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Abstract

We are interested in reconstructing the initial condition of a non-linear partial differential equa-
tion (PDE), namely the Fokker-Planck equation, from the observation of a Dyson Brownian motion
at a given time t > 0. The Fokker-Planck equation describes the evolution of electrostatic repulsive
particle systems, and can be seen as the large particle limit of correctly renormalized Dyson Brow-
nian motions. The solution of the Fokker-Planck equation can be written as the free convolution
of the initial condition and the semi-circular distribution. We propose a nonparametric estimator
for the initial condition obtained by performing the free deconvolution via the subordination func-
tions method. This statistical estimator is original as it involves the resolution of a fixed point
equation, and a classical deconvolution by a Cauchy distribution. This is due to the fact that, in
free probability, the analogue of the Fourier transform is the R-transform, related to the Cauchy
transform. In past literature, there has been a focus on the estimation of the initial conditions
of linear PDEs such as the heat equation, but to the best of our knowledge, this is the first time
that the problem is tackled for a non-linear PDE. The convergence of the estimator is proved and
the integrated mean square error is computed, providing rates of convergence similar to the ones
known for non-parametric deconvolution methods. Finally, a simulation study illustrates the good
performances of our estimator.

Keywords: PDE with random initial condition; free deconvolution; inverse problem; kernel estimation;
Fourier transform; mean integrated square error; Dyson Brownian motion
AMS 2000: 35Q62; 65M32; 62G05; 46L53; 35R30; 60B20; 46L54

1 Introduction

1.1 Motivations

Letting the initial condition of a partial differential equation (PDE) be random is interesting for con-
sidering complex phenomena or for introducing uncertainty and irregularity in the initial state. There
is a large literature on the subject, and we can mention that this has been studied for the Navier-Stokes
equation, to account for the turbulence arising in fluids with high velocities and low viscosities (see

∗Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
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[31, 15]), for the Burgers equation that is used in astrophysics (see [9, 5, 18, 17] or also the survey by
[30]), for the wave equations, to study the solutions with low-regularity initial data (see [10, 11, 29]) or
for the Schrödinger PDE (see [8]). The Burgers PDE or the vortex equation, associated to the Navier-
Stokes PDE by considering the curl of the velocity, are of the McKean-Vlasov type as introduced and
studied in [24, 20]. Numerical approximations of such PDEs with random initial conditions have been
considered in [25, 27]. In this paper, we are interested in the Fokker-Planck PDE which is another case
of McKean-Vlasov PDE [13]. This equation models the motion of particles with electrostatic repulsion
and a probabilistic interpretation that we will adopt has been considered in [7].

A question naturally raised in this context is to estimate the random initial condition, given the
observation of the PDE solution at a given fixed time t > 0. For linear PDEs, this inverse problem is
solved by deconvolution techniques, and this has been explored for PDEs such as the heat equation or
the wave equation by Pensky and Sapatinas [22, 23]. For the 1d-heat equation, it is known that the
solution at time t, say νt(dx), is the convolution of the initial condition ν0(dx) with Green function Gt,
which is a Gaussian transition function associated with the standard Brownian motion (Bt)t≥0. The
probabilistic interpretation of the heat equation is built on this observation, and νt can be viewed as
the distribution of Xt = X0 +Bt where X0 is distributed as ν0. Taking the Fourier transforms changes
the convolution problem into a multiplication, which paves the way to reconstruct the initial condition.
Here, we are interested in estimating the initial condition of a non-linear PDE, namely the Fokker-
Planck equation, from the observation of its solution at time t. Recall that the Fokker-Planck equation
is:

∂tp(t, x) = −∂x
∫
R2

Hp(t, x)p(t, x)dx, (1.1)

with

Hp(t, x) = lim
ε→0

∫
R\[x−ε,x+ε]

1

x− y
p(t, y)dy,

and for t ∈ R+, x ∈ R, and initial condition p0(x) ∈ L1(R). Contrarily to the examples considered in
[22, 23], this PDE is non-linear of the McKean-Vlasov type with logarithmic interactions. To the best
of our knowledge, this is the first work devoted to the deconvolution of a non-linear PDE to recover
the initial condition. The choice of this equation is motivated by its strong similarities with the heat
equation: the standard Brownian motion of the probabilistic interpretation is replaced here by the free
Brownian motion (ht)t≥0 (operator-valued), and the usual convolution by a Gaussian distribution is
replaced by the free convolution by a semi-circular distribution σt characterized by its density with
respect to the Lebesgue measure:

σt(dx) =
1

2πt

√
4t− x21l[−2

√
t,2
√
t](x) dx. (1.2)

If x0 admits the spectral measure µ0, then xt = x0 + ht admits

µt = µ0 � σt, (1.3)

as spectral measure, where the operation � is the free convolution and has been introduced by Voiculescu
in [32]. It can be proved that the density p(t, )̇ of µt solves (1.1).

For the Fokker-Planck equation, the inverse problem boils down to a free deconvolution, where
it was a usual deconvolution for the heat equation. Recently, the problem of free deconvolution has
been studied by Arizmendi, Tarrago and Vargas [2]. To solve (1.3) in a general setting, subordination
functions are used. Here, if the Cauchy transform of a measure µ is defined as Gµ(z) =

∫
R(z−x)−1dµ(x)

for z ∈ C+, where C+ is the set of complex numbers with positive imaginary part, the subordination
function wfp(z) at time t is related to Gµt by the functional equation

wfp(z) = z + tGµt(wfp(z)). (1.4)
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From this, we can recover Gµ0
with the formula Gµ0

(z) = Gµt(wfp(z)) and thus p0 (see Lemma 2.7 and
(2.12) in the paper). More precisely, we prove in Section 2.3 that for any γ > 2

√
t, fµ0∗Cγ the density

of the classical convolution of µ0 with the Cauchy distribution of parameter γ, defined by its density

fγ(x) :=
γ

π(x2 + γ2)
,

satisfies

fµ0∗Cγ (x) =
1

πt
[γ − Imwfp(x+ iγ)] , x ∈ R. (1.5)

Then, estimating p0, the density of µ0, requires an estimation of the subordination function wfp com-
bined with a classical deconvolution step from a Cauchy distribution.

1.2 Observations

Additionally to the free deconvolution problem, our observation does not consist in the operator-valued
random variable xt but in its matricial counterpart. More precisely, we observe a matrix Xn(t) for a
given t > 0, assumed to be fixed in the sequel, where

Xn(t) = Xn(0) +Hn(t), t ≥ 0 (1.6)

with Xn(0) a diagonal matrix whose entries are the ordered statistic λn1 (0) < · · · < λnn(0) of a vec-
tor (dni )i∈{1,...n} of n independent and identically distributed (i.i.d.) random variables distributed as
µ0(dx) = p0(x) dx, absolutely continuous with respect to the Lebesgue measure on R, and Hn(t) a
standard Hermitian Brownian motion, as defined in Definition 2.1. The purpose is to estimate p0
without observing directly the initial condition Xn(0). As the distribution of Hn(t) is invariant by
conjugation, choosing Xn(0) to be a diagonal matrix is not restrictive. It is known, see [1, page 249,
section 4.3.1], that the eigenvalues (λn1 (t), · · · , λnn(t)) of Xn(t) solve the following system of stochastic
differential equations (SDE):

dλni (t) =
1√
n

dβi(t) +
1

n

∑
j 6=i

dt

λni (t)− λnj (t)
, 1 ≤ i ≤ n, (1.7)

where βi are i.i.d. standard real Brownian motions. If we denote by

µnt =
1

n

n∑
i=1

δλni (t) (1.8)

the empirical measure of these eigenvalues at time t, then the process (µnt )t≥0 converges weakly almost
surely as n goes to infinity to the process (µt)t≥0 with density (p(t, ·))t≥0 solution of (1.1). For n = 1, we
recover the classical heat equation as the Dyson Brownian motion boils down to a standard Brownian
motion.

1.3 Contributions

Relying on the analysis of Arizmendi et al. [2], we provide, in Theorem-Definition 2.8, a statistical
estimator ŵnfp(z) for the subordination function. As the Cauchy transform Gµt in (1.4) is not invertible

on the whole domain C+, the subordination function wfp(z) will be defined only for z ∈ C2
√
t where

Cγ := {z ∈ C+, Im(z) > γ}. We shall prove the following result.

3



Proposition 1.1. Let γ > 2
√
t. Suppose λn(0) satisfies the condition

sup
n≥1

1

n

n∑
i=1

log
(
λni (0)2 + 1

)
<∞ almost surely (a.s.) (1.9)

Then, we have:
(i) For any z ∈ C2

√
t, the estimator ŵnfp(z) converges almost surely to wfp(z) as n→∞.

(ii) The convergence is uniform on Cγ .
(iii) We have the following convergence rate on Cγ :

sup
n∈N

sup
z∈Cγ

E
[
n
∣∣ŵnfp(z)− wfp(z)∣∣2] < +∞.

To obtain uniform convergence and fluctuations ((ii) and (iii)), we will need to restrict to strict
subdomains of C2

√
t. The fluctuations (iii) are established in the line of the work of Dallaporta and

Février [16].

Proposition 1.1 is the crucial tool to reach the main goal of this paper, namely providing an estimator
of p0. As explained previously, we estimate p0 by combining a free deconvolution step via the use of ŵnfp
with then a classical deconvolution step. We define our final estimator p̂0,h via its Fourier transform,
denoted p̂?0,h; from Equation (1.5), it is natural to define it as follows:

p̂?0,h(ξ) = eγ|ξ|.K?
h(ξ).

1

πt

[
γ − Im ŵnfp(·+ i γ)?(ξ)

]
, ξ ∈ R.

Note that, as usual in nonparametric statistics, the last expression depends on K?
h, a regularization term

defined through the Fourier transform of a kernel function Kh depending on a bandwidth parameter h.
See Equation (2.16) in Definition 2.9 for more details.

We study theoretical properties of p̂0,h by deriving asymptotic rates of the mean integrated square
error of p̂0,h decomposed as the sum of bias and variance terms. The study of the variance term is
intricate and is based on the sharp controls of the difference ŵnfp(z)−wfp(z) provided by Proposition 1.1.

We show in Theorem 4.2 that the variance term is of order e
2γ
h

n as desired for deconvolution with the
Cauchy distribution with parameter γ. The bias term is driven by the smoothness properties of the
function p0. In particular, when we assume that p0 belongs to a space of supersmooth densities (see
(4.2)), we can establish convergence rates, after an appropriate (non-adaptive) choice of the bandwidth
parameter h. For instance, if ∫

R
|p?0(ξ)|2e2a|ξ|dξ ≤ L

for 0 < L <∞, then

E
[
‖p̂0,h − p0‖2

]
= O

(
n−

a
a+γ
)
.

The previous rate is optimal when we address the statistical deconvolution problem involving the Cauchy
distribution with parameter γ. See Corollary 4.3 for more details and more general results that establish
the optimality of our procedure. Note that the exponent in the previous bound reflects the difficulty
of our statistical problem: the larger γ, the smaller the rate. Remembering that γ is connected to
the observational time t through the condition γ > 2

√
t, it means that for the previous example, our

estimate can achieve the polynomial rate n
− a
a+2
√
t+ε for any ε > 0. The question of whether it is possible

to consider smaller values for γ constitutes a challenging problem. Adaptive choices for h are also a
very interesting issue. These problems will be investigated in another work.
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1.4 Overview of the paper

In Section 2, we study the free deconvolution and explain the construction of the estimator p̂0,h of
p0. Existence results and properties of the subordination functions are precisely stated and proved.
Then, in Section 3, we prove Proposition 1.1. In Section 4, rates of convergence of p̂0,h are established.
Numerical simulations are provided in Section 5.

Notations: For any z = u+ iv ∈ C+, we denote
√
z := a+ ib ∈ C with

a =

√√
u2 + v2 + u

2
, b =

√√
u2 + v2 − u

2
.

We denote the Fourier transform of a function g ∈ L1(R) by g?:

g?(ξ) :=

∫
R
g(x)eixξdx, ξ ∈ R. (1.10)

2 Free deconvolution of the Fokker-Planck equation

2.1 Dyson Brownian motions

Let us denote by Hn(C) the space of n-dimensional matrices Hn such that (Hn)
∗

= Hn.

Definition 2.1. Let
(
Bi,j , B̃i,j , 1 ≤ i ≤ j ≤ n

)
be a collection of i.i.d. real valued standard Brownian

motions, the Hermitian Brownian motion, denoted Hn ∈ Hn(C), is the random process with entries
{(Hn(t))k,l, t ≥ 0, 1 ≤ k, l ≤ n} equal to

(Hn)k,l =


1√
2n

(
Bk,l + i B̃k,l

)
, if k < l

1√
n
Bk,k, if k = l

(2.1)

Let us now define the initial condition, that we will choose independent of the Hermitian Brownian
motion Hn. Recall that µ0 is a probability measure with density p0(x) with respect to the Lebesgue
measure on R. Without loss of generality, we can choose the initial condition Xn(0) to be a diagonal
matrix, with entries (λn1 (0), . . . , λnn(0)) the ordered statistics of i.i.d. random variables (dni )1≤i≤n with
distribution µ0.

For t ≥ 0, let λn(t) =
(
λn1 (t), . . . , λnn(t)

)
denote the ordered collection of eigenvalues of

Xn(t) = Xn(0) +Hn(t). (2.2)

Theorem 2.2 (Dyson). The process
(
λn(t)

)
t≥0 is the unique solution in C (R+,Rn) of the system

dλni (t) =
1√
n
dβi(t) +

1

n

∑
j 6=i

dt

λni (t)− λnj (t)
, 1 ≤ i ≤ n, (1.7)

with initial condition λni (0) and where βi are i.i.d. real valued standard Brownian motions. With
probability one and for all t > 0, λn1 (t) < . . . < λnn(t).

Moreover, if for fixed T > 0, we denote by C
(

[0, T ] ,M1 (R)
)

the space of continuous processes from
[0, T ] into M1 (R) , the space of probability measure on R, equipped with its weak topology, we now
prove the convergence of the process of empirical measures µn as defined in (1.8), viewed as an element
of C

(
[0, T ] ,M1 (R)

)
.
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Proposition 2.3. Under Assumption (1.9), for any fixed time T < ∞,
(
µnt
)
t∈[0,T ]

converges almost

surely in C
(
[0, T ],M1 (R)

)
. Moreover, its limit is the unique measure-valued process (µt)t∈[0,T ] whose

densities satisfy (1.1) with initial condition p0.

For deterministic initial conditions, Theorem 2.2 and Proposition 2.3 are classical results and we
refer to [1, Section 4.3] for a proof. Both results can be easily extended to random initial conditions,
independent of the Hermitian Brownian motion itself. For details, we refer to [21].

2.2 Free deconvolution by subordination method

Our starting point is (1.3), for a fixed time t > 0. Recovering µ0 knowing µt is a free deconvolution
problem. The generic problem of free deconvolution has been introduced and studied by Arizmendi
et al. [2] with the use of the Cauchy transform instead of the Fourier transform. Before stating their
result, we need to introduce a few notations and definitions.

Definition 2.4. Let µ be a probability measure on R, the Cauchy transform of µ is defined by:

Gµ(z) =

∫
R

dµ(x)

z − x
, z ∈ C \ R. (2.3)

The fact is that Gµ (z) = Gµ(z), so the behavior of the Cauchy transform in the lower half-plan C− =
{z ∈ C|Im(z) < 0} can be determined by its behavior in the upper half-plan C+ = {z ∈ C|Im(z) > 0}.
The function Gµ is a bijection from a neighbourhood of infinity to a neighbourhood of zero (see [6] for
example) and we can define the R-transform of µ by:

Rµ(z) = G<−1>µ (z)− 1

z
,

where G<−1>µ (z) is the inverse function of Gµ on a proper neighbourhood of zero. This R-transform
plays the role of the logarithm of the Fourier transform for the free convolution in the sense that for
any probability measures µ1 and µ2,

Rµ1�µ2
= Rµ1

+Rµ2
. (2.4)

Using this formula for statistical deconvolution requires the computation of two inverse functions, and
Arizmendi et al. [2] propose to use subordination functions which also characterize the free convolution
as in (2.4).

Let us recall the definition of subordination functions due to Voiculescu [33]. We first introduce
Fµ(z) = 1/Gµ(z). As Gµ does not vanish on C+, Fµ is well defined on C+. Then:

Theorem-Definition 2.5. There exist unique subordination functions α1 and α2 from C+ onto C+

such that:
(i) for z ∈ C+, Im

(
α1(z)

)
≥ Im(z) and Im

(
α2(z)

)
≥ Im(z), with

lim
y→+∞

α1(iy)

iy
= lim
y→+∞

α2(iy)

iy
= 1.

(ii) for z ∈ C+, Fµ1�µ2
(z) = Fµ1

(α1(z)) = Fµ2
(α2(z)) and α1(z) + α2(z) = Fµ1�µ2

(z) + z.

Using this result, Belinschi and Bercovici [4, Theorem 3.2] introduce a fixed-point construction of
the subordination functions, which Arizmendi et al. [2] adapt for the deconvolution problem. We state
their result in the special case of the deconvolution by a semi-circular distribution defined in (1.2).
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In this case, we have an explicit formula for its Cauchy transform Gσt(z) and its reciprocal function
Fσt(z) :

Gσt(z) =
z −
√
z2 − 4t

2t
, and z − Fσt(z) = t Gσt(z). (2.5)

Before stating the result, let us define, for any γ > 0,

Cγ =
{
z ∈ C+

∣∣Im(z) > γ
}
.

These domains will appear since Gµ is not invertible on the whole plane C.

Theorem 2.6. There exist unique subordination functions w1 and wfp from C2
√
t onto C+ such that

following properties are satisfied.

(i) For z ∈ C2
√
t, Im

(
w1(z)

)
≥ 1

2
Im(z) and Im

(
wfp(z)

)
≥ 1

2
Im(z), and also

lim
y→+∞

w1(iy)

iy
= lim
y→+∞

wfp(iy)

iy
= 1.

(ii) For z ∈ C2
√
t :

Fµ0(z) = Fσt(w1(z)) = Fµt(wfp(z)). (2.6)

(iii) For z ∈ C2
√
t :

wfp(z) = z + w1(z)− Fµ0(z). (2.7)

(iv) Denote hσt(w) = w − Fσt(w) = t Gσt(w) and h̃µt(w) = w + Fµt(w) on C+. We can define the
function Lz as

Lz(w) : = hσt
(
h̃µt(w)− z

)
+ z

= t.Gσt
(
h̃µt(w)− z

)
+ z. (2.8)

For any z ∈ C2
√
t, we have

Lz
(
wfp(z)

)
= wfp(z), (2.9)

and for all w such that Im(w) > 1
2 Im(z), the iterated function L◦mz (w) converges to wfp(z) ∈ C+ when

m→ +∞.

One difference between Theorem 2.6 and Theorem-definition 2.5 lies in the fact that the subordina-
tion functions are expressed in terms of Fµ0�σt and Fσt whereas in Theorem-definition 2.5 it would have

been Fµ0 and Fσt . Here the restriction to the domain C2
√
t comes from the fact that Im(h̃µt(w) − z)

appearing in the definition (2.8) of Lz has to be positive.

The proof of Theorem 2.6 is postponed to the last subsection of this section, Section 2.4. We now
explain how the subordination functions allow us to construct the estimator of p0.

2.3 Construction of the estimator of p0

Overview of the estimation strategy Based on Theorem 2.6, we devise the estimation strategy of
the paper. The theorem allows us to get the subordination function wfp as a fixed point of Lz. From
there, we will be able to recover the Cauchy transform of the initial condition µ0 from wfp, as stated
in the following lemma proved at the end of the section:

7



Lemma 2.7. For any z ∈ C2
√
t,

Gµ0(z) =
1

t
(wfp(z)− z) = Gµt

(
wfp(z)

)
. (2.10)

Consequently,
|wfp(z)− z| ≤

√
t. (2.11)

Moreover, for any γ > 0, if we denote by Cγ the centered Cauchy distribution with density:

fγ(x) :=
γ

π(x2 + γ2)
,

one can check that, for any probability measure µ on R, the density fµ∗Cγ of the classical convolution
of µ by Cγ is given, for x ∈ R, by

fµ∗Cγ (x) = − 1

π
ImGµ(x+ iγ). (2.12)

Using the expression of Gµ0
given by Lemma 2.7 with γ > 2

√
t, we get that for any x ∈ R,

fµ0∗Cγ (x) =
1

πt
[γ − Imwfp(x+ iγ)] . (2.13)

From this, we can recover the density p0 of µ0 by a classical deconvolution of (2.13) by fγ . The
subordination function wfp in (2.13) is estimated using the second equality of Lemma 2.7. In parallel
with our work, Tarrago [26] has used the formula (2.13) to perform spectral deconvolution in a more
general setting (including the multiplicative free convolution), but neither the approximation of wfp by
its estimator ŵnfp defined Theorem-Definition 2.8 below nor the (classical) deconvolution of the Cauchy
distribution are treated, which are key difficulties encountered in our paper. Tarrago uses a different
approach based on concentration inequalities when we use fluctuations in view of the work of Février
and Dallaporta [16]. To prove the rates announced in the introduction, we need to establish very precise
estimates of the error terms (see Section 4).

Proof of Lemma 2.7. Now, from (2.7), (2.6) and (2.5), we write for z ∈ C2
√
t,

wfp(z) = z + w1(z)− Fµ0
(z) = z + w1(z)− Fσt

(
w1(z)

)
= z + t.Gσt

(
w1(z)

)
.

So, we obtain

Gσt
(
w1(z)

)
=

1

t

(
wfp(z)− z

)
.

Using again (2.6), we obtain both equalities of (2.10). From there

|wfp(z)− z| = t. |Gσt(w1(z))| = t. |Gµt(wfp(z))| ≤
t

|Im(wfp(z))|
≤
√
t,

using Theorem 2.6 (i).

Estimator of p0 We do not observe directly the measure µt. The observation is the matrix Xn(t)
at time t > 0 for a given n. From this observation, we can construct the empirical spectral measure as
defined in (1.8). Then, for z ∈ C+, a natural estimator of Gµt(z) is obtained as follows:

Ĝµnt (z) :=

∫
R

dµnt (λ)

z − λ
=

1

n

n∑
j=1

1

z − λnj (t)
=

1

n
tr
((
zIn −Xn(t)

)−1)
. (2.14)
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Theorem-Definition 2.8. There exists a unique fixed-point to the following functional equation in
w(z):

1

t
(w(z)− z) = Ĝµnt (w(z)), for z ∈ C2

√
t (2.15)

This fixed-point is denoted by ŵnfp(z). We have Im(ŵnfp(z)) > Im(z)/2 and
∣∣∣ŵnfp(z)− z∣∣∣ ≤ √t.

The theorem is proved at the end of this section. We shall prove in Section 3 that ŵnfp(z) is a
convergent estimator of wfp(z) and establish a fluctuation result associated with this convergence. This
is the result announced in Proposition 1.1. Let us now explain how the estimator of p0 can be obtained
from ŵnfp(z).

Recall that the Fourier transform of the Cauchy distribution Cα with α > 0 is f?α(ξ) = e−α|ξ| for
ξ ∈ R. Performing the deconvolution from (2.13), the Fourier transform of p0 is the division of the
Fourier transform of the right-hand side of (2.13) by f?γ (ξ) with γ > 2

√
t. It is now classical to define

our ultimate estimator for the density function p0 from its Fourier transform:

Definition 2.9. Let us consider a bandwidth h > 0 and a regularizing kernel K. We assume that the
kernel K is such that its Fourier transform K? is bounded by a positive constant CK < +∞ and has a
compact support, say [−1, 1]. We define the estimator p̂0,h of p0 by its Fourier transform:

p̂?0,h(ξ) = eγ|ξ|.K?
h(ξ).

1

πt

[
γ − Im ŵnfp(·+ i γ)?(ξ)

]
, (2.16)

where we have defined Kh(·) = 1
hK
( ·
h

)
.

Note that the assumption on K ensures the finiteness of the estimator. These assumptions are for
instance satisfied for K(x) = sinc(x) = sin(x)/(πx) whose Fourier transform is K?(ξ) = 1[−1,1](ξ), and
in this case CK = 1.

2.4 Proof of Theorem 2.6

The constants of Theorem 2.6 are better than the ones of Arizmendi et al. [2] who work in full gen-
erality. We sketch here the main steps of the proof in our context, using the explicit formula for the
semi-circular distribution.

In the whole proof, we consider z ∈ C2
√
t.

Step 1: We first prove that the function Lz(w) = hσt
(
h̃µt(w)− z

)
+ z is well-defined and analytic on

C 1
2 Im(z). Since hσt is defined on C+, we need to check that h̃µt(w) − z ∈ C+ for w ∈ C 1

2 Im(z). This is
satisfied since for such w,

Im
(
h̃µt(w)− z

)
= Im

(
w + Fµt(w)− z

)
≥ 2Im(w)− Im(z) > 0, (2.17)

where we have used ImFµt(w) ≥ Im(w) for the first inequality. Indeed, if w = w1 + iw2, we have

(Fµt(w))−1 = Gµt(w) =

∫
dµt(x)

w1 + iw2 − x
=

∫
(w1 − x)dµt(x)

(w1 − x)2 + w2
2

− iw2

∫
dµt(x)

(w1 − x)2 + w2
2

9



and

Im(Fµt(w)) = w2 ×

∫ dµt(x)
(w1−x)2+w2

2(∫ (w1−x)dµt(x)
(w1−x)2+w2

2

)2
+ w2

2

(∫ dµt(x)
(w1−x)2+w2

2

)2
≥ w2 ×

∫ dµt(x)
(w1−x)2+w2

2∫ (w1−x)2dµt(x)
((w1−x)2+w2

2)
2 + w2

2

∫ dµt(x)

((w1−x)2+w2
2)

2

= w2 (2.18)

Step 2: We show that Lz(C 1
2 Im(z)) ⊂ C 1

2 Im(z) and that Lz is not a conformal automorphism.

First, let us show that Lz

(
C 1

2 Im(z)

)
⊂ C 1

2 Im(z). Let w ∈ C 1
2 Im(z), we have:

Im (Lz(w)) = Im
[
t.Gσt

(
h̃µt(w)− z

)
+ z
]

= Im

 h̃µt(w)− z −
√(

h̃µt(w)− z
)2
− 4t

2
+ z

 . (2.19)

To lower bound the right hand side, note that for all v ∈ C+, one can check that:

Im
(√

v2 − 4t
)
≤
√

Im2(v) + 4t.

Therefore, we have:

Im

(√(
h̃µt(w)− z

)2 − 4t

)
≤
√[

Im
(
h̃µt(w)− z

)]2
+ 4t.

Hence, (2.19) yields:

Im
(
Lz(w)

)
≥ 1

2

[
Im
(
h̃µt(w)− z

)
−
√[

Im
(
h̃µt(w)− z

)]2
+ 4t

]
+ Im(z).

The function g(s) = s−
√
s2 + 4t is non-decreasing on R+ and for all s > 0, g(s) ≥ −2

√
t. This implies

that

Im
(
Lz(w)

)
≥ Im(z)−

√
t >

1

2
Im(z), (2.20)

since z ∈ C2
√
t. This guarantees that Lz(w) ∈ C 1

2 Im(z).

Let us now prove that Lz is not an automorphism of C 1
2 Im(z). Consider

|Lz(w)− z| =
∣∣∣Fσt(h̃µt(w)− z

)
−
(
h̃µt(w)− z

)∣∣∣ =
∣∣∣tGσt(h̃µt(w)− z

)∣∣∣ .
For v ∈ C+, if |v| > 3

√
t, since the support of σt is [−2

√
t, 2
√
t],

|tGσt(v)| =

∣∣∣∣∣
∫ 2
√
t

−2
√
t

t

v − x
dσt(x)

∣∣∣∣∣ ≤ √t.
10



If |v| ≤ 3
√
t,

|tGσt(v)| =

∣∣∣∣∣v −
√
v2 − 4t

2

∣∣∣∣∣ ≤ 2|v|+ 2
√
t

2
≤ 4
√
t.

Hence, for all w ∈ C 1
2 Im(z),

|Lz(w)− z| ≤ 4
√
t. (2.21)

This implies that Lz

(
C 1

2 Im(z)

)
is included in the ball centered at z with radius 4

√
t. As a result, Lz is

not surjective and hence is not an automorphism of C 1
2 Im(z).

Step 3: Existence and uniqueness of wfp, which is a fixed point of Lz.

By Steps 1 and 2, Lz satisfies the assumptions of Denjoy-Wolff’s fixed-point theorem (see e.g. [4, 2]).

The theorem says that for all w ∈ C 1
2 Im(z) the iterated sequence L◦mz (w) = Lz ◦L◦(m−1)z (w) converges to

the unique Denjoy-Wolff point of Lz which we define as wfp(z). The Denjoy-Wolff point is either a fixed-
point of Lz or a point of the boundary of the domain. Let us check that wfp is a fixed point of Lz. For
any z ∈ C2

√
t, there exists γ > 2 such that z ∈ Cγ√t and from (2.20), Lz(C 1

2 Im(z)) ⊂ C(1− 1
γ )Im(z). More-

over, from (2.21), Lz(C 1
2 Im(z)) ⊂ B(z, 4

√
t). Therefore, wfp(z) ∈ C(1− 1

γ )Im(z) ∩B(z, 4
√
t) ⊂ C 1

2 Im(z), so

that it is necessarily a fixed point.

We now define
w1(z) := Fµt(wfp(z)) + wfp(z)− z.

One can check that

Fσt(w1(z)) = w1(z)− hσt(w1(z))

= Fµt(wfp(z)) + wfp(z)− z − hσt(Fµt(wfp(z)) + wfp(z)− z)
= h̃µt(wfp(z))− z − hσt(h̃µt(wfp(z))− z)
= h̃µt(wfp(z))− wfp(z) = Fµt(wfp(z)).

One can therefore rewrite
w1(z) = Fσt(w1(z)) + wfp(z)− z.

From (2.21) and the fact that wfp(z) is a fixed point of Lz, one easily gets that

lim
y→+∞

wfp(iy)

iy
= 1,

which implies that

lim
y→+∞

Fµt(wfp(iy))

iy
= 1, and lim

y→+∞

w1(iy)

iy
= 1.

Now we connect Fµ0 to the previous quantities. For z large enough, all the functions we consider
are invertible and we have

Fµt(wfp(z)) + wfp(z) = z + w1(z) = z + F<−1>σt (Fµt(wfp(z))).

On the other hand, for z large enough, using Theorem-definition 2.5 for µ1 = σt and µ2 = µ0, we get

Fµt(wfp(z)) + wfp(z) = α1(wfp(z)) + α2(wfp(z)) = F<−1>σt (Fµt(wfp(z))) + F<−1>µ0
(Fµt(wfp(z))).

11



Comparing the two equalities gives

F<−1>µ0
(Fµt(wfp(z))) = z,

so that, for z large enough,
Fµt(wfp(z)) = Fµ0

(z).

The two functions being analytic on C2
√
t, the equality can be extended to any z ∈ C2

√
t.

Finally, since
w1(z) = Fµt(wfp(z)) + wfp(z)− z = Fµ0

(z) + wfp(z)− z,

we have, using (2.18) with µ0 instead of µt,

Im(w1(z)) = Im(Fµ0
(z)) + Im(wfp(z))− Im(z) ≥ Im(wfp(z)) ≥

1

2
Im(z).

This ends the proof of Theorem 2.6.

2.5 Proof of Theorem-Definition 2.8

The proof of this theorem follows the steps of the proof of Theorem 2.6. First, L̂z(w) := tĜµnt (w) + z

is a well-defined and analytic function on C+. Let us check that L̂z
(
C 1

2 Im(z)

)
⊂ C 1

2 Im(z) for z ∈ C2
√
t.

For w = u+ iv ∈ C 1
2 Im(z),

Im
(
Ĝµnt (w)

)
=

1

n

n∑
j=1

Im
( u− λnj (t)− iv

(u− λnj (t))2 + v2

)
> −1

v
= − 1

Im(w)
. (2.22)

Thus,

Im
(
L̂z(w)

)
=t Im

(
Ĝµnt (w)

)
+ Im(z) > − t

Im(w)
+ Im(z) > − 2t

Im(z)
+ Im(z) >

1

2
Im(z).

The second inequality comes from the choice of w ∈ C 1
2 Im(z), and the last inequality is a consequence

of Im(z) > 2
√
t.

Moreover, L̂z is not an automorphism since:

∣∣∣L̂z(w)− z
∣∣∣ =
∣∣∣tĜµnt (w)

∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
j=1

t

w − λnj (t)

∣∣∣∣∣∣ ≤ t

Im(w)
≤
√
t (2.23)

since Im(w) > 1
2 Im(z) >

√
t. We use again the Denjoy-Wolff fixed-point theorem. Because the inclusion

of L̂z
(
C 1

2 Im(z)

)
into C 1

2 Im(z) is strict, the unique Denjoy-Wolff point of L̂z is necessarily a fixed point

that we denote ŵfp(z). From the construction, Im(ŵfp(z)) > Im(z)/2. Finally, the last announced
estimate is a straightforward consequence of (2.23).

3 Study of the subordination function

This section is devoted to the proof of Proposition 1.1. We show that ŵnfp(z) converges uniformly to

wfp(z) on Cγ with γ > 2
√
t. Next, we establish that the fluctuations are of order 1/

√
n.

12



3.1 Proof of (i) and (ii) of Proposition 1.1

We first state a useful lemma.

Lemma 3.1. For any probability measure µ on R and α > 0, the Cauchy transform Gµ is Lipschitz on

Cα with Lipschitz constant
1

α2
, and one has for any z ∈ Cα, |Gµ(z)| ≤ 1

α
.

Proof. For z, z′ ∈ Cα,

|Gµ(z)−Gµ(z′)| =
∣∣∣∣∫

R

dµ(x)

z − x
−
∫
R

dµ(y)

z′ − y

∣∣∣∣ ≤ |z − z′| ∫
R

dµ(x)

|(z − x)(z′ − x)|

≤ |z − z′|
Im(z)Im(z′)

≤ |z − z
′|

α2
.

This implies the Lipschitz property of Gµt . Also,

|Gµ(z)| =
∣∣∣∣∫

R

dµ(x)

z − x

∣∣∣∣ ≤ 1

Im(z)
≤ 1

α
.

This finishes the proof.

We are now ready to prove the points (i) and (ii) of Proposition 1.1.

Proof of Proposition 1.1(i-ii). Consider z ∈ Cγ with γ > 2
√
t. Using the equations (2.10) and (2.15)

characterizing wfp(z) and ŵnfp(z), we have∣∣ŵnfp(z)− wfp(z)∣∣ = t
∣∣∣Ĝµnt (ŵnfp(z))−Gµt(wfp(z))

∣∣∣
≤ t
∣∣∣Ĝµnt (ŵnfp(z))− Ĝµnt (wfp(z))

∣∣∣+ t
∣∣∣Ĝµnt (wfp(z))−Gµt(wfp(z))

∣∣∣ . (3.1)

By Theorem 2.6, Im(wfp(z)) ≥
1

2
Im(z) and since Ĝµnt is a Lipschitz function on C 1

2 Im(z) with Lipschitz

constant
4

Im2(z)
≤ 4

γ2 , by Lemma 3.1, we have an upper bound for the first term

∣∣∣Ĝµnt (ŵnfp(z))− Ĝµnt (wfp(z))
∣∣∣ ≤ 4

γ2
×
∣∣ŵnfp(z)− wfp(z)∣∣ .

Thus, ∣∣ŵnfp(z)− wfp(z)∣∣ ≤ 4t

γ2
∣∣ŵnfp(z)− wfp(z)∣∣+ t

∣∣∣Ĝµnt (wfp(z))−Gµt(wfp(z))∣∣∣ ,
implying that ∣∣ŵnfp(z)− wfp(z)∣∣ ≤ ( tγ2

γ2 − 4t

)
×
∣∣∣Ĝµnt (wfp(z))−Gµt(wfp(z))∣∣∣ . (3.2)

By Proposition 2.3, since the function x 7→ 1
z−x is continuous and bounded on R for any z ∈ C√t,

Ĝµnt (wfp(z)) =
∫
R

1
wfp(z)−xµ

n
t (dx) converges almost surely to Gµt(wfp(z)) =

∫
R

1
wfp(z)−xµt(dx). This

concludes the proof of (i).

To prove the uniform convergence (ii), we will need Vitali’s convergence theorem, see e.g. [3,
Lemma 2.14, p.37-38]: on any bounded compact set of C2

√
t, the simple convergence is in fact a uniform

convergence. Moreover, the functions Gµt(z) and Ĝµnt (z) decay as 1/|z| when |z| → +∞, implying the

uniform convergence of the right-hand side of (3.2) on Cγ , for γ > 2
√
t and of ŵnfp(z) to wfp(z).
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3.2 Fluctuations of the Cauchy transform of the empirical measure

We now prove point (iii) of Proposition 1.1. For this purpose, we first decompose:

Ĝµnt (z)−Gµt(z)

=Ĝµnt (z)− E
[
Ĝµnt (z)|Xn(0)

]
+ E

[
Ĝµnt (z)|Xn(0)

]
−Gµn0 �σt(z) +Gµn0 �σt(z)−Gµt(z)

=:An1 (z) +An2 (z) +An3 (z). (3.3)

The first term is related to the variance of Ĝµnt (z) (conditional on Xn(0)). The second term heuristically
compares the evolution with the Hermitian Brownian motion to its limit. The third term deals with
the fluctuations of the empirical initial condition. A similar decomposition for the first two terms is
done in Dallaporta and Février [16] (without the problem of the random initial condition) and we will
adapt their results. We will show that the fluctuations of the first two terms are of order 1/n, and this
is treated in Propositions 3.2 and 3.3 below. The third term, which is associated to a classical central
limit theorem, is of order 1/

√
n. This is proved in Proposition 3.6.

For the term An1 (z), the result is a direct consequence of Proposition 3 in [16] and we refer to the
detailed computation in [21].

Proposition 3.2. For z ∈ C+ and n ∈ N,

Var
(
nAn1 (z)|Xn(0)

)
= Var

(
nĜµnt (z)|Xn(0)

)
≤ 10t

Im4(z)
.

3.2.1 Fluctuations of An2 (z)

We start with some additional notations. Let us denote the resolvent of Xn(t) by

Rn,t(z) := (zIn −Xn(t))
−1
. (3.4)

Then one can write

Ĝµnt (z) =
1

n
Tr (Rn,t(z)) .

Then, the bias term is:

nAn2 (z) = E [Tr (Rn,t(z)) | Xn(0)]− nGµn0 �σt(z), (3.5)

and it is given by an adaptation of [16, Proposition 4] to the case of a random initial condition:

Proposition 3.3. For z ∈ C+ and n ∈ N,

|nAn2 (z)| ≤
(

1 +
4t

Im2(z)

)
.

(
2t

Im3(z)
+

12t2

Im5(z)

)
. (3.6)

The term An2 (z) compares E
[
Ĝµnt (z)|Xn(0)

]
with Gµn0 �σt(z). Proceeding as in Theorem-Definition

2.5, with µn0 and σt, we can define a subordination function wfp(z) such that

Gµn0 �σt(z) = Gµn0
(
wfp(z)

)
. (3.7)

In what follows, it will be natural to introduce and use this subordination function.
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Proof. Note that by definition of the resolvent, we have for all z ∈ C+,

|nAn2 (z)| ≤ 2nIm−1(z), (3.8)

which is suboptimal due to the factor n.

We follow the ideas of [16] for their ‘approximate subordination relations’. Since our initial condition
is random, the strategy has to be adapted and we introduce the following analogues of Rn,t(z) and An2 (z),
which differ from [16]:

R̃n,t(z) :=
((
z − t

n
E
[
Tr (Rn,t(z)) | Xn(0)

])
.In −Xn(0)

)−1
(3.9)

nÃn2 (z) := E
[
Tr (Rn,t(z)) | Xn(0)

]
− Tr

(
R̃n,t(z)

)
.

We will bound An2 (z) by using its approximation Ãn2 (z).

Step 1: First, we prove an upper bound for Ãn2 (z):

Lemma 3.4. For z ∈ C+, ∣∣nÃn2 (z)
∣∣ ≤ 2t

Im3(z)
+

12t2

Im5(z)
.

The proof of this lemma is postponed in Appendix.

Step 2: If |Ãn2 (z)| ≥ Im(z)/(2t) then, by (3.8)

|nAn2 (z)| ≤ 4tn|Ãn2 (z)|
Im2(z)

.

And we conclude with Lemma 3.4.

Step 3: We now consider the case where |Ãn2 (z)| < Im(z)/(2t). We have:

An2 (z) = Ãn2 (z) +
[
An2 (z)− Ãn2 (z)

]
(3.10)

We will control the difference |An2 (z)− Ãn2 (z)| by Ãn2 (z) and conclude with Lemma 3.4.

By their definitions:

n
(
An2 (z)− Ãn2 (z)

)
=Tr

(
R̃n,t(z)

)
− nGµn0 �σt(z). (3.11)

We follow the trick in [16] which consists in going back to the fluctuations of the subordination functions.

In view of (3.7), it is natural to express the first term Tr
(
R̃n,t(z)

)
of (3.11) similarly. As R̃n,t(z) is a

diagonal matrix,

Tr
(
R̃n,t(z)

)
=

n∑
j=1

1

z − t
nE
[
Tr
(
Rn,t(z)

)
| Xn(0)

]
− λnj (0)

= nGµn0 (w̃fp(z)), (3.12)

where

w̃fp(z) := z − t

n
E
[
Tr
(
Rn,t(z)

)
| Xn(0)

]
(3.13)

and where λnj (0) are the eigenvalues of Xn(0). Thus:

An2 (z)− Ãn2 (z) = Gµn0 (w̃fp(z))−Gµn0 (wfp(z)). (3.14)

To continue, we first need the following result proved in Appendix.
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Lemma 3.5. (i) The function wfp(z), defined in (3.7), solves

wfp(z) = z − tGµn0 �σt(z).

(ii) The function ζ(z) = z + tGµn0 (z) is well-defined on C+ and is the inverse of wfp(z) on Ω = {z ∈
C+, Im(ζ(z)) > 0}. For such z ∈ Ω, we denote this function w<−1>fp (z).

Let us prove that under the condition of Step 3, w̃fp(z) ∈ Ω for all z ∈ C+.

ζ(w̃fp(z))− z = w̃fp(z) + tGµn0
(
w̃fp(z)

)
− z

= z − t

n
E
[
Tr
(
Rn,t(z)

)
| Xn(0)

]
+ tGµn0

(
w̃fp(z)

)
− z

= −tÃn2 (z), (3.15)

by (3.12). Therefore,

∣∣Im(ζ(w̃fp(z))
)
− Im(z)

∣∣ ≤ |ζ(w̃fp(z))− z| = t
∣∣Ãn2 (z)

∣∣ ≤ Im(z)

2
. (3.16)

Thus, under the condition of Step 3, w̃fp(z) ∈ Ω. Denoting z̃ = w<−1>fp

(
w̃fp(z)

)
, which is well-defined,

we have wfp(z̃) = w̃fp(z). Plugging this into (3.14),

An2 (z)− Ãn2 (z) = Gµn0 �σt(z̃)−Gµn0 �σt(z)

=
(
z − z̃

) ∫
R

µn0 � σt(dx)(
z̃ − x

)
.
(
z − x

)
= tÃn2 (z).

∫
R

µn0 � σt(dx)(
z̃ − x

)
.
(
z − x

) ,
where we used (3.15) for the last equality.

From there, using (3.10), we get

|An2 (z)| ≤
∣∣∣1 + t.

∫
R

µn0 � σt(dx)(
z̃ − x

)
.
(
z − x

) ∣∣∣.|Ãn2 (z)| ≤
(

1 +
2t

Im2(z)

)
|Ãn2 (z)|.

This concludes the proof of Proposition 3.3.

3.2.2 Fluctuations of An3 (z)

Finally, the third step is to control An3 (z) = Gµn0 �σt(z)−Gµt(z), with µt = µ0 � σt.

Proposition 3.6. For any γ > 2
√
t and for any z such that Im(z) ≥ γ

2 , we have:

|An3 (z)| < γ2

γ2 − 4t

∣∣∣∣∫
R

1

z − t.Gµ0�σt(z)− x
[
dµn0 (x)− dµ0(x)

]∣∣∣∣ (3.17)

and

sup
n∈N

sup
z∈C γ

2

E
[
n |An3 (z)|2

]
<

8γ2

(γ2 − 4t)2
. (3.18)

16



Proof. Using again the subordination function wfp(z) defined in (3.7) and Lemma 3.5(i), we have

Gµn0 �σt(z) = Gµn0
(
wfp(z)

)
=

∫
R

dµn0 (x)

wfp(z)− x
=

∫
R

dµn0 (x)

z − tGµn0 �σt(z)− x
. (3.19)

In this proof, Im(z) ≥ γ/2 ≥
√
t. Note that Im(wfp(z)) ≥ Im(z) (Theorem-Definition 2.5) so that

|z − tGµn0 �σt(z)− x| ≥
γ

2
≥
√
t, (3.20)

and the integrand in (3.19) is well-defined and upper-bounded by 1/
√
t. Similarly, we can establish that

Gµ0�σt(z) =

∫
R

dµ0(x)

z − tGµ0�σt(z)− x
. (3.21)

Then, we can write

Gµn0 �σt(z)−Gµ0�σt(z) =

∫
R

1

z − t.Gµn0 �σt(z)− x
dµn0 (x)−

∫
R

1

z − t.Gµ0�σt(z)− x
dµn0 (x)

+

∫
R

1

z − t.Gµ0�σt(z)− x
dµn0 (x)−

∫
R

1

z − t.Gµ0�σt(z)− x
dµ0(x)

= t.

∫
R

Gµn0 �σt(z)−Gµ0�σt(z)(
z − t.Gµn0 �σt(z)− x

)
.
(
z − t.Gµ0�σt(z)− x

)dµn0 (x)

+

∫
R

1

z − t.Gµ0�σt(z)− x
[dµn0 (x)− dµ0(x)] .

Thus,

(
Gµn0 �σt(z)−Gµ0�σt(z)

)
.

1− t.
∫
R

1(
z − t.Gµn0 �σt(z)− x

)
.
(
z − t.Gµ0�σt(z)− x

)dµn0 (x)


=

∫
R

1

z − t.Gµ0�σt(z)− x
[
dµn0 (x)− dµ0(x)

]
.

Similarly to (3.20), we can show that |z − t.Gµ0�σt(z)− x| ≥ γ/2. Thus∣∣∣∣∣∣t.
∫
R

1(
z − t.Gµn0 �σt(z)− x

)
.
(
z − t.Gµ0�σt(z)− x

)dµn0 (x)

∣∣∣∣∣∣ ≤ 4t

γ2
,

consequently,

|An3 (z)| < γ2

γ2 − 4t

∣∣∣∣∫
R

1

z − t.Gµ0�σt(z)− x
[
dµn0 (x)− dµ0(x)

]∣∣∣∣ ,
which gives the first part of the proposition. For the second part (3.18),

E
[
n |An3 (z)|2

]
≤
(

γ2

γ2 − 4t

)2

nE
[ ∣∣∣∣∫

R

1

z − t.Gµ0�σt(z)− x
[
dµn0 (x)− dµ0(x)

]∣∣∣∣2 ].
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Now, for any z such that Im(z) > γ
2 , the function ϕz : x 7→ 1

z − t.Gµ0�σt(z)− x
is bounded by 2/γ.

Then:

nE
[∣∣∣ ∫

R
ϕz(x)dµn0 (x)−

∫
R
ϕz(x)dµ0(x)

∣∣∣2] =nE
[∣∣∣ 1
n

n∑
j=1

ϕz
(
λnj (0)

)
− E

[
ϕz
(
λnj (0)

)]∣∣∣2]
=nVar

( 1

n

n∑
j=1

ϕz
(
dnj
))

=

∫
R
|ϕz(x)|2dµ0(x)−

∣∣∣ ∫
R
ϕz(x)dµ0(x)

∣∣∣2 ≤ 8

γ2
,

for any z ∈ C γ
2
.

Conclusion: We can now conclude the proof of Proposition 1.1 (iii). From (3.3), Propositions 3.2, 3.3
and the first part of Proposition 3.6, we obtain that for z ∈ Cγ/2:

E
[
|Ĝµnt (z)−Gµt(z)|2 | Xn(0)

]
≤ C(γ, t)

( 1

n2
+

∣∣∣∣∫
R

1

z − t.Gµ0�σt(z)− x
[
dµn0 (x)− dµ0(x)

]∣∣∣∣2 ), (3.22)

where C(γ, t) depends only on γ and t (and converges to +∞ when γ → 2
√
t). Using the second part

of Proposition 3.6, we get:

sup
n∈N

sup
z∈Cγ/2

nE
[
|Ĝµnt (z)−Gµt(z)|2

]
< +∞.

Equation (3.2) implies that for any γ > 2
√
t,

sup
n∈N

sup
z∈Cγ

E
[
n
∣∣ŵnfp(z)− wfp(z))∣∣2] ≤ ( tγ2

γ2 − 4t

)2
sup
n∈N

sup
z∈C γ

2

nE
[
|Ĝµnt (z)−Gµt(z)|2

]
< +∞

since if z ∈ Cγ then Im
(
wfp(z)

)
≥ 1

2
Im(z) > γ

2 (Theorem 2.6) so that wfp(z) ∈ C γ
2

and point (iii) of

Proposition 1.1 is proved.

4 Study of the mean integrated squared error

In Section 4.1, we state theoretical results associated with our nonparametric statistical problem. Sec-
tion 4.2 is devoted to the proof of Theorem 4.2.

4.1 Theoretical results

The goal of this section is to study the rates of convergence of E
[
‖p̂0,h − p0‖2

]
, the mean integrated

squared error of p̂0,h. To derive rates of convergence, we rely on the classical bias-variance decomposition
of the quadratic risk. Using Parseval’s equality we obtain

‖p̂0,h − p0‖2 =
1

2π

∥∥p̂?0,h − p?0∥∥2 ≤ 1

π

∥∥p̂?0,h −K?
h.p

?
0

∥∥2 +
1

π
‖K?

h.p
?
0 − p?0‖

2
. (4.1)
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The expectation of the first term is a variance term whereas the second one is a bias term. To derive
the order of the bias term, we assume that p0 belongs to the space S(a, r, L) of supersmooth densities
defined for a > 0, L > 0 and r > 0 by:

S(a, r, L) =

{
p0 density such that

∫
R
|p?0(ξ)|2e2a|ξ|

r

dξ ≤ L
}
. (4.2)

In the literature, this smoothness class of densities has often been considered (see [19], [12], [14]). Most
famous examples of supersmooth densities are the Cauchy distribution belonging to S(a, r, L) with
r = 1 and the Gaussian distribution belonging to S(a, r, L) with r = 2. To control the bias, we rely on
Proposition 1 in [12] which states that:

Proposition 4.1. For p0 ∈ S(a, r, L), we have

‖K?
h.p

?
0 − p?0‖ ≤ CBL1/2e−ah

−r
,

where CB is a constant.

Whereas the control of the bias term is very classical, the study of the variance term in (4.1) is much
more involved. The order of the variance term is provided by the following theorem.

Theorem 4.2. Let
Σ :=

∥∥p̂?0,h −K?
hp
?
0

∥∥2 .
We assume that there exists a constant C > 0 such that for sufficiently large κ > 0,

µ0

(
(κ,+∞)

)
≤ C

κ
. (4.3)

Then, we have for any h > 0, for any γ > 2
√
t,

E(Σ) ≤ Cvar.e
2γ
h

n
, (4.4)

for Cvar a constant.

In (4.4), the constant Cvar depends on all the parameters of the problem and may blow up when
γ tends to 2

√
t. Theorem 4.2 is proved in Section 4.2. The main point will be to obtain the optimal

n factor appearing at the denominator. The term e
2γ
h appearing at the numerator is classical in our

setting. Note that Assumption (4.3) is very mild and is satisfied by most classical distributions.

Now, using similar computations to those in [19], we can obtain from Proposition 4.1 and Theorem
4.2 the rates of convergence of our estimator p̂0,h. We indeed showed that:

MISE := E
[
‖p̂0,h − p0‖2

]
≤ C2

BLe
−2ah−r +

Cvar.e
2γ
h

n
. (4.5)

Minimizing in h the right hand side of (4.5) provides the convergence rate of the estimator p̂0,h. The
rates of convergence are summed up in the following corollary, adapted from the computation of [19].
One can see that there are three cases to consider to derive rates of convergence: r = 1, r < 1 and
r > 1, depending on which the bias or variance term dominates the other. For the sake of completeness
Corollary 4.3 is proved in Appendix.
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Corollary 4.3. Suppose that µ0 satisfies Assumption (4.3) and the density p0 belongs to the space
S(a, r, L) for a > 0, r > 0 and L > 0. Then, for any γ > 2

√
t and by choosing the bandwidth h

according to equation (A.12), we have:

E
[
‖p̂0,h−p0‖2

]
=


O
(
n−

a
a+γ
)

if r = 1

O
(

exp
{
− 2a

(2γ)r

[
log n+ (r − 1) log log n+

∑k
i=0 b

∗
i (log n)r+i(r−1)

]r})
if r < 1

O
(

1
n exp

{
2γ

(2a)1/r

[
log n+ r−1

r log log n+
∑k
i=0 d

∗
i (log n)

1
r−i

r−1
r

]1/r})
if r > 1,

(4.6)
where the integer k is such that

k

k + 1
< min

(
r,

1

r

)
≤ k + 1

k + 2
,

and where the constants b∗i and d∗i solve the following triangular system:

b∗0 = − 2a

(2γ)r
, ∀i > 0, b∗i = − 2a

(2γ)r

i−1∑
j=0

r(r − 1) · · · (r − j)
(j + 1)!

∑
p0+···pj=i−j−1

b∗p0 · · · b
∗
pj ,

d∗0 = − 2γ

(2a)1/r
, ∀i > 0, d∗i = − 2γ

(2a)1/r

i−1∑
j=0

1
r

(
1
r − 1

)
· · ·
(
1
r − j

)
(j + 1)!

∑
p0+···pj=i−j−1

d∗p0 · · · d
∗
pj

Remark 1. For r = 1, the choice h = 2(a+ γ)/ log(n) yields the rate of convergence. The expressions
of the optimal bandwidths for r > 1 and r < 1 are much more intricate (see (A.13) and (A.15) in
Appendix, and also [19]).

Recall that we have transformed the free deconvolution of the Fokker-Planck equation associated
with observation of the matrix Xn(t) into the deconvolution problem expressed in (2.13). To solve the
latter, we have then inverted the convolution operator characterized by the Fourier transform of the
Cauchy distribution Cγ . The parameter γ represents the difficulty of our deconvolution problem and
consequently, the rates of convergence heavily depend on γ. The larger γ the harder the problem, as
can be observed in rates of convergences of Corollary 4.3. This is not surprising: as t grows, it becomes
naturally harder to reconstruct the initial condition from the observations at time t and as γ has to
be chosen larger than 2

√
t, γ and therefore the difficulty of the deconvolution problem grows with t

accordingly. It remains an open question if we can take γ smaller. For a given γ, the upper bound
of the variance term given by Theorem 4.2 is optimal. Analogously, the bound for the bias given by
Proposition 4.1 is also optimal. In consequence, rates of convergence for r = 1 and r < 1 in Corollary
4.3 are optimal (as proved by Tsybakov in [28] for the case r = 1 and by Butucea and Tsybakov in [12]
for r < 1). The optimality for r > 1 remains an open problem.

4.2 Proof of Theorem 4.2

By the definition of p̂?0,h, we have:

Σ :=
∥∥p̂?0,h −K?

hp
?
0

∥∥2
=

∫
R

1

π2t2
e2γ|ξ|. |K?

h(ξ)|2 .
∣∣∣[(Im(ŵnfp(� + iγ)

))? − (Im(wfp(� + iγ)
))?]

(ξ)
∣∣∣2 dξ.

Recall that by Lemma 2.7, we have Im (wfp(z)) = t.Im
(
Gµt

(
wfp(z)

))
+ Im(z), and similarly by

Theorem-Definition 2.8, Im
(
ŵnfp(z)

)
= t.Im

(
Ĝµnt

(
ŵnfp(z)

))
+Im(z) for z ∈ C2

√
t. SinceK?

h(ξ) = K?(hξ),
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we have

Σ =

∫
R
e2γ|ξ|. |K?

h(ξ)|2 . 1

π2

∣∣∣(ImĜµnt
(
ŵnfp(� + iγ)

)
− ImGµt

(
wfp(� + iγ)

))?
(ξ)
∣∣∣2dξ

≤ e
2γ
h .
C2
K

π2
.
∥∥∥(ImĜµnt

(
ŵnfp(� + iγ)

)
− ImGµt

(
wfp(� + iγ)

))?∥∥∥2
=

2C2
K

π
.e

2γ
h .
∥∥∥ImĜµnt

(
ŵnfp(� + iγ)

)
− ImGµt

(
wfp(� + iγ)

)∥∥∥2 ,
by Parseval’s equality. Taking the expectation, and introducing a constant κ > 0 chosen later (depending
on n), we have

E(Σ) ≤ 2C2
K

π
.e

2γ
h .
(
Iκ + Jκ) (4.7)

where

Iκ =

∫
{x∈R:|x|≤κ}

E
[∣∣∣ImĜµnt (ŵnfp(x+ iγ)

)
− ImGµt

(
wfp(x+ iγ)

)∣∣∣2]dx (4.8)

Jκ =

∫
{x∈R:|x|>κ}

E
[∣∣∣ImĜµnt (ŵnfp(x+ iγ)

)
− ImGµt

(
wfp(x+ iγ)

)∣∣∣2]dx. (4.9)

To obtain the announced rates of convergence for the MISE, we need to be very careful in establishing
the upper bounds for Iκ and Jκ. For this purpose, we recall Lemma 4.3.17 of [1], with a null initial
condition, which will be useful in the sequel:

Lemma 4.4. Let (ηn1 (t), . . . , ηnn(t)) be the eigenvalues of Hn(t). With large probability, all the eigen-
values (ηnj (t)) of Hn(t) belong to a ball of radius M > 0 independent of n and t. Introduce

An,tM :=
{
∀1 ≤ j ≤ n :

∣∣ηnj (t)
∣∣ ≤M} . (4.10)

There exist two positive constants Ceig and Deig depending on t such that for any M > Deig and any
n ∈ N∗

P
(
(An,tM )c

)
= P ({ηn∗ (t) > M}) ≤ e−n.Ceig.M , (4.11)

with ηn∗ (t) := maxi=1,...,n |ηni (t)|.
Using this lemma, we can control the tail distribution of E[µnt ], which is essential to establish very

precise estimates without which the announced rate would not be derived. We recall that λn1 (t) ≤
. . . ≤ λnn(t) are the eigenvalues of Xn(t) = Xn(0) + Hn(t) in increasing order. By Weyl’s interlacing
inequalities, we have that, for 1 ≤ j ≤ n,

λnj (0)− ηn∗ (t) ≤ λnj (t) ≤ λnj (0) + ηn∗ (t). (4.12)

Therefore, for 1 ≤ j ≤ n,

E
[
µnt

({
|λ| > κ

2

})]
≤ E

[
µn0

({
|λ| > κ

4

})]
+nP

({
ηn∗ (t) >

κ

4

})
≤ E

[
µn0

({
|λ| > κ

4

})]
+ne−

n.Ceig.κ

4 .

Recall that after Equation (1.6), we introduced the notation dn1 , . . . , d
n
n for the i.i.d. random variables

of distribution µ0 and whose order statistic constitutes the diagonal elements of Xn(0), λn1 (0) < . . . <
λnn(0). We have

E
[
µn0

({
|λ| > κ

4

})]
=

1

n

n∑
i=1

P
(
|dni | >

κ

4

)
= µ0

({
|λ| > κ

4

})
,

so that we finally get

E
[
µnt

({
|λ| > κ

2

})]
≤ µ0

({
|λ| > κ

4

})
+ ne−

n.Ceig.κ

4 . (4.13)

Now, we successively study Iκ and Jκ.
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4.2.1 Upper bound for Iκ

Lemma 4.5. There exist constants C2
I , C2

I and C3
I (that can depend on γ and t) such that:

Iκ ≤ C1
I

n
+
κC2

I

n2
+ C3

Iκe
−n.Ceig.M . (4.14)

Before proving Lemma 4.5, let us establish a result that will be useful in the sequel.

Lemma 4.6. Let us consider γ > 2
√
t, p > 1 and M > 0. Then, we have

Ip,γ,M,t :=

∫ +∞

0

∫
1[{∣∣∣∣∣λ∣∣− x∣∣∣−√t−M} ∨ γ

2

]p dµ0(λ)dx ≤ C(p, γ,M, t), (4.15)

for C(p, γ,M, t) a finite constant only depending on p, γ, M and t.

Proof. The supremum in the denominator equals to
∣∣|λ| − x∣∣−√t−M when x < |λ| −

√
t−M − γ/2

(which is possible only if |λ| −
√
t −M − γ/2 is positive) or x > |λ| +

√
t + M + γ/2. Otherwise the

supremum is γ/2. Hence

Ip,γ,M,t ≤
∫
R


∫ (|λ|−√t−M− γ2 )∨0
0

1(
|λ| − x−

√
t−M

)p dx+

∫ |λ|+√t+M+ γ
2

{|λ|−
√
t−M− γ2 }∨0

2p

γp
dx

+

∫ +∞

|λ|+
√
t+M+ γ

2

1[
x−

∣∣λ∣∣−√t−M]p dx

}
dµ0(λ)

≤
∫
R

{∫ (|λ|−
√
t−M)∨ γ2

γ
2

1

vp
dv +

2p(2
√
t+ 2M + γ)

γp
+

∫ +∞

γ
2

1

vp
dv

}
dµ0(λ)

≤C(p, γ,M, t) < +∞. (4.16)

This concludes the proof.

Proof of Lemma 4.5. We decompose Iκ into three parts, Iκ ≤ 2
(
Iκ1 + Iκ2 + Iκ3

)
where:

Iκ1 :=

∫
{|x|≤κ}

E
[∣∣∣Ĝµnt (ŵnfp(x+ iγ)

)
− Ĝµnt

(
wfp(x+ iγ)

)∣∣∣2]dx,
Iκ2 :=

∫
{|x|≤κ}

E
[∣∣∣Ĝµnt (wfp(x+ iγ)

)
− E

[
Ĝµnt

(
wfp(x+ iγ)

)
| Xn(0)

]∣∣∣2]dx,
Iκ3 :=

∫
{|x|≤κ}

E
[∣∣∣E[Ĝµnt (wfp(x+ iγ)

)
| Xn(0)

]
−Gµt

(
wfp(x+ iγ)

)∣∣∣2]dx.
Step 1: Let us first upper bound Iκ1 . It is relatively easy to bound Iκ1 by an upper bound in C(γ, t)κ/n,
but this will not yield in the end the announced convergence rate. To establish more precise upper
bounds, we use the event An,tM defined in Lemma 4.4. We have Iκ1 = Iκ11 + Iκ12 with

Iκ11 :=

∫
{|x|≤κ}

E
[∣∣∣Ĝµnt (ŵnfp(x+ iγ)

)
− Ĝµnt

(
wfp(x+ iγ)

)∣∣∣21An,tM

]
dx,

Iκ12 :=

∫
{|x|≤κ}

E
[∣∣∣Ĝµnt (ŵnfp(x+ iγ)

)
− Ĝµnt

(
wfp(x+ iγ)

)∣∣∣21(An,tM )c

]
dx.
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For the term Iκ12, we have by Theorem 2.6(i) and Lemma 4.4:

Iκ12 ≤
16

γ2
κP((An,tM )c) ≤ 16

γ2
κe−n.Ceig.M . (4.17)

Let us now consider the term Iκ11:

Iκ11 =

∫
{|x|≤κ}

E
[∣∣∣∣ 1n

n∑
j=1

wfp(x+ iγ)− ŵnfp(x+ iγ)(
ŵnfp(x+ iγ)− λnj (t)

)
.
(
wfp(x+ iγ)− λnj (t)

) ∣∣∣∣21An,tM

]
dx

≤
∫
{|x|≤κ}

E

[∣∣∣ŵnfp(x+ iγ)− wfp(x+ iγ)
∣∣∣2. 1
n

n∑
j=1

1An,tM∣∣ŵnfp(x+ iγ)− λnj (t)
∣∣2.∣∣wfp(x+ iγ)− λnj (t)

∣∣2
]

dx

by convexity. Using (2.11) and (4.12), we have∣∣wfp(x+ iγ)− λnj (t)
∣∣ ≥ ∣∣wfp(x+ iγ)

∣∣− ∣∣λnj (t)
∣∣

≥
∣∣Re(wfp(x+ iγ))

∣∣− ∣∣λnj (t)
∣∣

≥
∣∣x∣∣−√t− ∣∣λnj (0)

∣∣− ηn∗ (t).

Since λnj (t) is real, we also have:∣∣wfp(x+ iγ)− λnj (t)
∣∣ ≥ ∣∣Re(wfp(x+ iγ)− λnj (t))

∣∣
≥
∣∣λnj (t)

∣∣− ∣∣Re(wfp(x+ iγ))
∣∣

≥
∣∣λnj (t)

∣∣− ∣∣x∣∣−√t
≥
∣∣λnj (0)

∣∣− ηn∗ (t)−
∣∣x∣∣−√t.

Therefore, using Theorem 2.6,∣∣wfp(x+ iγ)− λnj (t)
∣∣ ≥ {∣∣∣∣∣λnj (0)

∣∣− ∣∣x∣∣∣∣∣−√t− ηn∗ (t)
}
∨ γ

2
. (4.18)

In Theorem-Definition 2.8, it is shown that ŵnfp(z) satisfies a similar inequality as (2.11). Thus, we
obtain with similar computations that:∣∣ŵnfp(x+ iγ)− λnj (t)

∣∣∣∣ ≥ {∣∣∣∣∣λnj (0)
∣∣− ∣∣x∣∣∣∣∣−√t− ηn∗ (t)

}
∨ γ

2
. (4.19)

Then, using the definition of An,tM , there exists a constant C11(γ, t) only depending on γ and t such that

Iκ11 ≤
∫
{|x|≤κ}

E

[∣∣∣ŵnfp(x+ iγ)− wfp(x+ iγ)
∣∣∣2. 1
n

n∑
j=1

1[{∣∣∣∣∣λnj (0)
∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ

2

]4 1An,tM

]
dx

≤ 1

n

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λnj (0)

∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4E[∣∣ŵnfp(x+ iγ)− wfp(x+ iγ)
∣∣2|Xn(0)

]]
dx

≤ C11(γ, t)

n

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λnj (0)

∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4 ( 1

n2

+

∣∣∣∣∫
R

1

x+ iγ − t.Gµ0�σt(x+ iγ)− λ
[
dµn0 (λ)− dµ0(λ)

]∣∣∣∣2
)]

dx

≤ C11(γ, t)

n

(
Iκ111 + Iκ112

)
, (4.20)
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where the third inequality comes from (3.22), and where:

Iκ111 :=
1

n2

n∑
j=1

∫
{|x|≤κ}

E

[
1[{∣∣∣∣∣λnj (0)

∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4
]

dx

Iκ112 :=

∫
{|x|≤κ}

E

[∫
1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ

2

]4 dµn0 (λ)

∣∣∣∣√n∫
R

1

x+ iγ − t.Gµ0�σt(x+ iγ)− λ
[
dµn0 (λ)− dµ0(λ)

]∣∣∣∣2
]

dx.

Now we wish to upper bound Iκ111 and Iκ112 independently of κ. We first deal with Iκ111.

Iκ111 =
1

n

∫
{|x|≤κ}

∫
R

1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4 dµ0(λ)dx

≤ 2

n

∫ +∞

0

∫
1[{∣∣∣∣∣λ∣∣− x∣∣∣−√t−M} ∨ γ

2

]4 dµ0(λ)dx. (4.21)

The double integral is upper bounded by a constant C(γ,M, t)/n by Lemma 4.6.

Let us now consider Iκ112. Using Cauchy-Schwarz inequality, we have:

Iκ112 ≤

√√√√√E

[∫
{|x|≤κ}

(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4 dµn0 (λ)
)2

dx

]
√√√√E

[∫
{|x|≤κ}

∣∣∣∣√n∫
R

1

x+ iγ − t.Gµ0�σt(x+ iγ)− λ
[
dµn0 (λ)− dµ0(λ)

]∣∣∣∣4 dx

]
(4.22)

The first term can be treated exactly as Iκ111 as:

E

[∫
{|x|≤κ}

(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4 dµn0 (λ)
)2

dx

]

≤ E

[∫
{|x|≤κ}

1(
γ
2

)4(∫ 1[{∣∣∣∣∣λ∣∣− ∣∣x∣∣∣∣∣−√t−M} ∨ γ
2

]4 dµn0 (λ)
)

dx

]
=

16n

γ4
Iκ111. (4.23)

We now focus on the second term of (4.22). As in the proof of Proposition 3.6, if we denote by
φx := ϕx+iγ : λ 7→ (x+ iγ − t.Gµ0�σt(x+ iγ)− λ)−1, the last term can be rewritten as

Iκ1121 :=E

[∫
{|x|≤κ}

∣∣∣∣√n∫
R
φx(λ)

[
dµn0 (λ)− dµ0(λ)

]∣∣∣∣4 dx

]

=n2
∫
{|x|≤κ}

E

[ ∣∣∣∣∣∣ 1n
n∑
j=1

(
φx(dnj (0))− E(φx(dnj (0))

)∣∣∣∣∣∣
4 ]

dx
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where we used the notation dn1 , . . . , d
n
n for the non-ordered diagonal elements of Xn(0) (introduced after

Equation (1.6)). Since the random variables dn1 , . . . , d
n
n are i.i.d. with law µ0, the random variables

(φx(λnj (0))−E(φx(λnj (0))))1≤j≤n are i.i.d. centered with finite fourth moment. By Rosenthal and then
Cauchy-Schwarz inequality, we have

Iκ1121 ≤
C

n2
(n+ n2)

∫
{|x|≤κ}

∫
R

∣∣∣∣φx(λ)−
∫
R
φx(λ)dµ0(λ)

∣∣∣∣4 dµ0(λ)dx, (4.24)

for C a constant. We can conclude if the above double integral is bounded independently of κ. We would
like to use Lemma 4.6 but the fact that we have a non-centered moment here implies that we should
be careful, because a constant integrated with respect to dx on {|x| ≤ κ} yields a term proportional to
κ that we should avoid.

First let us recall some estimates for the functions φx. As, we know that Im
(
Gµ0�σt(x + iγ)

)
< 0,

we have
|x+ iγ − tGµ0�σt(x+ iγ)− λ| ≥ Im(x+ iγ − tGµ0�σt(x+ iγ)− λ) ≥ γ ≥ γ

2
(4.25)

and the functions φx are bounded by 2/γ. This yields that
∣∣ ∫

R φx(λ)dµ0(λ)
∣∣ ≤ 2/γ. By Lemma 2.7,

|tGµ0�σt(x+ iγ)| ≤ t
γ ≤

√
t

2 ≤
√
t so that

|x+ iγ − tGµ0�σt(x+ iγ)− λ| ≥ (|x− λ| −
√
t) ≥ (

∣∣|x| − |λ|∣∣−√t). (4.26)

As a consequence,

|x+ iγ − tGµ0�σt(x+ iγ)− λ| ≥ (
∣∣|x| − |λ|∣∣−√t) ∨ γ

2
. (4.27)

Using that dn1 has distribution µ0, the double integral in the right hand side of (4.24) can be rewritten
as:∫

{|x|≤κ}
E
(∣∣φx(dn1 )− E

[
φx(dn1 )

]∣∣4)dx

=

∫
{|x|≤κ}

{
E
[
|φx(dn1 )|4

]
− 2E

[
|φx(dn1 )|2φx(dn1 )

]
E
[
φx(dn1 )

]
+ E

[
φ2x(dn1 )

]
E
[
φx(dn1 )

]2
− 2E

[
|φx(dn1 )|2φx(dn1 )

]
E
[
φx(dn1 )

]
+ 4E

[
|φx(dn1 )|2

]∣∣E[φx(dn1 )
]∣∣2 + E

[
φx(dn1 )2

](
E
[
φx(dn1 )

])2 − ∣∣E[φx(dn1 )
]∣∣4}

≤I4,γ,0,t +
8

γ
I3,γ,0,t +

24

γ2
I2,γ,0,t

by using the notation of Lemma 4.6 and by neglecting the term −
∣∣E[φx(dn1 )

]∣∣4 < 0. The Lemma 4.6
allows us to conclude that Iκ1121 ≤ C1121(γ, t) < +∞.

We can now conclude the Step 1. This last result, together with (4.24) implies that Iκ112 ≤
C112(γ, t) < +∞. From (4.20) and (4.21), we have that Iκ11 ≤ C1(γ, t)/n for C1(γ, t) a constant.
Gathering this result with (4.17), we finally obtain that:

Iκ1 ≤
C1(γ, t)

n
+

16

γ2
κe−n.Ceig.M . (4.28)

Step 2: Let us consider Iκ2 . Using Proposition 3.2, we have:

Iκ2 =

∫
{|x|≤κ}

E
[
Var
(
Ĝµnt

(
wfp(x+ iγ)

)
| Xn(0)

)]
dx =

∫
{|x|≤κ}

E
[
Var
(
An1
(
wfp(x+ iγ)

)
| Xn(0)

)]
dx

≤
∫
{|x|≤κ}

10 t

n2Im4
(
wfp(x+ iγ)

)dx ≤ 10.24.t.2κ

n2γ4
≤ 20κ

n2t
. (4.29)
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Step 3: Let us finally provide an upper bound for Iκ3 . Recall the definitions of An2 (z) and An3 (z) in
(3.3):

Iκ3 =

∫
{|x|≤κ}

E
[∣∣An2 (wfp(x+ iγ)

)
+An3

(
wfp(x+ iγ)

)∣∣2]dx
≤2

∫
{|x|≤κ}

E
[∣∣An2 (wfp(x+ iγ)

)∣∣2]dx+ 2

∫
{|x|≤κ}

E
[∣∣An3 (wfp(x+ iγ)

)∣∣2]dx. (4.30)

By using Proposition 3.3 together with Theorem 2.6 (i) and the fact that γ > 2
√
t, we obtain that the

first term in the right hand side is upper-bounded by

2

∫
{|x|≤κ}

E
[∣∣An2 (wfp(x+ iγ)

)∣∣2]dx ≤ cκ

n2t
,

where c is an absolute constant. Let us now consider the second term in the right hand side of (4.30).
Using the bound of Proposition 3.6,

2

∫
{|x|≤κ}

E
[∣∣An3 (wfp(x+ iγ)

)∣∣2]dx
≤ 2

γ4

(γ2 − 4t)2

∫
R
E
[∣∣∣ ∫

R

1

wfp(x+ iγ)− t.Gµt
(
wfp(x+ iγ)

)
− v

[dµn0 (v)− dµ0(v)]
∣∣∣2]dx. (4.31)

Recall that µn0 is the empirical measure of independent random variables (dni ) with distribution µ0 and

whose order statistics are the (λni (0)). Recalling that
(
wfp(x + iγ) − t.Gµt

(
wfp(x + iγ)

)
− v

)−1
=

ϕwfp(x+iγ)(v), we have that

E
[∣∣∣ ∫

R
ϕwfp(x+iγ)(v)[dµn0 (v)− dµ0(v)]

∣∣∣2] = Var
[ 1

n

n∑
j=1

ϕwfp(x+iγ)(λ
n
j (0))

]
≤ 1

n
E
[
|ϕwfp(x+iγ)(d

n
1 )|2

]
=

1

n

∫
R

1

|wfp(x+ iγ)− t.Gµt
(
wfp(x+ iγ)

)
− v|2

dµ0(v).

(4.32)

Recall that from Lemma 2.7 and Theorem 2.6 (i), |wfp(x+ iγ)− t.Gµt
(
wfp(x+ iγ)

)
−v| ≥ |Im

(
wfp(x+

iγ)
)
| ≥ γ/2, so that the integrand in the right hand side of (4.32) is bounded. However, we have to

work more to show that it is integrable with respect to x. We have:

|wfp(x+ iγ)− t.Gµt
(
wfp(x+ iγ)

)
− v| ≥

∣∣Re
(
wfp(x+ iγ)− t.Gµt

(
wfp(x+ iγ)

))
− v
∣∣

≥
∣∣Re
(
wfp(x+ iγ)

)
− v
∣∣− t ∣∣Re

(
Gµt

(
wfp(x+ iγ)

))∣∣ .
By Theorem 2.6 (i), we obtain that:

∣∣Re
(
Gµt

(
wfp(x+ iγ)

))∣∣ ≤ ∣∣∣∣∫
R

dµt(y)

wfp(x+ iγ)− y

∣∣∣∣ ≤ 1

|Im(wfp(x+ iγ))|
≤ 2

γ
.

Also, by using (2.11), we get that |Re(wfp(x+ iγ))− x| ≤
√
t. Therefore,

|wfp(x+ iγ)− t.Gµt
(
wfp(x+ iγ)

)
− v| ≥

∣∣|x| − |v|∣∣−√t− 2t

γ
. (4.33)
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From (4.31), (4.32) and (4.33), we have that:

2

∫
{|x|≤κ}

E
[∣∣An3 (wfp(x+ iγ)

)∣∣2]dx
≤ 2γ4

n(γ2 − 4t)2

∫
R

∫
R

1({∣∣|x| − |v|∣∣−√t− 2t
γ

}
∨ γ

2

)2 dµ0(v)dx =
4γ4

n(γ2 − 4t)2
I2,γ,2t/γ,t,

by Lemma 4.6. We conclude as for Iκ11 and we obtain

Iκ3 ≤
cκ

n2t
+

4γ4

n(γ2 − 4t)2
I2,γ,2t/γ,t. (4.34)

Gathering (4.28), (4.29) and (4.34) we obtain the result announced in Lemma 4.5.

4.2.2 Upper bound for Jκ

Recall the definition of Jκ in (4.7). Our goal is to prove the following bound:

Lemma 4.7. There exist constants C1
J , C2

J and C3
J (that can depend on γ and t) such that, for any

κ > γ, we have:

Jκ ≤ C1
J

κ
+ C2

Jne
−
n.Ceig.κ

4 + C3
Jµ0

({
|λ| > κ

4

})
. (4.35)

Proof. We decompose Jκ ≤ 2(Jκ1 + Jκ2 ) where

Jκ1 :=

∫
{|x|>κ}

E
(∣∣∣ ∫

R

dµnt (λ)

ŵnfp(x+ iγ)− λ

∣∣∣2)dx

Jκ2 :=

∫
{|x|>κ}

∣∣∣ ∫
R

dµt(λ)

wfp(x+ iγ)− λ

∣∣∣2dx.

Let us consider the first term Jκ1 . Using the estimate of Theorem-Definition 2.8, we have for all
x ∈ R that

∣∣Re
(
ŵnfp(x+ iγ)

)
− x
∣∣ ≤ √t and Im

(
ŵnfp(x+ iγ)

)
≥ γ/2. This allows us to prove that there

exists a constant Casymp such that

(x− λ)2 +
γ2

4
≤ Casymp

(
Re2

(
ŵnfp(x+ iγ)− λ

)2
+
γ2

4

)
. (4.36)

Thus,

Jκ1 ≤
∫
{|x|>κ}

E
∫
R

dµnt (λ)

Re2
(
ŵnfp(x+ iγ)− λ

)
+ Im2

(
ŵnfp(x+ iγ)

)2 dx

≤ Casymp
∫
{|x|>κ}

E
[ ∫

R

dµnt (λ)

(x− λ)2 + γ2

4

]
dx

= Casymp E
[ ∫

R
dµnt (λ)

∫
{|x|>κ}

1

(x− λ)2 + γ2

4

dx

]
=

2Casymp
γ

E
[∫

R
dµnt (λ)

(
π − arctan

(
2

γ
(κ− λ)

)
− arctan

(
2

γ
(κ+ λ)

))]
=

2Casymp
γ

E
[∫

R
dµnt (λ)

(
arctan

(
4κγ

4κ2 − 4λ2 − γ2

)
+ π1{

λ2>κ2− γ24
})] .
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We now use the simple bounds | arctanx| ≤ |x| and | arctanx| ≤ π
2 for any x ∈ R. Moreover, one can

easily check that, if λ2 ≤ κ2

2 −
γ2

4 , then

4κγ

4κ2 − 4λ2 − γ2
≤ 2γ

κ
.

We therefore get

Jκ1 ≤
2Casymp

γ
E
[∫

λ

dµnt (λ)

(
2γ

κ
+
π

2
1{
λ2>κ2

2 −
γ2

4

} + π1{
λ2>κ2− γ24

})] .
If we assume moreover that κ > γ, this can be simplified as follows:

Jκ1 ≤Casymp
(

4

κ
+

3π

γ
E
[
µnt

(
{|λ| > κ

2
}
)])

≤Casymp
(

4

κ
+

3π

γ
µ0

({
|λ| > κ

4

})
+

3π

γ
ne−

n.Ceig.κ

4

)
, (4.37)

by using (4.13).
We now go to the second term Jκ2 . The strategy will be very similar to what we did for Jκ1 and we

will give less details. Using the estimate (2.11), we have for all x ∈ R that
∣∣Re
(
wfp(x+ iγ)

)
− x
∣∣ ≤ √t,

which allows us to get that

(x− λ)2 +
γ2

4
≤ Casymp

(
Re2

(
wfp(x+ iγ)− λ

)2
+
γ2

4

)
,

with Casymp as above. Thus,

Jκ2 ≤ Casymp
∫
{|x|>κ}

∫
λ

dµt(λ)

(x− λ)2 + γ2

4

dx

≤ 2Casymp
γ

∫
λ

dµt(λ)

(
2γ

κ
+
π

2
1{
λ2>κ2

2 −
γ2

4

} + π1{
λ2>κ2− γ24

}) .
Again, if we assume that κ > γ, this can be simplified as follows:

Jκ2 ≤ Casymp
(

4

κ
+

3π

γ
µt

({
|λ| > κ

2

}))
.

Moreover, letting n going to infinity in (4.13), by Proposition 2.3 and dominated convergence, we get
that, for any κ > γ,

µt

({
|λ| > κ

2

})
≤ µ0

({
|λ| > κ

4

})
,

so that

Jκ2 ≤ Casymp
(

4

κ
+

3π

γ
µ0

({
|λ| > κ

4

}))
. (4.38)

Gathering the upper bounds (4.37) and (4.38), we get that for any κ > γ,

Jκ ≤ Casympt
(

8

κ
+

6π

γ
µ0

({
|λ| > κ

4

})
+

3π

γ
ne−

n.Ceig.κ

4

)
. (4.39)

This ends the proof.
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4.2.3 Conclusion

As a result, combining Lemma 4.5 and Lemma 4.7, we have:

Iκ + Jκ ≤C
1
I

n
+
C2
Iκ

n2
+
C1
J

κ
+ C3

Iκe
−n.Ceig.M + C2

Jne
−nCeig.κ4 + C3

Jµ0

({
|λ| > κ

4

})
.

We take κ = n. Using Assumption (4.3), we obtain

µ0 ({|λ| > n}) ≤ Cn−1, (4.40)

for some absolute constant C. Then, from (4.7) and previous computations, there exists a constant
Cvar (that can depend on γ and t) such that for n sufficiently large:

E(Σ) ≤ Cvar.e
2γ
h

n
(4.41)

and Theorem 4.2 is proved.

5 Numerical simulations

In this section, we conduct a simulation study to assess the performances of our estimator p̂0,h designed
in Definition 2.9 based on the n-sample λn(t) := {λn1 (t), · · · , λnn(t)} of (non ordered) eigenvalues. We
consider the sample size n = 4000 and the time value t = 1. We focus on initial conditions following a
Cauchy distribution with scale parameter sd = 5:

p0(x) =
1

π
.

sd
(s2d + x2)

, x ∈ R.

Expression (2.16) is used with the kernel K(x) = sinc(x) = sin(x)/(πx), and the value γ = 2
√
t+ 0.01

so that the condition γ > 2
√
t is satisfied. To implement p̂0,h, we approximate integrals involved in

Fourier and inverse Fourier transforms by Riemann sums, so it may happen that p̂0,h(x) is not real.
This is the reason why the density p0 is estimated with Re(p̂0,h), the real part of p̂0,h.

The theoretical bandwidth h proposed in Section 4 cannot be used in practice and we suggest the
following data-driven selection rule, inspired from the principle of cross-validation. We decompose the
quadratic risk for Re(p̂0,h) as follows:

‖Re(p̂0,h)− p0‖2 =

∫
R
|Re(p̂0,h(x))− p0(x)|2 dx = ‖Re(p̂0,h)‖2 − 2

∫
R

Re(p̂0,h(x))p0(x)dx+ ‖p0‖2 .

Then, an ideal bandwidth h would minimize the criterion J with

J(h) := ‖Re(p̂0,h)‖2 − 2

∫
R

Re(p̂0,h(x))p0(x)dx, h ∈ R∗+.

Since J depends on p0 through the second term, we investigate a good estimate of this criterion. For
this purpose, we divide the sample λn(t) into two disjoints sets

λn,E(t) := (λni (t))i∈E and λn,E
c

(t) := (λni (t))i∈Ec .

There are Vmax :=
(
n
n/2

)
possibilities to select the subsets (E,Ec), which is huge. Hence, to reduce

computational time, we draw randomly V = 10 partitions denoted (Ej , E
c
j )j=1,...,V . Choosing the grid

H of 50 equispaced points lying between hmin = 0.25 and hmax = 2.7, our selected bandwidth is

ĥ = argmin
h∈H

Crit(h) (5.1)
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with

Crit(h) := min
h′∈H,h′ 6=h

1

V

V∑
j=1

(∥∥∥Re(p̂
(Ej)
0,h )

∥∥∥2 − 2

∫
R

Re(p̂
(Ej)
0,h (x))Re(p̂

(Ecj )

0,h′ (x))dx

)
and our final estimator is then Re(p̂0,ĥ). In the last expression, p̂

(Ej)
0,h and p̂

(Ecj )

0,h′ are estimates based on
the samples Ej and Ecj respectively.

To evaluate our approach, Figure 1 displays the plot of h ∈ H 7→ Crit(h) and h ∈ H 7→ J(h) for the
Cauchy density p0. A close inspection of the graphs shows that the first criterion is a good estimate of

0.5 1.0 1.5 2.0 2.5

−
0.

03
20

−
0.

03
15

−
0.

03
10

−
0.

03
05

−
0.

03
00

−
0.

02
95

−
0.

02
90

h

Crit

J

Figure 1: Plots of h 7→ Crit(h) and h 7→ J(h) for the Cauchy density p0

the second one. As expected, for both criterions, we observe a plateau containing minimizers of J and
Crit. Outside the plateau, both criterions take large values due to large variance when h is too small
and to large bias when h is too large. Figure 2 gives the reconstruction provided by Re(p̂0,ĥ) for the
Cauchy density p0. The results are quite satisfying, meaning that our estimation procedure seems to
perform well in practice for estimating initial conditions of the Fokker-Planck equation.

A Proof of technical lemmas and Corollary 4.3

A.1 Proof of Lemma 3.4

Recall that Rn,t(z) and R̃n,t(z) are defined in (3.4) and (3.9), and that

nÃn2 (z) =

n∑
k=1

E
[(
Rn,t(z)

)
kk
| Xn(0)

]
−
(
R̃n,t(z)

)
kk
. (A.1)

Proceeding as in Dallaporta and Février [16], we introduce some notations. Let R
(k)
n,t(z) be the resolvent

of the (n − 1) × (n − 1) obtained from Xn(t) by removing the k-th row and column and C
(k)
k,t be the

(n− 1)-dimensional vector obtained from the k-th column of Hn(t) by removing its k-th component.
Using Schur’s complement (see e.g. [3, Appendix A.1]):((

Rn,t(z)
)
kk

)−1
= z − (Hn(t))kk − (Xn(0))kk − C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t .
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Figure 2: Estimation of p0

Because R̃n,t(z) is a diagonal matrix, we have easily:(
Rn,t(z)

)
kk

=
(
R̃n,t(z)

)
kk

+
(
R̃n,t(z)

)
kk
.
(
Rn,t(z)

)
kk
.
(

(Hn(t))kk + C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
E
[
Tr (Rn,t(z) | Xn(0))

])
.

Replacing
(
Rn,t(z)

)
kk

in the right-hand side of the previous formula, we obtain:

(Rn,t(z))kk −
(
R̃n,t(z)

)
kk

=
(
R̃n,t(z)

)2
kk
.
(

(Hn(t))kk + C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
E
[
Tr
(
Rn,t(z)

)
| Xn(0)

])
+
(
R̃n,t(z)

)2
kk
.
(
Rn,t(z)

)
kk
.
(

(Hn(t))kk + C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
E [Tr (Rn,t(z)) | Xn(0)]

)2
.

(A.2)

Since Hn(t) and C
(k)
k,t are independent of Xn(0),

E
[∣∣∣ (Hn(t))kk + C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
E [Tr (Rn,t(z)) | Xn(0)]

∣∣∣2 |Xn(0)
]

=E
[∣∣∣ (Hn(t))kk + C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
Tr
(
R

(k)
n,t(z)

)
+
t

n
Tr
(
R

(k)
n,t(z)

)
− t

n
E
[
Tr
(
R

(k)
n,t(z)

)
| Xn(0)

]
+
t

n
E
[
Tr
(
R

(k)
n,t(z)

)
| Xn(0)

]
− t

n
E [Tr (Rn,t(z)) | Xn(0)]

∣∣∣2∣∣Xn(0)
]

=E
[
(Hn(t))

2
kk

]
+ E

[∣∣∣C(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
Tr
(
R

(k)
n,t(z)

)∣∣∣2 |Xn(0)
]

+
t2

n2

(
Var
[
Tr
(
R

(k)
n,t(z)

)∣∣Xn(0)
]

+
∣∣∣E[Tr

(
R

(k)
n,t(z)

)
− Tr (Rn,t(z)) |Xn(0)

]∣∣∣2).
(A.3)

We now upper bound each of the term in the right-hand side of (A.3). The first term equals to t/n.
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Step 1: We upper bound the second term in (A.3). By Lemma 5 of [16],

E
[
C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t | X

n(0)
]

=
t

n
E
[
Tr
(
R

(k)
n,t(z)

)
| Xn(0)

]
. (A.4)

Thus, the second term in (A.3) equals to Var
(
C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t | Xn(0)

)
and we have:

Var
[
C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t | X

n(0)
]

=
t2

n2
E
[
Tr
(
R

(k),∗
n,t (z).R

(k)
n,t(z)

)
| Xn(0)

]
≤ t

2

n2
E

 n∑
j=1

1

|z − λ(k)j |2
| Xn(0)


where the λ

(k)
j ’s are the eigenvalues of the matrix with resolvent R

(k)
n,t(z). Hence,

Var
[
C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t | X

n(0)
]
≤ t2

nIm2(z)
. (A.5)

Step 2: We now upper bound the third and fourth terms of (A.3). Let us denote in the sequel by Ek
the expectation with respect to

{
(Hn(t))jk : 1 ≤ j ≤ n

}
, and by E≤k the conditional expectation on

the sigma-field σ
(

((Xn(0))ij , 1 ≤ i ≤ j ≤ n), ((Hn(t))ij , 1 ≤ i ≤ j ≤ k)
)

.

We have:

Var
[
Tr
(
R

(k)
n,t(z)

)∣∣Xn(0)
]
≤ 2Var

[
Tr
(
Rn,t(z)

)∣∣Xn(0)
]

+ 2Var
[
Tr
(
Rn,t(z)

)
− Tr(R

(k)
n,t(z)

∣∣Xn(0)
]
. (A.6)

For the first term,

Var
[
Tr
(
Rn,t(z)

)∣∣Xn(0)
]

=

n∑
k=1

E
[∣∣(E≤k − E≤k−1

)
Tr (Rn,t(z))

∣∣2 | Xn(0)
]

=

n∑
k=1

E
[∣∣∣(E≤k − E≤k−1

)(
Tr(Rn,t(z))− Tr(R

(k)
n,t(z))

)∣∣∣2 | Xn(0)

]
, (A.7)

as
(
E≤k − E≤k−1

)
Tr
(
R

(k)
n,t(z)

)
= 0. The Schur complement formula (see e.g. [3, Appendix A.1]) gives

that:

Tr
(
Rn,t(z)

)
− Tr

(
R

(k)
n,t(z)

)
=

1 + C
(k)∗
k,t .R

(k)
n,t(z)

2.C
(k)
k,t

z − (Hn(t))kk − (Xn(0))kk − C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t

. (A.8)

Then,

∣∣∣Tr
(
Rn,t(z)

)
− Tr

(
R

(k)
n,t(z)

)∣∣∣ ≤
∣∣∣1 + C

(k)∗
k,t .R

(k)
n,t(z)

2.C
(k)
k,t

∣∣∣∣∣∣Im(z − (Hn(t))kk − (Xn(0))kk − C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t

)∣∣∣
≤

1 +
∣∣∣C(k)∗
k,t .R

(k)
n,t(z)

2.C
(k)
k,t

∣∣∣∣∣∣Im(z)− Im
(
C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t

)∣∣∣
≤

1 + C
(k)∗
k,t .R

(k)
n,t(z)

∗.R(k)(z).C
(k)
k,t∣∣∣Im(z) + Im (z) .C

(k)∗
k,t .R

(k)
n,t(z)

∗.R
(k)
n,t(z).C

(k)
k,t

∣∣∣
=

1

Im(z)
. (A.9)
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The second inequality it due to the fact that (Hn(t))kk , (X
n(0))kk ∈ R and the third inequality comes

from the following equality: With Ψ : M ∈ Hn(C) 7→ C∗MC with C ∈ Cn, then, for any z ∈ C and
any resolvent matrix R(z), we have (see [16, Lemma 1])

Im
(
Ψ(R(z))

)
= −Im(z)Ψ

(
R(z)∗R(z)

)
.

The bound (A.9) does not depend on Xn(0). Plugging this bound into (A.7), we obtain:

Var
[
Tr
(
Rn,t(z)

)∣∣Xn(0)
]
≤ 4n

Im2(z)
.

From there, using (A.6),

Var
[
Tr
(
R

(k)
n,t(z)

)∣∣Xn(0)
]
≤ 8n+ 2

Im2(z)
. (A.10)

Similarly, (A.9) also provides an upper bound for the fourth term of (A.3):∣∣∣E[Tr
(
R

(k)
n,t(z)

)
− Tr (Rn,t(z)) | Xn(0)

]∣∣∣2 ≤ 1

Im2(z)
. (A.11)

Step 3: In conclusion, using (A.3), (A.5), (A.10) and (A.11), we obtain that:

E

[∣∣∣∣(Hn(t))kk + C
(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t −

t

n
E [Tr (Rn,t(z)) | Xn(0)]

∣∣∣∣2 ∣∣Xn(0)

]

≤ t

n
+

t2

nIm2(z)
+ (8n+ 3)

t2

n2Im2(z)
.

Going back to (A.2) and using (A.4) to upper-bound the first term in the right-hand side:∣∣∣E [(Rn,t(z))kk − (R̃n,t(z))kk ∣∣ Xn(0)
]∣∣∣

≤ t

n

∣∣(R̃n,t(z))kk∣∣2.E [∣∣Tr
(
R

(k)
n,t(z)

)
− Tr

(
Rn,t(z)

)∣∣ ∣∣∣ Xn(0)
]

+
∣∣(R̃n,t(z))kk∣∣2.E [∣∣(Rn,t(z))kk∣∣ .∣∣ (Hn(t))kk + C

(k)∗
k,t .R

(k)
n,t(z).C

(k)
k,t

− t

n
E [Tr (Rn,t(z)) | Xn(0)]

∣∣2 ∣∣∣ Xn(0)

]
≤
∣∣(R̃n,t(z))kk∣∣2.( t

nIm(z)
+

t

nIm(z)
+

t2

nIm3(z)
+

(8n+ 3)t2

n2Im3(z)

)
≤
∣∣(R̃n,t(z))kk∣∣2. 1n

(
2t

Im(z)
+

12t2

Im3(z)

)
.

Using this upper bound in (A.1), we obtain by summation the result and using that for any k,∣∣R̃n,t(z))kk∣∣2 ≤ 1

Im2(z)
.

A.2 Proof of Lemma 3.5

From (3.7) and introducing w1(z) such that:

Gµn0 �σt(z) = Gµn0
(
wfp(z)

)
= Gσt(w1(z)).

We can derive from Theorem-Definition 2.5 that wfp(z) solves the equation (i) of Lemma 3.5 and that:

z = wfp(z) + tGµn0 (wfp(z)),

for all z ∈ C+. The latter equation justifies (ii) of Lemma 3.5.
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A.3 Proof of Corollary 4.3

Recall that from Proposition 4.1 and Theorem 4.2, the mean integrated square error is

MISE = E
[
‖p̂0,h − p0‖2

]
≤ C2

BLe
−2ah−r +

Cvar.e
2γ
h

n
.

Minimizing in h amounts to solving the following equation obtained by taking the derivative in the
right hand side of (4.5):

ψ(h) := exp (
2γ

h
+

2a

hr
)hr−1 = O(n). (A.12)

Consequently for the minimizer h∗ of (A.12) we get that

e
2γ
h∗

n
= Ch1−r∗ e−2ah

−r
∗ ,

for some constant C > 0. Hence, in view of (4.5), when r < 1 the bias dominates the variance and
the contrary occurs when r > 1. Thus, there are three cases to consider to derive rates of convergence:
r = 1, r < 1 and r > 1. To solve the equation (A.12), we follow the steps of Lacour [19].

Case r = 1.

The case where r = 1 provides a window h∗ = 2(a+ γ)/ log n and we get

MISE = O
(
n−

a
a+γ

)
.

Case r < 1.

In this case, and in the case r > 1, following the ideas in [19], we will look for the bandwidth
h expressed as an expansion in log(n). In this expansion and when r < 1, the integer k such that
k
k+1 < r ≤ k+1

k+2 will play a role. The optimal bandwidth is of the form:

h∗ = 2γ
(

log(n) + (r − 1) log log(n) +

k∑
i=0

bi(log n)r+i(r−1)
)−1

, (A.13)

where the coefficients bi’s are a sequence of real numbers chosen so that ψ(h∗) = O(n). The heuristic
of this expansion is as follows: the first term corresponds to the solution of e2γ/h = n. The second term
is added to compensate the factor hr−1 in (A.12) evaluated with the previous bandwidth, and the third
term aims at compensating the factor e2a/h

r

. Notice that r− 1 < 0 and that the definition of k implies
that r > r+ (r− 1) > · · · > r+ k(r− 1) > 0 > r+ (k + 1)(r− 1). This explains the range of the index
i in the sum of the right hand side of (A.13).
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Plugging (A.13) into (A.12),

ψ(h∗) =n
(

log n
)r−1

exp
( k∑
i=0

bi(log n)r+i(r−1)
)

× exp
( 2a

(2γ)r
(

log n
)r(

1 +
(r − 1) log log(n) +

∑k
i=0 bi(log n)r+i(r−1)

log n

)r)
× (2γ)r−1

(
log n

)−(r−1)(
1 +

(r − 1) log log(n) +
∑k
i=0 bi(log n)r+i(r−1)

log n

)−(r−1)
=(2γ)r−1n(1 + vn)1−r exp

( k∑
i=0

bi(log n)r+i(r−1)
)

× exp
( 2a

(2γ)r
(

log n
)r[

1 +

k∑
j=0

r(r − 1) · · · (r − j)
(j + 1)!

vj+1
n + o(vk+1

n )
])

where

vn =
(r − 1) log log(n) +

∑k
i=0 bi(log n)r+i(r−1)

log n
= (r − 1)

log log(n)

log n
+

k∑
i=0

bi(log n)(i+1)(r−1)

converges to zero when n→ +∞. We note that

vj+1
n =

k−j−1∑
i=0

∑
p0+···pj=i

bp0 · · · bpj (log n)(i+j+1)(r−1) +O
((

log n
)(k+1)(r−1)

)

=

k∑
`=j+1

∑
p0+···pj=`−j−1

bp0 · · · bpj (log n)`(r−1) +O
((

log n
)(k+1)(r−1)

)
.

So

ψ(h∗) =(2γ)r−1n(1 + vn)1−r exp
( k∑
i=0

bi(log n)r+i(r−1)
)

× exp
{ 2a

(2γ)r
(log n

)r
+

2a

(2γ)r

k∑
`=1

`−1∑
j=0

[r(r − 1) · · · (r − j)
(j + 1)!

∑
p0+···pj=`−j−1

bp0 · · · bpj
]
(log n)r+`(r−1)

+O
((

log n
)(k+1)(r−1)

)}
=(2γ)r−1n(1 + vn)1−r exp

( k∑
i=0

Mi(log n)i(r−1)+r + o(1)
)
.

The condition ψ(h∗) = O(n) implies the following choices of constants Mi’s:

M0 = b0 +
2a

(2γ)r
, ∀i > 0, Mi = bi +

2a

(2γ)r

i−1∑
j=0

r(r − 1) · · · (r − j)
(j + 1)!

∑
p0+···pj=i−j−1

bp0 · · · bpj .

Since h∗ solves (A.12) if all the Mi = 0 for i ∈ {0, · · · k}, the above system provides equation by equation
the proper coefficients b∗i .

b∗0 = − 2a

(2γ)r
, b∗i = − 2a

(2γ)r

i−1∑
j=0

r(r − 1) · · · (r − j)
(j + 1)!

∑
p0+···pj=i−j−1

b∗p0 · · · b
∗
pj . (A.14)
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Replacing in (4.5), we get:

MISE = O
(

exp
{
− 2a

(2γ)r

[
log n+ (r − 1) log log n+

k∑
i=0

b∗i (log n)r+i(r−1)
]r})

.

Case r > 1.

Here, let us denote by k the integer such that k
k+1 <

1
r ≤

k+1
k+2 . We look here for a bandwidth of the

form:

hr∗ = 2a
(

log n+
r − 1

r
log log(n) +

k∑
i=0

di(log n)
1
r−i

r−1
r

)−1
, (A.15)

where the coefficients di’s will be chosen so that ψ(h∗) = O(n).
Similar computations as for the case r < 1 provide that:

ψ(h∗) =(2a)
r−1
r n(1 + vn)−

r−1
r × exp

( k∑
i=0

di(log n)
1
r−i

r−1
r

)
× exp

( 2γ

(2a)1/r
(log n)1/r

[
1+

k∑
`=1

`−1∑
j=0

∑
p0+···pj=`−j−1

1
r

(
1
r − 1

)
· · ·
(
1
r − j

)
(j + 1)!

dp0 · · · dpj (log n)`
1−r
r +O

(
(log n)k

1−r
r

)])

=(2a)
r−1
r n(1 + vn)−

r−1
r exp

( k∑
i=0

Mi(log n)
1
r−i

r−1
r + o(1)

)
where here

vn =
r−1
r log log(n) +

∑k
i=0 di(log n)

1
r−i

r−1
r

log n
,

and

M0 = d0 +
2γ

(2a)1/r
, ∀i > 0, Mi = di +

2γ

(2a)1/r

i−1∑
j=0

∑
p0+···pj=i−j−1

1
r

(
1
r − 1

)
· · ·
(
1
r − j

)
(j + 1)!

dp0 · · · dpj

(A.16)
Solving M0 = · · · = Mk = 0 provides the coefficients d∗i so that (A.12) is satisfied.

Plugging the bandwidth h∗ with the coefficients d∗i into (4.5), we obtain:

MISE = O
( 1

n
exp

{ 2γ

(2a)1/r

[
log n+

r − 1

r
log log n+

k∑
i=0

d∗i (log n)
1
r−i

r−1
r

]1/r})
.

This concludes the proof of Corollary 4.3.

Acknowledgement

The authors thank P. Tarrago for useful discussions. M.M. acknowledges support from the Labex
CEMPI (ANR-11-LABX-0007-01). V.C.T. is partly supported by Labex Bézout (ANR-10-LABX-
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