The

gradient-projection algorithm (GPA) is a powerful method for solving problems of type (1). This algorithm consists of:

• Choosing α 0 ∈ Ω.

• For k ≥ 0, computing α k+1 = P Ω (α k -r k ∇J(α k ))

The sequence of step sizes (r k ) may be chosen in dierent ways and most of convergence results of gradient projection algorithm suppose that the gradient of J is L-Lipschitz. The study of this algorithm where r k = r is constant was the subject of many works [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF][START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF][START_REF] Kb | Introduction to Optimization , Optimization Software[END_REF], where it was proven, for xed r k = r ∈]0, 2 L [, algorithm (GPA) converges to ᾱ, the unique solution to the problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] for every choice of initial vector α 0 . More generally, if the sequence of step size (r k ) is such that:

0 < lim inf k→+∞ r k ≤ lim sup k→+∞ r k < 2 L ,
and if in addition, J is such that {α ∈ R n / J(α) ≤ J(α 0 )} is bounded, then, every cluster point of (α k ) is a stationary point of (1) and satises Euler condition [START_REF] Kb | Introduction to Optimization , Optimization Software[END_REF][START_REF] Ruszczynski | Nonlinear optimization[END_REF]. Convergence of (GPA) under dierent choices of the step size sequence (r k ) has been discussed in [START_REF] Su1 | Remarks on the Gradient-Projection Algorithm[END_REF].

In the case of relatively simple structure of Ω, the authors in [START_REF] Mccormick | The gradient projection method under mild dierentiability conditions[END_REF] studied (GPA) with line search strategy using exact minimization and r k = arg min r∈R J(P Ω (α k -r∇J(α k ))). They proved that every cluster point of the sequence (α k ), generated by (GPA) is a stationary point of the problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF]. In the case of a general closed convex set, another step size rule has been proposed in [START_REF] Bertsekas | On the Goldstein-Levitin-Polyak gradient projection method[END_REF] called generalized Armijo step-size rule to be used with (GPA). This rule is inspired by Armijo step-size proposed in [START_REF] Armijo | Minimization of functions having Lipschitz continuous rst partial derivatives[END_REF] for unconstrained optimization problems.

We propose in this work some new algorithms and then we apply them to Support Vector Machine classication problems. Support Vector Machines (SVMs), or Vast Margin Separators stem from the work of [START_REF] Vapnik | Trevor Support vector machines[END_REF] are a set of supervised learning methods that allow to solve classication or regression problems. An SVM is dened by a separating hyperplane. In the case of a binary classication, for a set of examples, each marked as belonging to one of two classes (1 and -1), the SVM constructs a hyperplane with optimal margin which classies or separates the data better while maximizing the distance between the two classes. Consider n training set D = {(x i , y i ) | x i ∈ R d , y i ∈ {-1, 1}} n i=1 , where x i is the ith example of dimension d and y i is the corresponding class. When the data is linearly separable, the goal is to nd a linear separator f (x i ) = w T x i + b, with f (x i ) ≥ 0 if y i = 1 and f (x i ) ≤ 0 if y i = -1, ∀i ∈ {1, ..., n}.

Where w is the weight vector and b is the bias. The problem is rewritten

y i (w T x i + b) ≥ 0, ∀i ∈ {1, ..., n}.
The separating hyperplane is dened by

f (x i ) = w T x i + b = 0.
If the data is linearly separable, we can nd two parallel hyperplanes that separate the two classes, so that the distance between them is as large as possible. The region bounded by the two hyperplanes is called the margin, and the optimal (maximum margin) hyperplane is the hyperplane located midway between them. Hyperplanes are dened by the equation

w T x i + b = y i (y i = ±1), ∀i ∈ {1, ..., n}.
The problem is written as an optimization problem with inequality constraints

min w,b 1 2 ||w|| 2 2 s.t. y i (w T x i + b) ≥ 1, ∀i ∈ {1, ...n}. (4) 
In the non-linearly separable case, we use a nonlinear transformation

φ : R d -→ R p x -→ φ(x) ,
which transforms the data points into a larger space R p for p > d, in which we have separability. The resolution of the (4) (primal problem) can be done directly, However, it is very dicult to solve the primal problem when d is much larger than n. One can however, pass to the dual formulation (5) of the problem, which is easy to solve. One of the main tasks in training SVMs is to solve its following dual quadratic optimization problem :

min J(α) := 1 2 (Aα, α) -(e, α) α ∈ Ω , (5) 
for Ω = {α ∈ R n , (y, α) = 0 and 0 ≤ α i , i = 1, ..., n}. Where A = (a ij ) is a symmetric n-square matrix dened by a ij = y i y j K(x i , x j ), i, j = 1, 2, ..., n, where K : R d × R d → R is the Kernel function, and the

vector e ∈ R n is given by e =    1 . . . 1   .
The construction of the kernel can be done using an implicit function φ which transforms the input space R d into R p provided with a scalar product of higher dimension. Through this dot product, the kernel is dened by

K(x, x ) = (φ(x), φ(x )), (x, x ) ∈ R d × R d .
The linear kernel corresponds to K(x, x ) = (x, x ) and the Gaussian kernel, using a radial basis function (RBF) for which K(x, x ) = exp(-γ||x -x || 2 ), where γ > 0.

An advantage of using kernels is that they are typically tractable, even when φ is not. If ᾱ is a solution to the quadratic minimizing problem [START_REF] Mccormick | The gradient projection method under mild dierentiability conditions[END_REF], then the decision function, applied to a test vector x test , is expressed by the kernel K and it is of the form:

f (x test ) = n i=0 ᾱi y i K(x i , x test ) + b,
where b = y j -n i=1 ᾱi K(x i , x j ), for a j for which ᾱj > 0.

Many specic algorithms were proposed to solve this quadratic problem. The Sequential Minimal Optimization (SMO) algorithm [START_REF] Platt | A Fast Algorithm for Training Support Vector Machines[END_REF] is the most used one to solve numerically such problem. The main idea of (SMO) consists of restricting data to have only two elements in each iteration, it does not require any optimization software in order to solve a simple two-variable problem. In [START_REF] Pai-Hsuen Chen | Rong-En Fan Working Set Selection Using Second Order Information for Training Support Vector Machines[END_REF] the authors combined projection algorithms with SMO to solve dierent forms of SVMs problem.

The rest of the paper is organized as follows: In Section 3, the set Ω is supposed to be a convex cone and two algorithms are proposed to solve the problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF]. In Section 4, Ω is extended to be a convex set where we study convergence of the generalized projection algorithm. We establish convergence of dierent proposed algorithms under dierent assumptions of the cost function J. In order to apply the proposed algorithms on SVM problem, we give direct methods to calculate the projection on the corresponding feasible set. Proposed algorithms are implemented and applied on breast cancer diagnosis problem.

We start rst by reconsidering the descent algorithms for unconstrained minimizing problems.

A review of unconstrained descent algorithm

We consider here the case of an unconstrained problem where we have Ω = R d . We begin this paper by revising gradient and Newton descent algorithms with exact line search

We suppose that J is continuously dierentiable and we recall that a direction d is said to be a descent to J at the point α if it satises (∇J(α), d) < 0.

Lemma 2.1 If J is convex, then, for all α ∈ R d and for every descent direction d of J on α satisfying (∇J(α), d) < 0, we have Let r ∈ arg min r∈R J(α + rd). Then J(α + rd) ≤ J(α). Using convexity characterization J(α) ≥ J(α + rd) ≥ J(α) + r(∇J(α), d).

It follows that r(∇J(α, d)) ≤ 0 and then r > 0, since we have (∇J(α), d) < 0.

Lets consider the general descent with exact line search algorithm.

Algorithm (DA)

• Choose α 0 • For k ≥ 0, -Choose a descent direction d k of J at α k -Compute r k ∈ arg min r∈R J(α k + rd k ).
-Compute

α k+1 = α k + r k d k , k := k + 1; go to step 2.
Results of the above lemma and the next proposition, which are valid for constrained or unconstrained optimization problems, will be useful for most proposed algorithms in this paper .

Proposition 2.2 Let J be a convex function of class C 1 admitting at least a minimum. We suppose that, for The same subsequence n(k), (α k ) and (d k ) generated by algorithm (DG), converge respectively to ᾱ and d. Then, (∇J(ᾱ), d) = 0

Since J is convex and continually dierentiable, then,

ψ : r ∈ R; → J(α k + rd k ) is convex and of class C 1 on R and from lemma (2.1), r k ≥ 0. Moreover, ψ (r k ) = (∇J(α k + r k d k ), d k ) = 0.
If for a subsequence, n(k), (r n(k) ) converges to 0, from the last optimality condition and continuity of ∇J, and passing to the limit for this subsequence, we get easily (∇J(ᾱ), d) = 0. Otherwise, there exists r > 0 such that r n(k) > r.

We have, by construction, the sequence J(α k ) is decreasing and it is lower bounded, it is then convergent. For all 0 < r < r, using real value theorem, there exists 0 < rk < r such that

J(α k+1 ) = J(α k + r k d k ) ≤ J(α k + rd k ) = J(α k ) + (∇J(α k + rk d k ), d k ) = J(α k ) + ψ (r k ) ≤ J(α k ) + ψ (r k ) = J(α k )
.

It follows:

J(α k+1 ) -J(α k ) ≤ J(α k + rd k ) -J(α k ) ≤ 0.
Passing to the limit when n(k) converges to +∞, we obtain

J(ᾱ + r d) -J( ᾱ) = 0.
Since last equality is true for all r > 0, dividing by r and passing to the limit when r tends to 0 + we obtain

(∇J(ᾱ), d) = 0.
In particular, for the standard gradient descent algorithm with exact line search (DA), the descent direction is d k = -∇J(α k ). If J is convex and if the sequence (α k ) generated by this algorithm is bounded, then for all ᾱ a limit of a subsequence of (α k ), ᾱ satises necessary and sucient optimality condition for convex minimization problem, ∇f ( ᾱ) = 0, since we have ∇J(ᾱ) 2 = 0. Therefore, from convexity assumption, ᾱ ∈ arg min α∈R d J(α). We retrieve convergence result of gradient descent algorithm with line search for convex problem.

Also note that if J is twice continuously dierentiable, in newton method, we choose the descent direction

d k = -∇ 2 J(α k )∇J(α k ),
where we denote by ∇ 2 J(α) the Hessian of J at α. In the case of the constant step size r k = 1, under some assumptions of J, we have local convergence of Newton method to a minimum of J on R d .

If J is convex and if a cluster point ᾱ of the sequence (α k ), generated by Newton method with exact line search r k , is such that ∇ 2 J(ᾱ) is a denite symmetric matrix, we have then ᾱ is a minimum of J on R d . Indeed, Newton method with exact line search r k is algorithm (DA) with d k = -∇ 2 J(α k )∇J(α k ). Since J is convex and twice continuously dierentiable, and for a subseqeunce (α k ) converging to ᾱ, then (d k ) converges to -∇ 2 J( ᾱ)∇J(ᾱ) and from proposition (2.2), we have (∇J(ᾱ), ∇ 2 J(ᾱ)∇J( ᾱ)) = 0 and therefore ∇J(ᾱ) = 0. Convexity of J implies that ᾱ is a minimum of J.

Global convergence of Newton method with exact line search is guaranteed if for example J is strongly convex on R d because:

-J is coercive and strictly convex, it has a unique minimum ᾱ -The sequence (J(α k )) is decreasing by construction and lower bounded by J( ᾱ), as it will be claried later, (α k ) is then bounded.

-Since, J is strongly convex, then

∇ 2 J(α) is denite positive for all α ∈ R d -(α k
) converges to ᾱ the unique minimum of J, due to the fact that (α k ) is bounded, and every convergent subsequence of (α k ) converges to the unique minimum of J which is ᾱ.

Optimization problem on a convex cone

We suppose in this section that Ω ⊂ R n is a non empty closed convex cone.

Optimality condition and projection algorithms

If the feasible set is a closed and convex cone, Euler Inequality optimality condition for problem ( 1) is equivalent to the following optimality condition : Proposition 3.1 We suppose that J is a dierentiable function. i) If ᾱ ∈ Ω is a solution to the problem (1), then (∇J(ᾱ), ᾱ) = 0 and P Ω (-∇J( ᾱ)) = 0.

(6)

ii) If in addition J is convex, then ᾱ ∈ Ω is a solution to the problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] if and only if conditions in [START_REF] Pai-Hsuen Chen | Rong-En Fan Working Set Selection Using Second Order Information for Training Support Vector Machines[END_REF] are satised.

i) Let ᾱ be an optimal solution to the problem (1). Then ᾱ satises the Euler condition:

(∇J(ᾱ), α -ᾱ) ≥ 0, ∀ α ∈ Ω.
Since Ω is a cone, then, α = r ᾱ ∈ Ω, for all α ∈ Ω and for all r > 0. We have then,

(r -1)(∇J(ᾱ), ᾱ) ≥ 0, ∀ r ≥ 0.
Choosing rst r > 1 and then 0 ≤ r < 1, we deduce easily that (∇J(ᾱ), ᾱ) = 0.

The second property is satised since we have

(0 -(-∇J(ᾱ)), 0 -α) = -(∇J( ᾱ), α -ᾱ) ≤ 0, ∀ α ∈ Ω.
From projection operator characterization we deduce that 0 = P Ω (-∇J( ᾱ)).

ii) If J is also convex on the convex set Ω, and if ᾱ satises (6), then

(∇J(ᾱ), α -ᾱ) = -(0 -∇J(ᾱ), 0 -α) ≥ 0, ∀ α ∈ Ω.
Therefore, ᾱ is a solution to the problem (1). The next lemma proves that P Ω (-∇J(α)) is a descent direction of J at α, for every point α ∈ Ω.

Lemma 3.2 For all α ∈ R n , we have: i)

(P Ω (α) -α, P Ω (α)) = 0 (7) 
ii)

(P Ω (-∇J(α)), ∇J(α)) = -P Ω (-∇J(α)) 2 ≤ 0. (8) 
Let α ∈ R n .

i) The projection P Ω (α) of α ∈ R d on Ω satises

(P Ω (α) -α, P Ω (α) -β) ≤ 0, ∀ β ∈ Ω.
In particular by choosing β = rP Ω (α) ∈ Ω, rst for r > 1, then for 0 < r < 1, the result follows.

ii) In particular, we have

(P Ω (-∇J(α)) + ∇J(α), P Ω (-∇J(α)) -0) = 0.
Therefore,

(P Ω (-∇J(α)), ∇J(α))) = -P Ω (-∇J(α)) 2 ≤ 0.
Remark 3.3 From property [START_REF] Platt | A Fast Algorithm for Training Support Vector Machines[END_REF] we can deduce that projection on the closed convex cone P Ω satises :

(P Ω (α) -α, β) ≥ 0, ∀ β ∈ Ω,

Hence

P Ω (rα) = rP Ω (α), , ∀α ∈ R d , and ∀ r ≥ 0.

We now present an optimal descent projection algorithm where the descent direction is the projection of the opposite of the gradient on the feasible set Ω. Since P Ω (-∇(α)) is a descent direction of J on α, we have rst the idea to consider the following algorithm:

Algorithm (0) • Choose α 0 ∈ Ω. • For k ≥ 0, -Compute g k = ∇J(α k ), d k = P Ω (-g k ) and r k ∈ arg min r∈R J(α k + rd k ). -Compute α k+1 = α k + r k d k , k := k + 1; go to step 2.
Remark 3.4 From lemma (2.1), it follows that r k ≥ 0 and consequently,

α k+1 = α k + r k P Ω (-∇J(α k )) ∈ Ω when f is convex dierentiable function. Proposition 3.5
We suppose that J is C 1 and convex on Ω. Then, any cluster point ᾱ of the sequence (α k ) generated by the last algorithm satises P Ω (-∇J(ᾱ)) = 0.

Let ᾱ a cluster point of (α k ). Then ᾱ is a limit of a subsequence of (α k ). If for this subsequence, d k = P Ω (-∇J(α k )) = 0, then the sequence (α k ) becomes stationary and equals to ᾱ satisfying obviously P Ω (-∇J(ᾱ)) = 0. Otherwise, d k is a descent direction of J at α k . Using continuity of the two operators ∇J and P Ω , we have, (P Ω (-∇J(α k )) converges to (P Ω (-∇J(ᾱ).

Since r k = arg min r∈R J(α k +rd k ), and thanks to proposition (2.2) and lemma (3.2), we have (P Ω (-∇J(ᾱ)), ∇J(ᾱ)) = -P Ω (-∇J(ᾱ) 2 = 0. Therefore, P Ω (-∇J( ᾱ)) = 0 as was to be proved. Remark 3.6 We have proved that ᾱ the cluster point of (α k ) satises only one of the two optimality conditions: P Ω (-∇J(ᾱ)) = 0 and not necessary (ᾱ, ∇(J(α)) = 0. As we have seen in proposition (3.1), this in general is not sucient for ᾱ to be a minimum of J as shown in the following example.

Example 3.7 Consider the following minimization problem

min α∈Ω J(α)
where

J : R 2 → R; α → (α 2 1 + α 2 
2 ) -α 1 + α 2 and the convex cone

Ω = {α = (α 1 , α 2 ) ∈ R 2 , α 1 ≥ 0 and α 2 ≥ 0}.
It is clear that that (1, 0) is the unique minimum of J on Ω. For α 0 = (1.5, 0) T , we have g 0 = ∇J(α 0 ) = (, 1) T and d 0 = P Ω (-g 0 ) = (0, 0). Then, the sequence generated by the last algorithm gives a stationary sequence α k = α 0 which is not the minimum of J.

To ensure the second part of optimality condition, and in order to improve the last algorithm, since Ω is a cone, at iteration k, knowing α k , we slightly modify the last algorithm by minimizing the cost function J from 0 in the direction α k to obtain β k . Then we compute the optimal step size r k corresponding to the direction d k = P Ω (-∇J(β k )). We obtain the following steepest descent algorithm :

Algorithm

• Choose α 0 ∈ Ω, such that J(α 0 ) < J(0)

• For k ≥ 0,

-Compute t k = arg min t∈R+ J(tα k ), β k = t k α k . -Compute g k = ∇J(β k ), d k = P Ω (-g k )) and r k = arg min r∈R J(β k + rd k ).
-Compute

α k+1 = β k + r k d k , k := k + 1; go to step 2.
Proposition 3.8 We suppose that J is C 1 , µ-convex and that the operator g = ∇J is L-Lipschitz continuous. Then, the sequence (α k ) generated by the algorithm (1), converges to ᾱ, the unique solution to problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF].

Since J is strongly convex, it is then coercive and strictly convex, it admits then a unique minimum ᾱ on Ω.

We have :

J(α k+1 ) ≤ J(β k ) ≤ J(α k ) ≤ J(β k-1 ), ∀ k ∈ N * .
The decreasing real sequences (J(α k )) and (J(β k )) are lower bounded by J(ᾱ) , they are then convergent. Last inequalities prove that 

lim k→+∞ J(α k ) = lim k→+∞ J(β k ).

General applications

Projection on the closed convex constrained set should be easy to implement in order to be able to apply algorithms (1) or [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF].

Lets consider the minimizing problem of the form:

min Ceα=b J 0 (α) (9) 
with C e ∈ R m × R n is a rectangular matrix of size (m, n) and b ∈ R m . With the change of variable α → α -α f , for a feasible point α f , the problem takes the form:

min Ceα=0 J(α), (10) 
where

J(α) = J 0 (α -α f ).
The projection on the feasible convex set Ω = ker(C e ) is not dicult to compute and we have: P Ω (a) = a + C T e λ, for all vector λ solution to the system C T e C e λ = -C e a. In particular, if C e ∈ R n is a line vector, then

P Ω (a) = a - C e .a C e 2 C T e .
For inequality constraints of the form C I α ≥ 0, projection becomes less obvious.

As examples of problem [START_REF] Ruszczynski | Nonlinear optimization[END_REF] we can nd problems related to active set or to interior point methods [START_REF] Gondzio | Jacek Interior point methods 25 years later[END_REF].

In particular, for quadratic problem:

min J(α) = 1 2 (Aα, α) -(e, α) C e α = b D I α ≥ c (11) 
at each iteration k, we have to solve the constrained problem

min J(β) = 1 2 (Aβ, β) -(e, β) C e β = b (d i , β) = c i , for i ∈ A k , ( 12 
)
where A k = {i / (D I β) i = (d i , β) = c i } is the index set of active inequality constraints. In the case where the matrix D I = -I and the inequality constraint is α ≥ 0, interior point methods consists to solve

min 1 2 (Aβ, β) -(e, β) -µ p j=1 log(β i ) C e β = b , (13) 
We can also apply algorithms ( 1) and ( 2) to solve quadratic sub problems in Sequential Quadratic Programming (SQP) method.

Application to hard-margin SVM problem

Here, we are interested to the quadratic programming problem arising in training hard-margin Support Vectors Machines [START_REF] Karimi | Mar Linear convergence of gradient and proximal-gradient methods under the polyak-ªojasiewicz condition[END_REF] :

min J(α) α ∈ Ω (14) 
where

J(α) = 1 2 (Aα, α) -(e, α)
and

Ω = α ∈ R n + / (y, α) = 0, α i ≥ 0, ∀ i = 1, ..., n .
It is clear that Ω is non empty closed convex cone. We propose rst a direct algorithm to calculate the projection on the feasible set Ω. Computing P Ω (a), the projection of a on the closed convex set Ω, for a given vector a ∈ R n , is based on optimality conditions of the operator P Ω .

Let ā = P Ω (a) = arg min α∈Ω x -a 2 . From Karush-Kunh and Tuker condition, there exist λ ∈ R, µ ∈ R n + such that:

ā -a + λy -µ = 0 i = 1, ..., n µ i āi = 0, i = 1, ..., n µ i ≥ 0, i = 1, ..., n (y, ā) = 0 [START_REF] Vrigazova | Borislava Petrova Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM[END_REF] In order to calculate ā = P Ω (a), we have to establish rst some of its properties. We denote the set indices of inactive inequality constraints and its length by :

I + = {i ∈ [1, ..., n] /ā i > 0.} and np = |I + |.
Lemma 3.9 If ā = P Ω (a) and λ its Lagrange multiplier associated to the equality constraint, then we have : i)

a i > λy i i āi > 0, ∀ 1 ≤ i ≤ n ii) a i ≤ a j i āi ≤ āj , ∀i, j / yiyj = 1 iii) λ = 1 np i∈I+ a i yi.
i) For i ∈ [1, ..., n] such that āi > 0, due to condition (15) , we get µ i = 0 and āi = a i -λy i > 0 which yields a i > λy i . Inversely, if a i > λy i , then āi = a i -λy i + µ i > µ i . If µ i > 0, necessarily āi > 0 which is impossible since āi µ i = 0. It follows that µ i = 0 and āi = a i -λy i > 0. The rst property is proved.

ii) The condition y i y j = 1 means that y i = y j = 1 or y i = y j = -1. In both cases, let a i ≤ a j . If āi > 0, then a i > λy i = λy j . Therefore, a j > λy j and āj > 0. Then āi = a i -λy i = a i -λy j ≤ a j -λy j = āj .

If āi = 0, clearly āj ≥ 0 = āi .

iii) Since we have, ∀i, āi = a i -λy i + µ i , it is enough to multiply by āi and next to sum to get easily the expression of λ.

According to the previous lemma, we can deduce that it is sucient to compute λ to determine ā = P Ω (a)

The algorithm (3) is a direct method to compute ā : Without loss of generality we can suppose that

max{a i ; y i = 1} ≥ max{a i ; y i = -1}.
Otherwise we change y by its opposite.

Algorithm (3)

• Fix a i1 = max{a i ; y i = 1} and a j1 = max{a j ; y j = -1}. • Determine

I + = {i / a i > -a i1 and y i = 1}, n + = |I + | I -= {j / a j1 > a j and y j = -1}, n -= |I -| • Compute n s = n + + n -and λ = i∈I+ a i y i + i∈I- a i y i n s . if min i∈I+,i≤n+ a i ≤ λ, take k 1 = n + , a i k = min i∈I+ a i while k 1 > 0 and a i k 1 ≤ λ, take λ = nsλ-ai k 1 ns-1 , k 1 = k 1 -1 and ns = ns -1 else: k 2 = n -, a j k 2 = min j∈I- a j while k 2 > 0 and a j k 2 ≤ λ, take λ = nsλ+aj k ns-1 , ns = ns -1, k 2 = k 2 -1.
• Compute ā :

for i = 1, ..., k 1 , āi k = a i k -λ. for j = 1, ..., k 2 , āj k = a j k + λ.
Knowing how to compute projection on the constrained set Ω, we can use algorithms [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] or [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF] to solve the quadratic problem [START_REF] Karimi | Mar Linear convergence of gradient and proximal-gradient methods under the polyak-ªojasiewicz condition[END_REF].

Experiment results

Practically, to train the SVM problem we test algorithm (1) and ( 2) for linear kernel, then we chose radial basis function (RBF) for proposed method in our experiments where the kernel:

K(x, x ) = exp(-γ x -x 2 ).
The dataset used here was taken from the website of Wisconsin Prognostic Breast Cancer (WPBC) which was used in several publications in the medical literature. SVM algorithms have been applied many times on (WPBC) datasets [START_REF] Tourassi | A Neural Network Approach to Cancer Diagnosis as a Constraint Satisfaction Problem[END_REF][START_REF] Taylor | Evaluation of a Decision Aid for the Classication of Micro calcications , Digital Mammography[END_REF][START_REF] Huang | SVM ensembles in breast cancer prediction[END_REF][START_REF] Liu | A novel intelligent classication model for breast cancer diagnosis[END_REF][START_REF] Vrigazova | Borislava Petrova Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM[END_REF][START_REF] Jacob | Ecient classier for classication of prognostic breast cancer data through data mining techniques[END_REF]. the data consists of 569 observations with 357 negative (benign) and 212 positive (malignant) observations. Each observation has 30 attributes. The data is split into a training set (80%) and testing set (20%) and it is invariant for dierent kernel.

Python programming language is used to code and apply dierent algorithms in this paper. Our objective is to compare dierent algorithms with K.K.T method which is in particular used and implemented in the function 'solvers.qp' of the open source software package CVXOPT of python environment for solving convex optimization problems.

For linear kernel, we tested the two algorithms comparing their results with one of numerical solution obtained with python. Using the python function 'solvers.qp' for minimizing quadratic problems, objective function value obtained is not decreasing and it reaches -1249457.382 after number of iterations N.I = 20, -1249440.5701 for N.I = 100 and -1249411.396 after 500 iterations. But obtained solutions do not satisfy the st part of optimality condition cited in [START_REF] Pai-Hsuen Chen | Rong-En Fan Working Set Selection Using Second Order Information for Training Support Vector Machines[END_REF] for dierent tested iterations. For example, if we denote by β the obtained numerical solution, we get (β, ∇J(β)) = -47 for N.I = 100 and 72.09 for N.I = 500. For both cases, cost value function -1249.10 3 .

This can be explained by the fact that the hard SVM problem does not have an optimal solution and the data are not linearly separable or by the fact that the matrix A of our data is ill-conditioned and it satises λ min (A) << 1 << λ max (A), where λ min (A) and λ max (A) are respectively the smallest and largest eigenvalues of A. More precisely, for this example, calculated with python, cond(A) = 3.84.20 × 10 20 . 
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However, we obtain good accuracies for training and testing sets. For example, for number of iterations equal to 20 or 500, we obtain same results with training accuracy equals to 1 and testing accuracy is 0.9298.

Applying algorithms (1) and ( 2), experiment results give a decreasing sequence (J(α k )) whose speed of variation depends on the initialization of the corresponding algorithm.

Table [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] and gure (1) illustrate these results. In table [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] we present 'qp.solver' optimal value using the K.K.T method, numerical optimal value obtained by algorithm (1) or (2), number of iterations and maximum accuracy for training and testing set registered for dierent iterations. In gures (1) and (2) we plot accuracy variation and loss function with respect to the number of iterations for respectively algorithms (1) and (2). In the case of a number of iterations larger then 100, we present accuracy and cost value function after each 10 iterations.

With RBF kernel, and for the same split of data set we apply algorithms ( 1) and ( 2) to measure the accuracy of the classication for dierent values of the parameter γ ∈ {0.1, 0.01, 0.0001}. For γ = 0.0001, we obtained 100% classication accuracy for training set. Accuracy for testing set depends on γ as follows table (3.3.2) and gures (3) to [START_REF] Pai-Hsuen Chen | Rong-En Fan Working Set Selection Using Second Order Information for Training Support Vector Machines[END_REF].

Iteration number depends on matrix condition number of the matrix A.

The two algorithms gave a good classication for both testing and training sets where the accuracy is better for γ = 0.01. Notice also that algorithm (2) is faster than algorithm (1).

Optimization problem on a convex set

We suppose here that Ω is only a closed convex set, not necessary a cone.

Generalized projection algorithm

In what we call generalized gradient projection method, the descent direction is Lemma 4.1 For all α ∈ R n , we have

d k = δ k -α k , for δ k = P Ω (α k -∇J(α k )). Let's rst check that for all α ∈ Ω, d = P Ω (α -∇J(α)) -α is a descent direction.
(P Ω (α -∇J(α)) -α, ∇J(α)) ≤ -P Ω (α -∇J(α)) -α 2 . ( 16 
)
Let α ∈ Ω and let d = P Ω (α -∇J(α)) -α. From projection operator 's' characterization, and since α ∈ Ω, we get

(P Ω (α -∇J(α)) -(α -∇J(α)), P Ω (α -∇J(α)) -α) = (d + ∇J(α), d) ≤ 0. Then, if d = 0, (∇J(α), d) ≤ -(d, d) = -d 2 < 0.
We propose the following gradient projection algorithm of type minimization rule :

Algorithm (4)
• Choose α 0 ∈ Ω.

• for k ≥ 0,

• Compute δ k = P Ω (α k -∇J(α k )) and d k = δ k -α k , • search for r k solution of min r∈[0,1] J(α k + rd k ), • Compute α k+1 = α k + r k d k
We study convergence of this algorithm for a function J with Lipschitz gradient. If for an iteration k we have d k = 0, then the sequence (α k ) becomes stationary and converges to ᾱ a stationary point of problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF]. Otherwise: Proposition 4.2 We suppose that J is C 1 , lower bounded on Ω and with gradient g = ∇J is L-Lipschitz. we suppose that d k = 0 for all k. Then,

i) if L < 1, r k = 1 for all k ∈ N. ii) If 1 ≤ L, then r k ≥ 1 L
iii) Every cluster point ᾱ of the sequence (α k ) is a stationary point of problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF].

By construction, 0 ≤ r k ≤ 1. If r k < 1, since r k = arg min r∈[0,1] J(α k + rd k ), then (∇J(α k + r k g k ), (r -r k )d k ) ≥ 0, ∀ r ∈ [0, 1].
In particular, for r = 1, we get

(∇J(α k + r k d k ), d k ) ≥ 0. ( 17 
)
On the other hand, from property [START_REF] Huang | SVM ensembles in breast cancer prediction[END_REF] we have :

d k 2 ≤ -(∇J(α k ), d k ) ≤ (∇J(α k + r k d k ) -(∇J(α k ), d k ) ≤ r k L d k 2 . ( 18 
)
Since d k = 0, simplifying by d k = 0, we deduce that 1 ≤ r k L.

i) If L < 1, then necessary r k = 1. Otherwise, 1 ≤ r k L < r k . Contradiction, since we have 0 ≤ r k ≤ 1. . ii) In the case where 1 ≤ L, if 0 < r k < 1, we have already 1 L ≤ r k . If r k = 1, obviously r k = 1 ≥ 1 L .
iii) If L < 1, we retrieve the classical gradient algorithm with xed step size r k = 1 < 2 L and convergence is then satised [START_REF] Kb | Introduction to Optimization , Optimization Software[END_REF]. If 1 ≥ L, then we prove that (d k ) converges to 0. Since L ≥ 1, choosing r = 1 2L ≤ 1, and from real value theorem and inequality [START_REF] Liu | A novel intelligent classication model for breast cancer diagnosis[END_REF], there exists

0 ≤ r k ≤ r = 2
L , such that :

J(α k+1 ) ≤ J(α k + rd k ) = J(α k ) + r(∇J(α k + rk d k ), d k ) = J(α k ) + r(∇J(α k ), d k ) + r(∇J(β k + rd k ) -∇J(α k ), d k ) ≤ J(α k ) -r d k 2 + r 2 L d k 2 ≤ J(α k ) -1 4L d k 2
.

The function J is lower bounded, then, the sequence (J(α k )) which is decreasing by construction and lower bounded is convergent. It follows that

0 ≤ 1 4L d k 2 ≤ J(α k ) -J(α k+1 ) → 0 k → +∞ .
Finally, if ᾱ a limit of a subsequence of (α k ), then ᾱ ∈ Ω since, Ω is a closed set. Passing to the limit and using continuity of ∇J and of the operator P Ω we obtain ᾱ = P Ω (ᾱ -∇J(ᾱ)) and ᾱ is then a stationary point of problem (1).

Remark 4.3 If J is also convex on Ω, then, every cluster point of (α k ) is a minimum of J. If moreover J is strongly convex, then the sequence (α k ) converges to the unique minimum ᾱ of J.

Soft SVM problem

For soft margin SVM problem, the cost function J(α) = 1 2 (Aα, α) -(e, α) is exactly the same for hard SVM problem. The constrained set Ω is slightly modied:

Ω = {α ∈ R n , (e, α) = d, 0 ≤ α i ≤ C, ∀i = 1, ..., n},
where C > 0 is xed non negative real.

The corresponding dual quadratic problem is:

min J(α) α ∈ Ω (19) 
We propose rst the projection algorithm over the convex of feasible solutions set Ω.

Projection on Ω

For a given a ∈ R n , if we denote ā = P Ω (a), and

I 0 = {i such that āi = 0}, I c = {i such that āi = C} and q = |I c |, I in = {i such that 0 < āi < C} and p = |I in |.
Writing Karush-Kunh-Tuker optimality condition for this convex problem, we can prove the following lemma. 2. If a i ≤ a j , then āi ≤ āj .

a i ≤ λ i āi = 0 λ < a i < C + λ i 0 < āi < C C + λ ≤ a i i āi = C ( 
Since the cost function is dierentiable, and the minimized problem is with linear equality and inequality constraints, then Karush-Kunh-Tuker condition is satised and it can be written as:

n i=1 āi = d āi -a i + λ -u i + v i = 0 i = 1, ..., n, u i āi = 0, v i (C -āi ) = 0 i = 1, ..., n, u i ≥ 0, v i ≥ 0 i = 1, ..., n.
1. If i ∈ I in , then 0 < āi < C and therefore u i = v i = 0 and āi = a i -λ.

By summing these equalities for i ∈ I in and using the fact that

n i=1 āi = d, we deduce that λ = i∈Iin a i -d + qC p . In this case λ < a i < C + λ. If i ∈ I 0 , then δ i = 0 and a i -λ = u i ≥ 0. If i ∈ I c , then γ i = 0 and -C + a i -λ = v i ≥ 0 and (20) follows. 2. Let a i ≤ a j , if i ∈ I 0 , then āi = 0 ≤ āj . If i / ∈ I 0 , then λ ≤ a i ≤ a j . āi -āj = a i -a j if i, j ∈ I in and therefore āi ≤ āj . But if j ∈ I c , āj = C and āi ≤ āj .
It is sucient to compute λ in order to determine ā. The next algorithm allows to determine λ. For this end, to simplify, we begin by ordering components of a as follows

a i1 ≤ a i2 ≤ ... ≤ a in-1 ≤ a in . Algorithm(5) 1. Compute λ 0 = n i=1 a i -d N ; k := 1, p 0 = 1, q 0 = N . N 0 = N 2. For k ≥ 0, • if λ k < a ij < λ k + C, ∀ p k ≤ j ≤ q k , stop, • else, compute β k = N λ k -a ip k N k -1 , η 1 = N λ k -(C -a iq k ) N -1 . if a iq k < β k + C, take λ k+1 = β k and N k+1 = N k -1, else : if a ip k > η 1 , take λ k+1 = η k and N k+1 = N k -1. Otherwise, take λ k+1 = N k λ k -a ip k + C -a iq k N k -2 and N k+1 = N k -2 Remark 4.5
It is obvious that this direct method stops at most in k s ≤ n iterations. In the case where k s < n, then, at the iteration k s , the multiplier λ = λ ks with I in = {i j /p ks ≤ j ≤ q ks } and the projection ā of a on Ω is given by We consider the same data set of breast cancer problem where the data is split into a training set (80%) and testing set (20%). With linear kernel we have the same ill -conditioned matrix A. On the contrary of the case of hard SVM, numerical solution obtained using the function 'solvers.qp' of python is the same after a few number of iterations (12 for C = 1, 13 for C = 10 and 18 for C = 18).

āij =    0 if j < p ks , a ij -λ if p ks ≤ j ≤ q ks , C if j > q ks . Otherwise for k = n -1, a p k-1 ≤ λ k-1 or a p k-1 ≥ C + λ k-1 , necessary in this case I in = ∅ and d C = q ∈ {1, ..., n}. Clearly āij = 0 if j < n -p, C if j ≥ q .
We tested algorithm (4) for dierent values of C ∈ {1, 10, 200}. The initial vector α 0 is taken equal to null vector. For C = 100, we present accuracy and cost value function after each 5 iterations.

Classication results are provided in table [START_REF] Su1 | Remarks on the Gradient-Projection Algorithm[END_REF] and in gures below We can remark from experimental results that for considered values of C, algorithm (4) reaches the optimal solution in less then 18 iterations for C = 1. However, it is very slow for C = 10 and C = 100. But classication is not perfect for testing and training sets for the number of iterations assuring convergence of the algorithm. A technique of early stopping may be necessary here to choose the α which can perform the test classication.

Conclusion

In this work, three descent projection optimization algorithms are proposed to solve a constrained minimization problem on a convex set. These algorithms were applied for classication of breast cancer using SVM method. Both linear and RBF kernel yield very promising results, in term of performance algorithm (2) for hard SVM is better and converges faster than algorithm [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF]. We tested algorithm (4) only for linear kernel. Despite that, classication is better for algorithm (1) and (2), convergence is faster for algorithm (4). 
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 1 Figure 1: Algorithm (1): cost function and accuracy for linear kernel
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 2 Figure 2: Algorithm (2): Cost function and accuracy for linear kernel
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 3 Figure 3: Algorithm (1): Cost function and accuracy for γ = 0.0001
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 4 Figure 4: Algorithm (1): Cost function and accuracy for γ = 0.1
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 5 Figure 5: Algorithm (2):Cost function and accuracy for γ = 0.0001
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 6 Figure 6: Algorithm (2): Cost function and accuracy for γ = 0.01
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 7 Figure 7: Algorithm (4): Cost function and accuracy for C = 1
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 8 Figure 8: Algorithm (4): Cost function and accuracy for C = 10

Figure 9 :

 9 Figure 9: Algorithm (4): Cost function and accuracy for C = 100

Table 1

 1 Results of linear kernel

		Initial value	Numerical optimal value	Iterations 's' number	train accuracy	test accuracy
	'qp.solver'				-1249457.382865		100	1	0.93
					-1249457.382865		100	1	0.93
	Algorithm (1)	-2.499128		-1246189.161718		100	0.94	0.96
		-2.10 -6		-4.118085		-1000	-0.94	-0.95
	Algorithm (2)	-2.499128		-1246662.90		100	0.93	0.96
		-2.10 -6		-4.538499		2000	0.92	0.965
				Table 2		
				Results for γ ∈ {0.1, 0.01, 0.0001}
		γ	Initial value	Numerical optimal value	iterations 's' number	train accuracy	test accuracy
	'qp.solver'	0.1			-26354.728		15	1	0.956
		0.01			-870282.990		20	1	0.947
	0.0001			-476414440.850	26	1	0.91
	Algorithm (1)	0.1	-0.5297		-23894.962		12	1	0.956
		0.01	-17.628		-517786.968		40	0.997	0.964
	0.0001	-117.1588		-6735414.960		40	0.971	0.947
	Algorithm (2)	0.1	-0.5297		-26352.0235		12	1	0.973
		0.01	-17.628		-860188.953		20	0.996	0.964
	0.0001	-117.1588				40	0.985	0.96
				Table 3		
				Condition number of A	
		γ	0.1		0.01		0.005	0.0001
	Cond(A)	1933719617	1137659878224	7320547409175

Table 4

 4 

			Results of linear kernel for		
			C ∈ {1, 10, 100}		
		C	Numerical optimal value	iterations 's' number	train accuracy	test accuracy
	'qp.solver'	1	-57.219	12	0.417	0.447
		10	-311.543	13	0.5	0.526
		100	-2062.733	18	0.575	0.587
	Algorithm (4)	1	-57.219	20	0.909	0.929
		10	-311.543	100	0.91	0.93
		100	-2052.307	500	0.909	0.92
	4.2.2. Experimental results				
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On the other hand, from µ-convexity assumption and using Cauchy-Schawrtz inequality, we deduce that, ∀α ∈ Ω J(α) ≥ J(0) + (∇J(0), α) + µ 2 α 2 ≥ J(0) -∇J(0) . α + µ 2 α 2 .

J is then coercive. Since J is coercive and the decreasing sequence satises J(β k ) ≤ J(ᾱ), then the sequence (β k ) is bounded. For a sub-sequence if necessary, it is then convergent to β.

Clearly, β ∈ Ω. The function J is convex and r k = arg min r∈R J(β k + rd k ), using lemma (2.1), it follows that r k ≥ 0.

we check easily like in proposition (2.2) that β is such that: P Ω (-∇J( β)) = 0. First part of optimality condition is well satised.

On the other hand, for all k, using µ-convexity of J we get

By construction, we have :

Moreover, we have proved that

Obviously, either (1 -t k ) 2 converges to 0, or (α k ) converges to null vector.

If the last one is satised, continuity of ∇J yields P Ω (-∇J(0)) = 0. In this case 0 is the solution to problem (1), since it satises the two necessary optimality conditions P Ω (-∇J(0)) = 0 and (∇J(0), 0) = 0. Otherwise, (t k ) converges to 1 and (α k ) = ( β k t k ) converges to β. Since we have (∇J(β k ), α k ) = 0, passing to the limit to deduce that (∇J( β), β) = 0 and the necessary optimality condition ( 6) is satised. Uniqueness of optimal solution of problem (1) implies that β = ᾱ. Convergence of the sequence (α k ) to the unique solution to the minimizing problem (1) is then proved.

We initialize the algorithm by choosing α 0 such that J(α 0 ) < J(0) in order to grantee that α k = 0, since we have J(α k ) < J(0), for all iteration k. This is due to the fact that t k can not be dened if α k = 0. We can choose α 0 arbitrary in Ω. In such case, we just take t k = 1 and

If we take back example (3.7) and we apply algorithm (1) for the same initialisation α 0 = (1.5, 0) T , we obtain β 0 = (1, 0) which is the optimal solution of problem. Solution is obtained here with just one iteration.

We can accelerate convergence of sequences (α k ) and (β k ) in algorithm (1) by combining algorithm [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] and classical gradient projection algorithm (GPA) to obtain the following algorithm [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF].

Algorithm [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF] • Choose α 0 ∈ Ω, such that J(α 0 ) < J(0)

Under the same assumptions of algorithm [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF] we have exactly the same steps to prove convergence of algorithm [START_REF] Gafni | Two-metric projection methods for constrained optimization[END_REF] to the unique solution of problem [START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF].

In order to prove that P Ω (-∇J(ᾱ)) = 0, we use in algorithm (2) this inequality J(α k+1 ) ≤ J(β k + r k d k ) which was an equality in proposition (3.8).