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June 21, 2020

Abstract

We are interested in reconstructing the initial condition of a non-linear partial differential equa-
tion (PDE), namely the Fokker-Planck equation, from the observation of a Dyson Brownian motion
at a given time ¢ > 0. The Fokker-Planck equation describes the evolution of electrostatic repulsive
particle systems, and can be seen as the large particle limit of correctly renormalized Dyson Brow-
nian motions. The solution of the Fokker-Planck equation can be written as the free convolution
of the initial condition and the semi-circular distribution. We propose a nonparametric estimator
for the initial condition obtained by performing the free deconvolution via the subordination func-
tions method. This statistical estimator is original as it involves the resolution of a fixed point
equation, and a classical deconvolution by a Cauchy distribution. This is due to the fact that, in
free probability, the analogue of the Fourier transform is the R-transform, related to the Cauchy
transform. In past literature, there has been a focus on the estimation of the initial conditions
of linear PDEs such as the heat equation, but to the best of our knowledge, this is the first time
that the problem is tackled for a non-linear PDE. The convergence of the estimator is proved and
the integrated mean square error is computed, providing rates of convergence similar to the ones
known for non-parametric deconvolution methods. Finally, a simulation study illustrates the good
performances of our estimator.

Keywords: PDE with random initial condition; free deconvolution; inverse problem; kernel estimation;
Fourier transform; mean integrated square error; Dyson Brownian motion
AMS 2000: 35Q62; 656M32; 62G05; 46L53; 35R30; 60B20; 46154

1 Introduction

1.1 Motivations

Letting the initial condition of a partial differential equation (PDE) be random is interesting for con-
sidering complex phenomena or for introducing uncertainty and irregularity in the initial state. There
is a large literature on the subject, and we can mention that this has been studied for the Navier-Stokes
equation, to account for the turbulence arising in fluids with high velocities and low viscosities (see
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[31, 15]), for the Burgers equation that is used in astrophysics (see [9, 5, 18, 17] or also the survey by
[30]), for the wave equations, to study the solutions with low-regularity initial data (see [10, 11, 29]) or
for the Schrodinger PDE (see [8]). The Burgers PDE or the vortex equation, associated to the Navier-
Stokes PDE by considering the curl of the velocity, are of the McKean-Vlasov type as introduced and
studied in [24, 20]. Numerical approximations of such PDEs with random initial conditions have been
considered in [25, 27]. In this paper, we are interested in the Fokker-Planck PDE which is another case
of McKean-Vlasov PDE [13]. This equation models the motion of particles with electrostatic repulsion
and a probabilistic interpretation that we will adopt has been considered in [7].

A question naturally raised in this context is to estimate the random initial condition, given the
observation of the PDE solution at a given fixed time ¢t > 0. For linear PDEs, this inverse problem is
solved by deconvolution techniques, and this has been explored for PDEs such as the heat equation or
the wave equation by Pensky and Sapatinas [22, 23]. For the 1d-heat equation, it is known that the
solution at time ¢, say v;(dz), is the convolution of the initial condition vy(dx) with Green function Gy,
which is a Gaussian transition function associated with the standard Brownian motion (By)¢>o. The
probabilistic interpretation of the heat equation is built on this observation, and v; can be viewed as
the distribution of X; = Xg+ B; where X is distributed as vg. Taking the Fourier transforms changes
the convolution problem into a multiplication, which paves the way to reconstruct the initial condition.
Here, we are interested in estimating the initial condition of a non-linear PDE, namely the Fokker-
Planck equation, from the observation of its solution at time ¢. Recall that the Fokker-Planck equation
is:

atp(tv ‘T) = =0, - Hp(t7 l’)p(t, x)dx, (11)
with )

Hp(t,z) = lim —p(t, y)dy,
e—0 R\[z—e,z4¢] T — Y

and for t € Ry, # € R, and initial condition py(z) € L'(R). Contrarily to the examples considered in
[22, 23], this PDE is non-linear of the McKean-Vlasov type with logarithmic interactions. To the best
of our knowledge, this is the first work devoted to the deconvolution of a non-linear PDE to recover
the initial condition. The choice of this equation is motivated by its strong similarities with the heat
equation: the standard Brownian motion of the probabilistic interpretation is replaced here by the free
Brownian motion (h;):>o (operator-valued), and the usual convolution by a Gaussian distribution is
replaced by the free convolution by a semi-circular distribution o; characterized by its density with
respect to the Lebesgue measure:

1
o¢(dx) = 3V 4t — 220y 707 (7) da. (1.2)
If xg admits the spectral measure pg, then x; = x¢ + h; admits

pe = o B o, (1.3)

as spectral measure, where the operation H is the free convolution and has been introduced by Voiculescu
in [32]. It can be proved that the density p(t,) of u; solves (1.1).

For the Fokker-Planck equation, the inverse problem boils down to a free deconvolution, where
it was a usual deconvolution for the heat equation. Recently, the problem of free deconvolution has
been studied by Arizmendi, Tarrago and Vargas [2]. To solve (1.3) in a general setting, subordination
functions are used. Here, if the Cauchy transform of a measure y is defined as G, (2) = [ (z—2) 'du(z)
for = € C*, where C™ is the set of complex numbers with positive imaginary part, the subordination
function wy,(z) at time ¢ is related to G, by the functional equation

wip(2) =z +1Gy, (wyp(2)). (1.4)



From this, we can recover G, with the formula G, (2) = G, (wsp(z)) and thus pg (see Lemma 2.7 and
(2.12) in the paper). More precisely, we prove in Section 2.3 that for any v > 2v/%, Juoxc., the density
of the classical convolution of g with the Cauchy distribution of parameter v, defined by its density

L B
f’Y(‘r) T 71_(332 +'Y2)’
satisfies )
Juoxc, () = p— [y — Imwy,(z+iy)], zeR. (1.5)

Then, estimating po, the density of uo, requires an estimation of the subordination function wy, com-
bined with a classical deconvolution step from a Cauchy distribution.

1.2 Observations

Additionally to the free deconvolution problem, our observation does not consist in the operator-valued
random variable x; but in its matricial counterpart. More precisely, we observe a matrix X" (¢) for a
given t > 0, assumed to be fixed in the sequel, where

X"(t) = X"(0)+ H(t), t>0 (1.6)

with X™(0) a diagonal matrix whose entries are the ordered statistic AT(0) < --- < AZ(0) of a vec-
tor (d)ieq1,..ny of n independent and identically distributed (i.i.d.) random variables distributed as
wo(dz) = po(z) dz, absolutely continuous with respect to the Lebesgue measure on R, and H"(t) a
standard Hermitian Brownian motion, as defined in Definition 2.1. The purpose is to estimate pg
without observing directly the initial condition X™(0). As the distribution of H™(¢) is invariant by
conjugation, choosing X™(0) to be a diagonal matrix is not restrictive. It is known, see [1, page 249,
section 4.3.1], that the eigenvalues (A (t),---,A2(¢)) of X" (¢) solve the following system of stochastic
differential equations (SDE):

dA?(t)—fdﬁl ;An X,) 1<i<n, (1.7)

where §; are i.i.d. standard real Brownian motions. If we denote by
n 1 g
w= > o (18)
i=1

the empirical measure of these eigenvalues at time ¢, then the process (4} ):>o converges weakly almost
surely as n goes to infinity to the process (fu):>0 with density (p(t, -)):>0 solution of (1.1). Forn = 1, we
recover the classical heat equation as the Dyson Brownian motion boils down to a standard Brownian
motion.

1.3 Contributions

Relying on the analysis of Arizmendi et al. [2], we provide, in Theorem-Definition 2.8, a statistical
estimator W', () for the subordination function. As the Cauchy transform G, in (1.4) is not invertible
on the whole domain C*, the subordination function wy,(z) will be defined only for z € C, i Where
C, :={z € C*, Im(z) > ~v}. We shall prove the following result.



Proposition 1.1. Let v > 2v/t. Suppose \"(0) satisfies the condition

1 n
sup — log (A?(0)2 + 1) < 0o almost surely (a.s. 1.9
sup - > log (A (0 +1) y (05, (19)

Then, we have:

(i) For any z € C,_ s, the estimator w',(z) converges almost surely to wyy(2) asn — oc.
(i) The convergence is uniform on C,.

(i11) We have the following convergence rate on C.:

sup sup E [n’@}lp(z) - wfp(z)ﬂ < 400.
neN zeC,

To obtain uniform convergence and fluctuations ((ii) and (iii)), we will need to restrict to strict
subdomains of C, ;. The fluctuations (iii) are established in the line of the work of Dallaporta and
Février [16].

Proposition 1.1 is the crucial tool to reach the main goal of this paper, namely providing an estimator
of pg. As explained previously, we estimate pg by combining a free deconvolution step via the use of @?p
with then a classical deconvolution step. We define our final estimator pg j, via its Fourier transform,
denoted pj ,; from Equation (1.5), it is natural to define it as follows:

1 N .
Po,n(8) = 6”“5‘1(2(5)-% [v = Im@},(- +i7)*(€)], £eR
Note that, as usual in nonparametric statistics, the last expression depends on K7}, a regularization term
defined through the Fourier transform of a kernel function K} depending on a bandwidth parameter h.
See Equation (2.16) in Definition 2.9 for more details.

We study theoretical properties of py 5 by deriving asymptotic rates of the mean integrated square
error of Py j decomposed as the sum of bias and variance terms. The study of the variance term is

intricate and is based on the sharp controls of the difference @}, (2) —wyp(2) provided by Proposition 1.1.
2+

We show in Theorem 4.2 that the variance term is of order <2 as desired for deconvolution with the

Cauchy distribution with parameter . The bias term is driven by the smoothness properties of the

function pg. In particular, when we assume that pg belongs to a space of supersmooth densities (see

(4.2)), we can establish convergence rates, after an appropriate (non-adaptive) choice of the bandwidth

parameter h. For instance, if

/ Ip5 (&) Pe*lde < L
R

for 0 < L < o0, then
E[Ipo.s — poll?] = O(n” 7).

The previous rate is optimal when we address the statistical deconvolution problem involving the Cauchy
distribution with parameter . See Corollary 4.3 for more details and more general results that establish
the optimality of our procedure. Note that the exponent in the previous bound reflects the difficulty
of our statistical problem: the larger 7, the smaller the rate. Remembering that - is connected to
the observational time ¢ through the condition v > 2v/¢, it means that for the previous example, our
estimate can achieve the polynomial rate n~ aFavite for any € > 0. The question of whether it is possible
to consider smaller values for v constitutes a challenging problem. Adaptive choices for h are also a
very interesting issue. These problems will be investigated in another work.



1.4 Overview of the paper

In Section 2, we study the free deconvolution and explain the construction of the estimator py s of
po- Existence results and properties of the subordination functions are precisely stated and proved.
Then, in Section 3, we prove Proposition 1.1. In Section 4, rates of convergence of Dy j are established.
Numerical simulations are provided in Section 5.

Notations: For any z = u + iv € C+, we denote v/z := a + ib € C with

VuZ +0? +u b [VuZ + 02 —u
a = _— = _
2 ’ 2

We denote the Fourier transform of a function g € L!(R) by g*:

g (&) = /Rg(m)emsdx, £eR. (1.10)

2 Free deconvolution of the Fokker-Planck equation

2.1 Dyson Brownian motions
Let us denote by H,(C) the space of n-dimensional matrices H,, such that (H,)" = H,.

Definition 2.1. Let (Bi,j,Bi,j, 1<i<j< n) be a collection of i.i.d. real valued standard Brownian
motions, the Hermitian Brownian motion, denoted H™ € H,(C), is the random process with entries
{(H"(t))k1,t > 0,1 < k,l <n} equal to

1 - .
) E(Bk,l-i-l Bk,l), ifk <l
(H" ks = . (2.1)
—B if k=1
NG ks if

Let us now define the initial condition, that we will choose independent of the Hermitian Brownian
motion H™. Recall that ug is a probability measure with density po(x) with respect to the Lebesgue
measure on R. Without loss of generality, we can choose the initial condition X™(0) to be a diagonal
matrix, with entries (A7(0),...,A7(0)) the ordered statistics of i.i.d. random variables (d})1<;<, with
distribution pyg.

For t >0, let A™(t) = (A7(t),...,A%(t)) denote the ordered collection of eigenvalues of

X"(t)=X"(0)+ H"(¢). (2.2)
Theorem 2.2 (Dyson). The process (A" (t))t>0 is the unique solution in C' (R4, R™) of the system
1 1 dt
ANF(t) = —=dBi(t) + — D> vy LSS, (1.7)
NG " 2 0 - N

with initial condition A!(0) and where B; are i.i.d. real valued standard Brownian motions. With
probability one and for allt > 0, AT(t) < ... < AX(¢).

Moreover, if for fixed T' > 0, we denote by C ( [0,7], M1 (R) ) the space of continuous processes from
[0,T] into M; (R), the space of probability measure on R, equipped with its weak topology, we now
prove the convergence of the process of empirical measures p” as defined in (1.8), viewed as an element

of C'([0,T], My (R)).



Proposition 2.3. Under Assumption (1.9), for any fized time T < oo, (M?) converges almost

te[0,T)

surely in C([0,T], My (R) ). Moreover, its limit is the unique measure-valued process (ju) o,7) whose

te
densities satisfy (1.1) with initial condition py.

For deterministic initial conditions, Theorem 2.2 and Proposition 2.3 are classical results and we
refer to [1, Section 4.3] for a proof. Both results can be easily extended to random initial conditions,
independent of the Hermitian Brownian motion itself. For details, we refer to [21].

2.2 Free deconvolution by subordination method

Our starting point is (1.3), for a fixed time ¢ > 0. Recovering po knowing u; is a free deconvolution
problem. The generic problem of free deconvolution has been introduced and studied by Arizmendi
et al. [2] with the use of the Cauchy transform instead of the Fourier transform. Before stating their
result, we need to introduce a few notations and definitions.

Definition 2.4. Let p be a probability measure on R, the Cauchy transform of u is defined by:

Gu(z)—/Rd#(x), 2 €C\R. (2.3)

zZ—T

The fact is that G, (Z) = G,.(2), so the behavior of the Cauchy transform in the lower half-plan C~ =
{z € C|Im(z) < 0} can be determined by its behavior in the upper half-plan C* = {z € C[Im(z) > 0}.
The function G, is a bijection from a neighbourhood of infinity to a neighbourhood of zero (see [6] for
example) and we can define the R-transform of p by:

_ 1

Ru(z) = G; 1>(Z) -

where Glf_b(z) is the inverse function of G, on a proper neighbourhood of zero. This R-transform

plays the role of the logarithm of the Fourier transform for the free convolution in the sense that for
any probability measures p; and ps,

RMEEUQ = R,ul + Rua' (2'4)

Using this formula for statistical deconvolution requires the computation of two inverse functions, and
Arizmendi et al. [2] propose to use subordination functions which also characterize the free convolution
as in (2.4).

Let us recall the definition of subordination functions due to Voiculescu [33]. We first introduce
F,(z) =1/G(z). As G,, does not vanish on C*, F), is well defined on C*. Then:

Theorem-Definition 2.5. There erist unique subordination functions a1 and as from Ct onto CT
such that:
(i) for z € CT, Im(a1(2)) = Im(z) and Im(az(2)) > Im(z), with
lim all(@y) — lim 042_(231)
y—+oco 1y y—+oo 1Yy

=1

(ii) for z € Ct, F, mu, (2) = Fu, (a1(2)) = Fyuy(a2(2)) and oq(z) + az(2) = Fy mu, (2) + 2.

Using this result, Belinschi and Bercovici [4, Theorem 3.2] introduce a fixed-point construction of
the subordination functions, which Arizmendi et al. [2] adapt for the deconvolution problem. We state
their result in the special case of the deconvolution by a semi-circular distribution defined in (1.2).



In this case, we have an explicit formula for its Cauchy transform G,,(z) and its reciprocal function
Fy,(2):
— V22— 4t
Gy, (2) = % and 2 —F,, (2) =t Gy, (2). (2.5)

Before stating the result, let us define, for any v > 0,
C,={z€Ct|Im(z) >~} .
These domains will appear since G, is not invertible on the whole plane C.

Theorem 2.6. There exist unique subordination functions wy and wy, from C, 5z onto C* such that
following properties are satisfied.

(i) For z € Cy s, Im(w:(z2)) > %Im(z) and Im(wyy(z)) > %Im(z), and also
lim wl.(zy) = lim 7wf1?(zy) =1
Yy—r+00 1Y Yy—>—+00 Y
(i) For z € Cy s :
Fuo(2) = Fo (w1(2)) = Fy, (wyp(2))- (2.6)
(iii) For z € Cy s :
wyp(2) = 2+ wi(z) = Fu (2)- (2.7)

(iv) Denote hy,(w) = w — F,,(w) =t Gy, (w) and ﬁ#t (w) = w+ F,,(w) on Ct. We can define the
function L, as

L.(w):=hg, (hy,(w) —2) + 2z
=t.Gy, (Em (w) = 2) + z. (2.8)

For any z € C, s, we have
L. (wyp(2)) = wpp(2), (2.9)
1

and for all w such that Im(w) > 5Im(z), the iterated function L™ (w) converges to wyy(z) € CT when
m — +00.

One difference between Theorem 2.6 and Theorem-definition 2.5 lies in the fact that the subordina-
tion functions are expressed in terms of F), m,, and F,, whereas in Theorem-definition 2.5 it would have

been F),, and Fy,. Here the restriction to the domain C, ; comes from the fact that Im(h,, (w) — z)
appearing in the definition (2.8) of L, has to be positive.

The proof of Theorem 2.6 is postponed to the last subsection of this section, Section 2.4. We now
explain how the subordination functions allow us to construct the estimator of pg.

2.3 Construction of the estimator of pg

Overview of the estimation strategy Based on Theorem 2.6, we devise the estimation strategy of
the paper. The theorem allows us to get the subordination function wy, as a fixed point of L,. From
there, we will be able to recover the Cauchy transform of the initial condition o from wy,, as stated
in the following lemma proved at the end of the section:



Lemma 2.7. For any z € C, 4,

Gu(2) = (s (2) = 2) = G, (w7, (2). (210)

Consequently,
wpp() — 2| < VE. (2.11)

Moreover, for any v > 0, if we denote by C, the centered Cauchy distribution with density:
L v
)

one can check that, for any probability measure  on R, the density f,.c, of the classical convolution
of p by C, is given, for x € R, by

Fnc, () = —%ImGu(x +im). (2.12)

Using the expression of G, given by Lemma 2.7 with v > 2V/t, we get that for any = € R,

1

Fuee (@) = — [y = Ty + 7). (2.13)

From this, we can recover the density py of uo by a classical deconvolution of (2.13) by f,. The
subordination function wy, in (2.13) is estimated using the second equality of Lemma 2.7. In parallel
with our work, Tarrago [26] has used the formula (2.13) to perform spectral deconvolution in a more
general setting (including the multiplicative free convolution), but neither the approximation of wy, by
its estimator w7, defined Theorem-Definition 2.8 below nor the (classical) deconvolution of the Cauchy
distribution are treated, which are key difficulties encountered in our paper. Tarrago uses a different
approach based on concentration inequalities when we use fluctuations in view of the work of Février
and Dallaporta [16]. To prove the rates announced in the introduction, we need to establish very precise
estimates of the error terms (see Section 4).

Proof of Lemma 2.7. Now, from (2.7), (2.6) and (2.5), we write for z € C,_ g,

wip(2) = 2+ w1(2) = Fuy (2) = 2 + w1(2) — Fy, (w1(2)) = 2 + t.Go, (w1(2)).

So, we obtain

G, (wl(z)) = %(wfp(z) — z)

Using again (2.6), we obtain both equalities of (2.10). From there

t
Im(wp(2))|
using Theorem 2.6 (i). O

<V,

lwip(2) = 2| = t.|Go, (w1 (2))] = t. |G, (wrp(2))] <

Estimator of py We do not observe directly the measure p;. The observation is the matrix X (t)
at time ¢ > 0 for a given n. From this observation, we can construct the empirical spectral measure as
defined in (1.8). Then, for z € C*, a natural estimator of G, (z) is obtained as follows:

n

CAT'M;L (2) == /]R dgz(i) = 711; z/l\?(t) = %tr((z[n - Xn(t))_l). (2.14)




Theorem-Definition 2.8. There exists a unique fized-point to the following functional equation in
1 ~
E(w(z) —2)=Gup(w(z)), forzeCyy (2.15)

This fized-point is denoted by w},(z). We have Im(w},(z)) > Im(z)/2 and ’ﬁ}?p(z) - z‘ <Vt

The theorem is proved at the end of this section. We shall prove in Section 3 that @}, (2) is a
convergent estimator of w¢,(2) and establish a fluctuation result associated with this convergence. This
is the result announced in Proposition 1.1. Let us now explain how the estimator of pg can be obtained
from W%, (2).

Recall that the Fourier transform of the Cauchy distribution C, with a@ > 0 is fx(¢) = e~ ¢l for
¢ € R. Performing the deconvolution from (2.13), the Fourier transform of pg is the division of the
Fourier transform of the right-hand side of (2.13) by f7(§) with v > 2v/t. Tt is now classical to define
our ultimate estimator for the density function py from its Fourier transform:

Definition 2.9. Let us consider a bandwidth h > 0 and a regularizing kernel K. We assume that the
kernel K is such that its Fourier transform K* is bounded by a positive constant C'x < +00 and has a
compact support, say [—1,1]. We define the estimator Do, of po by its Fourier transform:

Pon(€) = 6 I (€)

Ly~ g+ i (@) (2.16)

where we have defined Kj,(-) = +K (7).

Note that the assumption on K ensures the finiteness of the estimator. These assumptions are for
instance satisfied for K (z) = sinc(z) = sin(z)/(7z) whose Fourier transform is K*(§) = 1[_1,1;(§), and
in this case Cx = 1.

2.4 Proof of Theorem 2.6

The constants of Theorem 2.6 are better than the ones of Arizmendi et al. [2] who work in full gen-
erality. We sketch here the main steps of the proof in our context, using the explicit formula for the
semi-circular distribution.

In the whole proof, we consider z € C,_ /.

Step 1: We first prove that the function L,(w) = h,, (}Nlut (w) — z) + z is well-defined and analytic on

Ciim(z)- Since hy, is defined on C*, we need to check that Ry, (w) — z € CF for w € Ciim(z)- This is
satisfied since for such w,

Im(hy,, (w) — z) = Im(w + F, (w) — z) > 2Im(w) — Im(z) > 0, (2.17)
where we have used ImF),, (w) > Im(w) for the first inequality. Indeed, if w = w1 + iws, we have

) _ [ o odule) [ dule

Wi + iwy — T (w; — )2 + w3

(Fy())™! = G, (w) = /

wy — )2 4+ w3



and
dps ()
f(wl z)2+w3
2
(w1—z)dpe () dps(z)
(f (wll_m)2+w2) +’lU (f (w1 —z)>+w? )

f dut(r
(w1 —z)2+wj

(w1—z)2dps (z 2 dp (x)
J (wr—appug)” v 2f((w1—x>2+w§)2

= ws (2.18)

Step 2: We show that LZ((C%Im(Z)) C Ciyy(.y and that L is not a conformal automorphism.

First, let us show that L, (C%Im(z)> C C%Im(z). Let w € (C%Im(z), we have:

Im (L, (w)) =Im [t.Gm (%m (w) — 2) + z}

+z2]. (2.19)

To lower bound the right hand side, note that for all v € Ct, one can check that:

Im (V02 — 4t) < Im?(v) + 4t.

Therefore, we have:

Im <\/(E#t (w) — 2)2 - 4t> < \/[Im(ﬁm (w) — z)]2 + 4t.

Hence, (2.19) yields:

Im(L.(w)) > % {Im(hm (w) — 2) — \/[Im(hm (w) — z)]2 + 4t| + Im(z).

The function g(s) = s —v/s2 + 4t is non-decreasing on R and for all s > 0, g(s) > —2+/t. This implies
that

1
Im(L.(w)) > Im(z) — vVt > §Im(z), (2.20)
since z € C, 7. This guarantees that L.(w) € Cyyy ).

Let us now prove that L. is not an automorphism of Ciy,, ). Consider

L. (w) — 2| = |Fy, (A, (w) = 2) — (hy, (w) — 2)| =

[ (%/"t (w) - Z) .

For v € Ct, if |v| > 3v/, since the support of oy is [—2v/1, 2v/1],

veme _'/ doy(2)
2\/'071’
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If |v| < 3v/4,

— Vv — 4t 2 24/t
Gy ()] = | LY 22V
‘ 2 2
Hence, for all w € Ciyy (.,
|L.(w) — 2| <4Vt (2.21)

This implies that L. ((C%Im(z)) is included in the ball centered at z with radius 4v/¢. As a result, L, is
not surjective and hence is not an automorphism of Ciy,, ().

Step 3: Existence and uniqueness of wg,, which is a fixed point of L.

By Steps 1 and 2, L, satisfies the assumptions of Denjoy-Wolff’s fixed-point theorem (see e.g. [4, 2]).
The theorem says that for all w € (C%Im(z) the iterated sequence L™ (w) = L, oLg(mfl) (w) converges to
the unique Denjoy-Wolff point of L, which we define as wy,(z). The Denjoy-Wolff point is either a fixed-
point of L, or a point of the boundary of the domain. Let us check that wy, is a fixed point of L,. For
any z € C, s, there exists v > 2 such that z € C__; and from (2.20), L:(Cim(e)) C C(k%)lm(z). More-

over, from (2.21), L:(Cypp(zy) C B(z,4v/t). Therefore, wy,(z) € Cl—1)m(» N B(z,4V/t) C Ciim(z)s 50
¥
that it is necessarily a fixed point.

We now define
wi(2) = Fy, (wrp(2)) + wyp(z) — 2.
One can check that

Fo, (w1(2)) = wi(2) = ho, (w1(2))

I
E"q
g
~
=
N
—
+
E
~
=
—
N
~—
|
N
I
>
Q
—

(wrp(2) Fu(wep(2)) +wpp(2) — 2)
= Bm (wrp(2)) = 2 = ho, (iLMt (wrp(2)) — 2)
= Bm (wrp(2)) —wpp(2) = Fu, (wyp(2)).
One can therefore rewrite
w1(2) = Fo,(w1(2)) + wyp(2) — 2.
From (2.21) and the fact that wy,(2) is a fixed point of L., one easily gets that

tim @) _
y—+o0 1Y

)

which implies that
r . .
b B L w)
y—+oo 1y y—too 1y

=1

Now we connect F),; to the previous quantities. For z large enough, all the functions we consider
are invertible and we have

Fu,(wpp(2)) + wyp(z) = 2 +wi(z) = 2 + Fo<t_1>(Fm (wrp(2))).
On the other hand, for z large enough, using Theorem-definition 2.5 for pu; = oy and po = g, we get
Fyu, (wfp(z)) + wfp(z) = al(wfp(z)) + QQ(wfp(Z)) = Fa<;1>(Fm (wfp(z))) + F,f[;D(Fm (wfp(z)))-
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Comparing the two equalities gives
Fp 72 (B (wrp(2))) = 2,

so that, for z large enough,
FHt (wfp(z)) = FH(J (Z)

The two functions being analytic on C,_ 4, the equality can be extended to any z € C,, ;.
Finally, since
wi(2) = Fy, (wrp(2)) + wyp(2) — 2 = Fiu(2) + wyp(z) — 2,

we have, using (2.18) with pg instead of i,
1
Im(w4(2)) = B (2)) + g, () ~ Im(2) > nwg, (2)) > Lm(z).

This ends the proof of Theorem 2.6.

2.5 Proof of Theorem-Definition 2.8

The proof of this theorem follows the steps of the proof of Theorem 2.6. First, L, (w) := té#? (w) + =

is a well-defined and analytic function on C*+. Let us check that L. (Ciim(z)) C Ciim(e for z € Cy .
Forw=u+1iv e (C%Im(z),

N 1< u— NP (t) —iv 1 1
(G () = 5 ;Im((u @)+ 7) 7 (2.22)
Thus,
Im(fz(w)) =t Im(@ug (w)) +Im(z) > —ﬁ + Im(z) > —ﬁ +Im(z) > %Im(z).

The second inequality comes from the choice of w € C 1Im(z)> and the last inequality is a consequence
of Im(z) > 2v/%.

Moreover, L, is not an automorphism since:

’Ez(w) a Z‘ - ’té”?(w)’ - :L]il w —t)\?(t) = Imt(w) < Vi (223)

since Im(w) > %Im(z) > /t. We use again the Denjoy-Wolff fixed-point theorem. Because the inclusion
of Zz ((C%Im(z)) into (C%Im(z) is strict, the unique Denjoy-Wolff point of EZ is necessarily a fixed point
that we denote Wp,(2). From the construction, Im(@w,(z)) > Im(z)/2. Finally, the last announced
estimate is a straightforward consequence of (2.23).

3 Study of the subordination function

This section is devoted to the proof of Proposition 1.1. We show that @}Lp(z) converges uniformly to
wyp(2) on C., with v > 2+/t. Next, we establish that the fluctuations are of order 1//n.

12



3.1 Proof of (i) and (ii) of Proposition 1.1

We first state a useful lemma.
Lemma 3.1. For any probability measure pu on R and o > 0, the Cauchy transform G, is Lipschitz on

1 1
C,, with Lipschitz constant 5, and one has for any z € Cq, |G(2)] < —.
a

Aiﬂfx;/fufy‘ '/z—x ) — )

|z — 2| |z — 2|
~ Im(2)Im(z') = a2
This implies the Lipschitz property of G,,,. Also,

_| [ dplz)
IGu(2)l = /R z—z Im(2)
This finishes the proof. O

Proof. For z,2' € C,,

|Gu(z) = Gu(2)] =

<

1
o

We are now ready to prove the points (i) and (ii) of Proposition 1.1.

Proof of Proposition 1.1(i-ii). Consider z € C, with v > 2v/t. Using the equations (2.10) and (2.15)
characterizing wy,(z) and w7},(2), we have

[@5,(2) = wip(2)] = ¢ |Gy (@, () = G (wp(2)|

<t ‘éu? (@?p(z)) - @u? (wfp(z))‘ +t ‘G/A? (wfp(z)) -Gy, (wfp(z)) . (3.1)

1 N
By Theorem 2.6, Im(wg,(z)) > §Im(z) and since G ,» is a Lipschitz function on (C;Im(z) with Lipschitz

constant I 2( ) <4 32 by Lemma 3.1, we have an upper bound for the first term
m-(z

~ ~ 4 R

G (@7,(2)) = Cup w3, (D) < o % | 2) — wp(2)].
Thus,

|@}LP( ) — wp(z | |wfp wfp(z)| +t ‘Gu? (wfp(z)) -Gy, (wfp(z)) )
implying that
’@?p —wyp(2 ’ = (’y _ 4t) ‘Gu? (wrp(2)) = G, (wfp(z))‘~ (3:2)

By Proposition 2.3, since the function z — ﬁ is continuous and bounded on R for any z € C g,

Gm (wip(2)) = o . (Z — iy (dx) converges almost surely to G, (wyp(2)) = [ wfp ——y—me(dz). This
concludes the proof of (i).

To prove the uniform convergence (i), we will need Vitali’s convergence theorem, see e.g. [3,
Lemma 2.14, p.37-38]: on any bounded compact set of C, /7> the simple convergence is in fact a uniform

convergence. Moreover, the functions G, (z) and @“;(2) decay as 1/|z| when |z| — +oo, implying the
uniform convergence of the right-hand side of (3.2) on C., for v > 2v/t and of w},(2) to wyp(2). O

13



3.2 Fluctuations of the Cauchy transform of the empirical measure

We now prove point (iii) of Proposition 1.1. For this purpose, we first decompose:

Gup(2) = G, (2)
=Gy (2) = E[G iz (2)| X" (0)] + E[Gup (2)|X™(0)] — G, (2) + Gupio, (2) — Gy (2)
=1 AT (2) + A (2) + AB(2). (3.3)

The first term is related to the variance of G up(2) (conditional on X™(0)). The second term heuristically
compares the evolution with the Hermitian Brownian motion to its limit. The third term deals with
the fluctuations of the empirical initial condition. A similar decomposition for the first two terms is
done in Dallaporta and Février [16] (without the problem of the random initial condition) and we will
adapt their results. We will show that the fluctuations of the first two terms are of order 1/n, and this
is treated in Propositions 3.2 and 3.3 below. The third term, which is associated to a classical central
limit theorem, is of order 1/1/n. This is proved in Proposition 3.6.

For the term AT (z), the result is a direct consequence of Proposition 3 in [16] and we refer to the
detailed computation in [21].

Proposition 3.2. For z € CT and n € N,

Var(nAf(z)|X™(0)) = Var(néw (2)|X™(0)) <

3.2.1 Fluctuations of Af(z)

We start with some additional notations. Let us denote the resolvent of X™(¢) by

Ry y(2) i= (21, — X"(t))". (3.4)
Then one can write 1
Gur(2) = - Tr (R, (2))
Then, the bias term is:
nAy(z) = E[Tr (Rn4(2)) | X"(0)] — nGpmo, (2), (3.5)

and it is given by an adaptation of [16, Proposition 4] to the case of a random initial condition:

Proposition 3.3. For z € CT and n € N,

“““”S(l*m;@)<m§@*z;iﬂ' (3.6)

The term A% (z) compares E[@#g (2)|X™(0)] with G nmo,(2). Proceeding as in Theorem-Definition
2.5, with pg and oy, we can define a subordination function wg,(2) such that

Gupo, (2) = Gy (Wyp(2))- (3.7)

In what follows, it will be natural to introduce and use this subordination function.
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Proof. Note that by definition of the resolvent, we have for all z € C™T,
[nA%(2)] < 2nIm™*(z), (3.8)

which is suboptimal due to the factor n.

We follow the ideas of [16] for their ‘approximate subordination relations’. Since our initial condition
is random, the strategy has to be adapted and we introduce the following analogues of R,, ;(z) and A5 (z),
which differ from [16]:

(- LB (o) | X)) L~ x7)) 59)
E[Tr (Rue(2)) | X%(0)] — Tr(Fne(2).

We will bound A%(z) by using its approximation AZ(z).

ndy(z)

Step 1: First, we prove an upper bound for ;13(2)

Lemma 3.4. For z ¢ Ct,

< 2t N 12¢2
T ImP(z)  ImP(z)

The proof of this lemma is postponed in Appendix.

Step 2: If |A2(2)| > Im(z)/(2t) then, by (3.8)
4tn| A3 ()|

nA%(z
a3 < ot

And we conclude with Lemma 3.4.

Step 3: We now consider the case where |Z§L(z)\ < Im(z)/(2t). We have:
A(2) = A5 () + [A5(2) — 45(2)] (3.10)

We will control the difference |A%(z) — AZ(z)| by AZ(z) and conclude with Lemma 3.4.

By their definitions:
n(AS(z) — Ag(z)) :Tr(Rnyt(z)) — nG“gEgm(z). (3.11)
We follow the trick in [16] which consists in going back to the fluctuations of the subordination functions.

In view of (3.7), it is natural to express the first term Tr(émt(z)) of (3.11) similarly. As f%nt(z) is a
diagonal matrix,

~ n 1
Tr(Rp4(2)) = 7 —— = nGyp (Wrp(2)), (3.12)
( ) ; 2= LE[Tr(Ruy(2)) | X7(0)] — A7(0) d
where ;
Wyp(2) =2 — ﬁIE[Tr(ant(z)) | X™(0)] (3.13)
and where A7 (0) are the eigenvalues of X™(0). Thus:
AR (2) = A5 (2) = G (Tgp(2)) = Crug (Wp(2))- (3.14)

To continue, we first need the following result proved in Appendix.
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Lemma 3.5. (i) The function W,(2), defined in (3.7), solves
Wep(2) = 2 — tGurmo, (2)-

(ii) The function ((z) = z + tGun(2) is well-defined on Ct and is the inverse of Wyy(z) on Q = {z €

C*, Im(¢(2)) > 0}. For such z € Q, we denote this function E}fpfb(z),

Let us prove that under the condition of Step 3, wy,(z) € Q for all z € C*.
Cwpp(2)) — 2 =wpp(2) +tGpuy (wfp(z)) -z
t " _
=z- EE[T&r(}zn,t(,z)) | X™(0)] 4+ tGpup (Wp(2)) — 2
= —tAZ(2), (3.15)

by (3.12). Therefore,

Im(z).

[l (¢(@1(2))) = Im(2)] < [6(Tp(2) — 21 = 1] A3 (2)] < = (3.16)

Thus, under the condition of Step 3, w,(z) € . Denoting z = @;;D (wgp(2)), which is well-defined,
we have Wy, (Z) = Wyp(2). Plugging this into (3.14),

Ag(z) - Avg(z) = GMSEBQ (z) - GugEEot (Z)
(a3 po B oi(dx)
(-3 [ £

pg B oy (d)

= tgg(z)./R@_x).(z )

where we used (3.15) for the last equality.

From there, using (3.10), we get

a3 < e [ RO B < (14 2 ) A

This concludes the proof of Proposition 3.3. O

3.2.2 Fluctuations of A%} (z)
Finally, the third step is to control A% (2) = G gm0, (2) — Gy, (2), With py = po B oy.

Proposition 3.6. For any v > 2/t and for any z such that Im(z) > 3, we have:

2
¥ 1
AL M(x) — 1
46 < 3| [ i = () — ()] (317)
and
sup sup E[n|A3(2)]*] < 8772 (3.18)
neNzeCy s (7% — 4t)?
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Proof. Using again the subordination function wy,(z) defined in (3.7) and Lemma 3.5(i), we have

dug (x dul (z
Gugn(2) = g (Tp(2) = [ G = [ iy (3.19)

In this proof, Im(z) > /2 > v/t. Note that Im(w,(z)) > Im(z) (Theorem-Definition 2.5) so that
|2 — tGnmo, (2) — 2] > % > Vi, (3.20)

and the integrand in (3.19) is well-defined and upper-bounded by 1/+/¢. Similarly, we can establish that

G oo, (2) = /R — Giﬂéixzz) —. (3.21)

Then, we can write

1 . 1
G i, (2) — Gt (2) = / e ) - / o e

1 1
dud — d
+ /]R 2 —t.Gme, (2) — #o () /R 2 —=t.Gmo, (2) — Ho(2)

dpg ()

G n -G
_ t./ piyHoy (Z) poBog (Z) d,ug (f)
R (z— t.Gunmo, (2) — ) (z —t.G om0, (2) — z)
1
dug(x) —d .
e = ) - dnofa)
Thus,
(630, (2) = G () |11 [ - A ()
ppBo\Z) — G oo, \2)) - — L Mo (T
R (z —t.Gnmo, (2) — x) (z — .G oo, (2) — x)
1 n
- /]R = t'GMOEm (Z) -z [duo (x) dMO(m)] -
Similarly to (3.20), we can show that |z — .G, @, (2) — x| > /2. Thus
1 . 4t
t./ dug (2)| < =,
R (2 —t.Gyupmo, (2) — ) (z — .G oo, (2) — x) Y
consequently,
L ! d d
A’rL n _
480 < 5 | | oy @) — (@]
which gives the first part of the proposition. For the second part (3.18),
~2 2 1 2
E[n|A}(2)] < E n(z) — :
I B ——y
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1
Now, for any z such that Im(z) > I, the function ¢, : z . is bounded by 2/~.

2 —t.Gpme, (2) —
Then:

B[] [ e-@auie) = [ oo | B [|2 3 6. (2(0)) ~ Bl (5 0)][]
j=1

=nVar (% il Pz (d?))
:/]R = (@) |*dpao () — ‘/R%(m)d“()(x)r = %

for any z € (C%. O

Conclusion: We can now conclude the proof of Proposition 1.1 (iii). From (3.3), Propositions 3.2, 3.3
and the first part of Proposition 3.6, we obtain that for z € C, /5:

2

), (3.22)

E[1Gup (2) ~ G () | X)) < O, 1) (5 +

n2

/ ! [ () — dpo(a)]
R

2 —=t.Gme, (2) —

where C(7,t) depends only on v and ¢ (and converges to +o0o when v — 2v/t). Using the second part
of Proposition 3.6, we get:

sup sup nE[\éH;(z) - Gm(z)ﬂ < +o00.
TLENZE(C,Y/Q

Equation (3.2) implies that for any v > 2/,
2

i 2 v 2 ~ )
sup su ]E[nw” z) —wyp(2 ]S ———) sup su nE{an—Gtz }<+oo
negzea | fp( ) fp( ))| (72 - 4t) nEII\)T zE(Cp% | " ( ) g ( )|

Im(z) > & (Theorem 2.6) so that wg,(2) € Cy and point (iii) of

N | =

since if z € C, then Im(wfp(z)) >

Proposition 1.1 is proved.

4 Study of the mean integrated squared error

In Section 4.1, we state theoretical results associated with our nonparametric statistical problem. Sec-
tion 4.2 is devoted to the proof of Theorem 4.2.

4.1 Theoretical results

The goal of this section is to study the rates of convergence of E[Hﬁoﬁ — pol|?], the mean integrated
squared error of pg . To derive rates of convergence, we rely on the classical bias-variance decomposition
of the quadratic risk. Using Parseval’s equality we obtain

~ 1 1 1
o = poll* = 5 |85 — 2611 < = 135 — K o|* + — 1305 — w5)°. (41)
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The expectation of the first term is a variance term whereas the second one is a bias term. To derive
the order of the bias term, we assume that pg belongs to the space S(a,r, L) of supersmooth densities
defined for @ > 0, L > 0 and r > 0 by:

S(a,r, L) = {po density such that/ I (€)[2e24lEl"de < L} . (4.2)
R

In the literature, this smoothness class of densities has often been considered (see [19], [12], [14]). Most
famous examples of supersmooth densities are the Cauchy distribution belonging to S(a,r, L) with
r = 1 and the Gaussian distribution belonging to S(a,r, L) with r = 2. To control the bias, we rely on
Proposition 1 in [12] which states that:

Proposition 4.1. For py € S(a,r, L), we have
1KG-p5 — poll < CpLY2e=" ",

where Cg is a constant.

Whereas the control of the bias term is very classical, the study of the variance term in (4.1) is much
more involved. The order of the variance term is provided by the following theorem.

Theorem 4.2. Let )
= it~ Kl
We assume that there exists a constant C > 0 such that for sufficiently large k > 0,

po((k, +00)) < % (4.3)

Then, we have for any h > 0, for any v > 2V/1,

]E(E) < %’ (4.4)

for Cyar a constant.

In (4.4), the constant C,,, depends on all the parameters of the problem and may blow up when
v tends to 2v/t. Theorem 4.2 is proved in Section 4.2. The main point will be to obtain the optimal
n factor appearing at the denominator. The term e appearing at the numerator is classical in our
setting. Note that Assumption (4.3) is very mild and is satisfied by most classical distributions.

Now, using similar computations to those in [19], we can obtain from Proposition 4.1 and Theorem
4.2 the rates of convergence of our estimator py 5. We indeed showed that:

2y
MISE = E[ [fon —poll*] < OpLe2on " 4 Cror el (4:5)
Minimizing in h the right hand side of (4.5) provides the convergence rate of the estimator py . The
rates of convergence are summed up in the following corollary, adapted from the computation of [19].
One can see that there are three cases to consider to derive rates of convergence: r = 1, r < 1 and
r > 1, depending on which the bias or variance term dominates the other. For the sake of completeness
Corollary 4.3 is proved in Appendix.
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Corollary 4.3. Suppose that po satisfies Assumption (4.3) and the density py belongs to the space
S(a,7,L) fora > 0, r > 0 and L > 0. Then, for any v > 2v/t and by choosing the bandwidth h
according to equation (A.12), we have:

O(n_aiw) ifr=1
E[Hﬁo,rpo\lz] = O(GXP{— B [10g"+(7"—1)10g10gn+21 0 z(logn)T“(T ﬂr}) ifr<1
O(}Lexp{(2 )W[lognJr = 1loglogn+zz 0 Z(logn) Tﬁ}) ifr>1,

(4.6)
where the integer k is such that

k . 1 k+1
R )<< —
] <m1n(r,r) Sra

and where the constants b and d} solve the following triangular system:

2a . % & r(r—1)---(r—j)
by = - Vi>0, b= — ‘ S b by
) s Vg r | Po p;’
(27) @iz GHDY i
i—1 1/1 1 .
SE y S ()
dy = — 77 Vi >0, df = — ZTT ' r Z A -d
/r’ 7 1/r | Po Pj
(2a) 2a)ir =5 G+1) potpy=i—j—1

Remark 1. For r =1, the choice h = 2(a + )/ log(n) yields the rate of convergence. The expressions
of the optimal bandwidths for r > 1 and r < 1 are much more intricate (see (A.13) and (A.15) in
Appendiz, and also [19]).

Recall that we have transformed the free deconvolution of the Fokker-Planck equation associated
with observation of the matrix X" (¢) into the deconvolution problem expressed in (2.13). To solve the
latter, we have then inverted the convolution operator characterized by the Fourier transform of the
Cauchy distribution C,. The parameter v represents the difficulty of our deconvolution problem and
consequently, the rates of convergence heavily depend on . The larger v the harder the problem, as
can be observed in rates of convergences of Corollary 4.3. This is not surprising: as ¢t grows, it becomes
naturally harder to reconstruct the initial condition from the observations at time ¢ and as v has to
be chosen larger than 2v/%, v and therefore the difficulty of the deconvolution problem grows with t
accordingly. It remains an open question if we can take v smaller. For a given -, the upper bound
of the variance term given by Theorem 4.2 is optimal. Analogously, the bound for the bias given by
Proposition 4.1 is also optimal. In consequence, rates of convergence for r = 1 and r < 1 in Corollary
4.3 are optimal (as proved by Tsybakov in [28] for the case » = 1 and by Butucea and Tsybakov in [12]
for r < 1). The optimality for » > 1 remains an open problem.

4.2 Proof of Theorem 4.2
By the definition of pg ;,, we have:
Y= H% h hpOH

2

:/ 1 eI K2 (6] H(Im(@;}p(_+m)))*—(Im(wfp(.+i’)’)>)*] (f)‘ d¢.

w22

Recall that by Lemma 2.7, we have Im (ws,(2)) = t.Im(G, (wsp(2))) + Im(z), and similarly by
Theorem-Definition 2.8, Im(@}lp(z)) = t.Im(éw (@?p(z)))—i—Im(z) for 2 € C, 4. Since K (§) = K*(h§),
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we have
2

Y= / 2Vl |Kﬁ(§)|2 %‘ (Iméw (’L/U\?p(. + w)) —ImG,, (wfp(. + Vy)))*(g)‘ d¢
R T

2
~

2y C2 N o ) ) *
<eh 777[2( H (ImGML (wfp(. + 7)) — ImG,,, (wsp(+ + z'y)))

20}
o ™

2y
eh . ,

~ 2
‘ImGML (@}, (4 17)) = ImG, (wyp(« + w))‘

by Parseval’s equality. Taking the expectation, and introducing a constant x > 0 chosen later (depending
on n), we have

E(D) < ﬁ.e%(ﬁ +J%) (4.7)
where
" — / E[ |Gy (@}, (@ + 7)) = G, (wgp(w + 7)) mdx (4.8)
{z€R:[z|<x}
e = /{ s E[[1mGp (8, (2 + 7)) — G, (wy(x + 7)) m dz. (4.9)

To obtain the announced rates of convergence for the MISE, we need to be very careful in establishing
the upper bounds for I and J*. For this purpose, we recall Lemma 4.3.17 of [1], with a null initial
condition, which will be useful in the sequel:

Lemma 4.4. Let (n}(t),...,nn(t)) be the eigenvalues of H™(t). With large probability, all the eigen-
values (17 (t)) of H™(t) belong to a ball of radius M > 0 independent of n and t. Introduce

Ayl = {V1<j<n:lpit)| <M} (4.10)
There exist two positive constants Ceig and De;q depending on t such that for any M > D¢y and any

n € N*
P ((A3)°) =P ({ni(t) > M}) < 7™ Cewot, (4.11)
with NP (t) == max;=1 . |7 (t)].

Using this lemma, we can control the tail distribution of E[u}], which is essential to establish very
precise estimates without which the announced rate would not be derived. We recall that A7 (¢) <
... < AI(t) are the eigenvalues of X"(¢t) = X™(0) + H™(¢) in increasing order. By Weyl’s interlacing
inequalities, we have that, for 1 < j <mn,

AF(0) =i (8) < AF (1) < AF(0) + i (1) (4.12)

Therefore, for 1 < j <mn,

ot (0> 1) <5 (> 5] 0 ({00 5) < s (1> ) o5

Recall that after Equation (1.6), we introduced the notation df,...,d" for the i.i.d. random variables
of distribution pg and whose order statistic constitutes the diagonal elements of X,,(0), A\7(0) < ... <
A(0). We have

n

sl ({> 53] = 2 2 p (01> 5) = (01> 7).

=1

[ ({W> 53)) <o ({W> 3]) e 5 4

Now, we successively study I and J*.

so that we finally get
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4.2.1 Upper bound for I”
Lemma 4.5. There exist constants C?, C% and C3? (that can depend on «y and t) such that:

Ct C?
If< =Ly it} 2I + C3 e Ceia- M, (4.14)
n n
Before proving Lemma 4.5, let us establish a result that will be useful in the sequel.
Lemma 4.6. Let us consider v > 2/t, p > 1 and M > 0. Then, we have
+oo 1
jp,’y,M,t = / / pd,u()()‘)dm S C(p7 s M7 t)a (415)
o [{[I = -vi-arp v

for C(p,~v, M,t) a finite constant only depending on p, v, M and t.

Proof. The supremum in the denominator equals to ||A| — x| — vt — M when & < [A| — vVt — M — v/2
(which is possible only if || — v/t — M — /2 is positive) or > |\ + v/t + M + v/2. Otherwise the
supremum is /2. Hence

(IA-vi-M-3)vo 1 DNHVEM+E  op
Tp~y, Mt S/ / pdx—|—/ —pdx
= | Jo (|/\| —g;—\/i—M) (A —VI-M—-3}v0 Y

o0 1
+/ dx p dpo(A
Wvirm+y [z — A = vE—M]” } o)

(A=Vi=M)vg 2(2V/f + 2M +oo
g/{/ ’ —dv + (2vi+ 1) +/ —dv p dpg(A)
R s vP vP

P
5
2 v 2

<C(p, . M. 1) < +x. (4.16)

N

This concludes the proof. O

Proof of Lemma 4.5. We decompose [* into three parts, I < Z(If + 15 + I{f) where:

~

R 2
= [ Bl @t i -Gt o

= /{w|§r€} E[ Gy (wpp(x +1i7)) — E[é#;’f (wep(@ +i7)) | Xn(o)} ’Q]dx’

15 ::/ E
{lz|<k}

Step 1: Let us first upper bound If. It is relatively easy to bound I{* by an upper bound in C(~,t)x/n,
but this will not yield in the end the announced convergence rate. To establish more precise upper
bounds, we use the event A’ defined in Lemma 4.4. We have I} = I} + I}, with

E[@W (wyp(@ + 7)) | X"(O)] — Gy, (wrplz + 7)) ﬁ da.

—

. . 2
Iy = /{| . }]E UGH? (W, (x+i7)) — Gun (wep(z + ry))‘ 1A:{it} dz,
B ~ ~ 2
o= [ |G @t ) = G (ol + )| 1
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For the term I}, we have by Theorem 2.6(i) and Lemma 4.4:

16
5, <

16
< ?HP((AX/’;)C) < ﬁne_"'C”g'M. (4.17)

Let us now consider the term I7;:

. 1 & wep(z +iy) — W, (2 + i) 2
I = El|=% — : n : _ 1yt |da
(al<wy LT (@F, (2 +87) = AF (@) -(wrp(a +7) = AF () |
2 1 n 1An t
g/ E ‘@?p(x—kiv)—wfp(x—kiv)‘ '*Z 5 |dx
{lz1<r} [ @ (@ + i) = A wpp (a4 i) — AR()]

by convexity. Using (2.11) and (4.12), we have
|wpp(@ +i7) = N (0)] 2 [wgp(e + )| = [N (1)
> [Re(ug, (x + )] — [} (1)
> |a| = VE— [N}(0)] — nZ(t).

Since A7 (t) is real, we also have:

wpp(@ +i7) = N} (8)] > [Re(wpy(x + iv) — N} (1))]
> [N} (t)| = [Re(wpp(z +iv)))|
> [XF(0)] — |2 =Vt
> NG (0)] =0 (t) =[] -
Therefore, using Theorem 2.6,
[wip(@+iv) = X = {|[20)] = Jo]| - V-t } v 3. (4.18)

In Theorem-Definition 2.8, it is shown that @} (2) satisfies a similar inequality as (2.11). Thus, we
obtain with similar computations that:

(@, + i) = 0] = {250 - [al| - vE-n2® } v . (4.19)

Then, using the definition of AK/}t, there exists a constant C11(7,t) only depending on v and ¢ such that

I < /
{lz|<k}

n

S e ¥ e v i
=t - 2

l ! B (2 + i) — wey(z + iv) P X" T
”Z/{Iwkn}E[[{“)\;‘(o)]—\x”—\/%—M}vgrEH ol +17) —wpp(w + i) [F1X <0>]]d

IA

j=1

IN

Cut) ¢ 1 =
n ;/{xgm}Eh{“/\?(oﬂ - |x|‘ —\/E—M}V%r <n2

1
dpg (A) — dpo(A
* /Rerifyt,GuoEat(erify))\[ 115 (A) fo( )]

Culnt) ipn o w
< Hn (If11 + If12) (4.20)
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where the third inequality comes from (3.22), and where:

It ::iz E : ]dx
n Z/{zw} L[{[ P = fol | - vE-ar} v 3]

KoL 1 n
Ity /{|m|§n}E[/ H ‘)\‘_’x"_ﬁ_M}vgrdﬂo()\)

2
]dx.

Now we wish to upper bound I}y, and I{}, independently of x. We first deal with I7};.

\ﬂ/ - TR ) )]

R T+ iy — .G @, (T + i)

dpo(N)dx

1 1
Ifn = g/ / 1
(et 2 ({1 - |x|\ V- MV

/+OO/ 7dpo(N)dz. (4.21)
(o] - vi-arp vy

The double integral is upper bounded by a constant C(v, M, t)/n by Lemma 4.6.

Let us now consider If;5. Using Cauchy-Schwarz inequality, we have:

K 1 n 2 T
Iy, < E[/{WISR} (/ H‘|)\| - |$“ —\/E—M}\/;Yrduoo\)) d ]
\JE_/{I«%Qﬁ}

The first term can be treated exactly as If;; as:

E[/{m} (/ T —1\/£—M}v;}4d”m>2dx]

1 1 . B 16771 )
= E[/{mgn} (g)4</ [{“)\‘ B ’x” - \/E—M} y grdﬂo()\))dx} = It (4.23)

We now focus on the second term of (4.22). As in the proof of Proposition 3.6, if we denote by
Gu = Patiy : A= (T + iy — t.G om0, (x + i) — N) 7L, the last term can be rewritten as

4
/ dx]
{lz|<r}
4

- /{| |<r) %Z (92(d50)) = E(¢a(}(0))) 1@

1
\/77/]R z+ iy — .G omo, (T +17) — A [dpg (N) — dpo(N)]

4
dx] (4.22)

Iy, =E

Vit [ 6:()[dnO) ~ ()]
R
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where we used the notation df, ..., d" for the non-ordered diagonal elements of X,,(0) (introduced after
Equation (1.6)). Since the random variables d7,...,d} are i.i.d. with law pg, the random variables
(¢2(A7(0)) = E(¢2(A}(0))))1<j<n are i.i.d. centered with finite fourth moment. By Rosenthal and then
Cauchy-Schwarz inequality, we have

C
IK: < _ 2
fian < gl )/{xlﬁn}/R

for C' a constant. We can conclude if the above double integral is bounded independently of k. We would
like to use Lemma 4.6 but the fact that we have a non-centered moment here implies that we should
be careful, because a constant integrated with respect to da on {|x| < k} yields a term proportional to
% that we should avoid.

' dpo(N)de, (4.24)

62(0) — / 60N dpo()

First let us recall some estimates for the functions ¢,. As, we know that Im(Guoaggt (x4 Z’y)) <0,

we have

|z + iy — tGme, (x + i) — A > Im(2 + iy — tG om0, (T +97) — A) > v > % (4.25)

and the functions ¢, are bounded by 2/-. This yields that | fR ¢’m()‘)dﬂ0(/\)’ < 2/~v. By Lemma 2.7,
[tG ot (z +7)] < £ < ¥ < V/E 50 that

|+ iy — tG oo, (x +i7) = Al = (|2 = Al = V) > (||2] = |Al| = V). (4.26)

As a consequence,

[+ 87 — G, (2 +19) = Al = ([lal = I\ = VB v 2. (4.27)

Using that dt has distribution g, the double integral in the right hand side of (4.24) can be rewritten
as:

/{ - }E(I%(d?) —E[%(d?)]r‘)dx
- /{ o (B0 = 2= 0 o (BB )] + B[ () B[]

— 2B |60 (d) "6 (A1) E[G2(d2)] + 4|6, (a2) 2] [ [0 (d)]|” + E[G2(d)?) (B[ (a)])” — [E[on ()] '}

<J + 83 + 7243
>J4,4,0,t T —J3,9,0,t 2,v,0,t
Y v Y 72 Y

by using the notation of Lemma 4.6 and by neglecting the term 7|E[¢>z(d§‘)] |4 < 0. The Lemma 4.6
allows us to conclude that 1,5, < Ci121(7,t) < +o00.

We can now conclude the Step 1. This last result, together with (4.24) implies that I}, <
Ci12(7,t) < +oo. From (4.20) and (4.21), we have that I, < Cy(v,t)/n for Ci(v,t) a constant.
Gathering this result with (4.17), we finally obtain that:

C t 16
If S 1(’)/’ ) 4 7%6_”06"’9']\4. (428)
n v
Step 2: Let us consider I§. Using Proposition 3.2, we have:

5 PGt )|

{lz|<k} E[Val“ (A? (wfp(x T Z’Y)) | X”@))]dx

4
S/ . 10¢ dz < 10.2%.¢t.2k < 2075
{l<xy n?Im* (wyy (z + i7)) n2~4 ot

(4.29)
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Step 3: Let us finally provide an upper bound for I§. Recall the definitions of A%(z) and A%(z) in
(3.3):

I =/{ § }E[|A§(wfp(x+i7)) +A§(Wfp($+i7))|2]d$

SQ/{MSK}E[!Ag(wfp(x—l—iv))‘z}dm—|—2/

. }E{]Ag(wfp($+i7))’2}dx. (4.30)

By using Proposition 3.3 together with Theorem 2.6 (i) and the fact that v > 2v/¢, we obtain that the
first term in the right hand side is upper-bounded by

CK

n . 2 ok
2/{I<K}E{|A2 (wfp($+2’y))| }dx < it

where ¢ is an absolute constant. Let us now consider the second term in the right hand side of (4.30).
Using the bound of Proposition 3.6,

2/ ]E[\Ag(wfp(:c +w))ﬂ da
{lol<n}
4

- 2(7217462 /]REH /R Wiy (@ + i) — tG:,, (wrp@ + 7)) —o [dpg (v) = dpo(v)] ﬁ dr. (4.31)

Recall that uf) is the empirical measure of independent random variables (d}) with distribution g and

whose order statistics are the (A(0)). Recalling that (wy,(z + iv) — t.Gy, (wpp(z + 7)) — v)fl _
Pwpp (x+i7) (v), we have that

B[] [ Curnterin@ans(0) ~ o] = Var[ 2 3w ari (N0
j=1

1 mn
< EE“Swap(w-‘ri'y)(dl)‘Z]
iy 1
n Jr |wpp(z +iv) — t.G, (wfp(x + iy

DR
(4.32)

Recall that from Lemma 2.7 and Theorem 2.6 (i), |wp(z +iv) — .Gy, (wyp(z+iv)) —v] > [Im(wsp(z +
i7))| > /2, so that the integrand in the right hand side of (4.32) is bounded. However, we have to
work more to show that it is integrable with respect to x. We have:
lwep(z +iy) — .Gy, (wfp(:c + z'y)) —v| > |Re(wfp(z +iy) —t.Gy, (wfp(:r + w))) - v’
> |Re(wfp(x +i7)) — U} —t |Re (G, (wpp(z + 7)) ’ .

By Theorem 2.6 (i), we obtain that:

Re (G, (wpp(x +i7)))| <

/ dpt (y) < <2
r Wip(® +iy) —y| = [m(wgp(z +iy))] ~ v
Also, by using (2.11), we get that [Re(wyy(x + 7)) — x| < v/t. Therefore,

. . 2t
wgpl+i7) = .G (g4 19) — ] 2 [Ja] = ol = Vi~ = (4.33)
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From (4.31), (4.32) and (4.33), we have that:

2/{|$I<H}E[|Ag(wfp(z+i”y))|2}d:z:

2y / / 1 4y
dpo(v)de = —————=5T02 4.2t /4,
n(vy? — 4t)? 2 n(~2 — 4¢)2 272t/
('Y ) R R<{|\x|—|v||—\/f—%}\/%> ('Y )
by Lemma 4.6. We conclude as for I}} and we obtain
. 9t

I3 < nzt TR = dyr vt (4.34)
Gathering (4.28), (4.29) and (4.34) we obtain the result announced in Lemma 4.5. O

4.2.2 Upper bound for J*

Recall the definition of J* in (4.7). Our goal is to prove the following bound:

Lemma 4.7. There ezist constants C}, C% and C3 (that can depend on ~y and t) such that, for any
K > 7, we have:

7 Gy cane = 1 ({1 5)). (4.35)

Proof. We decompose J" < 2(Jf + J§) where

2
T
{Jz|>x} wfprW —A

e / / Gy,
2 —)\
(al>r} | Jr wrp(@ +17)

Let us consider the first term Jy. Using the estimate of Theorem-Definition 2.8, we have for all
x € R that |Re(@}‘p(m +iy)) —z| <Vt and Im(@}‘p(x +1i7)) > /2. This allows us to prove that there
exists a constant Cgsymp such that

2

2
2 7 2/ ~n . 2
(2= X)? + 1= < Casymyp (Re (@7 (2 +i7) — \) + Z)' (4.36)
Thus,
Jp < IE/ - Ay (A) - Sdo
{lz|>x} JR Re (@}‘p(x +iy) = A) + Im (@;}p(x +i7))
< Casymp/ IE|:/ W] dx
{lol>s}  LJr (2= A2+
1

= Oas m ]E|:/dlun(/\)/ 2d.73:|

A Y {lzl>r} (. — N2+ -
= 2Casymp E {/ dpi (M) <7r — arctan (2(/1 — )\)) — arctan <2(I€ + A)))}

v R v v

2Casymp 4/1’)/
——F v —— 1 2 .
e | (weon (7= ) + 7 )
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We now use the simple bounds |arctanz| < |z| and |arctanz| < 7 for any 2 € R. Moreover, one can
2 2
easily check that, if A2 < & — 2, then

4dkry 2y

42 —4X2 — 42 — g
We therefore get

2Cva,symp n 27
Jr < 7E|;/>\dut (/\)<H Folesz a2y Tl ooy )]

If we assume moreover that x > -y, this can be simplified as follows:
" 4 3w n K
It <Cunpmy (24 278 [ (10> 5)])
4 37 K 3™  _ nCeig-m
Scasymp (/{ + 7/110 ({|)\| > Z}) + 77’16 4 ) s (437)

by using (4.13).

We now go to the second term J§. The strategy will be very similar to what we did for JJ* and we
will give less details. Using the estimate (2.11), we have for all € R that ‘Re(wfp(x + ’L’)/)) - x’ <V,
which allows us to get that

2 2
v . o
(l’ - )\)2 + Z é Casymp(Re2(’LUfp(£C + Z’y) — )\)2 —+ Z)’

with Cosymp as above. Thus,

dpe (A
J5 < Clasymp / “t ) _ Y gy
{lz|>~} 2+
7T

7asymp — 2 2 .
=7 /Ad““”(m O )

Again, if we assume that k > ~, this can be simplified as follows:

5 2 o (4 2 ({1 5)))

Moreover, letting n going to infinity in (4.13), by Proposition 2.3 and dominated convergence, we get

that, for any k > v,
m ({N>51) < ({A1>51),

J5 < Casymp (i + 377#0 ({|/\| > Z})) . (4.38)

Gathering the upper bounds (4.37) and (4.38), we get that for any x > =,

J% < Cosympt (i + 677%0 ({|/\| > g}) + ?);Tne_nc‘l> . (4.39)

This ends the proof. O

so that
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4.2.3 Conclusion
As a result, combining Lemma 4.5 and Lemma 4.7, we have:

ci C? o) K
J I Lt AT L Y O3 e mCeis M 4 CZpe=nCeis-T 4 O3y <{|/\\ > E}) .
n n? K 4

We take k = n. Using Assumption (4.3), we obtain
po ({IA] > n}) < Cn7H, (4.40)

for some absolute constant C. Then, from (4.7) and previous computations, there exists a constant
Cyar (that can depend on 7 and t) such that for n sufficiently large:

2
Cyar-€®

E(E) < —

(4.41)

and Theorem 4.2 is proved.

5 Numerical simulations

In this section, we conduct a simulation study to assess the performances of our estimator py j, designed
in Definition 2.9 based on the n-sample A"(t) := {A7(¢),--- , A% (¢)} of (non ordered) eigenvalues. We
consider the sample size n = 4000 and the time value t = 1. We focus on initial conditions following a
Cauchy distribution with scale parameter s; = 5:

1 Sd

1% LR
7 (s34 x?) v

po(z) =

Expression (2.16) is used with the kernel K (z) = sinc(z) = sin(x)/(7z), and the value v = 2/t + 0.01
so that the condition v > 2v/% is satisfied. To implement Do.n, We approximate integrals involved in
Fourier and inverse Fourier transforms by Riemann sums, so it may happen that po »(z) is not real.
This is the reason why the density po is estimated with Re(pp ), the real part of po p.

The theoretical bandwidth h proposed in Section 4 cannot be used in practice and we suggest the
following data-driven selection rule, inspired from the principle of cross-validation. We decompose the
quadratic risk for Re(po.n) as follows:

IRe(Po.n) — pol® = / Re(Fon(z)) — po(a) 2 d = [[Re(Pon)| — 2 / Re(fon(z))po(z)dz + ||poll?.

Then, an ideal bandwidth A would minimize the criterion J with
I(h) i= [Re(@on)|* =2 [ Re(@on(o)pn(z)ds, € RS
R

Since J depends on py through the second term, we investigate a good estimate of this criterion. For
this purpose, we divide the sample A" (t) into two disjoints sets

AE(t) i= AP (1)ien  and  A"F(1) i= (AF(1))icpe-

There are Vipax = (n”/Q) possibilities to select the subsets (E, E€), which is huge. Hence, to reduce

computational time, we draw randomly V' = 10 partitions denoted (Ej, E]‘?)jzlﬁ,_.’v. Choosing the grid
‘H of 50 equispaced points lying between hyin = 0.25 and hpax = 2.7, our selected bandwidth is

h = argmin Crit(h) (5.1)
heH
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with
1%

R ~(E;) HQ_/ ~(E;) ~(ES)
i) =, i, 7 ([[re@i || =2 [ ey @nmetat s

(B

and our final estimator is then Re(ﬁo’ ;). In the last expression, ]’)\é%) and po’hj, are estimates based on
the samples E; and Ef respectively.

To evaluate our approach, Figure 1 displays the plot of h € H + Crit(h) and h € H — J(h) for the
Cauchy density pg. A close inspection of the graphs shows that the first criterion is a good estimate of

-0.0290

-0.0295

-0.0310  -0.0305  -0.0300

-0.0315

-0.0320

Figure 1: Plots of h — Crit(h) and h +— J(h) for the Cauchy density po

the second one. As expected, for both criterions, we observe a plateau containing minimizers of J and
Crit. Outside the plateau, both criterions take large values due to large variance when h is too small
and to large bias when h is too large. Figure 2 gives the reconstruction provided by Re(ﬁoﬁ) for the
Cauchy density pg. The results are quite satisfying, meaning that our estimation procedure seems to
perform well in practice for estimating initial conditions of the Fokker-Planck equation.

A Proof of technical lemmas and Corollary 4.3

A.1 Proof of Lemma 3.4
Recall that R, ;(z) and ﬁnt(z) are defined in (3.4) and (3.9), and that

nAy(z) =Y E[(Rnt(2),, | X™(0)] = (Rnt(2)) (A1)
k=1

Proceeding as in Dallaporta and Février [16], we introduce some notations. Let R;kt) (z) be the resolvent

of the (n — 1) x (n — 1) obtained from X™(¢) by removing the k-th row and column and C’,glft) be the
(n — 1)-dimensional vector obtained from the k-th column of H"(t) by removing its k-th component.
Using Schur’s complement (see e.g. [3, Appendix A.1]):

(Buile) ) === (H"®)y = (X0 — OB
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Figure 2: Estimation of pg

Because R, () is a diagonal matrix, we have easily:

(Rn,t(z))kk :(Rn,t(z))kk
+ (Roa3)) g (R () e ( (00 + O B 2).C) = TE[Tr (Rua(2) | X7(0))])

Replacing (Rnt(z)) ., in the right-hand side of the previous formula, we obtain:

k

(Bt (2) i — (E”t(z))kk
:(Ent(z))ik< (H"™(t)) 1, + Cz(g]ft)*~R(lfz(Z)'C;il§) - %

E {Tr (Rn,t(z)) | X”(O)D

(Bt (2)) o (Rrs(2)) e (0 + O REN).C) — T[T (Roa(2) | X7(0)])

n

, (A2

Since H"(t) and C’,i’ft) are independent of X,,(0),

B[| (B () + O RENE).C8) — LR [T (Ra(2) | X7(0)] 1 x70)

n,t

R[] (1) + O RENE).CL) - Zre(RE () + T (RE)(E) - TE[T(REE) | X7(0)]
+ TE[T(RY)(:)) | XM(0)] ~ ZE[Tr (Rui(2)) | X"(0) lxo)]

=E [0, + E[jof mEE).0f - tnrBe)| 1xmo)]

+ f7 (Var[Tr(RE) () |X7(0)] + [B[Tx (RE)(2)) = T (Raa(2)) | X7 (0)] 12).

)

(A.3)

We now upper bound each of the term in the right-hand side of (A.3). The first term equals to t/n.
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Step 1: We upper bound the second term in (A.3 By Lemma 5 of [16],

)
E[Cf) REE).08) | x7(0)] = LE[1e(REE) | X7(0)]. (A4)

Thus, the second term in (A.3) equals to Var(C’,i]ft)* Rﬁfg( ).C’,(C]ft) | X™(0)) and we have:
B ok k n t2 k)% k n
Var [Cf R0 (.01 | X7(0)] = 5B [Tr(RIY (2).BE=) | X7(0)]

t2 - 1
<<E —a- | X7(0)
o

Jj=1

where the A§k)’s are the eigenvalues of the matrix with resolvent Rﬁfz (z). Hence,

k)x ok k n t2

Var [ RU(2).C | X7(0)] < —5—. (A.5)
nlm?(2)

Step 2: We now upper bound the third and fourth terms of (A.3). Let us denote in the sequel by Eg

the expectation with respect to {(H"(t))jk, 1< < n}, and by E<j, the conditional expectation on
the sigma-field o (((X"(O)) .

1)

L<i<j<n), (H'(1), 1<i<j<h)).

We have:
Var[Tr(RY)(2)) [ X™(0)] < 2Var[Tr (R, ¢(2))[X™(0)] + 2Var [Tr(Rn,:(2)) — Tr(RY) (2)| X™(0)]. (A.6)

n,t

For the first term,

Var[Tr(Rn.4(2)) | X™(0) ZE [ |(E<k — Egk—l)Tl‘(Rn,t(Z))|2 | Xn(o)}

=ZE[\(Egk—Egk_1)(Tr<Rn (%)) — Tr(R) (2 )))]2 |X"<o>] (A7)
k=1

as (E<x —E<g—1)Tr R™(2)) = 0. The Schur complement formula (see e.g. [3, Appendix A.1]) gives
= = n,t
that (k)* (k) (k)
14+ C, "Ry (2)%.C
Tr(Rna(2)) = Tr(RY)(2)) = ki Fnt(2) <z§ — o (A.8)
— (H" () = (X™(0)) g, = Crp - B (2)-Cg

Then,
k) k k
1+ e RS 2O
= k)* k k
I (= = (H7 () — (X7(0)) e — CF BE (2).00)|

1+ ‘C,iﬁ)*RffZ( 2.8
Im(z) — Im (C,(flft)*-Rgft) (z).C,i{?) ’
1+ R (2)" RO (2).01F
Im(z) + Im () .C° R (2) R (2). )

IA

IN

Im(z)
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The second inequality it due to the fact that (H"(t)),, ,(X"(0)),, € R and the third inequality comes
from the following equality: With ¥ : M € H,(C) — C*MC with C' € C", then, for any z € C and
any resolvent matrix R(z), we have (see [16, Lemma 1])

Im(¥(R(2))) = —Im(2)¥ (R(2)*R(2)).
The bound (A.9) does not depend on X™(0). Plugging this bound into (A.7), we obtain:

4dn
Var|Tr (R, X"0)| < .
ar[ ( vt(z))| ( )] — Imz(z)
From there, using (A.6),
(k) n 8n+2
Var|Tr (R X"0)| £ ——. A10
o T (R () [X7(0)] < 1 (A10)
Similarly, (A.9) also provides an upper bound for the fourth term of (A.3):
(k) () — nio)]|? 1
BT (REE) = T (Rae2) | X" O] < (A1)
Step 3: In conclusion, using (A.3), (A.5), (A.10) and (A.11), we obtain that:
2
* t n n
E U(Hnm)kk + O R (2).CF) = ~E[Tr (Rua(2) | XM(0)]] X <o>]
¢ t2 t2
< — 4 (8n43) ———
T n o nIm®(2) (8n )n2lm2(z)

Going back to (A.2) and using (A.4) to upper-bound the first term in the right-hand side:
B (R (), = (Bua2) | X"(0)]|
=] (Bnt(2) | B [T (RI(2) = Tr(Raa(2)] | X7(0)]

t
<
| (R (2)) g B [ (R (2)) g || (P (0), + €L R (2).C1%)

~ B [T (Rua(2) | X" | X”<O>}

B ¢ t t2 8n + 3)t2
< \(Rn,t(z))kkf- (nlm(z) * nlm(z) * nIm®(2) (nQIlg(L) >
<

~ 21 ([ 2t 12¢2
R, =+ —.
( t(Z))’C’“| n (Im(Z) * Im3(2))
Using this upper bound in (A.1), we obtain by summation the result and using that for any k,

1

|Bna(2)),]" < ()’

A.2 Proof of Lemma 3.5
From (3.7) and introducing @; (z) such that:
Gugio, (2) = Gy (W p(2)) = Go (W1(2)).
We can derive from Theorem-Definition 2.5 that wg,(z) solves the equation (i) of Lemma 3.5 and that:
2 =Wp(2) +1Gun (Wyp(2)),
for all z € C*. The latter equation justifies (ii) of Lemma 3.5.
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A.3 Proof of Corollary 4.3

Recall that from Proposition 4.1 and Theorem 4.2, the mean integrated square error is

29
Cyar-€®

MISE =E| |[pos — poll’ | < ChLem20" 4 2

Minimizing in A amounts to solving the following equation obtained by taking the derivative in the
right hand side of (4.5):

W(h) = exp (2% + i—f)h“l — O(n). (A.12)

Consequently for the minimizer h, of (A.12) we get that

2y

ehx _ _ —r
ZChi Te 2ah ,

n

for some constant C' > 0. Hence, in view of (4.5), when r < 1 the bias dominates the variance and
the contrary occurs when r > 1. Thus, there are three cases to consider to derive rates of convergence:
r=1,r <1andr > 1. To solve the equation (A.12), we follow the steps of Lacour [19].

Case r = 1.
The case where r = 1 provides a window h, = 2(a +v)/logn and we get
MISE =0 (n"77).
Case r < 1.
In this case, and in the case r > 1, following the ideas in [19], we will look for the bandwidth

h expressed as an expansion in log(n). In this expansion and when r < 1, the integer k such that

kiﬁ <r< ﬁ—i% will play a role. The optimal bandwidth is of the form:

k 4 .
hy = 27<10g(n) + (r — 1) loglog(n) + Z b;(log n)”“(r_l)) ) (A.13)
i=0

where the coefficients b;’s are a sequence of real numbers chosen so that 1(h.) = O(n). The heuristic
of this expansion is as follows: the first term corresponds to the solution of e27/" = n. The second term
is added to compensate the factor A"~ in (A.12) evaluated with the previous bandwidth, and the third
term aims at compensating the factor e2%/?". Notice that 7 — 1 < 0 and that the definition of k& implies
that r >r+(r—1)>--->r+k(r—1)>0>r+ (k+1)(r —1). This explains the range of the index
i in the sum of the right hand side of (A.13).
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Plugging (A.13) into (A.12),

k
'L/)(h*) :n( log n)T_l exp (Z bl(log n)T'H(T_l))
=0

2 v (r=1)loglog(n) + S0 bi(logn) +i=1
><exp<(2 )T(logn) (1+ s )
= —(r=1 r —1)loglog(n) + f_ b;(log n) +r=1\ —(r-1)

k
=(29)"" (1 +v,) " exp (Zb, logn) = 1))
i=0

7
k
2 -1) —
><exp< a _(logn) {14_27“7" J+1 J) W 4 o k+1)D
7=0

where

k
(r — 1) loglog(n) + -5, bi(logn)+i(—1) log log(n) 1) (r—
= i= _ — 1)\ (1 (i+1)(r—1)

n logn (r ) logn + Z bilogn)
converges to zero when n — +o0o. We note that

k—j—1

vt = Z Z bpo -+ by, (logn)(i+j+1)(r—1) +O((logn)(k+1)(r—1))

=0 po+-pj=t

k
=3 X by (logm) Y 4 0 (1ogn) TV,

(=j+1 po+py=t—j—1

So

k
P(hy) =(29)" " n(1 +v,) " exp (Z bi(log n)r—i—i(r—l))

i=0

2 20 SRl =) ()
L ' — b, b, (1 r+L(r—1)
xexp{(Q’y)r(Ogn) + (2y)" ;;[ G+ 1) .”z;_‘_ Do v (logn)
- po+-pj=L£—j—1

+0 (( log n) (kﬂ)(rfl)) }

k
=(29)" " 'n(1 +v,) " exp (Z M;(logn) r=—0+r 4 0(1)).
i=0

The condition % (h.) = O(n) implies the following choices of constants M;’s:

—1) _
rr 7“ ]) Z bpo"'bpj~

G+ 1) pot-pj=i—j—1

2a 20 =2
—_— Vi>0, M; =0b; +
(29)" (27)"

My = by +

“M

Since h, solves (A.12) if all the M; = 0 for i € {0, - - - k}, the above system provides equation by equation
the proper coefficients b;.

i—1
2a 2a r(r—1)---(r—j)
by = — , g g by -y A14
0 (27)T 2fy)r = ] + 1)! e A Po Pj ( )
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Replacing in (4.5), we get:

k
_ 2a * r+i(r—1) "
MIS’E—O(eXp{ (QV)T{logn—l—(r 1)10glogn+;bi(logn) } })
Case r > 1.
Here, let us denote by k the integer such that =+ +1 % < k—iz We look here for a bandwidth of the
form: .
o1\ 1
hl f2a(10gn+ loglog( )Jeri(logn)%ﬂ 7,1) : (A.15)
i=0
where the coefficients d;’s will be chosen so that 1 (h.) = O(n).
Similar computations as for the case r < 1 provide that:
—1 k 1 .r—1
¥(hy) =(2a) n(l—i—vn) T X exp (Zdi(logn)?_Z v )
i=0
1/r
X exp ((Za)l/r (logn)'/ [1+
k £-1 1(1 1 :
Ll _q)...(L_ -
>Y oy D lody g o 4 o(orn )
: : G+ D! ’
=1 j=0po+---pj=€—j—1
k
—(20) (1 +v,)” T exp (D2 Millogn)t T 4 o(1))
i=0
where here -
B %1 loglog(n) + Ef:o di(logn)+ "7
Un = logn ’
and
%y . i l(lfl)...(l,j)
My=do+ ——+ M; =d; A L dy, -+ d.
0 0+ (2a)1/r7 vl>0, + 1/7‘ Jz;)p0+ pz;l i (j+1)' Po Pj
(A.16)
Solving My = --- = M}, = 0 provides the coefficients d so that (A.12) is satisfied.

Plugging the bandwidth h, with the coefficients d; into (4.5), we obtain:

10gn+ loglognJer logn)’

=0

MISE = 0(7 exp {

=)

2y {
(2a)1/7
This concludes the proof of Corollary 4.3.
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