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ABSTRACT

In this paper we present some gradient projection algorithms for solving optimiza-
tion problem with convex constrained set. We derive optimality condition when
the convex set is a cone and under some mild assumptions, we prove convergence
of these algorithms. Finally, we apply them to quadratic problem arising in train-
ing support vector machines for the Wisconsin Diagnostic Breast Cancer (WDBC)
classi�cation problem.

1. Introduction

In this paper, we deal with a minimization problem of the form

min
α∈Ω

J(α), (1)

where Ω is a given non empty closed convex set of Rd and J is a continuous di�erentiable function.
A necessary optimality condition for a solution ᾱ to (1) is −∇J(ᾱ) ∈ NΩ(ᾱ), where NΩ(ᾱ) is the normal
cone to Ω at ᾱ. This optimality condition, which also becomes su�cient if J is convex on Ω, is equivalent
to the following Euler condition:

(∇J(ᾱ), α− ᾱ) ≥ 0,∀ α ∈ Ω, (2)

where (., .) designates the inner product in Rn [8, 9].

We denote by PΩ the projection operator on Ω, i.e. given a ∈ Rn,

PΩ(a) = arg min
α∈Ω

‖α− a‖2,

where ‖.‖ is the Euclidean norm.
Every optimal solution to the problem (1) satis�es also, for all r > 0,

ᾱ = PΩ(α− r∇J(ᾱ)). (3)

We recall that every point ᾱ satisfying (2) and (3) is a stationary for problem of type (1).
Many numerical methods can be adopted to solve problems of the form (1) such as penalization method,
Uzawa algorithm or interior point method. The choice of each numerical method depends on the nature of
Ω.
The gradient-projection algorithm (GPA) is a powerful method for solving problems of type (1). This
algorithm consists of:

• Choosing α0 ∈ Ω.
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• For k ≥ 0, computing αk+1 = PΩ(αk − rk∇J(αk))

The sequence of step sizes (rk) may be chosen in di�erent ways and most of convergence results of gradient
projection algorithm suppose that the gradient of J is L− Lipschitz. The study of this algorithm where
rk = r is constant was the subject of many works [2, 1, 8], where it was proven, for �xed rk = r ∈]0, 2

L [,
algorithm (GPA) converges to ᾱ, the unique solution to the problem (1) for every choice of initial vector α0.
More generally, if the sequence of step size (rk) is such that:

0 < lim inf
k→+∞

rk ≤ lim sup
k→+∞

rk <
2

L
,

and if in addition, J is such that {α ∈ Rn / J(α) ≤ J(α0)} is bounded, then, every cluster point of (αk) is
a stationary point of (1) and satis�es Euler condition [8, 9]. Convergence of (GPA) under di�erent choices
of the step size sequence (rk) has been discussed in [4].

In the case of relatively simple structure of Ω, the authors in [5] studied (GPA) with line search strategy
using exact minimization and rk = arg min

r∈R
J(PΩ(αk − r∇J(αk))). They proved that every cluster point of

the sequence (αk), generated by (GPA) is a stationary point of the problem (1). In the case of a general
closed convex set, another step size rule has been proposed in [12] called generalized Armijo step-size rule to
be used with (GPA). This rule is inspired by Armijo step-size proposed in [13] for unconstrained optimization
problems.

We propose in this work some new algorithms and then we apply them to Support Vector Machine
classi�cation problems.

Support Vector Machines (SVMs), or Vast Margin Separators stem from the work of [18] are a set of
supervised learning methods that allow to solve classi�cation or regression problems. An SVM is de�ned
by a separating hyperplane. In the case of a binary classi�cation, for a set of examples, each marked as
belonging to one of two classes (1 and -1), the SVM constructs a hyperplane with optimal margin which
classi�es or separates the data better while maximizing the distance between the two classes.
Consider n training set D = {(xi, yi) | xi ∈ Rd, yi ∈ {−1, 1}}ni=1, where xi is the ith example of dimension
d and yi is the corresponding class. When the data is linearly separable, the goal is to �nd a linear separator

f(xi) = wTxi + b, with f(xi) ≥ 0 if yi = 1 and f(xi) ≤ 0 if yi = −1, ∀i ∈ {1, ..., n}.

Where w is the weight vector and b is the bias. The problem is rewritten

yi(w
Txi + b) ≥ 0, ∀i ∈ {1, ..., n}.

The separating hyperplane is de�ned by

f(xi) = wTxi + b = 0.

If the data is linearly separable, we can �nd two parallel hyperplanes that separate the two classes, so that
the distance between them is as large as possible. The region bounded by the two hyperplanes is called the
margin, and the optimal (maximum margin) hyperplane is the hyperplane located midway between them.
Hyperplanes are de�ned by the equation

wTxi + b = yi (yi = ±1), ∀i ∈ {1, ..., n}.

The problem is written as an optimization problem with inequality constraints

min
w,b

1

2
||w||22

s.t. yi(w
Txi + b) ≥ 1, ∀i ∈ {1, ...n}.

(4)

In the non-linearly separable case, we use a nonlinear transformation

φ : Rd −→ Rp
x −→ φ(x)

,
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which transforms the data points into a larger space Rp for p > d, in which we have separability. The
resolution of the (4) (primal problem) can be done directly, However, it is very di�cult to solve the primal
problem when d is much larger than n. One can however, pass to the dual formulation (5) of the problem,
which is easy to solve. One of the main tasks in training SVMs is to solve its following dual quadratic
optimization problem :

min J(α) := 1
2 (Aα,α)− (e, α)

α ∈ Ω
, (5)

for Ω = {α ∈ Rn, (y, α) = 0 and 0 ≤ αi, i = 1, ..., n}. Where A = (aij) is a symmetric n-square matrix
de�ned by aij = yiyjK(xi, xj), i, j = 1, 2, ..., n, where K : Rd × Rd → R is the Kernel function, and the

vector e ∈ Rn is given by e =

 1
...
1

. The construction of the kernel can be done using an implicit function

φ which transforms the input space Rd into Rp provided with a scalar product of higher dimension. Through
this dot product, the kernel is de�ned by K(x, x′) = (φ(x), φ(x′)), (x, x′) ∈ Rd × Rd.

The linear kernel corresponds to K(x, x′) = (x, x′) and the Gaussian kernel, using a radial basis function
(RBF) for which K(x, x′) = exp(−γ||x− x′||2), where γ > 0.

An advantage of using kernels is that they are typically tractable, even when φ is not. If ᾱ is a solution to
the quadratic minimizing problem (5), then the decision function, applied to a test vector xtest, is expressed
by the kernel K and it is of the form:

f(xtest) =

n∑
i=0

ᾱiyiK(xi, xtest) + b̄,

where b̄ = yj −
n∑
i=1

ᾱiK(xi, xj), for a j for which ᾱj > 0.

Many speci�c algorithms were proposed to solve this quadratic problem. The Sequential Minimal Optimiza-
tion (SMO) algorithm [7] is the most used one to solve numerically such problem. The main idea of (SMO)
consists of restricting data to have only two elements in each iteration, it does not require any optimization
software in order to solve a simple two-variable problem.
In [6] the authors combined projection algorithms with SMO to solve di�erent forms of SVMs problem.

The rest of the paper is organized as follows: In Section 3, the set Ω is supposed to be a convex cone and
two algorithms are proposed to solve the problem (1). In Section 4, Ω is extended to be a convex set where we
study convergence of the generalized projection algorithm. We establish convergence of di�erent proposed
algorithms under di�erent assumptions of the cost function J . In order to apply the proposed algorithms
on SVM problem, we give direct methods to calculate the projection on the corresponding feasible set.
Proposed algorithms are implemented and applied on breast cancer diagnosis problem.

We start �rst by reconsidering the descent algorithms for unconstrained minimizing problems.

2. A review of unconstrained descent algorithm

We consider here the case of an unconstrained problem where we have Ω = Rd. We begin this paper by
revising gradient and Newton descent algorithms with exact line search

We suppose that J is continuously di�erentiable and we recall that a direction d is said to be a descent
to J at the point α if it satis�es (∇J(α), d) < 0.

Lemma 2.1 If J is convex, then, for all α ∈ Rd and for every descent direction d of J on α satisfying
(∇J(α), d) < 0, we have

arg min
r∈R

J(α+ rd) = arg min
r∈R+

J(α+ rd).
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Let r̄ ∈ arg min
r∈R

J(α+ rd). Then J(α+ r̄d) ≤ J(α). Using convexity characterization

J(α) ≥ J(α+ r̄d) ≥ J(α) + r̄(∇J(α), d).

It follows that r̄(∇J(α, d)) ≤ 0 and then r̄ > 0, since we have (∇J(α), d) < 0.

Lets consider the general descent with exact line search algorithm.
Algorithm (DA)

• Choose α0

• For k ≥ 0,

- Choose a descent direction dk of J at αk

- Compute rk ∈ arg min
r∈R

J(αk + rdk).

- Compute αk+1 = αk + rkd
k,

k := k + 1; go to step 2.

Results of the above lemma and the next proposition, which are valid for constrained or unconstrained
optimization problems, will be useful for most proposed algorithms in this paper .

Proposition 2.2 Let J be a convex function of class C1 admitting at least a minimum. We suppose that,
for The same subsequence n(k), (αk) and (dk) generated by algorithm (DG), converge respectively to ᾱ and
d̄. Then, (∇J(ᾱ), d̄) = 0

Since J is convex and continually di�erentiable, then, ψ : r ∈ R; 7→ J(αk + rdk) is convex and of class
C1 on R and from lemma (2.1), rk ≥ 0. Moreover, ψ′(rk) = (∇J(αk + rkd

k), dk) = 0. If for a subsequence,
n(k), (rn(k)) converges to 0, from the last optimality condition and continuity of ∇J , and passing to the
limit for this subsequence, we get easily (∇J(ᾱ), d̄) = 0. Otherwise, there exists r̄ > 0 such that rn(k) > r̄.

We have, by construction, the sequence J(αk) is decreasing and it is lower bounded, it is then convergent.
For all 0 < r < r̄, using real value theorem, there exists 0 < r̃k < r such that

J(αk+1) = J(αk + rkd
k)

≤ J(αk + rdk)
= J(αk) + (∇J(αk + r̃kd

k), dk)
= J(αk) + ψ′(r̃k) ≤ J(αk) + ψ′(rk)
= J(αk)

.

It follows:
J(αk+1)− J(αk) ≤ J(αk + rdk)− J(αk) ≤ 0.

Passing to the limit when n(k) converges to +∞, we obtain

J(ᾱ+ rd̄)− J(ᾱ) = 0.

Since last equality is true for all r > 0, dividing by r and passing to the limit when r tends to 0+ we obtain
(∇J(ᾱ), d̄) = 0.

In particular, for the standard gradient descent algorithm with exact line search (DA), the descent
direction is dk = −∇J(αk). If J is convex and if the sequence (αk) generated by this algorithm is bounded,
then for all ᾱ a limit of a subsequence of (αk), ᾱ satis�es necessary and su�cient optimality condition
for convex minimization problem, ∇f(ᾱ) = 0, since we have ‖∇J(ᾱ)‖2 = 0. Therefore, from convexity
assumption, ᾱ ∈ arg minα∈Rd J(α). We retrieve convergence result of gradient descent algorithm with line
search for convex problem.

Also note that if J is twice continuously di�erentiable, in newton method, we choose the descent direction
dk = −∇2J(αk)∇J(αk), where we denote by ∇2J(α) the Hessian of J at α. In the case of the constant
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step size rk = 1, under some assumptions of J , we have local convergence of Newton method to a minimum
of J on Rd.

If J is convex and if a cluster point ᾱ of the sequence (αk), generated by Newton method with exact line
search rk, is such that ∇2J(ᾱ) is a de�nite symmetric matrix, we have then ᾱ is a minimum of J on Rd.

Indeed, Newton method with exact line search rk is algorithm (DA) with dk = −∇2J(αk)∇J(αk). Since
J is convex and twice continuously di�erentiable, and for a subseqeunce (αk) converging to ᾱ, then (dk)
converges to −∇2J(ᾱ)∇J(ᾱ) and from proposition (2.2), we have (∇J(ᾱ),∇2J(ᾱ)∇J(ᾱ)) = 0 and therefore
∇J(ᾱ) = 0. Convexity of J implies that ᾱ is a minimum of J .

Global convergence of Newton method with exact line search is guaranteed if for example J is strongly
convex on Rd because:

- J is coercive and strictly convex, it has a unique minimum ᾱ

- The sequence (J(αk)) is decreasing by construction and lower bounded by J(ᾱ), as it will be clari�ed
later, (αk) is then bounded.

- Since, J is strongly convex, then ∇2J(α) is de�nite positive for all α ∈ Rd

- (αk) converges to ᾱ the unique minimum of J , due to the fact that (αk) is bounded, and every convergent
subsequence of (αk) converges to the unique minimum of J which is ᾱ.

3. Optimization problem on a convex cone

We suppose in this section that Ω ⊂ Rn is a non empty closed convex cone.

3.1. Optimality condition and projection algorithms
If the feasible set is a closed and convex cone, Euler Inequality optimality condition for problem (1) is

equivalent to the following optimality condition :

Proposition 3.1 We suppose that J is a di�erentiable function.

i) If ᾱ ∈ Ω is a solution to the problem (1), then

(∇J(ᾱ), ᾱ) = 0 and PΩ(−∇J(ᾱ)) = 0. (6)

ii) If in addition J is convex, then ᾱ ∈ Ω is a solution to the problem (1) if and only if conditions in (6)
are satis�ed.

i) Let ᾱ be an optimal solution to the problem (1). Then ᾱ satis�es the Euler condition:

(∇J(ᾱ), α− ᾱ) ≥ 0, ∀ α ∈ Ω.

Since Ω is a cone, then, α = rᾱ ∈ Ω, for all α ∈ Ω and for all r > 0. We have then,

(r − 1)(∇J(ᾱ), ᾱ) ≥ 0, ∀ r ≥ 0.

Choosing �rst r > 1 and then 0 ≤ r < 1, we deduce easily that (∇J(ᾱ), ᾱ) = 0.

The second property is satis�ed since we have

(0− (−∇J(ᾱ)), 0− α) = −(∇J(ᾱ), α− ᾱ) ≤ 0, ∀ α ∈ Ω.

From projection operator characterization we deduce that 0 = PΩ(−∇J(ᾱ)).

ii) If J is also convex on the convex set Ω, and if ᾱ satis�es (6), then

(∇J(ᾱ), α− ᾱ) = −(0−∇J(ᾱ), 0− α) ≥ 0, ∀ α ∈ Ω.

Therefore, ᾱ is a solution to the problem (1).
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The next lemma proves that PΩ(−∇J(α)) is a descent direction of J at α, for every point α ∈ Ω.

Lemma 3.2 For all α ∈ Rn, we have:

i)

(PΩ(α)− α, PΩ(α)) = 0 (7)

ii)

(PΩ(−∇J(α)),∇J(α)) = −‖PΩ(−∇J(α))‖2 ≤ 0. (8)

Let α ∈ Rn.

i) The projection PΩ(α) of α ∈ Rd on Ω satis�es

(PΩ(α)− α, PΩ(α)− β) ≤ 0, ∀ β ∈ Ω.

In particular by choosing β = rPΩ(α) ∈ Ω, �rst for r > 1, then for 0 < r < 1, the result follows.

ii) In particular, we have
(PΩ(−∇J(α)) +∇J(α), PΩ(−∇J(α))− 0) = 0.

Therefore,
(PΩ(−∇J(α)),∇J(α))) = −‖PΩ(−∇J(α))‖2 ≤ 0.

Remark 3.3 From property (7) we can deduce that projection on the closed convex cone PΩ satis�es :

(PΩ(α)− α, β) ≥ 0, ∀ β ∈ Ω,

Hence
PΩ(rα) = rPΩ(α), , ∀α ∈ Rd, and ∀ r ≥ 0.

We now present an optimal descent projection algorithm where the descent direction is the projection of the
opposite of the gradient on the feasible set Ω. Since PΩ(−∇(α)) is a descent direction of J on α, we have
�rst the idea to consider the following algorithm:

Algorithm (0)

• Choose α0 ∈ Ω.

• For k ≥ 0,

- Compute gk = ∇J(αk), dk = PΩ(−gk) and rk ∈ arg min
r∈R

J(αk + rdk).

- Compute αk+1 = αk + rkd
k,

k := k + 1; go to step 2.

Remark 3.4 From lemma (2.1), it follows that rk ≥ 0 and consequently, αk+1 = αk+rkPΩ(−∇J(αk)) ∈ Ω
when f is convex di�erentiable function.

Proposition 3.5 We suppose that J is C1 and convex on Ω. Then, any cluster point ᾱ of the sequence
(αk) generated by the last algorithm satis�es PΩ(−∇J(ᾱ)) = 0.
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Let ᾱ a cluster point of (αk). Then ᾱ is a limit of a subsequence of (αk). If for this subsequence,
dk = PΩ(−∇J(αk)) = 0, then the sequence (αk) becomes stationary and equals to ᾱ satisfying obviously
PΩ(−∇J(ᾱ)) = 0. Otherwise, dk is a descent direction of J at αk. Using continuity of the two operators
∇J and PΩ, we have, (PΩ(−∇J(αk)) converges to (PΩ(−∇J(ᾱ).

Since rk = arg min
r∈R

J(αk+rdk), and thanks to proposition (2.2) and lemma (3.2), we have (PΩ(−∇J(ᾱ)),∇J(ᾱ)) =

−‖PΩ(−∇J(ᾱ)‖2 = 0. Therefore, PΩ(−∇J(ᾱ)) = 0 as was to be proved.

Remark 3.6 We have proved that ᾱ the cluster point of (αk) satis�es only one of the two optimality con-
ditions: PΩ(−∇J(ᾱ)) = 0 and not necessary (ᾱ,∇(J(α)) = 0. As we have seen in proposition (3.1), this in
general is not su�cient for ᾱ to be a minimum of J as shown in the following example.

Example 3.7 Consider the following minimization problem

min
α∈Ω

J(α)

where J : R2 → R;α 7→ (α2
1 + α2

2)− α1 + α2 and the convex cone

Ω = {α = (α1, α2) ∈ R2, α1 ≥ 0 and α2 ≥ 0}.

It is clear that that (1, 0) is the unique minimum of J on Ω. For α0 = (1.5, 0)T , we have g0 = ∇J(α0) = (, 1)T

and d0 = PΩ(−g0) = (0, 0). Then, the sequence generated by the last algorithm gives a stationary sequence
αk = α0 which is not the minimum of J .

To ensure the second part of optimality condition, and in order to improve the last algorithm, since Ω is a
cone, at iteration k, knowing αk, we slightly modify the last algorithm by minimizing the cost function J
from 0 in the direction αk to obtain βk. Then we compute the optimal step size rk corresponding to the
direction dk = PΩ(−∇J(βk)). We obtain the following steepest descent algorithm :

Algorithm (1)

• Choose α0 ∈ Ω, such that J(α0) < J(0)

• For k ≥ 0,

- Compute tk = arg min
t∈R+

J(tαk), βk = tkα
k.

- Compute gk = ∇J(βk), dk = PΩ(−gk)) and rk = arg min
r∈R

J(βk + rdk).

- Compute αk+1 = βk + rkd
k,

k := k + 1; go to step 2.

Proposition 3.8 We suppose that J is C1, µ- convex and that the operator g = ∇J is L-Lipschitz continu-
ous. Then, the sequence (αk) generated by the algorithm (1), converges to ᾱ, the unique solution to problem
(1).

Since J is strongly convex, it is then coercive and strictly convex, it admits then a unique minimum ᾱ
on Ω.

We have :
J(αk+1) ≤ J(βk) ≤ J(αk) ≤ J(βk−1), ∀ k ∈ N∗.

The decreasing real sequences (J(αk)) and (J(βk)) are lower bounded by J(ᾱ) , they are then convergent.
Last inequalities prove that

lim
k→+∞

J(αk) = lim
k→+∞

J(βk).
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On the other hand, from µ-convexity assumption and using Cauchy-Schawrtz inequality, we deduce that,
∀α ∈ Ω

J(α) ≥ J(0) + (∇J(0), α) +
µ

2
‖α‖2 ≥ J(0)− ‖∇J(0)‖.‖α‖+

µ

2
‖α‖2.

J is then coercive. Since J is coercive and the decreasing sequence satis�es J(βk) ≤ J(ᾱ), then the sequence
(βk) is bounded. For a sub-sequence if necessary, it is then convergent to β̄.

Clearly, β̄ ∈ Ω. The function J is convex and rk = arg min
r∈R

J(βk + rdk), using lemma (2.1), it follows

that rk ≥ 0. αk+1 = βk + rkd
k and lim

k→+∞
J(αk+1) = lim

k→+∞
J(βk), we check easily like in proposition (2.2)

that β̄ is such that: PΩ(−∇J(β̄)) = 0. First part of optimality condition is well satis�ed.
On the other hand, for all k, using µ- convexity of J we get

J(αk)− J(βk) ≥ (1− tk)(∇J(βk), αk) +
µ(1− tk)2

2
‖αk‖2.

By construction, we have : tk = arg min
t≥0

φ(t), for φ(t) = J(tαk). Applying optimality condition, φ′(tk)(t −

tk) ≥ 0 for t = 1 ≥ 0, we deduce that (∇J(βk), αk)(1− tk) ≥ 0.
Moreover, we have proved that lim

k→+∞
J(αk)− J(βk) = 0, it follows that

lim
k→+∞

(1− tk)2‖αk‖2 = 0.

Obviously, either (1− tk)2 converges to 0, or (αk) converges to null vector.
If the last one is satis�ed, continuity of ∇J yields PΩ(−∇J(0)) = 0. In this case 0 is the solution to

problem (1), since it satis�es the two necessary optimality conditions PΩ(−∇J(0)) = 0 and (∇J(0), 0) = 0.

Otherwise, (tk) converges to 1 and (αk) = (β
k

tk
) converges to β̄. Since we have (∇J(βk), αk) = 0, passing to

the limit to deduce that (∇J(β̄), β̄) = 0 and the necessary optimality condition (6) is satis�ed. Uniqueness
of optimal solution of problem (1) implies that β̄ = ᾱ. Convergence of the sequence (αk) to the unique
solution to the minimizing problem (1) is then proved.

We initialize the algorithm by choosing α0 such that J(α0) < J(0) in order to grantee that αk 6= 0, since
we have J(αk) < J(0), for all iteration k. This is due to the fact that tk can not be de�ned if αk = 0. We
can choose α0 arbitrary in Ω. In such case, we just take tk = 1 and βk = αk = 0 if αk = 0.

If we take back example (3.7) and we apply algorithm (1) for the same initialisation α0 = (1.5, 0)T , we
obtain β0 = (1, 0) which is the optimal solution of problem. Solution is obtained here with just one iteration.

We can accelerate convergence of sequences (αk) and (βk) in algorithm (1) by combining algorithm (1)
and classical gradient projection algorithm (GPA) to obtain the following algorithm (2).

Algorithm (2)

• Choose α0 ∈ Ω, such that J(α0) < J(0)

• For k ≥ 0,

- Compute tk = arg min
t∈R+

J(tαk), βk = tkα
k.

- Compute gk = ∇J(βk), dk = PΩ(−gk)) and rk = arg min
r∈R+

J(βk + rdk).

- Compute αk+1 =

{
βk + rkd

k if J(βk + rkd
k) < J(PΩ(βk + rkd

k))
PΩ(βk + rkd

k) otherwise

k := k + 1; go to step 2.

Under the same assumptions of algorithm (1) we have exactly the same steps to prove convergence of
algorithm (2) to the unique solution of problem (1).

In order to prove that PΩ(−∇J(ᾱ)) = 0, we use in algorithm (2) this inequality J(αk+1) ≤ J(βk + rkd
k)

which was an equality in proposition (3.8).
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3.2. General applications
Projection on the closed convex constrained set should be easy to implement in order to be able to apply

algorithms (1) or (2).
Lets consider the minimizing problem of the form:

min
Ceα=b

J0(α) (9)

with Ce ∈ Rm × Rn is a rectangular matrix of size (m,n) and b ∈ Rm. With the change of variable
α→ α− αf , for a feasible point αf , the problem takes the form:

min
Ceα=0

J(α), (10)

where J(α) = J0(α− αf ).
The projection on the feasible convex set Ω = ker(Ce) is not di�cult to compute and we have: PΩ(a) =

a+ CTe λ, for all vector λ solution to the system CTe Ceλ = −Cea. In particular, if Ce ∈ Rn is a line vector,
then

PΩ(a) = a− Ce.a

‖Ce‖2
CTe .

For inequality constraints of the form CIα ≥ 0, projection becomes less obvious.
As examples of problem (9) we can �nd problems related to active set or to interior point methods [22].
In particular, for quadratic problem:

min J(α) = 1
2 (Aα,α)− (e, α)

Ceα = b
DIα ≥ c

(11)

at each iteration k, we have to solve the constrained problem

min J(β) = 1
2 (Aβ, β)− (e, β)

Ceβ = b
(di, β) = ci, for i ∈ Ak

, (12)

where Ak = {i / (DIβ)i = (di, β) = ci} is the index set of active inequality constraints.
In the case where the matrix DI = −I and the inequality constraint is α ≥ 0, interior point methods

consists to solve

min 1
2 (Aβ, β)− (e, β)− µ

p∑
j=1

log(βi)

Ceβ = b

, (13)

We can also apply algorithms (1) and (2) to solve quadratic sub problems in Sequential Quadratic
Programming (SQP) method.

3.3. Application to hard-margin SVM problem
Here, we are interested to the quadratic programming problem arising in training hard-margin Support

Vectors Machines (19) :

min J(α)
α ∈ Ω

(14)

where J(α) = 1
2 (Aα,α)− (e, α) and

Ω =
{
α ∈ Rn+ / (y, α) = 0, αi ≥ 0, ∀ i = 1, ..., n

}
.

It is clear that Ω is non empty closed convex cone. We propose �rst a direct algorithm to calculate the
projection on the feasible set Ω.
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3.3.1. Projection algorithm on Ω
Computing PΩ(a), the projection of a on the closed convex set Ω, for a given vector a ∈ Rn, is based on

optimality conditions of the operator PΩ.
Let ā = PΩ(a) = arg min

α∈Ω
‖x− a‖2. From Karush- Kunh and Tuker condition, there exist λ ∈ R, µ ∈ Rn+

such that:

ā− a+ λy − µ = 0 i = 1, ..., n
µiāi = 0, i = 1, ..., n
µi ≥ 0, i = 1, ..., n

(y, ā) = 0

(15)

In order to calculate ā = PΩ(a), we have to establish �rst some of its properties. We denote the set
indices of inactive inequality constraints and its length by :

I+ = {i ∈ [1, ..., n] /āi > 0.} and np = |I+|.

Lemma 3.9 If ā = PΩ(a) and λ its Lagrange multiplier associated to the equality constraint, then we have
:

i)
ai > λyi i� āi > 0, ∀ 1 ≤ i ≤ n

ii)
ai ≤ aj i� āi ≤ āj ,∀i, j / yiyj = 1

iii)

λ =
1

np

∑
i∈I+

aiyi.

i) For i ∈ [1, ..., n] such that āi > 0, due to condition (15) , we get µi = 0 and āi = ai − λyi > 0 which
yields ai > λyi.

Inversely, if ai > λyi, then āi = ai − λyi + µi > µi. If µi > 0, necessarily āi > 0 which is impossible
since āiµi = 0. It follows that µi = 0 and āi = ai − λyi > 0. The �rst property is proved.

ii) The condition yiyj = 1 means that yi = yj = 1 or yi = yj = −1. In both cases, let ai ≤ aj . If āi > 0,
then ai > λyi = λyj . Therefore, aj > λyj and āj > 0. Then

āi = ai − λyi = ai − λyj ≤ aj − λyj = āj .

If āi = 0, clearly āj ≥ 0 = āi.

iii) Since we have, ∀i, āi = ai − λyi + µi, it is enough to multiply by āi and next to sum to get easily the
expression of λ.

According to the previous lemma, we can deduce that it is su�cient to compute λ to determine ā = PΩ(a)
The algorithm (3) is a direct method to compute ā : Without loss of generality we can suppose that

max{ai; yi = 1} ≥ max{ai; yi = −1}.

Otherwise we change y by its opposite.

Algorithm (3)

• Fix ai1 = max{ai; yi = 1} and aj1 = max{aj ; yj = −1}.
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• Determine
I+ = {i / ai > −ai1 and yi = 1}, n+ = |I+|
I− = {j / aj1 > aj and yj = −1}, n− = |I−|

• Compute

ns = n+ + n− and λ =

∑
i∈I+

aiyi +
∑
i∈I−

aiyi

ns
.

if min
i∈I+,i≤n+

ai ≤ λ, take k1 = n+, aik = min
i∈I+

ai

while k1 > 0 and aik1
≤ λ, take

λ =
nsλ−aik1

ns−1 , k1 = k1 − 1 and ns = ns− 1

else:

k2 = n−, ajk2
= min
j∈I−

aj

while k2 > 0 and ajk2
≤ λ, take

λ =
nsλ+ajk
ns−1 , ns = ns− 1, k2 = k2 − 1.

• Compute ā :∣∣∣∣∣∣∣∣
for i = 1, ..., k1,

āik = aik − λ.
for j = 1, ..., k2,

ājk = ajk + λ.

Knowing how to compute projection on the constrained set Ω, we can use algorithms (1) or (2) to solve the
quadratic problem (19).

3.3.2. Experiment results
Practically, to train the SVM problem we test algorithm (1) and (2) for linear kernel, then we chose

radial basis function (RBF) for proposed method in our experiments where the kernel:

K(x, x′) = exp(−γ‖x− x′‖2).

The dataset used here was taken from the website of Wisconsin Prognostic Breast Cancer (WPBC) which
was used in several publications in the medical literature. SVM algorithms have been applied many times on
(WPBC) datasets [11, 10, 16, 17, 15, 14]. the data consists of 569 observations with 357 negative (benign)
and 212 positive (malignant) observations. Each observation has 30 attributes. The data is split into a
training set (80%) and testing set (20%) and it is invariant for di�erent kernel.

Python programming language is used to code and apply di�erent algorithms in this paper. Our objective
is to compare di�erent algorithms with K.K.T method which is in particular used and implemented in the
function 'solvers.qp' of the open source software package CVXOPT of python environment for solving convex
optimization problems.

For linear kernel, we tested the two algorithms comparing their results with one of numerical solution
obtained with python. Using the python function 'solvers.qp' for minimizing quadratic problems, objective
function value obtained is not decreasing and it reaches −1249457.382 after number of iterations N.I = 20,
−1249440.5701 for N.I = 100 and −1249411.396 after 500 iterations. But obtained solutions do not satisfy
the �st part of optimality condition cited in (6) for di�erent tested iterations. For example, if we denote by
β the obtained numerical solution, we get (β,∇J(β)) = −47 for N.I = 100 and 72.09 for N.I = 500. For
both cases, cost value function ' −1249.103.

This can be explained by the fact that the hard SVM problem does not have an optimal solution and
the data are not linearly separable or by the fact that the matrix A of our data is ill-conditioned and it
satis�es λmin(A) << 1 << λmax(A), where λmin(A) and λmax(A) are respectively the smallest and largest
eigenvalues of A. More precisely, for this example, calculated with python, cond(A) = 3.84.20× 1020.
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Table 1

Results of linear kernel

Initial value Numerical optimal value Iterations 's' number train accuracy test accuracy

'qp.solver' -1249457.382865 100 1 0.93

-1249457.382865 100 1 0.93

Algorithm (1) -2.499128 -1246189.161718 100 0.94 0.96

−2.10−6 -4.118085 -1000 -0.94 - 0.95

Algorithm (2) -2.499128 -1246662.90 100 0.93 0.96

−2.10−6 -4.538499 2000 0.92 0.965

Table 2

Results for γ ∈ {0.1, 0.01, 0.0001}
γ Initial value Numerical optimal value iterations 's' number train accuracy test accuracy

'qp.solver' 0.1 -26354.728 15 1 0.956

0.01 -870282.990 20 1 0.947

0.0001 -476414440.850 26 1 0.91

Algorithm (1) 0.1 -0.5297 -23894.962 12 1 0.956

0.01 -17.628 -517786.968 40 0.997 0.964

0.0001 -117.1588 -6735414.960 40 0.971 0.947

Algorithm (2) 0.1 -0.5297 -26352.0235 12 1 0.973

0.01 -17.628 -860188.953 20 0.996 0.964

0.0001 -117.1588 -11245752.089 40 0.985 0.96

Table 3

Condition number of A
γ 0.1 0.01 0.005 0.0001

Cond(A) 1933719617 1137659878224 7320547409175 2.9086649077474411017

However, we obtain good accuracies for training and testing sets. For example, for number of iterations
equal to 20 or 500, we obtain same results with training accuracy equals to 1 and testing accuracy is 0.9298.

Applying algorithms (1) and (2), experiment results give a decreasing sequence (J(αk)) whose speed of
variation depends on the initialization of the corresponding algorithm.

Table (1) and �gure (1) illustrate these results. In table (1) we present 'qp.solver' optimal value using
the K.K.T method, numerical optimal value obtained by algorithm (1) or (2), number of iterations and
maximum accuracy for training and testing set registered for di�erent iterations. In �gures (1) and (2) we
plot accuracy variation and loss function with respect to the number of iterations for respectively algorithms
(1) and (2). In the case of a number of iterations larger then 100, we present accuracy and cost value
function after each 10 iterations.

With RBF kernel, and for the same split of data set we apply algorithms (1) and (2) to measure the
accuracy of the classi�cation for di�erent values of the parameter γ ∈ {0.1, 0.01, 0.0001}. For γ 6= 0.0001,
we obtained 100% classi�cation accuracy for training set. Accuracy for testing set depends on γ as follows
table (3.3.2) and �gures (3) to (6).

Iteration number depends on matrix condition number of the matrix A.
The two algorithms gave a good classi�cation for both testing and training sets where the accuracy is

better for γ = 0.01. Notice also that algorithm (2) is faster than algorithm (1).

4. Optimization problem on a convex set

We suppose here that Ω is only a closed convex set, not necessary a cone.

4.1. Generalized projection algorithm
In what we call generalized gradient projection method, the descent direction is dk = δk − αk, for

δk = PΩ(αk −∇J(αk)). Let's �rst check that for all α ∈ Ω, d = PΩ(α−∇J(α))− α is a descent direction.
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Lemma 4.1 For all α ∈ Rn, we have

(PΩ(α−∇J(α))− α,∇J(α)) ≤ −‖PΩ(α−∇J(α))− α‖2. (16)

Let α ∈ Ω and let d = PΩ(α − ∇J(α)) − α. From projection operator 's' characterization, and since
α ∈ Ω, we get

(PΩ(α−∇J(α))− (α−∇J(α)), PΩ(α−∇J(α))− α) = (d+∇J(α), d) ≤ 0.

Then, if d 6= 0,
(∇J(α), d) ≤ −(d, d) = −‖d‖2 < 0.

We propose the following gradient projection algorithm of type minimization rule :
Algorithm (4)

• Choose α0 ∈ Ω.

• for k ≥ 0,

• Compute δk = PΩ(αk −∇J(αk)) and dk = δk − αk,
• search for rk solution of min

r∈[0,1]
J(αk + rdk),

• Compute αk+1 = αk + rkd
k

We study convergence of this algorithm for a function J with Lipschitz gradient. If for an iteration k we
have dk = 0, then the sequence (αk) becomes stationary and converges to ᾱ a stationary point of problem
(1). Otherwise:

Proposition 4.2 We suppose that J is C1, lower bounded on Ω and with gradient g = ∇J is L-Lipschitz.
we suppose that dk 6= 0 for all k. Then,

i) if L < 1, rk = 1 for all k ∈ N.

ii) If 1 ≤ L, then rk ≥ 1
L

iii) Every cluster point ᾱ of the sequence (αk) is a stationary point of problem (1).

By construction, 0 ≤ rk ≤ 1. If rk < 1, since rk = arg min
r∈[0,1]

J(αk + rdk), then

(∇J(αk + rkg
k), (r − rk)dk) ≥ 0, ∀ r ∈ [0, 1].

In particular, for r = 1, we get

(∇J(αk + rkd
k), dk) ≥ 0. (17)

On the other hand, from property (16) we have :

‖dk‖2 ≤ −(∇J(αk), dk) ≤ (∇J(αk + rkd
k)− (∇J(αk), dk) ≤ rkL‖dk‖2. (18)

Since dk 6= 0, simplifying by ‖dk‖ 6= 0, we deduce that 1 ≤ rkL.

i) If L < 1, then necessary rk = 1. Otherwise, 1 ≤ rkL < rk. Contradiction, since we have 0 ≤ rk ≤ 1. .

ii) In the case where 1 ≤ L, if 0 < rk < 1, we have already 1
L ≤ rk. If rk = 1, obviously rk = 1 ≥ 1

L .
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iii) If L < 1, we retrieve the classical gradient algorithm with �xed step size rk = 1 < 2
L and convergence

is then satis�ed [8]. If 1 ≥ L, then we prove that (dk) converges to 0.

Since L ≥ 1, choosing r = 1
2L ≤ 1, and from real value theorem and inequality (17), there exists

0 ≤ rk ≤ r = 2
L , such that :

J(αk+1) ≤ J(αk + rdk) = J(αk) + r(∇J(αk + r̃kd
k), dk)

= J(αk) + r(∇J(αk), dk) + r(∇J(βk + rdk)−∇J(αk), dk)
≤ J(αk)− r‖dk‖2 + r2L‖dk‖2

≤ J(αk)− 1
4L‖d

k‖2
.

The function J is lower bounded, then, the sequence (J(αk)) which is decreasing by construction and
lower bounded is convergent. It follows that

0 ≤ 1
4L‖d

k‖2 ≤ J(αk)− J(αk+1) → 0
k → +∞ .

Finally, if ᾱ a limit of a subsequence of (αk), then ᾱ ∈ Ω since, Ω is a closed set. Passing to the limit
and using continuity of ∇J and of the operator PΩ we obtain ᾱ = PΩ(ᾱ − ∇J(ᾱ)) and ᾱ is then a
stationary point of problem (1).

Remark 4.3 If J is also convex on Ω, then, every cluster point of (αk) is a minimum of J . If moreover J
is strongly convex, then the sequence (αk) converges to the unique minimum ᾱ of J .

4.2. Soft SVM problem
For soft margin SVM problem, the cost function J(α) = 1

2 (Aα,α) − (e, α) is exactly the same for hard
SVM problem. The constrained set Ω is slightly modi�ed:

Ω = {α ∈ Rn, (e, α) = d, 0 ≤ αi ≤ C, ∀i = 1, ..., n},

where C > 0 is �xed non negative real.
The corresponding dual quadratic problem is:

min J(α)
α ∈ Ω

(19)

We propose �rst the projection algorithm over the convex of feasible solutions set Ω.

4.2.1. Projection on Ω
For a given a ∈ Rn, if we denote ā = PΩ(a), and

I0 = {i such that āi = 0}, Ic = {i such that āi = C} and q = |Ic|,

Iin = {i such that 0 < āi < C} and p = |Iin|.

Writing Karush- Kunh-Tuker optimality condition for this convex problem, we can prove the following
lemma.

Lemma 4.4 There exists a unique λ ∈ R such that

1.

λ =

∑
i∈Iin

ai − d+ qC

p
and

 ai ≤ λ i� āi = 0
λ < ai < C + λ i� 0 < āi < C
C + λ ≤ ai i� āi = C

(20)
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2. If ai ≤ aj, then āi ≤ āj.

Since the cost function is di�erentiable, and the minimized problem is with linear equality and inequality
constraints, then Karush- Kunh-Tuker condition is satis�ed and it can be written as:

n∑
i=1

āi = d

āi − ai + λ− ui + vi = 0 i = 1, ..., n,
uiāi = 0, vi(C − āi) = 0 i = 1, ..., n,
ui ≥ 0, vi ≥ 0 i = 1, ..., n.

1. If i ∈ Iin, then 0 < āi < C and therefore ui = vi = 0 and āi = ai − λ.

By summing these equalities for i ∈ Iin and using the fact that

n∑
i=1

āi = d, we deduce that λ =∑
i∈Iin

ai − d+ qC

p . In this case λ < ai < C + λ.
If i ∈ I0, then δi = 0 and ai − λ = ui ≥ 0.
If i ∈ Ic, then γi = 0 and −C + ai − λ = vi ≥ 0 and (20) follows.

2. Let ai ≤ aj , if i ∈ I0, then āi = 0 ≤ āj . If i /∈ I0, then λ ≤ ai ≤ aj . āi − āj = ai − aj if i, j ∈ Iin and
therefore āi ≤ āj . But if j ∈ Ic, āj = C and āi ≤ āj .

It is su�cient to compute λ in order to determine ā. The next algorithm allows to determine λ. For this
end, to simplify, we begin by ordering components of a as follows ai1 ≤ ai2 ≤ ... ≤ ain−1 ≤ ain .

Algorithm(5)

1. Compute λ0 =

n∑
i=1

ai − d

N
; k := 1, p0 = 1, q0 = N . N0 = N

2. For k ≥ 0,

• if λk < aij < λk + C, ∀ pk ≤ j ≤ qk, stop,
• else, compute

βk =
Nλk − aipk
Nk − 1

, η1 =
Nλk − (C − aiqk )

N − 1
.

if aiqk < βk + C, take λk+1 = βk and Nk+1 = Nk − 1,

else : if aipk > η1, take λk+1 = ηk and Nk+1 = Nk − 1.

Otherwise, take λk+1 =
Nkλk − aipk + C − aiqk

Nk − 2
and Nk+1 = Nk − 2

Remark 4.5 It is obvious that this direct method stops at most in ks ≤ n iterations. In the case where
ks < n, then, at the iteration ks, the multiplier λ = λks with Iin = {ij/pks ≤ j ≤ qks} and the projection ā
of a on Ω is given by

āij =

 0 if j < pks ,
aij − λ if pks ≤ j ≤ qks ,
C if j > qks

.

Otherwise for k = n − 1, apk−1
≤ λk−1 or apk−1

≥ C + λk−1, necessary in this case Iin = ∅ and d
C = q ∈

{1, ..., n}. Clearly

āij =

{
0 if j < n− p,
C if j ≥ q .
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Table 4

Results of linear kernel for
C ∈ {1, 10, 100}

C Numerical optimal value iterations 's' number train accuracy test accuracy

'qp.solver' 1 -57.219 12 0.417 0.447

10 -311.543 13 0.5 0.526

100 -2062.733 18 0.575 0.587

Algorithm (4) 1 -57.219 20 0.909 0.929

10 -311.543 100 0.91 0.93

100 -2052.307 500 0.909 0.92

4.2.2. Experimental results
We consider the same data set of breast cancer problem where the data is split into a training set (80%)

and testing set (20%). With linear kernel we have the same ill -conditioned matrix A. On the contrary
of the case of hard SVM, numerical solution obtained using the function 'solvers.qp' of python is the same
after a few number of iterations (12 for C = 1, 13 for C = 10 and 18 for C = 18).

We tested algorithm (4) for di�erent values of C ∈ {1, 10, 200}. The initial vector α0 is taken equal to
null vector. For C = 100, we present accuracy and cost value function after each 5 iterations.

Classi�cation results are provided in table (4) and in �gures below
We can remark from experimental results that for considered values of C, algorithm (4) reaches the

optimal solution in less then 18 iterations for C = 1. However, it is very slow for C = 10 and C = 100. But
classi�cation is not perfect for testing and training sets for the number of iterations assuring convergence of
the algorithm. A technique of early stopping may be necessary here to choose the α which can perform the
test classi�cation.

Conclusion

In this work, three descent projection optimization algorithms are proposed to solve a constrained min-
imization problem on a convex set. These algorithms were applied for classi�cation of breast cancer using
SVM method. Both linear and RBF kernel yield very promising results, in term of performance algorithm
(2) for hard SVM is better and converges faster than algorithm (1). We tested algorithm (4) only for linear
kernel. Despite that, classi�cation is better for algorithm (1) and (2), convergence is faster for algorithm
(4).
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Figure 1: Algorithm (1): cost func-
tion and accuracy for linear kernel

Figure 2: Algorithm (2): Cost func-
tion and accuracy for linear kernel

Figure 3: Algorithm (1): Cost func-
tion and accuracy for γ = 0.0001
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Figure 4: Algorithm (1): Cost func-
tion and accuracy for γ = 0.1

Figure 5: Algorithm (2):Cost func-
tion and accuracy for γ = 0.0001

Figure 6: Algorithm (2): Cost func-
tion and accuracy for γ = 0.01
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Figure 7: Algorithm (4): Cost func-
tion and accuracy for C = 1

Figure 8: Algorithm (4): Cost func-
tion and accuracy for C = 10

Figure 9: Algorithm (4): Cost func-
tion and accuracy for C = 100
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