Value and Allocation Sensitivity in Static Python Analyses - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Value and Allocation Sensitivity in Static Python Analyses

Résumé

Sound static analyses for large subsets of static programming languages such as C are now widespread. For example the Astrée static analyzer soundly overapproximates the behavior of C programs that do not contain any dynamic code loading, longjmp statements nor recursive functions. The sound and precise analysis of widely used dynamic programming languages like JavaScript and Python remains a challenge. This paper examines the variation of static analyses of Python-in precision, time and memory usage-by adapting three parameters: (i) the value sensitivity, (ii) the allocation sensitivity and (iii) the activation of an abstract garbage collector. It is not clear yet which level of sensitivity constitutes a sweet spot in terms of precision versus efficiency to achieve a meaningful Python analysis. We thus perform an experimental evaluation using a prototype static analyzer on benchmarks a few thousand lines long. Key findings are: the value analysis does not improve the precision over type-related alarms; the value analysis is three times costlier than the type analysis; the allocation sensitivity depends on the value sensitivity; using an abstract garbage collector lowers memory usage and running times, but does not affect precision.
Fichier principal
Vignette du fichier
soap20 (1).pdf (801.71 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02876667 , version 1 (21-06-2020)

Identifiants

Citer

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné. Value and Allocation Sensitivity in Static Python Analyses. 9th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, Jun 2020, London, United Kingdom. pp.8-13, ⟨10.1145/3394451.3397205⟩. ⟨hal-02876667⟩
112 Consultations
200 Téléchargements

Altmetric

Partager

More