory con-
troller redirects the corresponding access to the device.
In the latter case, the registers of the device are said
memory mapped. For instance, a memory read message
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Figure 1 Memory read message routing

contains a destination address and a device requester
id: the destination of the corresponding memory read
completion (response) is the associated requester id.
PCI Express messages are therefore routed by address
or id. To route the messages correctly, the bridges are
configured by the host to know which ids and mem-
ory ranges are responsible for downstream communica-
tions. Figure 1 illustrates the routing of a memory read
message targetting address 0xffc from device 03:00.0
and its associated completion from the host bridge to
the requester device.

At boot time, the devices are not yet configured and
they do not know their own identifier. Indeed, the
manufacturer does not know the bus on which the
device will be plugged. However, when the firmware
looks for all available devices (using the assembler in-
struction mov to read the PCI Express space mapped
in memory), each memory access is processed by the
host bridge. The host bridge then translates this ac-
cess into a PCI Express configuration request which
is routed to the corresponding bus. In particular, this
request contains the identifier of the contacted device.
If this device is available in the system, it receives this
request and then knows its identifier. This step is im-
portant to allow a device to communicate.

PCI Express peripherals are able, through DMA re-
quests, to access other peripheral memories and the
main RAM, even in the kernel memory regions, with-
out any control of the processor. This raises a major
security concerns if the peripheral is controlled by an
attacker. To mitigate this threat, Intel has integrated
the IOMMU hardware component, to filter PCI Ex-
press messages. This component is presented in the
next section.



Morgan et al. Page 3 of 10

RTAR

GCMDR

IOMMU
configuration

registers

Bus Device Function

0237815

requester id

Root table Context table

« 4

+

« 4

+
Root
Entry

Context
Entry

Offset

0111220212930383947

Virtual Address

PML4
entry

PML4 table

« 3

+
PDPT
entry

PDP table

« 3

+
PD

entry

PD table

« 3

+
PT

entry

Page table

« 3

+ +

Physical 
Address

DRAM Device to domain mapping Address translation

1 2

Figure 2 DMA Remapping with 48 bits virtual addresses in 4kB pages

3 IOMMU internals – DMA Remapping
This section presents the services provided by the
IOMMU and describes how it is configured.

3.1 Peripherals address space Virtualization

IOMMUs are designed to virtualize the memory space
and the interrupts of the peripherals. Memory virtual-
ization is implemented in the so-called DMA Remap-
ping units (DMAR) of the IOMMU. The DMAR has
been designed to simplify address space association
and coherency between the drivers and the hardware.
Indeed, device drivers use a different address space
than the peripherals because they process virtual ad-
dresses configured by the kernel. When it is necessary
to pinpoint a specific location in the DRAM to con-
figure DMA, the drivers have to translate virtual ad-
dresses to the physical address space used by the de-
vice. This operation increases the design complexity
of device drivers and micro kernels/hypervisors. Us-
ing DMAR, the peripherals can share the same virtual
address mappings as the drivers (at least for trans-
lation). As a consequence, the drivers can configure
virtual addresses into peripheral DMA configuration
registers. Furthermore, since DMAR has a two level
address translation mechanism, the same strategy can
even be used within virtual machines and pass-through
drivers. Consequently, virtualized MMU mappings can
be easily matched to IOMMU mappings by the hyper-
visors. The IOMMU also brings similar advantages as
the MMU in the cores. It is for example possible to de-
tect faulty devices accessing unmapped physical pages
because of software or hardware bugs.

From the security point of view, the filtering feature
of DMAR allows to immediately cope with the largest
part of legacy I/O attacks, if properly configured. The
next section introduces the basic concepts of DMAR
configuration which are necessary to understand our
attack.

3.2 IOMMU configuration
An architecture can contain several IOMMUs, each
one dedicated to a subset of buses (Figure 1). DMAR
units translate and filter requests according to the pro-
tection domain assigned to the emitter device. A pro-
tection domain is defined by a set of translation poli-
cies. The process is divided into two phases. The first
one identifies the protection domain assigned to the
emitter device. This phase, called device to domain
mapping, is conceptually similar to an address trans-
lation but instead, it associates PCI identifiers to ad-
dress translation domains. In the second phase, called
address translation, the addresses used by peripher-
als memory accesses are translated by DMAR, before
crossing the host bridge (Figure 1). This translation
is similar to the one carried out by the cores Memory
Management Unit (MMU). Access controls are appli-
cable in the two translation phases.

Each DMAR unit can be configured separately in
a configuration page and a tree structure (Figure 2),
the latter placed in DRAM. This configuration page
contains the main control register called Global Com-
mand Register (GCMDR) which is designed to acti-
vate the translation mechanism thanks to the Transla-
tion Enable bit (TE) [2, section 10.4]. It also contains
a pointer to the tree structures root (i.e. the root en-
try of the root table in the Figure 2), named the Root
Table Address Register (RTAR). The location of the
configuration page of a DMAR is identified by means
of a dedicated register in the memory controller, set
by the firmware. The identifier of a PCI Express mes-
sage sender is used to index the first two tables of the
tree structure (the root table and the context table)
in the first phase. The resolved address is then used to
pinpoint the structures for the second phase. These
structures are indexed with the destination address
of the PCI Express message. The result is the phys-
ical address of the translation. During the handling
of these tables, a dedicated bit indicates if the access
is granted or forbidden. Finally, it is noteworthy that
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the second translation phase can be deactivated (pass
through mode) thanks to the translation type field of
a context entry.

Unfortunately, like other hardware or software sys-
tems, these mechanisms may be inefficient if the im-
plementation and the configuration are not correct. In
the following, we briefly present some examples of such
vulnerabilities before describing in detail the novel vul-
nerability we discovered as well as the exploitation ex-
ample we implemented.

4 I/O vulnerabilities and related work
Many I/O attacks have been presented in the litera-
ture [3, 4, 5, 6, 7]. In this paper, we focus on DMA
attacks. These attacks were described in several stud-
ies. In particular, [8] demonstrates that an outsider can
compromise an entire system by exploiting a vulnera-
bility in one of its network cards. Fortunately, most of
these vulnerabilities have been fixed with the integra-
tion of the IOMMU.

As presented in the previous section, a well config-
ured DMAR unit is theoretically able to enforce an
expected access control policy on a DMA accessible
memory. The access control policy is given by the
DMAR domain and a domain is associated to a device
through device to domain mapping. Consequently, in
order to be efficient, the DMAR unit needs to identify
precisely each DMA capable device.

However, in [9], the authors take benefit of the col-
location of PCI Express and PCI bus to exploit a
weakness in the filtering performed by the IOMMU.
Indeed, the PCI to PCI Express bridge uses its own
PCI id as the requester id when translating PCI read-
/write cycles to PCI Express messages, acting like a
proxy. Therefore, all the devices behind the PCI Ex-
press to PCI bridge are sharing the identity of the
bridge from the IOMMU point of view, and so the
same domain. They exploited this vulnerability with a
malicious firewire controller plugged behind the same
bridge of a legitimate network card, to inject malicious
Ethernet frames into an IP kernel stack. Finally, they
consequently succeeded to corrupt an operating sys-
tem ARP cache by injecting customized ARP reply
packets.

The authors of [10] argue that, for performance rea-
sons, kernels are unable to enforce a strict IOMMU
security policy regarding DMA buffers management.
Buffers shared between a driver and a peripheral for
DMA are allocated and deallocated at a given fre-
quency. Each time a DMA buffer is allocated or freed,
the IOMMU configuration has to be updated. To
commit configuration changes, the CPU has to flush
the IOMMU translation caches called Input/Output
Translation Lookaside Buffer (IOTLB) to update the

security policy. However, the update cannot be com-
mitted at each change of the DMA memory map be-
cause that will severely degrade the system perfor-
mances. Indeed, this operation consumes an average
of 2000 CPU cycles in Intel Sandy Bridge architecture.
This is why the IOTLB flush is deferred by the kernel,
and performed at a lower frequency than DMA map-
ping changes in the system. This performance scaling
technique opens potential time intervals during which
a buffer is still available to a peripheral despite the
fact that it had been reallocated. To our knowledge,
this vulnerability has not yet been exploited to date.

In 2011, Wojtczuk et al. succeded to attack Xen
hypervisor, with an active IOMMU, using malicious
Message Signaled Interrupts (MSI) [11]. The main
idea is to reproduce the obsolete bouncing I/O attack
in which software could use peripherals capability to
DMA in order to modify kernel memory space. To by-
pass the protection, authors uses the capability of de-
vices, here an intel e1000 network controller, to set an
arbitrary interrupt vector into an MSI, to remotely fire
an hypercall. If the malicious hypercall is issued when
the virtual machine is executing a specific system call,
which is controlled by unprivileged malicious applica-
tion code, it is possible to execute a remote buffer over-
flow with hypervisor execution privileges.

Even if most of these attacks are today inefficient
in recent architectures, they highlight the fact that
the configuration of the IOMMU by the firmware and
IOMMU Linux driver in recent kernels presents new
weaknesses that could be exploited by an attacker.
More recently, authors of [12] presented a boot time
DMA attack allowing an attacker to recover macOS
FileVault2 passwords, using a thunderbolt device. This
attack leverages the same vulnerability we had previ-
ously introduced in [13] and [1], which allows DMA
accesses at boot time before the activation of any pro-
tection mechanism. Also, this vulnerability has been
highlighted in a developers mailing list of the core-
boot x86 firmware project [14]. The next section de-
tails this vulnerability and presents an attack scenario
in which one can directly bypass IOMMU protection
against I/O Attacks.

5 Bypassing IOMMU
This section describes some weaknesses discovered in
the firmware and the Linux kernel and discusses when
and how these weaknesses can be exploited to by-
pass DMAR. The observations presented in this sec-
tion are based on the Intel documentation, but also on
the information collected empiricaly with the hyper-
visor and FPGA malicious peripheral prototypes pre-
sented in the next Section. The experiments performed
in our study are based on Dell machine precision
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T1700, with the follwoing technical details: firmware
A06 (12/05/2013); Linux 4.3.4 (with IOMMU INTEL=y);
Intel i7-4770 processor; chipset Intel PCH c220; boot-
loader grub 2.02.beta2.

5.1 Attack assumptions
Two preconditions are needed for the attacker to be
successful: the first one concerns the configuration of
the target machine and the second one concerns the
access to the PCI Express bus.

As regards the first precondition, we assume that the
attacker has a precise knowledge of the hardware and
kernel version of the victim machine, either directly,
through physical access, or indirectly by fingerprinting.
This assumption is realistic in many situations, e.g., in
big companies or professional working environments,
where, most of the time, homogeneous and standard
machines are deployed, to simplify administration and
management tasks.

As regards the access to the PCI Express bus, this
can be achieved either by plugging a malicious periph-
eral, or by remotely corrupting a peripheral of the vic-
tim machine using for instance the attack presented in
[8]).

5.2 A firmware induced vulnerability
The attack we present in this paper first relies on a
vulnerability of the firmware used in the architecture.

5.2.1 Device configuration
At startup, IOMMUs are deactivated. During the boot
time configuration, the firmware scans the PCI config-
uration space to discover and initialize vital devices,
like the main video controller, loading and executing
its embedded firmware. Read and write accesses to
the configuration space generate PCI Express config-
uration messages that are sent to the targeted device.
Devices know their PCI ids after the first scan, as ex-
plained in Section 2.2. Therefore, the peripherals are
able to generate valid messages at the early firmware
execution stage, long before the execution of the boot-
loader and then of the operating system kernel. At the
end of the execution of the firmware, the control is
given to the bootloader and to the kernel.

5.2.2 PCI Express bridges early configuration
Nowadays, DMA accesses are granted early by firmwares
to all peripherals, mainly for compatibility reasons.
The reason is that modern kernels, in our case Linux,
do not seem to know how to deal with PCI Express
bridges configuration. This is a common fact that
we have verified on our target firmware architecture
and which is also widely acknowledged in open source
firmware projects [14]. More precisely, PCI Express

bridges configuration contain the Bus Master Enable
(BME) bit which controls the upstream communica-
tions, i.e., if the messages generated by children devices
are allowed to go upstream and so perform DMA.

As a consequence, devices can initiate DMA requests
long before IOMMU configuration and kernel loading.

5.3 Linux and Intel IOMMU driver DMA weaknesses
To fulfill our attack, we also exploited a weakness
in the Intel IOMMU Linux driver drivers/iommu/

intel-iommu.c. The latter makes the IOMMU con-
figuration vulnerable during the boot up process. In
order to understand the details, it is necessary to re-
view the boot sequence on a Linux machine.

5.3.1 IOMMU configuration
After the firmware operations, the kernel is uncom-
pressed and loaded by the bootloader (GNU GRUB
in our experiment). Linux kernel modules and drivers
are then loaded and initialized. DMAR is configured by
one of these drivers. The Intel IOMMU driver creates
the translation structures and writes them in the main
DRAM. It builds the address translation domains and
device to domain mapping before copying the root ta-
ble pointer into the associated register. Finally, the
driver activates DMAR by setting the TE bit of the
GCMD Register. Let us note that these structures are
stored in memory in areas not protected by any
security mechanism.

5.3.2 Cache policy
The vulnerability we discovered is exploitable also be-
cause Linux flushes cache lines (L1 / L2 and Last Level
Cache) after every table entry modification, to ensure
the integrity of the structure in memory. Consequently,
the time period during which the entire DMAR con-
figuration exists in memory is maximized.

5.3.3 Physical memory space
We noticed that as long as the machine hardware con-
figuration is not modified, the physical address of the
DMAR root table is not changed. This property sim-
plifies the exploitation presented in this paper, pre-
venting the attacker from searching DMAR structures
into the physical memory space.

5.4 A vulnerability window
Considering the previous observations, Figure 3

highlights the time periods during which some mali-
cious peripherals can initiate DMA requests. Two im-
portant time windows are identified. The vulnerability
window represents the time interval during which pe-
ripherals are able to perform DMA. It starts right after
device address association by the firmware and ends
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Figure 3 Vunlerability and write time windows

after IOMMU activation in the IOMMU driver acti-
vation phase. Right after IOMMU activation, DMA
is denied for malicious peripherals. The write window
depicts the short interval of time during which the
IOMMU configuration is fully placed in DRAM and is
vulnerable.

Let us remind that, as stated in Section 5.3.2,
the DMAR configuration physical address does not
change, as long as the hardware, the firmware and the
kernel remain unmodified.

5.5 Attacking DMAR service
This subsection presents how to exploit the vulnerabil-
ity window described in the previous section, in order
to bypass IOMMU protection against I/O attacks.

5.5.1 Prerequisites
The attack scenario requires to locate the root of
IOMMU configuration in memory by reading the
RTAR register. As explained in the previous sections,
this address remains constant and the RTAR register
can be easily read within a Linux kernel module loaded
at runtime.

The attack requires a free memory page. As the phys-
ical memory map does not change between two re-
boots, the attacker can easily find free memory pages
using the coloring technique to see if any software has
modified the page during the boot process. One can
color a page during the preboot phase, using an UEFI
custom application, and can read it after the boot pro-
cess using the dd command on /dev/mem file for exam-
ple.

5.5.2 Exploitation
Our exploitation aims at bypassing the IOMMU mem-
ory protection without altering the integrity of the ker-
nel itself. Fulfilling this constraint makes the attack
more difficult to identify.

The easiest way for a malicious peripheral to access
the DRAM is to enable pass through mode in the con-
text entry of the DMAR (the address translation part
of Figure 2 must grant every access of the malicious pe-
ripheral). The following steps describe a possible sce-
nario to grant these accesses at the startup of the sys-
tem.

First, the configuration of the system, at startup, al-
lows all peripherals to write to DRAM. Thus, the mali-
cious peripheral can easily produce a malicious context
table in the preselected free memory page (step 0, Fig-
ure 4), with all entries set to pass through. This step
must be performed at the beginning of startup, during
the vulnerability window.

Root table

Root entry
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Malicious pass through
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Corrupted device
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T
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Figure 4 Linux IOMMU driver attack implementation

When Linux begins its execution, it first writes its
own root table (steps 1 and 2). The second step to
be performed by the attacker is to overwrite the root
table entry associated to her device. If the corrupted
device is connected to logical bus 5, the sixth entry
has to be overwritten before the IOMMU activation
through bit TE.

To maximize the chances to actually overwrite the
root table entry during the write window, the mali-
cious peripheral floods the bus with PCI Express write
requests to the sixth entry of the root table (step ∞).
Finally, Linux activates the IOMMU (step 3) with
compromised DMAR structures. From now, the
malicious peripheral can perform any DMA access.

6 Attack proof-of-concept implementation
In order to validate our intuition, we performed prelim-
inary experiments and developed a proof-of-concept.
For that purpose, we first used a tiny bare-metal re-
cursive hypervisor library called Abyme that we de-
veloped. Then we ran the real attack with a corrupted
peripheral, simulated by a FPGA PCI Express periph-
eral.

6.1 Preliminary hypervisor based implementation
Abyme is used as a privileged tool to monitor IOMMU
configuration events. The goal here is to perform, with
software, the steps (0) and (∞) of the attack imple-
mentation. Since x86 hypervisors share DRAM phys-
ical address space with PCI Express peripherals, the
simulation of the preceding steps in our hypervisor is
close enough to the malicious peripheral point of view.
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Abyme library allows the developer to register hooks
which are functions called back when selected virtual
machine interruptions occur. It is also possible to re-
configure virtual machine level memory translation,
remap pages or change their access control in order
to generate memory access faults and trigger the cor-
responding hook.

To simulate the attack, our strategy is as follows.
We first configure our hypervisor at boot time, before
the startup of the Linux virtual machine. We register a
hook to the virtual machine page fault event (EPT vio-
lations), which is raised when virtual machine memory
accesses are denied. We also register a hook to virtual
machine interruptions raised when the step by step ex-
ecution mode is active. Then, we unmap (read, write
and execute credentials off) the DMAR unit 0 configu-
ration page, associated to external peripherals. Finally,
we launch the virtual machine.

The goal here is to detect when the linux IOMMU
driver activates the translation setting GCMDR.TE bit to
1, to perform steps (0) and (∞) with the hypervisor.
The Linux IOMMU driver accesses the configuration
page several times. Each time an access is performed:
i) a virtual machine interruption occurs; ii) the single
step execution is activated; iii) if GCMDR.TE bit is to
be written, we perform steps (0), (∞) and flush the
caches; iv) we remap DMAR 0 page; v) we continue
virtual machine execution to let the virtual machine
execute the write access; vi) single step virtual ma-
chine interruption occurs; vii) we unmap again DMAR
0 page; viii) we resume virtual machine execution.

With this scenario, we were able to successfully sim-
ulate the attack described in Figure 4.

This preliminary experiment with our hypervisor be-
ing successful, we decided to implement a real proof of
concept on an FPGA PCI Express peripheral. This
FPGA and our implementation choices are presented
in the following.

6.2 FPGA device implementation
We based the development of our malicious periph-
eral on Milkymist System On Chip [15], which is orig-
inally a video DJing open hardware project. Thanks
to the hardware flexibility of FPGAs and the thought-
ful modularity of hardware and software developed for
Milkymist, we removed unneeded functionalities and
added a PCI Express end point stack with minimum
effort. Milkymist is made for a custom board hosting
a Xilinx virtex 4 FPGA[16]. Since we needed a PCI
Express connector and gigabit transceivers to develop
the PCI Express peripheral, we have chosen a Xilinx
ML605.

Our SOC contains the original Milkymist Lattice
Mico32 microprocessor (LM32), Onchip ROM, Ether-

net MAC, bus bridges, caches and controllers.In addi-
tion, we developed the malicious PCI Express periph-
eral, PCIE-EP. This core brings host memory access
to the SOC through PCI Express memory messages.
With PCIE-EP, the LM32 is able to program memory
reads, memory writes (with a high rate mode). Note
that this SOC is flexible and can be adapted for other
purposes, e.g., for the implementation of integrity tests
in the context of a hardware assisted trusted architec-
ture as presented in [17].

6.3 Results and proof-of-concept
In order to demonstrate that the exploitation of the
discovered vulnerability allows a potential attacker to
further take control of the host, we considered an ex-
ample of a kernel rootkit that we injected in kernel
memory through DMA requests performed by our ma-
licious FPGA device, once it has successfully modified
the IOMMU configuration so that it can make read-
/write accesses to kernel memory.

6.3.1 Rootkit Attack
The considered rootkit is a binary code which is in-
jected in kernel memory and modifies the behavior
of the setuid kernel system call. According to the
POSIX programmer’s setuid manual page, the nor-
mal behavior for this system call is to modify the real
user uid, effective uid and others accordingly, if the
user has the rights or enough privileges to do so. Our
rootkit modifies the preceding behavior in a way that
each time this functionality is called, the euid (effec-
tive uid) of the calling task is systematically set to 0,
which gives root user effective privileges to the calling
process. We developed a small C code to call setuid
function, that we executed by a non-root user, both
in the presence and in the absence of our exploitation
of the IOMMU configuration. The short video at [1]

shows the rootkit installation and use.

6.3.2 Implementation details
Linux system call implementation is located in the file
kernel/sys.c. Our attack modifies the setuid() sys-
tem call implementation. The following listing contains
the most relevant parts of its code.

SYSCALL_DEFINE1(setuid, uid_t, uid)

{

struct user_namespace *ns = current_user_ns();

const struct cred *old;

struct cred *new;

int retval;

kuid_t kuid;

[1]http://homepages.laas.fr/nicomett/SSTIC2016/iommu-pwn-sstic.

webm
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// (1)

kuid = make_kuid(ns, uid);

[..]

new = prepare_creds();

[..]

old = current_cred();

[..]

// (2)

new->fsuid = new->euid = kuid;

// (3)

retval = security_task_fix_setuid(new, old,

LSM_SETID_ID);

[..]

// (4)

return commit_creds(new);

[..]

}

Our objective is to modify the setuid system call
code to set the euid to 0 for the current process. If we
look at the source code, we can notice that the euid

is stored in the new structure (2), and that this mod-
ification is committed at the function return (4). Let
us note that we have also to jump the function call
located in (3), which invalidates our possible modifi-
cations to new->euid field.

Consequently, we have to inject some code to modify
new, cancel security checks and make sure that new

won’t be modified afterwards.
The next listing illustrates the main steps of new af-

fectation with the required uid as function parameter.

ffffffff810868f0 <SyS_setuid>:

[..]

// (1)

ffffffff81086909: mov %rdi,%rbx

[..]

// (2)

ffffffff8108698e: mov %ebx,0x14(%r12)

ffffffff81086993: mov %ebx,0x1c(%r12)

// (3)

ffffffff81086998: mov $0x1,%edx

ffffffff8108699d: mov %r13,%rsi

ffffffff810869a0: mov %r12,%rdi

ffffffff810869a3: callq ffffffff81279be0 <

security_task_fix_setuid>

[..]

// (4)

ffffffff810869af: mov %r12,%rdi

ffffffff810869b2: callq ffffffff81094870 <

commit_creds>

ffffffff810869b7: movslq %eax,%r14

ffffffff810869ba: pop %rbx

ffffffff810869bb: mov %r14,%rax

ffffffff810869be: pop %r12

ffffffff810869c0: pop %r13

ffffffff810869c2: pop %r14

ffffffff810869c4: pop %rbp

ffffffff810869c5: retq

The parameter is copied in %rbx (1). The code af-
fectation of new is located at (2), directly followed by
the credential check function call (3). Then, (4) in-
vokes the credential commit function and returns from
the system call. Finally, let us recall that Linux core
kernel virtual address space is not randomized. Fur-
thermore, physical addresses can be trivially deduced
from virtual one with the following bitwise function:
f(a) = a ∧ ¬0xffffffff80000000. Also, we can note
that instruction at 0xffffffff81086998 is 4 bytes
aligned, which makes DMA easier because it is also
aligned to double words.

Therefore, our rootkit payload is written at physical
address 0x01086998, The payload simply writes the
double word 0 to the (2) affectation addresses. Then
it jumps over (3) function call, to (4). The rootkit
payload listing is listed hereafter.

ffffffff81086998 <rk>:

ffffffff81086998: xor %ebx,%ebx

ffffffff8108699a: mov %ebx,0x14(%r12)

ffffffff8108699f: mov %ebx,0x1c(%r12)

ffffffff810869a4: jmp 0xffffffff810869af

ffffffff810869a6: xchg %ax,%ax // padding

The first instruction sets b register (%rbx) to zero.
Then, the two next instructions set to zero new struc-
ture pointed by register 12 (%r12). Finally, we jump
over the remaining invalid bytes of credential function
call to go to the commit call.

This proof of concept illustrates that in the presence
of the vulnerability window highlighted in this paper,
IOMMU protection can be bypassed at boot time to
run old fashioned classical I/O attacks. These conse-
quences may be extremely serious, far beyond those of
the experiment. It could be possible for an attacker to
compromise confidentiality by listening to the activi-
ties on the system by adding a sniffer. It could also
be possible for the attacker to simply shutdown the
system and make it unavailable.

7 Countermeasures and discussion
Technically, the vulnerability window described in Sec-
tion 5 is present in every machine whose firmware al-
lows DMA in the bridges because of kernel compatibil-
ity and legacy reasons. We believe that a large part of
nowadays machines are impacted by this DMA vulner-
ability window. In particular, the firmware developers
almost all the time rely on frameworks or libraries like
[14] and [18] in which this option is enabled. Accord-
ingly, it is important to implement corrective actions.

This section discusses some countermeasures to cope
with the investigated attack scenario and the trade-off
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between the cost and the efficiency of these counter-
measures. Also, we discussd the limitations and con-
straints associated with the considered attack.

7.1 Countermeasures
Efficient protection solutions to cope with the attack
discussed in the previous sections, and more generally
boot time attacks, mainly rely on the configuration of
the hardware of each computer, which is the responsi-
bility of both the firmware and the kernel.

From our point of view, even if it is challenging for
operating systems to take into account all the details
of all hardware platforms, they should support at least
the security related features of the system bus, PCI
Express in our case study. We previously mentioned
the behavior of the firmware regarding the BME bit
present in the PCI Express bridges. This bit can pre-
vent the unnecessary pre-boot DMA capability of pe-
ripherals, and so avoid the vulnerability window. This
protection seems to be the best countermeasure for
the attack presented in this paper. As a matter of
fact, both kernel and firmware developers have to re-
think the system bus pre-boot configuration. Actually,
as stated in [14], this bit is set to zero because of legacy
and kernel compatibility reasons. This solution could
be easily included in the next generation of machine
firmwares. However, there is still the question about
updating currently used firmwares. This complex and
expensive operation, which is under the responsibility
of machine manufacturers, can take several months to
be implemented.

Some alternative solutions can also be investigated
to increase the effort needed by an attacker to succeed
in performing the considered attack. For instance, the
platform that we have studied brings additional secu-
rity features: some DMA protected configurable mem-
ory segments (The DMA Protected Range specified
by the processor and the Protected Memory Ranges
implemented in the IOMMU) [19, Vol. 2, 2.5]. Linux
does not use these memory segments, placing IOMMU
structures outside the protected ranges. Devices are
consequently able to read and write the IOMMU con-
figuration before its activation. These DMA protected
memory segments are common in modern architec-
tures and should be systematically used to set up such
hardware protection components, such as the IOMMU.

Despite these protections, the system remains vul-
nerable to DMA attacks while the firmware is being
executed, in the first phase of the boot process. This
weakness is due to the fact that the firmware does not
filter DMA. It can be exploited by a malicious periph-
eral to modify the code of either Linux or the firmware
itself and so prevent the activation of the IOMMU. To
address this problem, it is necessary to check the in-
tegrity of software components, e.g., by using a tech-
nology like Intel TXT.

7.2 Limitations
As discussed in Section 5, to be successful, the attacker
must have a precise knowledge of the hardware and
kernel version of the victim machine, to be able to
predetermine the exact physical addresses of IOMMU
configuration and of the required free pages. While
such information can be easily obtained for standard
machines, it is less realistic in the case of specific or
customized platforms.

Another concern that can be raised is related to
the stealthiness of the attack. The attack consists in
configuring the IOMMU using identity mapping[2] in
the way that it deactivates the translation with pass-
through mode.

In our attack scenario, either the attacker has a phys-
ical access to the victim machine and uses a malicious
peripheral, or a device of the victim machine is cor-
rupted remotely. In the first case, the attack can be
designed to be stealthy by construction (e.g., by hiding
the malicious logic in addition to the implementation
of the legitimate behavior). In the second case, two sit-
uations can be distinguished. If the corrupted device
is configured by the kernel with identity mapping op-
tion, the attack will not be perceived by the victim.
On the other hand, if it is not identity mapped, the
corrupted driver will probably fail and the victim ma-
chine will have to be rebooted, though it would have
been already permanently compromized. Nevertheless,
the attacker can enforce the usage of identity mapping
for the corrupted device using ACPI Reserved memory
Region Reporting Structures.

8 Conclusion
The IOMMU has been included several years ago in
Intel processor architectures to provide better protec-
tion against low level attacks. While this mechanism
has proved to be efficient to cope with several I/O at-
tacks, this paper shows that it can be bypassed by
exploiting a design weakness in its configuration by
both firmwares and the Linux IOMMU driver. The
corresponding vulnerability is discussed in this paper,
a proof-of-concept and an experiment illustrating its
possible exploitation are also presented. The attack
explored makes it possible for malicious peripherals to
make read and write accesses in main memory and
to bypass the protection mechanisms embedded in the

[2]Basically, Linux creates two types of memory do-
mains. In the first type of domain, the I/O Virtual
Addresses (IOVAs) used by the peripheral and con-
figured by the driver are different than the physical
ones (IOPAs), translated by the IOMMU. The second
type defines IOVAs as identical as IOPAs, and is called
identity mapping.
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IOMMU. We are currently studying other operating
systems (such as Windows, BSD systems) in order
to check whether this vulnerability is only related to
Linux kernel or not. In the same way, we also plan to
investigate the boot process when the Intel TXT is ac-
tivated to check that this technology does not suffer
from similar weaknesses.
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