
HAL Id: hal-02876611
https://hal.science/hal-02876611v1

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalent Rewritings on Path Views with Binding
Patterns

Julien Romero, Nicoleta Preda, Antoine Amarilli, Fabian M. Suchanek

To cite this version:
Julien Romero, Nicoleta Preda, Antoine Amarilli, Fabian M. Suchanek. Equivalent Rewritings on
Path Views with Binding Patterns. 17th Extended Semantic Web Conference, ESWC 2020, Mar
2020, Online, France. pp.446-462, �10.1007/978-3-030-49461-2_26�. �hal-02876611�

https://hal.science/hal-02876611v1
https://hal.archives-ouvertes.fr

Equivalent Rewritings on Path Views
with Binding Patterns (Extended Version)

Julien Romero1, Nicoleta Preda2, Antoine Amarilli1, and Fabian Suchanek1

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
first.last@telecom-paris.fr

2 Université de Versailles nicoleta.preda@uvsq.fr

Abstract. A view with a binding pattern is a parameterized query on
a database. Such views are used, e.g., to model Web services. To answer
a query on such views, the views have to be orchestrated together in
execution plans. We show how queries can be rewritten into equivalent
execution plans, which are guaranteed to deliver the same results as the
query on all databases. We provide a correct and complete algorithm to
find these plans for path views and atomic queries. Finally, we show that
our method can be used to answer queries on real-world Web services.

Jailhouse Jailhouse RockElvis Presley

I Walk the Line

onAlbumsang

relatedAlbum

getAlbum
getAlbumDetails

Folsom Prison BluesJohnny Cash
onAlbumsang

getAlbumDetails

getRelAlbum

Fig. 1: An equivalent execution plan (blue) and a maximal contained rewriting
(green) executed on a database (black).

1 Introduction

In this paper, we study views with binding patterns [26]. Intuitively, these can be
seen as functions that, given input values, return output values from a database.
For example, a function on a music database could take as input a musician,
and return the songs by the musician stored in the database.

Several databases on the Web can be accessed only through such functions.
They are usually presented as a form or as a Web service. For a REST Web ser-
vice, a client calls a function by accessing a parameterized URL, and it responds
by sending back the results in an XML or JSON file. The advantage of such an

ar
X

iv
:2

00
3.

07
31

6v
2

 [
cs

.D
B

]
 1

9
M

ar
 2

02
0

2 J. Romero et al.

interface is that it offers a simple way of accessing the data without downloading
it. Furthermore, the functions allow the data provider to choose which data to
expose, and under which conditions. For example, the data provider can allow
only queries about a given entity, or limit the number of calls per minute. Ac-
cording to programmableWeb.com, there are over 20,000 Web services of this
form – including LibraryThing, Amazon, TMDb, Musicbrainz, and Lastfm.

If we want to answer a user query on a database with such functions, we have
to compose them. For example, consider a database about music – as shown in
Figure 1 in black. Assume that the user wants to find the musician of the song
Jailhouse. One way to answer this query is to call a function getAlbum, which
returns the album of the song. Then we can call getAlbumDetails, which takes
as input the album, and returns all songs on the album and their musicians. If
we consider among these results only those with the song Jailhouse, we obtain
the musician Elvis Presley (Figure 1, top, in blue). We will later see that, under
certain conditions, this plan is guaranteed to return exactly all answers to the
query on all databases: it is an equivalent rewriting of the query. This plan is
in contrast to other possible plans, such as calling getRelatedAlbum and getAl-
bumDetails (Figure 1, bottom, in green). This plan does not return the exact set
of query results. It is a maximally contained rewriting, another form of rewriting,
which we will discuss in the related work.

Equivalent rewritings are of primordial interest to the user because they allow
obtaining exactly the answers to the query – no matter what the database con-
tains. Equivalent rewritings are also of interest to the data provider: For example,
in the interest of usability, the provider may want to make sure that equivalent
plans can answer all queries of importance. However, finding equivalent rewrit-
ings is inherently non-trivial. As observed in [2, 4], the problem is undecidable
in general. Indeed, plans can recursively call the same function. Thus, there is,
a priori, no bound on the length of an execution plan. Hence, if there is no plan,
an algorithm may try forever to find one – which indeed happens in practice.

In this paper, we focus on path functions (i.e., functions that form a sequence
of relations) and atomic queries. For this scenario, we can give a correct and
complete algorithm that decides in PTIME whether a query has an equivalent
rewriting or not. If it has one, we can give a grammar that enumerates all of
them. Finally, we show that our method can be used to answer queries on real-
world Web services. After reviewing related work in Section 2 and preliminaries
in Section 3, we present our problem statement in Section 4 and our algorithm in
Section 5, concluding with experiments in Section 6. This is an extended version
of the conference paper which contains all detailed proofs in the appendix.

2 Related Work

Formally, we aim at computing equivalent rewritings over views with binding
patterns [26] in the presence of inclusion dependencies. Our approach relates to
the following other works.

http://programmableweb.com

Title Suppressed Due to Excessive Length 3

Equivalent Rewritings. Checking if a query is determined by views [16], or
finding possible equivalent rewritings of a query over views, is a task that has
been intensively studied for query optimization [4, 15], under various classes of
constraints. In our work, we are specifically interested in computing equivalent
rewritings over views with binding patterns, i.e., restrictions on how the views
can be accessed. This question has also been studied, in particular with the
approach by Benedikt et al. [2] based on logical interpolation, for very general
classes of constraints. In our setting, we focus on path views and unary inclusion
dependencies on binary relations. This restricted (but practically relevant) lan-
guage of functions and constraints has not been investigated in [2]. We show that,
in this context, the problem is solvable in PTIME. What is more, we provide a
self-contained, effective algorithm for computing plans, for which we provide an
implementation. We compare experimentally against the PDQ implementation
by Benedikt et al. [3] in Section 6.

Maximally Contained Rewritings. Another line of work has studied how to
rewrite queries against data sources in a way that is not equivalent but maxi-
mizes the number of query answers [17]. Unlike equivalent rewritings, there is no
guarantee that all answers are returned. For views with binding patterns, a first
solution was proposed in [13, 14]. The problem has also been studied for differ-
ent query languages or under various constraints [7, 8, 12, 21]. We remark that
by definition, the approach requires the generation of relevant but not-so-smart
call compositions. These call compositions make sure that no answers are lost.
Earlier work by some of the present authors proposed to prioritize promising
function calls [22] or to complete the set of functions with new functions [23]. In
our case, however, we are concerned with identifying only those function com-
positions that are guaranteed to deliver answers.

Orthogonal Works. Several works study how to optimize given execution
plans [29, 32]. Our work, in contrast, aims at finding such execution plans.
Other works are concerned with mapping several functions onto the same
schema [10, 19, 31]. Our approach takes a Local As View perspective, in which
all functions are already formulated in the same schema.

Federated Databases. Some works [25, 28] have studied federated databases,
where each source can be queried with any query from a predefined language.
By contrast, our sources only publish a set of preset parameterized queries, and
the abstraction for a Web service is a view with a binding pattern, hence, a
predefined query with input parameters. Therefore, our setting is different from
theirs, as we cannot send arbitrary queries to the data sources: we can only call
these predefined functions.

Web Services. There are different types of Web services, and many of them are
not (or cannot be) modeled as views with binding patterns. AJAX Web services
use JavaScript to allow a Web page to contact the server. Other Web services
are used to execute complex business processes [11] according to protocols or
choreographies, often described in BPEL [30]. The Web Services Description
Language (WSDL) describes SOAP Web services. The Web Services Modeling
Ontology (WSMO) [33], in the Web Ontology Language for Services (OWL-

4 J. Romero et al.

S) [20], or in Description Logics (DL) [27] can describe more complex services.
These descriptions allow for Artificial Intelligence reasoning about Web services
in terms of their behavior by explicitly declaring their preconditions and effects.
Some works derive or enrich such descriptions automatically [6,9,24] in order to
facilitate Web service discovery.

In our work, we only study Web services that are querying interfaces to
databases. These can be modeled as views with binding patterns and are typically
implemented in the Representational State Transfer (REST) architecture, which
does not provide a formal or semantic description of the functions.

3 Preliminaries

Global Schema. We assume a set C of constants and a set R of relation names.
We assume that all relations are binary, i.e., any n-ary relations have been en-
coded as binary relations by introducing additional constants3. A fact r(a, b)
is formed using a relation name r ∈ R and two constants a, b ∈ C. A database
instance I, or simply instance, is a set of facts. For r ∈ R, we will use r− as
a relation name to mean the inverse of r, i.e., r−(b, a) stands for r(a, b). More
precisely, we see the inverse relations r− for r ∈ R as being relation names in
R, and we assume that, for any instance I, the facts of I involving the relation
name r− are always precisely the facts r−(b, a) such that r(a, b) is in I.
Inclusion Dependencies. A unary inclusion dependency for two relations r, s,
which we write r s, is the following constraint:

∀x, y : r(x, y)⇒ ∃z : s(x, z)

Note that one of the two relations or both may be inverses. In the following,
we will assume a fixed set UID of unary inclusion dependencies, and we will
only consider instances that satisfy these inclusion dependencies. We assume
that UID is closed under implication, i.e., if r s and s t are two inclusion
dependencies in UID, then so is r t.
Queries. An atom r(α, β) is formed with a relation name r ∈ R and α and β
being either constants or variables. A query takes the form

q(α1, ..., αm)← B1, ..., Bn

where α1, ...αm are variables, each of which must appear in at least one of the
body atoms B1, ...Bn. We assume that queries are connected, i.e., each body
atom must be transitively linked to every other body atom by shared variables.
An embedding for a query q on a database instance I is a substitution σ for the
variables of the body atoms so that ∀B ∈ {B1, ..., Bn} : σ(B) ∈ I. A result of
a query is an embedding projected to the variables of the head atom. We write
q(α1, ..., αm)(I) for the results of the query on I. An atomic query is a query
that takes the form q(x)← r(a, x), where a is a constant and x is a variable.

3 https://www.w3.org/TR/swbp-n-aryRelations/

https://www.w3.org/TR/swbp-n-aryRelations/

Title Suppressed Due to Excessive Length 5

Functions. We model functions as views with binding patterns [26], namely:

f(x, y1, ..., ym)← B1, ..., Bn

Here, f is the function name, x is the input variable (which we underline),
y1, ..., ym are the output variables, and any other variables of the body atoms are
existential variables. In this paper, we are concerned with path functions, where
the body atoms are ordered in a sequence r1(x, x1), r2(x1, x2), ..., rn(xn−1, xn),
the first variable of the first atom is the input of the plan, the second variable
of each atom is the first variable of its successor, and the output variables are
ordered in the same way as the atoms.

Example 3.1. Consider again our example in Figure 1. There are 3 relations
names in the database: onAlbum, sang, and relAlbum. The relation relAlbum
links a song to a related album. The functions are:

getAlbum(s, a)← onAlbum(s, a)

getAlbumDetails(a, s,m)← onAlbum−(a, s), sang−(s,m)

getRelAlbum(s, a)← relAlbum(s, a)

The first function takes as input a song s, and returns as output the album a of
the song. The second function takes as input an album a and returns the songs s
with their musicians m. The last function returns the related albums of a song.

Execution Plans. Our goal in this work is to study when we can evaluate an
atomic query on an instance using a set of path functions, which we will do using
plans. Formally, a plan is a finite sequence πa(x) = c1, . . . , cn of function calls,
where a is a constant, x is the output variable. Each function call ci is of the
form f(α, β1, . . . , βn), where f is a function name, where the input α is either
a constant or a variable occurring in some call in c1, . . . , ci−1, and where the
outputs β1, . . . , βn are either variables or constants. A filter in a plan is the use
of a constant in one of the outputs βi of a function call; if the plan has none,
then we call it unfiltered. The semantics of the plan is the query:

q(x)← φ(c1), . . . , φ(cn)

where each φ(ci) is the body of the query defining the function f of the call ci
in which we have substituted the constants and variables used in ci, where we
have used fresh existential variables across the different φ(ci), and where x is
the output variable of the plan.

To evaluate a plan on an instance means running the query above. Given an
execution plan πa and a database I, we call πa(I) the answers of the plan on I. In
practice, evaluating the plan means calling the functions in the order given by the
plan. If a call fails, it can potentially remove one or all answers of the plan. More
precisely, for a given instance I, the results b ∈ πa(I) are precisely the elements
b to which we can bind the output variable when matching the semantics of
the plan on I. For example, let us consider a function f(x, y) = r(x, y) and a
plan πa(x) = f(a, x), f(b, y). This plan returns the answer a′ on the instance
I = {r(a, a′), r(b, b′)}, and returns no answer on I ′ = {r(a, a′)}.

6 J. Romero et al.

Example 3.2. The following is an execution plan for Example 3.1:

πJailhouse(m) = getAlbum(Jailhouse, a), getAlbumDetails(a, Jailhouse,m)

The first element is a function call to getAlbum with the constant Jailhouse as
input, and the variable a as output. The variable a then serves as input in the
second function call to getAlbumDetails. The plan is shown in Figure 1 on page 1
with an example instance. This plan defines the query:

onAlbum(Jailhouse, a), onAlbum−(a, Jailhouse), sang−(Jailhouse,m)

For our example instance, we have the embedding:

σ = {a = JailhouseRock,m = ElvisPresley}.

Atomic Query Rewriting. Our goal is to determine when a given atomic
query q(x) can be evaluated as a plan πa(x). Formally, we say that πa(x) is a
rewriting (or an equivalent plan) of the query q(x) if, for any database instance
I satisfying the inclusion dependencies UID, the result of the plan πa is equal
to the result of the query q on I.

4 Problem Statement and Main Results

The goal of this paper is to determine when a query admits a rewriting under
the inclusion dependencies. If so, we compute a rewriting. In this section, we
present our main high-level results for this task. We then describe in the next
section (Section 5) the algorithm that we use to achieve these results, and show
in Section 6 our experimental results on an implementation of this algorithm.

Remember that we study atomic queries, e.g., q(x)← r(a, x), that we study
plans on a set F of path functions, and that we assume that the data satisfy
integrity constraints given as a set UID of unary inclusion dependencies. In this
section, we first introduce the notion of non-redundant plans, which are a specific
class of plans that we study throughout the paper; and we then state our results
about finding rewritings that are non-redundant plans.

4.1 Non-redundant plans

Our goal in this section is to restrict to a well-behaved subset of plans that
are non-redundant. Intuitively, a redundant plan is a plan that contains func-
tion calls that are not useful to get the output of the plan. For example, if we
add the function call getAlbum(m, a′) to the plan in Example 3.2, then this
is a redundant call that does not change the result of πJailhouse. We also call
redundant the calls that are used to remove some of the answers, e.g., for the
function f(x, y) = r(x, y) and the plan πa(x) = f(a, x), f(b, y) presented before,
the second call is redundant because it does not contribute to the output (but
can filter out some results). Formally:

Title Suppressed Due to Excessive Length 7

Definition 4.1 (Redundant plan). An execution plan πa(x) is redundant if
it has no call using the constant a as input, or if it contains a call where none
of the outputs is an output of the plan or an input to another call. If the plan
does not satisfy these conditions, it is non-redundant.

Non-redundant plans can easily be reformulated to have a more convenient
shape: the first call uses the input value as its input, and each subsequent call
uses as its input a variable that was an output of the previous call. Formally:

Property 4.2. The function calls of any non-redundant plan πa(x) can be or-
ganized in a sequence c0, c1, . . . , ck such that the input of c0 is the constant a,
every other call ci takes as input an output variable of the previous call ci−1,
and the output of the plan is in the call ck.

Non-redundant plans seem less potent than redundant plans, because they
cannot, e.g., filter the outputs of a call based on whether some other call is
successful. However, as it turns out, we can restrict our study to non-redundant
plans without loss of generality, which we do in the remainder of the paper.

Property 4.3. For any redundant plan πa(x) that is a rewriting to an atomic
query q(x)← r(a, x), a subset of its calls forms a non-redundant plan, which is
also equivalent to q(x).

4.2 Result statements

Our main theoretical contribution is the following theorem:

Theorem 4.4. There is an algorithm which, given an atomic query q(x) ←
r(a, x), a set F of path function definitions, and a set UID of UIDs, decides in
polynomial time if there exists an equivalent rewriting of q. If so, the algorithm
enumerates all the non-redundant plans that are equivalent rewritings of q.

In other words, we can efficiently decide if equivalent rewritings exist, and
when they do, the algorithm can compute them. Note that, in this case, the
generation of an equivalent rewriting is not guaranteed to be in polynomial time,
as the equivalent plans are not guaranteed to be of polynomial size. Also, observe
that this result gives a characterization of the equivalent non-redundant plans,
in the sense that all such plans are of the form that our algorithm produces.
Of course, as the set of equivalent non-redundant plans is generally infinite,
our algorithm cannot actually write down all such plans, but it provides any
such plan after a finite time. The underlying characterization of equivalent non-
redundant plans is performed via a context-free grammar describing possible
paths of a specific form, which we will introduce in the next section.

Our methods can also solve a different problem: given the query, path view
definitions, unary inclusion dependencies, and given a candidate non-redundant
plan, decide if the plan is correct, i.e., if it is an equivalent rewriting of the query.
The previous result does not provide a solution as it produces all non-redundant
equivalent plans in some arbitrary order. However, we can show using similar
methods that this task can also be decided in polynomial time:

8 J. Romero et al.

Proposition 4.5. Given a set of unary inclusion dependencies, a set of path
functions, an atomic query q(x) ← r(a, x) and a non-redundant execution
plan πa, one can determine in PTIME if πa is an equivalent rewriting of q.

That proposition concludes the statement of our main theoretical contri-
butions. We describe in the next section the algorithm used to show our main
theorem (Theorem 4.4) and used for our experiments in Section 6. The appendix
contains the proofs for our theorems.

5 Algorithm

We now present the algorithm used to show Theorem 4.4. The presentation
explains at a high level how the algorithm can be implemented, as we did for
the experiments in Section 6. However, some formal details of the algorithm are
deferred to the appendix, as well as the formal proof.

Our algorithm is based on a characterization of the non-redundant equivalent
rewritings as the intersection between a context-free grammar and a regular
expression (the result of which is itself a context-free language). The context-
free grammar encodes the UID constraints and generates a language of words
that intuitively describe forward-backward paths that are guaranteed to exist
under the UIDs. As for the regular expression, it encodes the path functions and
expresses the legal execution plans. Then, the intersection gets all non-redundant
execution plans that satisfy the UIDs. We first detail the construction of the
grammar, and then of the regular expression.

5.1 Defining the context-free grammar of forward-backward paths

Our context-free grammar intuitively describes a language of forward-backward
paths, which intuitively describe the sequences of relations that an equivalent
plan can take to walk away from the input value on an instance, and then walk
back to that value, as in our example on Figure 1, to finally use the relation that
consists of the query answer: in our example, the plan is getAlbum(Jailhouse,a),
getAlbumDetails(a,Jailhouse,m). The grammar then describes all such back-and-
forth paths from the input value that are guaranteed to exist thanks to the unary
inclusion dependencies that we assumed in UID. Intuitively, it describes such
paths in the chase by UID of an answer fact. We now define this grammar,
noting that the definition is independent of the functions in F :

Definition 5.1 (Grammar of forward-backward paths). Given a set of
relations R, given an atomic query q(a, x) ← r(a, x) with r ∈ R, and given
a set of unary inclusion dependencies UID, the grammar of forward-backward
paths is a context-free grammar Gq, whose language is written Lq, with the non-
terminal symbols S ∪ {Lri , Bri | ri ∈ R}, the terminals {ri | ri ∈ R}, the start
symbol S, and the following productions:

Title Suppressed Due to Excessive Length 9

S → Brr (5.1)

S → BrrBr−r
− (5.2)

∀ri, rj ∈ R s.t. ri rj in UID : Bri → BriLrj (5.3)

∀ri ∈ R : Bri → ε (5.4)

∀ri ∈ R : Lri → riBr−i
r−i (5.5)

The words of this grammar describe the sequence of relations of paths starting
at the input value and ending by the query relation r, which are guaranteed to
exist thanks to the unary inclusion dependencies UID. In this grammar, the
Bris represent the paths that “loop” to the position where they started, at
which we have an outgoing ri-fact. These loops are either empty (Rule 5.4), are
concatenations of loops which may involve facts implied by UID (Rule 5.3), or
may involve the outgoing ri fact and come back in the reverse direction using
r−i after a loop at a position with an outgoing r−i -fact (Rule 5.5).

5.2 Defining the regular expression of possible plans

While the grammar of forward-backward paths describes possible paths that are
guaranteed to exist thanks to UID, it does not reflect the set F of available
functions. This is why we intersect it with a regular expression that we will
construct from F , to describe the possible sequences of calls that we can perform
following the description of non-redundant plans given in Property 4.2.

The intuitive definition of the regular expression is simple: we can take any
sequence of relations, which is the semantics of a function in F , and concatenate
such sequences to form the sequence of relations corresponding to what the
plan retrieves. However, there are several complications. First, for every call, the
output variable that we use may not be the last one in the path, so performing
the call intuitively corresponds to a prefix of its semantics: we work around this
by adding some backward relations to focus on the right prefix when the output
variable is not the last one. Second, the last call must end with the relation
r used in the query, and the variable that precedes the output variable of the
whole plan must not be existential (otherwise, we will not be able to filter on the
correct results). Third, some plans consisting of one single call must be handled
separately. Last, the definition includes other technicalities that relate to our
choice of so-called minimal filtering plans in the correctness proofs that we give
in the appendix. Here is the formal definition:

Definition 5.2 (Regular expression of possible plans). Given a set
of functions F and an atomic query q(x) ← r(a, x), for each function f :
r1(x0, x1), ...rn(xn−1, xn) of F and input or output variable xi, define:

wf,i =

{
r1 . . . ri if i = n
r1 . . . rnr

−
n ...r

−
i+1 if 0 ≤ i < n

For f ∈ F and 0 ≤ i < n, we say that a wf,i is final when:

10 J. Romero et al.

– the last letter of wf,i is r−, or it is r and we have i > 0;
– writing the body of f as above, the variable xi+1 is an output variable;
– for i < n−1, if xi+2 is an output variable, we require that f does not contain

the atoms: r(xi, xi+1).r−(xi+1, xi+2).

The regular expression of possible plans is then Pr = W0|(W ∗W ′), where:

– W is the disjunction over all the wf,i above with 0 < i ≤ n.
– W ′ is the disjunction over the final wf,i above with 0 < i < n.
– W0 is the disjunction over the final wf,i above with i = 0.

5.3 Defining the algorithm

We can now present our algorithm to decide the existence of equivalent rewritings
and enumerate all non-redundant equivalent execution plans when they exist,
which is what we use to show Theorem 4.4:
Input: a set of path functions F , a set of relations R, a set of UID of UIDs,
and an atomic query q(x)← r(a, x).
Output: a (possibly infinite) list of rewritings.

1. Construct the grammar Gq of forward-backward paths (Definition 5.1).
2. Construct the regular expression Pr of possible plans (Definition 5.2).
3. Intersect Pr and Gq to create a grammar G
4. Determine if the language of G is empty:

If no, then no equivalent rewritings exist and stop;
If yes, then continue

5. For each word w in the language of G:

– For each execution plan πa(x) that can be built from w (intuitively
decomposing w using Pr, see appendix for details):
• For each subset S of output variables of πa(x):

∗ If adding a filter to a on the outputs in S gives an equivalent
plan, then output the plan (see appendix for how to decide this)

Our algorithm thus decides the existence of an equivalent rewriting by computing
the intersection of a context-free language and a regular language and checking if
its language is empty. As this problem can be solved in PTIME, the complexity of
our entire algorithm is polynomial in the size of its input. The correctness proof
of our algorithm (which establishes Theorem 4.4), and the variant required to
show Proposition 4.5, are given in the appendix.

6 Experiments

We have given an algorithm that, given an atomic query and a set of path func-
tions, generates all equivalent plans for the query (Section 5). We now compare
our approach experimentally to two other methods, Susie [23], and PDQ [3], on
both synthetic datasets and real functions from Web services.

Title Suppressed Due to Excessive Length 11

6.1 Setup

We found only two systems that can be used to rewrite a query into an equivalent
execution plan: Susie [23] and PDQ (Proof-Driven Querying) [3]. We benchmark
them against our implementation. All algorithms must answer the same task:
given an atomic query and a set of path functions, produce an equivalent rewrit-
ing, or claim that there is no such rewriting.

We first describe the Susie approach. Susie takes as input a query and a
set of Web service functions and extracts the answers to the query both from
the functions and from Web documents. Its rewriting approach is rather simple,
and we have reimplemented it in Python. However, the Susie approach is not
complete for our task: she may fail to return an equivalent rewriting even when
one exists. What is more, as Susie is not looking for equivalent plans and makes
different assumptions from ours, the plan that she returns may not be equivalent
rewritings (in which case there may be a different plan which is an equivalent
rewriting, or no equivalent rewriting at all).

Second, we describe PDQ. The PDQ system is an approach to generating
query plans over semantically interconnected data sources with diverse access
interfaces. We use the official Java release of the system. PDQ runs the chase
algorithm [1] to create a canonical database, and, at the same time, tries to
find a plan in that canonical database. If a plan exists, PDQ will eventually
find it; and whenever PDQ claims that there is no equivalent plan, then indeed
no equivalent plan exists. However, in some cases, the chase algorithm used by
PDQ may not terminate. In this case, it is impossible to know whether the query
has a rewriting or not. We use PDQ by first running the chase with a timeout,
and re-running the chase multiple times in case of timeouts while increasing the
search depth in the chase, up to a maximal depth. The exponential nature of
PDQ’s algorithm means that already very small depths (around 20) can make
the method run for hours on a single query.

Our method is implemented in Python and follows the algorithm presented
in the previous section. For the manipulation of formal languages, we used py-
formlang4. Our implementation is available online5. All experiments were run
on a laptop with Linux, 1 CPU with 4 cores at 2.5GHz, and 16 GB RAM.

6.2 Synthetic Functions

In our first experiments, we consider a set of artificial relations R = {r1, ..., rn},
and randomly generate path functions up to length 4. Then we tried to find
a equivalent plan for each query of the form r(c, x) for r ∈ R. The set UID
consists of all pairs of relations r s for which there is a function in whose
body r− and s appear in two successive atoms. We made this choice because
functions without these UIDs are useless in most cases.

For each experiment that we perform, we generate 200 random instances of
the problem, run each system on these instances, and average the results of each

4 https://pyformlang.readthedocs.io
5 https://github.com/Aunsiels/query rewriting

https://pyformlang.readthedocs.io
https://github.com/Aunsiels/query_rewriting

12 J. Romero et al.

method. Because of the large number of runs, we had to put a time limit of 2
minutes per chase for PDQ and a maximum depth of 16 (so the maximum total
time with PDQ for each query is 32 minutes). In practice, PDQ does not strictly
abide by the time limit, and its running time can be twice longer. We report, for
each experiment, the following numbers:

– Ours: The proportion of instances for which our approach found an equiva-
lent plan. As our approach is proved to be correct, this is the true proportion
of instances for which an equivalent plan exists.

– Susie: The proportion of instances for which Susie returned a plan which is
actually an equivalent rewriting (we check this with our approach).

– PDQ: The proportion of instances for which PDQ returned an equivalent
plan (without timing out): these plans are always equivalent rewritings.

– Susie Requires Assumption: The proportion of instances for which Susie
returned a plan, but the returned plan is not an equivalent rewriting (i.e., it
is only correct under the additional assumptions made by Susie).

– PDQ Timeout: The proportion of instances for which PDQ timed out (so
we cannot conclude whether a plan exists or not).

In all cases, the two competing approaches (Susie and PDQ) cannot be better
than our approach, as we always find an equivalent rewriting when one exists,
whereas Susie may fail to find one (or return a non-equivalent one), and PDQ
may timeout. The two other statistics (Susie Requires Assumption, and PDQ
Timeout) denote cases where our competitors fail, which cannot be compared
to the performance of our method.

In our first experiment, we limited the number of functions to 15, with 20%
of existential variables, and varied the number n of relations. Both Susie and our
algorithm run in less than 1 minute in each setting for each query, whereas PDQ
may timeout. Figure 2a shows which percentage of the queries can be answered.
As expected, when the number of relations increases, the rate of answered queries
decreases as it becomes harder to combine functions. Our approach can always
answer strictly more queries than Susie and PDQ.

In our next experiment, we fixed the number of relations to 7, the probability
of existential variables to 20%, and varied the number of functions. Figure 2b
shows the results. As we increase the number of functions, we increase the num-
ber of possible function combinations. Therefore, the percentage of answered
queries increases both for our approach and for our competitors. However, our
approach answers about twice as many queries as Susie and PDQ.

In our last experiment, we fixed the number of relations to 7, the number of
functions to 15, and we varied the probability of having an existential variable.
Figure 2c shows the results. As we increase the probability of existential vari-
ables, the number of possible plans decreases because fewer outputs are available
to call other functions. However, the impact is not as marked as before, because
we have to impose at least one output variable per function, which, for small
functions, results in few existential variables. As Susie and PDQ use these short
functions in general, changing the probability did not impact them too much.
Still, our approach can answer about twice as many queries as Susie and PDQ.

Title Suppressed Due to Excessive Length 13

5 10 15

0

20

40

60

80

100

Number of Relations

%
 o

f
A

n
sw

er
ed

 Q
u
er

ie
s

(a)

5 10 15 20

0

20

40

60

80

Number of Functions

%
 o

f
A

n
sw

er
ed

 Q
u
er

ie
s

(b)

0 0.5 1

0

20

40

60

80

Probability existential

%
 o

f
A

n
sw

er
ed

 Q
u
er

ie
s

(c)

Ours

Susie

PDQ

Susie Requires Assumption

PDQ Timeout

(d)

Fig. 2: Percentage of answered queries with varying number of (a) relations, (b)
functions, and (c) existential variables; (d) key to the plots.

6.3 Real-World Web Services

We consider the functions of Abe Books (http://search2.abebooks.com), ISB-
NDB (http://isbndb.com/), LibraryThing (http://www.librarything.com/), and
MusicBrainz (http://musicbrainz.org/), all used in [23], and Movie DB (https:
//www.themoviedb.org) to replace the (now defunct) Internet Video Archive
used in [23]. We add to these functions some other functions built by the Susie
approach. We group these Web services into three categories: Books, Movies, and
Music, on which we run experiments separately. For each category, we manually
map all services into the same schema and generate the UIDs as in Section 6.2.
Our dataset is available online (see URL above).

The left part of Table 1 shows the number of functions and the number of
relations for each Web service. Table 2 gives examples of functions. Some of

http://search2.abebooks.com
http://isbndb.com/
http://www.librarything.com/
http://musicbrainz.org/
https://www.themoviedb.org
https://www.themoviedb.org

14 J. Romero et al.

Table 1: Web services and results

Web Service Functions Relations Susie PDQ (timeout) Ours

Movies 2 8 13% 25% (0%) 25%
Books 13 28 57% 64% (7%) 68%
Music 24 64 22% 22% (25%) 33%

Table 2: Examples of real functions

GetCollaboratorsByID(artistId, collab, collabId) ←
hasId−(artistId,artist), isMemberOf(artist,collab), hasId(collab,collabId)

GetBookAuthorAndPrizeByTitle(title, author, prize) ←
isTitled−(title, book), wrote−(book,author), hasWonPrize(author,prize)

GetMovieDirectorByTitle(title, director) ←
isTitled−(title,movie), directed−(movie,director)

them are recursive. For example, the first function in the table allows querying
for the collaborators of an artist, which are again artists. This allows for the
type of infinite plans that we discussed in the introduction, and that makes
query rewriting difficult.

For each Web service, we considered all queries of the form r(c, x) and
r−(c, x), where r is a relation used in a function definition. We ran the Susie
algorithm, PDQ, and our algorithm for each of these queries. The runtime is
always less than 1 minute for each query for our approach and Susie but can
timeout for PDQ. The time limit is set to 30 minutes for each chase, and the
maximum depth is set to 16. Table 1 shows the results, similarly to Section 6.2.
As in this case, all plans returned by Susie happened to be equivalent plans,
we do not include the “Susie Requires Assumption” statistic (it is 0%). Our
approach can always answer more queries than Susie and PDQ, and we see that
with more complicated problems (like Music), PDQ tends to timeout more often.

In terms of the results that we obtain, some queries can be answered by rather
short execution plans. Table 3 shows a few examples. However, our results show
that many queries do not have an equivalent plan. In the Music domain, for
example, it is not possible to answer produced(c, x) (i.e., to know which albums
a producer produced), hasChild−(c,x) (to know the parents of a person), and
rated−(c, x) (i.e., to know which tracks have a given rating). This illustrates that
the services maintain control over the data, and do not allow arbitrary requests.

7 Conclusion

In this paper, we have addressed the problem of finding equivalent execution
plans for Web service functions. We have characterized these plans for atomic
queries and path functions, and we have given a correct and complete method
to find them. Our experiments have demonstrated that our approach can be

Title Suppressed Due to Excessive Length 15

Table 3: Example plans

Query Execution Plan

released GetArtistInfoByName, GetReleasesByArtistID, GetArtistInfoByName,
GetTracksByArtistID, GetTrackInfoByName, GetReleaseInfoByName

published GetPublisherAuthors, GetBooksByAuthorName
actedIn GetMoviesByActorName, GetMovieInfoByName

applied to real-world Web services and that its completeness entails that we
always find plans for more queries than our competitors. All experimental data,
as well as all code, is available at the URL given in Section 6. We hope that
our work can help Web service providers to design their functions, and users
to query the services more efficiently. For future work, we aim to broaden our
results to non-path functions. We also intend to investigate connections between
our theoretical results and the methods by Benedikt et al. [2], in particular
possible links between our techniques and those used to answer regular path
queries under logical constraints [5].
Acknowledgements. Partially supported by the grants ANR-16-CE23-0007-01
(“DICOS”) and ANR-18-CE23-0003-02 (“CQFD”).

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura. Gen-
erating Plans from Proofs: The Interpolation-based Approach to Query Reformula-
tion. Synthesis Lectures on Data Management. Morgan & Claypool, 2016.

3. Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. PDQ: Proof-driven
query answering over web-based data. VLDB, 7(13), 2014.

4. Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with access
patterns and integrity constraints. PVLDB, 8(6), 2015.

5. Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path queries in
lightweight description logics: Complexity and algorithms. JAIR, 53, 2015.

6. A. Bozzon, M. Brambilla, and S. Ceri. Answering search queries with crowd-
searcher. In WWW, 2012.

7. Andrea Cal̀ı, Diego Calvanese, and Davide Martinenghi. Dynamic query optimiza-
tion under access limitations and dependencies. In J. UCS, 2009.

8. Andrea Cal̀ı and Davide Martinenghi. Querying data under access limitations. In
ICDE, 2008.

9. S. Ceri, A. Bozzon, and M. Brambilla. The anatomy of a multi-domain search
infrastructure. In ICWE, 2011.

10. Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping. In
SIGMOD Rec., 2006.

11. Daniel Deutch and Tova Milo. Business Processes: A Database Perspective. Syn-
thesis Lectures on Data Management. Morgan & Claypool, 2012.

12. Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using views
with access patterns under integrity constraints. In Theor. Comput. Sci., 2007.

16 J. Romero et al.

13. Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In PODS, 1997.

14. Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query
plans for data integration. In J. Log. Program., 2000.

15. Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. In SIGMOD, 1999.

16. Tomasz Gogacz and Jerzy Marcinkowski. Red spider meets a rainworm: Conjunc-
tive query finite determinacy is undecidable. In SIGMOD, 2016.

17. Alon Y. Halevy. Answering queries using views: A survey. In VLDB J., 2001.
18. John E Hopcroft and 1942 Ullman, Jeffrey D. Introduction to automata theory,

languages, and computation. Reading, Mass. : Addison-Wesley, 1979.
19. Maria Koutraki, Dan Vodislav, and Nicoleta Preda. Deriving intensional descrip-

tions for web services. In CIKM, 2015.
20. David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H. Burstein,

Drew V. McDermott, Deborah L. McGuinness, Bijan Parsia, Terry R. Payne,
Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia P. Sycara. Bring-
ing semantics to web services: The OWL-S approach. In SWSWPC, 2004.

21. Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries with
negation under limited access patterns. In EDBT, 2004.

22. N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and G. Weikum.
Active Knowledge : Dynamically Enriching RDF Knowledge Bases by Web Ser-
vices. In SIGMOD, 2010.

23. Nicoleta Preda, Fabian M. Suchanek, Wenjun Yuan, and Gerhard Weikum. SUSIE:
Search Using Services and Information Extraction. In ICDE, 2013.

24. Ken Q. Pu, Vagelis Hristidis, and Nick Koudas. Syntactic rule based approach to
Web service composition. In ICDE, 2006.

25. Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with
SPARQL. In ESWC, 2008.

26. Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries
using templates with binding patterns. In PODS, 1995.

27. Jinghai Rao, Peep Küngas, and Mihhail Matskin. Logic-based web services com-
position: From service description to process model. In ICWS, 2004.

28. Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
Fedx: Optimization techniques for federated query processing on linked data. In
ISWC, 2011.

29. Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani.
Query optimization over web services. In VLDB, 2006.

30. OASIS Standard. Web services business process execution language.
https://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, April 2007.

31. Mohsen Taheriyan, Craig A. Knoblock, Pedro A. Szekely, and José Luis Ambite.
Rapidly integrating services into the linked data cloud. In ISWC, 2012.

32. Snehal Thakkar, José Luis Ambite, and Craig A. Knoblock. Composing, optimiz-
ing, and executing plans for bioinformatics web services. In VLDB J., 2005.

33. WSML working group. WSML language reference. http://www.wsmo.org/wsml/,
2008.

Title Suppressed Due to Excessive Length 17

A Proofs on Non-Redundant Plans (Section 4.1)

In this first section of the appendix, we give proofs pertaining to non-redundant
plans (Section 4.1). We introduce in particular the notion of well-filtering plans
(Section A.2), which will be useful later.

The next section of the appendix (Appendix B) gives a high-level presentation
of key technical results about minimal filtering plans and capturing languages.
These claims are then proved in Appendix C. Last, we give in Appendix D the
proofs of the missing details of our main claims (Section 4) and of our algorithm
(Section 5).

A.1 Proof of the Structure of Non-Redundant Plans (Property 4.2)

Property 4.2. The function calls of any non-redundant plan πa(x) can be or-
ganized in a sequence c0, c1, . . . , ck such that the input of c0 is the constant a,
every other call ci takes as input an output variable of the previous call ci−1,
and the output of the plan is in the call ck.

By definition of a non-redundant plan, there is an atom using the constant a
as input. Let us call this atom c0. Let us then define the sequence c0, c1, . . . , ci,
and let us assume that at some stage we are stuck, i.e., we have chosen a call ci
such that none of the output variables of ci are used as input to another call. If
the output of the plan is not in ci, then ci witnesses that the plan is redundant.
Otherwise, the output of the plan is in ci. If we did not have i = k, then any
of the calls not in c0, c1, . . . , ci witness that the plan is redundant. So we have
i = k, and we have defined the sequence c0, c1, . . . , ck as required.

A.2 Well-Filtering Plans

In this subsection, we introduce well-filtering plans, which are used both to show
that we can always restrict to non-redundant plans (Property 4.3, showed in the
next appendix section) and for the correctness proof of our algorithm. We then
show a result (Lemma A.2) showing that we can always restrict our study to
well-filtering plans.

Let us first recall the notion of the chase [1]. The chase of an instance I by a
set UID of unary inclusion dependencies (UIDs) is a (generally infinite) instance
obtained by iteratively solving the violations of UID on I by adding new facts.
In particular, if I already satisfies UID, then the chase of I by UID is equal
to I itself. The chase is known to be a canonical database in the sense that it
satisfies precisely the queries that are true on all completions of I to make it
satisfy UID. We omit the formal definition of the chase and refer the reader
to [1] for details about this construction. We note the following property, which
can be achieved whenever UID is closed under UID implication, and when we
do the so-called restricted chase which only solves the UID violations that are
not already solved:

18 J. Romero et al.

Property 1. Let f be a single fact, and let I be the instance obtained by applying
the chase on f . Then for each element c of I0, for each relation r ∈ R, there is at
most one fact of I0 where c appears in the first position of a fact for relation r.

Remember now that that plans can use filters, which allow us to only consider
the results of a function call where some variable is assigned to a specific constant.
In this section, we show that, for any plan πa, the only filters required are on the
constant a. Further, we show that they can be applied to a single well-chosen
atom.

Definition A.1 (Well-Filtering Plan). Let q(x) ← r(a, x) be an atomic
query. An execution plan πa(x) is said to be well-filtering for q(x) if all filters of
the plan are on the constant a used as input to the first call and the semantics of
πa contains at least an atom r(a, x) or r−(x, a), where x is the output variable.

We can then show :

Lemma A.2. Given an atomic query q(a, x) ← r(a, x) and a set of inclusion
dependencies UID, any equivalent rewriting of q must be well-filtering.

Proof. We first prove the second part. We proceed by contradiction. Assume
that there is a non-redundant plan πa(x) which is an equivalent rewriting of
q(a, x) and which contains a constant b 6= a. By Property 4.2, the constant b is
not used as the input to a call (this is only the case of a, in atom c0), so b must
be used as an output filter in πa. Now, consider the database I = {r(a, a′)}, and
let I∗ be the result of applying the chase by UID to I. The result of the query q
on I∗ is a′, and I∗ satisfies UID by definition, however b does not appear in I∗

so πa does not return anything on I∗ (its semantics cannot have a match), a
contradiction.

We now prove the first part of the lemma. We use the form of Property 4.2. If
we separate the body atoms where a is an argument from those where both argu-
ments are variables, we can write: q′(a, x)← A(a, x1, x2, . . . xn), B(x1, x2, . . . xn)
where A(a, x1, x2, . . . xn) ← r1(a, x1), . . . rn(a, xn) (if we have an atom ri(x, a)
we transform it into r−i (a, x)) and a does not appear as argument in any of the
body atoms of B(x1, x2, . . . xn). By contradiction, assume that we have ri 6= r
for all 1 ≤ i ≤ n.

Let I0 be the database containing the single fact r(a, b) and consider the
database I∗0 obtained by chasing the fact r(a, b) by the inclusion dependen-
cies in UID, creating a new value to instantiate every missing fact. Let I∗1 =
I∗0 ∪ {r(a1, b1)} ∪ {ri(a1, ci) | ri(a, ci) ∈ I∗0 ∧ ri 6= r} ∪ {ri(b1, ci) | ri(b, ci) ∈
I∗0 ∧ ri 6= r−}. By construction, I∗1 satisfies UID. Also, we have that ∀ri 6= r,
ri(a, ci) ∈ I∗1 ⇔ ri(a1, ci) ∈ I∗1 . Hence, we have that A(a, x1, x2, . . . xn)(I∗1) =
A(a1, x1, x2, . . . xn)(I∗1). Then, given that B(x1, x2, . . . xn) does not contain a
nor a1, we have that q′(a1, x)(I∗1) = q′(a, x)(I∗1). From the hypothesis we also
have that q′(a, x)(I∗1) = q(a, x)(I∗1) and q′(a1, x)(I∗1) = q(a1, x)(I∗1). This implies
that q(a1, x)(I∗1) = q(a, x)(I∗1). Contradiction.

Title Suppressed Due to Excessive Length 19

A.3 Proof that we Can Restrict to Non-Redundant Plans
(Property 4.3)

We can now prove the property claiming that it suffices to study non-redundant
plans. Recall its statement:

Property 4.3. For any redundant plan πa(x) that is a rewriting to an atomic
query q(x)← r(a, x), a subset of its calls forms a non-redundant plan, which is
also equivalent to q(x).

In what follows, we write q(a, x) instead of q(x) to clarify the inner constant.
Let πa(x) be an equivalent plan. From Lemma A.2, we have that its semantics
contains a body atom r(a, x) or r−(x, a). Hence, there is a call c such that r(a, x)
or r−(x, a) appear in its semantics. From the definition of plans, and similarly to
the proof of Property 4.2, there is a chain of calls c1, c2, . . . ck such that c1 takes
a constant as input, ck = c, and for every two consecutive calls ci and ci+1, with
i ∈ {1, . . . k − 1}, there is a variable α such that α is an output variable for ci
and an output variable for ci+1. From Lemma A.2, we have that for all the calls
that take a constant as input, the constant is a. Hence, the input of c1 is a. Let
π′a(x) be the plan consisting of the calls c1, c2, . . . ck = c. Note that c ensures
that r(a, x) or r−(x, a) appear in the semantics of π′a(x).

We first notice that by construction π′a(x) is non-redundant. Now, if we con-
sider the semantics of a plan as a set of body atoms, the semantics of π′a(x) is
contained in the semantics of πa(x). Hence, we have ∀I, πa(x)(I) ⊆ π′a(x)(I). As
πa(x) is equivalent to q(x)← r(a, x), ∀I, we have πa(x)(I) = q(x)(I). As π′a(x)
contains r(a, x), π′a(x)(I) ⊆ q(x)(I). So, ∀I, q(x)(I) = πa(x)(I) ⊆ π′a(x)(I) ⊆
q(x)(I). Hence, all the inclusions are equalities, and indeed π′a(x) is also equiv-
alent to the query under UID. This concludes the proof.

B Capturing Languages

In this section, we give more formal details on our approach, towards a proof of
Theorem 4.4 and Proposition 4.5. We will show that we can restrict ourselves
to a class of execution plans called minimal filtering plans which limit the pos-
sible filters in an execution plan. Finally, we will define the notion of capturing
language and show that the language Lq defined in Section 5 is capturing (The-
orem B.11); and define the notion of a language faithfully representing plans and
show that the language of the regular expression Pr faithfully represents plans
(Theorem B.13). This appendix gives a high-level overview and states the theo-
rem; the next appendix (Appendix C) contains proofs for the present appendix;
and the last appendix (Appendix D) contains the proofs of the claims made in
Sections 4 and 5.

B.1 Minimal Filtering Plans

Remember the definition of well-filtering plans (Definition A.1). We now simplify
even more the filters that should be applied to an equivalent plan, to limit
ourselves to a single filter, by introducing minimal filtering plans.

20 J. Romero et al.

Definition B.1 (Minimal Filtering Plan). Given a well-filtering plan πa(x)
for an atomic query q(a, x) ← r(a, x), let the minimal filtering plan associated
to πa(x) be the plan π′a(x) that results from removing all filters from πa(x) and
doing the following:

– We take the greatest possible call ci of the plan, and the greatest possible
output variable xj of call ci, such that adding a filter on a to variable xj of
call ci yields a well-filtering plan, and define π′a(x) in this way.

– If this fails, i.e., there is no possible choice of ci and xj, then we leave πa(x)
as-is, i.e., π′a(x) = πa(x).

Note that, in this definition, we assume that the atoms in the semantics of
each function follow the order in the definition of the path function. Also, note
that the minimal filtering plan π′a(x) associated to a well-filtering plan is always
itself well-filtering. This fact is evident if the first case in the definition applies,
and in the second case, given that πa(x) was itself well-filtering, the only possible
situation is when the first atom of the first call of πa(x) was an atom of the form
r(a, x), with a being the input element: otherwise πa(x) would not have been
well-filtering. So, in this case, π′a(x) is well-filtering. Besides, note that, when the
well-filtering plan πa is non-redundant, then this is also the case of the minimal
filtering plan πmin

a because the one filter that we may add is necessarily at an
output position of the last call.

Finally, note that a well-filtering plan is not always equivalent to the minimal
filtering plan, as removing the additional filters can add some results. However,
one can easily check if it is the case or not. This theorem is proven in Ap-
pendix C.1.

Theorem B.2. Given a query q(x) ← r(a, x), a well-filtering plan πa, the as-
sociated minimal filtering plan πmin

a and unary inclusion dependencies:

– If πmin
a is not equivalent to q, then neither is πa.

– If πmin
a is equivalent to q, then we can determine in polynomial time if πa

is equivalent to πmin
a

This theorem implies that, when the query has a rewriting as a well-filtering
plan, then the corresponding minimal filtering plan is also a rewriting:

Corollary B.3. Given unary inclusion dependencies, if a well-filtering plan is
a rewriting for an atomic query q, then it is equivalent to the associated minimal
filtering plan.

Proof. This is the contrapositive of the first point of the theorem: if πa is equiv-
alent to q, then so in πmin

a , hence πa and πmin
a are then equivalent.

For that reason, to study equivalent rewritings, we will focus our attention on
minimal filtering plans: Theorem B.3 can identify other well-filtering plans that
are rewritings, and we know by Lemma A.2 that plans that are not well-filtering
cannot be rewritings.

Title Suppressed Due to Excessive Length 21

B.2 Path Transformations

We now show how to encode minimal filtering plans as words over an alphabet
whose letters are the relation names in R. The key is to rewrite the plan so that
its semantics is a path query of the following form:

Here is the formal notion of a path query :

Definition B.4. A path query is a query of the form

qa(xi)← r1(a, x1), r2(x1, x2), ..., rn(xn−1, xn)

where a is a constant, xi is the output variable, each xj except xi is either a
variable or the constant a, and 1 ≤ i ≤ n. The sequence of relations r1...rn is
called the skeleton of the query.

We formalize as follows the transformation that transforms plans into path
queries. We restrict it to non-redundant minimal filtering plans to limit the
number of filters that we have to deal with:

Definition B.5 (Path Transformation). Let πa(x) be a non-redundant min-
imal filtering execution plan and R a set of relations. We define the path trans-
formation of πa(x), written P ′(πa), the transformation that maps the plan πa to
a path query P ′(πa) obtained by applying the following steps:

1. Consider the sequence of calls c0, c1, ..., ck as defined in Property 4.2, remov-
ing the one filter to element a if it exists.

2. For each function call ci(y1, yi1 ..., yij , ...yin) = r1(y1, y2), ..., rk(yk, yk+1), ...,
rm(ym, ym+1) in πa with 1 < i1 < ... < in < m + 1, such
that yij is the output used as input by the next call or is the out-
put of the plan, we call the sub-semantics associated to ci the query:
r1...rm.r

−
m...r

−
ij

(y1, ..., yij−1, y
′
ij
, ..., y′m, ym+1, ..., yij), where y′ij , ..., y

′
m are

new variables. We do nothing if ij = m+ 1.
3. Concatenate the sub-semantics associated to the calls in the order of the

sequence of calls. We call this new query the path semantics.
4. There are two cases:

– If the semantics of πa contains the atom r(a, x) (either thanks to
a filter to the constant a on an output variable or thanks to the
first atom of the first call with a being the input variable), then this
atom must have been part of the semantics of the last call (in both
cases). The sub-semantics of the last call is therefore of the form
. . . , r(xa, x

′), r2(x′, x2), . . . , rn(xn−1, xn), r−n (xn, xn−1), . . . , r−2 (x2, x), in
which xa was the variable initially filtered to a (or was the input to the
plan, in which case it is still the constant a) and we append the atom
r−(x, a) with a filter on a, where x is the output of the path semantics.

– Otherwise, the semantics of πa contains an atom r−(x, a), then
again it must be part of the last call whose sub-semantics looks
like . . . , r−(x′, x′2), r2(x′2, x

′
3), ..., rn(x′n−1, xn), r−n (xn, xn−1), ..., r(x1, x),

in which x′2 was the variable initially filtered to a, and we replace the
last variable x1 by a, with x being the output of the path semantics.

22 J. Romero et al.

We add additional atoms in the last point to ensure that the filter on the last
output variable is always on the last atom of the query. Notice that the second
point relates to the words introduced in Definition 5.2.

The point of the above definition is that, once we have rewritten a plan to a
path query, we can easily see the path query as a word in R∗ by looking at the
skeleton. Formally:

Definition B.6 (Full Path Transformation). Given a non-redundant min-
imal filtering execution plan, writing R for the set of relations of the signature,
we denote by P(πa) the word over R obtained by keeping the skeleton the path
query P ′(πa) and we call it the full path transformation.

Note that this loses information about the filters, but this is not essential.

Example B.7. Let us consider the two following path functions:

f1(x, y) = s(x, y), t(y, z)

f2(x, y, z) = s−(x, y), r(y, z), u(z, z′)

The considered atomic query is q(x)← r(a, x). We are given the following non-
redundant minimal filtering execution plan:

πa(x) = f1(a, y), f2(y, a, x)

We are going to apply the path transformation to πa. Following the different
steps, we have:

1. The functions calls without filters are:

c0(a, y) = s(a, y), t(y, z)

c1(y, z, x) = s−(y, z), r(z, x), u(x, z1)

2. The sub-semantics associated to each function call are:
– For c0 : s(a, y′), t(y′, z), t−(z, y)
– For c1 : s−(y, z), r(z, x′), u(x′, z1), u−(z1, x)

3. The path semantics obtained after the concatenation is:

s(a, y′), t(y′, z), t−(z, y), s−(y, z), r(z, x′), u(x′, z1), u−(z1, x)

4. The semantics of πa contained r(a, x), so add the atom r−(x, a) to the path
semantics.

At the end of the path transformation, we get

P ′(πa) = s(a, y′), t(y′, z), t−(z, y), s−(y, z), r(z, x′), u(x′, z1), u−(z1, x), r−(x, a)

and:
P(πa) = s, t, t−, s−, r, u, u−, r−

Title Suppressed Due to Excessive Length 23

This transformation is not a bijection, meaning that possibly multiple plans
can generate the same word:

Example B.8. Consider three path functions:

– f1(x, y) = s(x, y), t(y, z),

– f2(x, y, z) = s−(x, y)r(y, z),

– f3(x, y, z) = s(x, x0), t(x0, x1), t−(x1, x2), s−(x2, x3), r(x3, y), r−(y, z),

The execution plan π1
a(x) = f1(a, y), f2(y, a, x) then has the same image by the

path transformation than the execution plan π2
a(x) = f3(a, a, x).

However, it is possible to efficiently reverse the path transformation whenever
an inverse exists. We show this in Appendix C.2.

Property B.9. Given a word w in R∗, a query q(x) ← r(a, x) and a set of
path functions, it is possible to know in polynomial time if there exists a non-
redundant minimal filtering execution plan πa such that P(πa) = w. Moreover,
if such a πa exists, we can compute one in polynomial time, and we can also
enumerate all of them (there are only finitely many of them).

B.3 Capturing Language

The path transformation gives us a representation of a plan inR∗. In this section,
we introduce our main result to characterize minimal filtering plans, which are
atomic equivalent rewritings based on languages defined on R∗. First, thanks to
the path transformation, we introduce the notion of capturing language, which
allows us to capture equivalent rewritings using a language defined on R∗.

Definition B.10 (Capturing Language). Let q(x) ← r(a, x) be an atomic
query. The language Λq over R∗ is said to be a capturing language for the
query q (or we say that Λq captures q) if for all non-redundant minimal filtering
execution plans πa(x), we have the following equivalence: πa is an equivalent
rewriting of q iff we have P(πa) ∈ Λq.

Note that the definition of capturing language does not forbid the existence
of words w ∈ Λq that are not in the preimage of P, i.e., words for which there
does not exist a plan πa such that P (πa) = w. We will later explain how to find
a language that is a subset of the image of the transformation P, i.e., a language
which faithfully represents plans.

Our main technical result, which is used to prove Theorem 4.4, is that we have
a context-free grammar whose language captures q: specifically, the grammar Gq
(Definition 5.1):

Theorem B.11. Given a set of unary inclusion dependencies, a set of path
functions, and an atomic query q, the language Lq captures q.

24 J. Romero et al.

B.4 Faithfully representing plans

We now move on to the second ingredient that we need for our proofs: we need
a language which faithfully represents plans:

Definition B.12. We say that a language K faithfully represents plans (relative
to a set F of path functions and an atomic query q(x) ← r(a, x)) if it is a
language over R with the following property: for every word w over R, we have
that w is in K iff there exists a minimal filtering non-redundant plan πa such
that P(πa) = w.

We now show the following about the language of our regular expression Pr

of possible plans as defined in Definition 5.2.

Theorem B.13. Let F be a set of path functions, let q(x) ← r(a, x) be an
atomic query, and define the regular expression Pr as in Definition 5.2. Then
the language of Pr faithfully represents plans.

Theorems B.11 and B.13 will allow us to deduce Theorem 4.4 and Proposi-
tion 4.5 from Section 4, as explained in Appendix D.

C Proofs for Appendix B

Let us first define some notions used throughout this appendix. Recall the defini-
tion of a path query (Definition B.4) and of its skeleton. We sometimes abbreviate
the body of the query as r1...rn(α, x1...xn). We use the expression path query
with a filter to refer to a path query where a body variable other than α is
replaced by a constant. For example, in Figure 1, we can have the path query:

q(m, a)← sang(m, s), onAlbum(s, a)

which asks for the singers with their albums. Its skeleton is sang.onAlbum.
Towards characterizing the path queries that can serve as a rewriting, it will

be essential to study loop queries:

Definition C.1 (Loop Query). We call loop query a query of the form:
r1...rn(a, a) ← r1(a, x1)...rn(xn−1, a) where a is a constant and x1, x2, ..., xn−1

are variables such that xi = xj ⇔ i = j.

With these definitions, we can show the results claimed in Appendix B.

C.1 Proof of Theorem B.2

Theorem B.2. Given a query q(x) ← r(a, x), a well-filtering plan πa, the as-
sociated minimal filtering plan πmin

a and unary inclusion dependencies:

– If πmin
a is not equivalent to q, then neither is πa.

– If πmin
a is equivalent to q, then we can determine in polynomial time if πa

is equivalent to πmin
a

Title Suppressed Due to Excessive Length 25

First, let us show the first point. By Definition A.1, we have that πa contains
r(a, x) or r−(x, a). Let us suppose that πa is equivalent to q. Let I be the database
obtained by taking the one fact r(a, b) and chasing by UID. We know that the
semantics of πa has a binding returning b as an answer. We first argue that πmin

a

also returns this answer. As πmin
a is formed by removing all filters from πa and

then adding possibly a single filter, we only have to show this for the case where
we have indeed added a filter. But then the added filter ensures that πmin

a is
well-filtering, so it creates an atom r(a, x) or r−(x, a) in the semantics of πmin

a ,
so the binding of the semantics of πa that maps the output variable to b is also
a binding of πmin

a .
We then argue that πmin

a does not return any other answer. In the first case,
as πmin

a is well-filtering, it cannot return any different answer than b on I. In
the second case, we know by the explanation after Definition A.1 that πmin

a is
also well-filtering, so the same argument applies. Hence, πmin

a is also equivalent
to q, which establishes the first point.

Let us now show the more challenging second point. We assume that πmin
a

is equivalent to q. Recall the definition of a loop query (Definition C.1) and the
grammar Gq defined in Definition 5.1, whose language we denoted as Lq. We
first show the following property:

Property C.2. A loop query r1...rn(a, a) is true on all database instances sat-
isfying the unary inclusion dependencies UID and containing a tuple r(a, b), iff

there is a derivation tree in the grammar such that Br
∗−→ r1...rn.

Proof. We first show the backward direction. The proof is by structural induction
on the length of the derivation. We first show the base case. If the length is 0,
its derivation necessarily uses Rule 5.4, and the query ε(a, a) is indeed true on
all databases.

We now show the induction step. Suppose we have the result for all deriva-
tions up to a length of n− 1. We consider a derivation of length n > 0. Let I be
a database instance satisfying the inclusion dependencies UID and containing
the fact r(a, b). Let us consider the rule at the root of the derivation tree. It can
only be Rule 5.3. Indeed, Rule 5.4 only generates words of length 0. So, the first
rule applied was Rule 5.3 Br → BrLri for a given UID r ri. Then we have
two cases.

The first case is when the next Br does not derive ε in the derivation that
we study. Then, there exists i ∈ {2, . . . , n − 1} such that Br

∗−→ r1 . . . ri−1 and

Lri
∗−→ ri . . . rn (Lri starts by ri). From the induction hypothesis we have that

r1 . . . ri−1(a, a) has an embedding in I, and so has ri . . . rn(a, a). Indeed, we have

Bri → Lri
∗−→ ri . . . rn (as trivially rj rj) and I contains the tuple ri(a, c) for

some constant c (because we have r ri). Hence, r1...rn(a, a) is true. This
shows the first case of the induction step.

We now consider the case where the next Bri derives ε. Note that, as r(a, b) ∈
I, there exists c such that ri(a, c) ∈ I. The next rule in the derivation is Lri →
riBr−i

r−i , then Br−i

∗−→ r2 . . . rn−1, and r1 = ri and rn = r−i . By applying the

induction hypothesis, we have that r2 . . . rn−1(c, c) has an embedding in I. Now,

26 J. Romero et al.

given that r1(a, c) ∈ I and rn(c, a) ∈ I we can conclude that r1 . . . rn(a, a) has
an embedding in I. This establishes the first case of the induction step. Hence,
by induction, we have shown the backward direction of the proof.

We now show the forward direction. Let I0 be the database containing the
single fact r(a, b) and consider the database I∗0 obtained by chasing the fact
r(a, b) by the inclusion dependencies in UID, creating a new null to instantiate
every missing fact. This database is generally infinite, and we consider a tree
structure on its domain, where the root is the element a, the parent of b is a,
and the parent of every null x is the element that occurs together with x in the
fact where x was introduced. Now, it is a well-known fact of database theory [1]
that a query is true on every superinstance of I0 satisfying UID iff that query
is true on the chase I∗0 of I0 by UID. Hence, let us show that all loop queries
r1 . . . rn(a, a), which hold in I∗0 are the ones that can be derived from Br.

We show the claim again by induction on the length of the loop query. More
precisely, we want to show that, for all n ≥ 0, for a loop query r1...rn(a, a) which
is true on all database instances satisfying the unary inclusion dependencies UID
and containing a tuple r(a, b) , we have:

1. Br
∗−→ r1...rn

2. For a match of the loop query on I∗0 , if no other variable than the first and

the last are equal to a, then we have: Lr1
∗−→ r1...rn

If the length of the loop query is 0, then it could have been derived by the
Rule 5.4. The length of the loop query cannot be 1 as for all relations r′, the
query r′(a, a) is not true on all databases satisfying the UIDs and containing a
tuple r(a, b) (for example it is not true on I∗0).

Let us suppose the length of the loop query is 2 and let us write the loop
query as r1(a, x), r2(x, a) and let r1(a, c), r2(c, a) be a match on I∗0 . The fact
r1(a, c) can exist on I∗0 iff r r1. In addition, due to the tree structure of I∗0 ,
we must have r2 = r−1 . So, we have Br → Lr1 → r1Br−1

r−1 → r−1 and we have

show the two points of the inductive claim.
We now suppose that the result is correct up to a length n− 1 (n > 2), and

we want to prove that it is also true for a loop query of length n.
Consider a match r1(a, a1), r2(a1, a2), . . . , rn−1(an−2, an−1), rn(an−1, an) of

the loop query. Either there is some i such that ai = a, or there is none.
If there is at least one, then let us cut the query at all positions where the
value of the constant is a. We write the binding of the loop queries on I∗0 :
(ri0 . . . ri1)(a, a).(ri1+1 . . . ri2)(a, a)...rik−1+1 . . . rik(a, a) (where 1 = i0 < i1 <
... < ik−1 < ik = n). As we are on I∗0 , we must have, for all 0 < j < k, that

r rij . So, we can do the derivation : Br → BrLrik−1
→ BrLrik−2

Lrik−1

∗−→
Lr0 . . . Lrik−1

. Then, from the induction hypothesis, we have that, for all 0 < j <

k, Lrij

∗−→ rij ...rij+1
and so we get the first point of our induction hypothesis.

We now suppose that there is no i such that ai = a. Then, we still have
r r1. In addition, due to the tree structure of I∗0 , we must have rn = r−1 and
a1 = an−1. We can then apply the induction hypothesis on r2...rn−1(a1, a1) : if
it is true on all database satisfying the unary inclusion dependencies UID and

Title Suppressed Due to Excessive Length 27

containing a tuple r−(a1, c), then Br−1

∗−→ r2...rn−1. Finally, we observe that we

have the derivation Br
∗−→ Lr1 → r1Br−1

r−1
∗−→ r1...rn and so we have shown the

two points of the inductive claim.
Thus, we have established the forward direction by induction, and it com-

pletes the proof of the claimed equivalence.

Next, to determine in polynomial time whether πa is equivalent to πmin
a (and

hence q), we are going to consider all positions where a filter can be added. To
do so, we need to define the root path of a filter:

Definition C.3 (Root Path). Let πa be an execution plan. Let us consider
a filter mapping a variable y in the plan to a constant. Then, one can extract
a unique path query r1...rn(a, y) from the semantics of πa, starting from the
constant a and ending at the variable y. We call this path the root path of the
filter.

The existence and uniqueness come from arguments similar to Property 4.2:
we can extract a sequence of calls to generate y and then, from the semantics of
this sequence of calls, we can extract the root path of the filter. Note that this
is different from the definition of the path transformation (Definition B.5): for
each call f(x, y1, . . . , yn) with semantics r1(x, y1), . . . , rn(yn−1, yn), if yi is the
variable used in the next call or the output variable, then in the root path we
only keep the path r1 . . . ri, i.e., we do not add ri+1 . . . rnr

−
n . . . r

−
i+1 as we did in

Definition B.5.
This definition allows us to characterize in which case the well-filtering plan

πa is equivalent to its minimal filtering plan πmin
a , which we state and prove as

the following lemma:

Lemma C.4. Let q(x)← r(a, x) be an atomic query, let UID be a set of UIDs,
and let πmin

a a minimal filtering plan equivalent to q under UID. Then, for any
well-filtering plan πa defined for q, the plan πa is equivalent to πmin

a iff for each
filter, letting r1...rn(a, a) be the loop query defined from the root path of this

filter, there is a derivation tree such that Br
∗−→ r1...rn in the grammar Gq.

It is easy to show the second point of Theorem B.2 once we have the lemma.
We have a linear number of filters, and, for each of them, we can determine in
PTIME if Br generates the root path. So, the characterization can be checked
in PTIME over all filters, which allows us to know if πa is equivalent to πmin

a in
PTIME, as claimed.

Hence, all that remains to do in this appendix section to establish Theo-
rem B.2 is to prove Lemma C.4. We now do so:

Proof. We consider a filter and the root query r1...rn(a, a) obtained from its root
path.

We first show the forward direction. Let us assume that πa is equivalent
to πmin

a . Then, πa is equivalent to q, meaning that the loop query r1...rn(a, a)
is true on all database instances satisfying the unary inclusion dependencies

28 J. Romero et al.

and containing a tuple r(a, b). So, thanks to Property C.2, we conclude that

Br
∗−→ r1...rn.

We now show the more challenging backward direction. Assume that, for all
loop queries r1...rn(a, a) obtained from the loop path of each filter, there is a

derivation tree such that Br
∗−→ r1...rn. We must show that πmin

a is equivalent
to πa, i.e., it is also equivalent to q. Now, we know that πmin

a contains an atom
r(a, x) or r−(x, a), so all results that it returns must be correct. All that we
need to show is that it returns all the correct results. It suffices to show this
on the canonical database: let I be the instance obtained by chasing the fact
r(a, b) by the unary inclusion dependencies. As πmin

a is equivalent to q, we know
that it returns b, and we must show that πa also does. We will do this using
the observation that all path queries have at most one binding on the canonical
database, which follows from Property 1.

Let us call πno filter
a the execution plan obtained by removing all filters from

πa. As we have Br
∗−→ r1...rn for all root paths, we know from Property C.2 that

r1...rn(a, a) is true on all databases satisfying the UIDs, and in particular on I.
In addition, on I, r1...rn(a, x1, ...xn) has only one binding, which is the same
than r1...rn(a, x1, ...xn−1, a). So, the filters of πa do not remove any result of πa
on I relative to πno filter

a : as the reverse inclusion is obvious, we conclude that πa
is equivalent to πno filter

a on I.

Now, if πmin
a contains no filter or contains a filter which was in πa, we can

apply the same reasoning and we get that πmin
a is equivalent to πno filter

a on I,
and so πmin

a and πa are equivalent in general.

The only remaining case is when πmin
a contains a filter which is not in πa. In

this case, we have that the semantics of πa contains two consecutive atoms
r(a, x)r−(x, y) where one could have filtered on y with a (this is what is
done in πmin

a). Let us consider the root path of π to y. It is of the form

r1...rn(a, a)r(a, x)r−(x, y). We have Br
∗−→ r1...rn by hypothesis. In addition, as

r r trivially, we get Br → BrLr → Brrr
− ∗−→ r1...rn.r.r

−. So, r1...rn.r.r
−(a, a)

is true on I (Property C.2). Using the same reasoning as before, πmin
a is equiva-

lent to πno filter
a on I, and so πmin

a and πa are equivalent in general. This concludes
the proof.

C.2 Proof of Property B.9

We show that we can effectively reverse the path transformation, which will be
crucial to our algorithm:

Property B.9. Given a word w in R∗, a query q(x) ← r(a, x) and a set of
path functions, it is possible to know in polynomial time if there exists a non-
redundant minimal filtering execution plan πa such that P(πa) = w. Moreover,
if such a πa exists, we can compute one in polynomial time, and we can also
enumerate all of them (there are only finitely many of them).

Title Suppressed Due to Excessive Length 29

We are going to construct a finite-state transducer that can reverse the path
transformation and give us a sequence of calls. To find one witnessing plan, it
will suffice to take one run of this transducer and take the corresponding plan,
adding a specific filter which we know is correct. If we want all witnessing plans,
we can simply take all possible outputs of the transducer.

To construct the transducer, we are going to use the regular expression Pr

from Definition 5.2. We know that Pr faithfully represents plans (Theorem B.13),
and it is a regular expression. So we will be able to build an automaton from Pr

on which we are going to add outputs to represent the plans.

The start node of our transducer is S, and the final node is F . The input
alphabet of our transducer is R, the set of relations. The output alphabet is
composed of function names f for f ∈ F , the set of path functions, and of
output symbols OUTi, which represents the used output of a given function. We
explain later how to transform an output word into a non-redundant minimal
filtering plan.

First, we begin by creating chains of letters from the wf,i defined in Defini-
tion 5.2. For a word wf,i = r1...rk (which includes the reverse atoms added at
the end when 0 ≤ i < n), this chain reads the word r1...rk and outputs nothing.

Next, we construct W0 between two nodes representing the beginning and
the end of W0: SW0

and FW0
. From SW0

we can go to the start of the chain of a
final wf,0 by reading an epsilon symbol and by outputting the function name f .
Then, at the end of the chain of a final wf,0, we go to FW0

by reading an epsilon
symbol and by outputting a OUT1 letter.

Similarly, we construct W ′ between two nodes representing the beginning
and the end of W ′: SW ′ and FW ′ . From SW ′ we can go to the beginning of the
chain of a final wf,i with 0 < i < n (as explained in Definition 5.2) by reading
an epsilon symbol and by outputting the function name f . Then, at the end of
the chain of a final wf,i, we go to FW ′ by reading an epsilon symbol. The output
symbol of the last transition depends on the last letter of wf,i: if it is r, then
we output OUTi; otherwise, we output OUTi+1. This difference appears because
we want to create a last atom r(a, x) or r−(x, a), and so our choice of output
variable depends on which relation symbol we have.

Last, using the same method again, we construct W between two nodes
representing the beginning and the end of W : SW and FW . From SW we can
go to the beginning of the chain of a wf,i with 0 < i ≤ n (as explained in
Definition 5.2) by reading an epsilon symbol and by outputting the function
name f . Then, at the end of the chain of a final wf,i, we go to FW ′ by reading
an epsilon symbol and outputting OUTi. In this situation, there is no ambiguity
on where the output variable is.

Finally, we can link everything together with epsilon transitions that output
nothing. We construct W ∗ thanks to epsilon transitions between SW and FW .
Then, W ∗W ′ is obtained by linking FW to SW ′ with an epsilon transition. We
can now construct Pr = W0|(W ∗W ′) by adding an epsilon transition between S
and SW0

, S and SW , FW0
and F and FW ′ and F .

We obtain a transducer that we call Treverse.

30 J. Romero et al.

Let w be a word of R∗. To know if there is a non-redundant minimal filtering
execution plan πa such that P(πa) = w, one must give w as input to Treverse. If
there is no output, there is no such plan πa. Otherwise, Treverse nondetermin-
istically outputs some words composed of an alternation of function symbols f
and output symbols OUTi. From this representation, one can easily reconstruct
the execution plan: The function calls are the f from the output word and the
previous OUT symbol gives their input. If there is no previous OUT symbol
(i.e., for the first function call), the input is a. If the previous OUT symbol is
OUTk, then the input is the kth output of the previous function. The last OUT
symbol gives us the output of the plan. We finally add a filter with a on the
constructed plan to get an atom r(a, x) or r−(x, a) in its semantics in the last
possible atom, to obtain a minimal filtering plan. Note that this transformation
is related to the one given in the proof of Theorem B.13 in Section C.4, where
it is presented in a more detailed way.

Using the same procedure, one can enumerate all possible output words for
a given input and then obtain all non-redundant minimal filtering execution
plans πa such that P(πa) = w. We can understand this from the proof of The-
orem B.13 in Section C.4, which shows that there is a direct match between
the representation of w as words of wf,i and the function calls in the corre-
sponding execution plan. Last, the reason why the set of output words is finite
is because the transducer must at least read an input symbol to generate each
output symbol.

C.3 Proof of Theorem B.11

In this appendix, we finally show the main theorem of Appendix B:

Theorem B.11. Given a set of unary inclusion dependencies, a set of path
functions, and an atomic query q, the language Lq captures q.

Recall that Lq is the language of the context-free grammar Gq from Defini-
tion 5.1. Our goal is to show that it is a capturing language.

In what follows, we say that two queries are equivalent under a set of UIDs
if they have the same results on all databases satisfying the UIDs.

Linking Lq to equivalent rewritings. In this part, we are going to work at
the level of the words of R∗ ending by a r or r− (in the case q(x) ← r(a, x) is
the considered query), where R is the set of relations. Recall that the full path
transformation (Definition B.6) transforms an execution plan into a word of R∗
ending by an atom r or r−. Our idea is first to define which words of R∗ are
interesting and should be considered. In the next part, we are going to work at
the level of functions.

For now, we start by defining what we consider to be the “canonical” path
query associated to a skeleton. Indeed, from a skeleton in R∗ where R is the set
of relations, it is not clear what is the associated path query (Definition B.4) as
there might be filters. So, we define:

Title Suppressed Due to Excessive Length 31

Definition C.5 (Minimal Filtering Path Query). Given an atomic query
q(a, x) ← r(a, x), a set of relations R and a word w ∈ R∗ of relation names
from R ending by r or r−, the minimal filtering path query of w for q is the
path query of skeleton w taking as input a and having a filter such that its last
atom is either r(a, x) or r−(x, a), where x is the only output variable.

As an example, consider the word onAlbum.onAlbum−.sang−. The minimal
filtering path query is: q′(Jailhouse, x) ← onAlbum(Jailhouse,y), onAlbum−(y,
Jailhouse), sang−(Jailhouse, x), which is an equivalent rewriting of the atomic
query sang−(Jailhouse, x).

We can link the language Lq of our context-free grammar to the equivalent
rewritings by introducing a corollary of Property C.2:

Corollary C.6. Given an atomic query q(a, x) ← r(a, x) and a set UID of
UIDs, the minimal filtering path query of any word in Lq is a equivalent to q.
Reciprocally, for any query equivalent to q that could be the minimal filtering path
query of a path query of skeleton w ending by r or r−, we have that w ∈ Lq.

Notice that the minimal filtering path query of a word in Lq is well defined
as all the words in this language end by r or r−.

Proof. We first suppose that we have a word w ∈ Lq. We want to show that the
minimal filtering path query of w is equivalent to q. We remark that the minimal
filtering path query contains the atom r(a, x) or r−(x, a). Hence, the answers of
the given query always include the answers of the minimal filtering path query,
and we only need to show the converse direction.

Let I be a database instance satisfying the inclusion dependencies UID and
let r(a, b) ∈ I (we suppose such an atom exists, otherwise the result is vacuous).
Let q′(a, x) be the head atom of the minimal filtering path query. It is sufficient
to show that q′(a, b) is an answer of the minimal filtering path query to prove the
equivalence. We proceed by structural induction. Let w ∈ Lq. Let us consider a
bottom-up construction of the word. The last rule can only be one of the Rule 5.1
or the Rule 5.2. If it is Rule 5.1, then ∃r1, . . . , rn ∈ R such that w = r1 . . . rnr
and Br

∗−→ r1 . . . rn. By applying Property C.2, we know that r1 . . . rn(a, a) has
an embedding in I. Hence, q′(a, b) is an answer. If the rule is Rule 5.2, then

∃r1, . . . , rn, . . . , rm ∈ R such that w = r1 . . . rnrrn+1 . . . rmr
−, Br

∗−→ r1 . . . rn
and Br−

∗−→ rn+1 . . . rm. By applying Property C.2 for the two derivations, and
remembering that we have r(a, b) and r−(b, a) in I, we have that r1 . . . rn(a, a)
and rn+1 . . . rm(b, b) have an embedding in I. Hence, also in this case, q′(a, b) is
an answer. We conclude that q′ is equivalent to q.

Reciprocally, let us suppose that we have a minimal filtering path query of a
path query of skeleton w, which is equivalent to q, and that q′(a, x) is its head
atom. We can write it either q′(a, x)← r1(a, x1), r2(x1, x2), ..., rn(xn−1, a)r(a, x)
or q′(a, x)← r1(a, x1), r2(x1, x2), ..., rn(xn−1, x), r−(x, a). In the first case, as q′

is equivalent to q, we have r1...rn(a, a) which is true on all databases I such

that I contains a tuple r(a, b). So, according to Property C.2, Br
∗−→ r1...rn, and

using Rule 5.1, we conclude that r1...rn.r is in Lq. In the second case, for similar

32 J. Romero et al.

reasons, we have Br
∗−→ r1...rnr

−. The last r− was generated by Rule 5.5, using
a non-terminal Lr which came from Rule 5.3 using the trivial UID r r. So
we have Br → BrLr → BrrBr−r

− ∗−→ r1...rnr
−. We recognize here Rule 5.2

and so r1...rnr
− ∈ Lq. This shows the second direction of the equivalence, and

concludes the proof.

Linking the path transformation to Lq. In the previous part, we have
shown how equivalent queries relate to the context-free grammar Gq in the case
of minimal filtering path queries. We are now going to show how the full path
transformation relates to the language Lq of Gq, and more precisely, we will
observe that the path transformation leads to a minimal filtering path query of
a word in Lq.

The path transformation operates at the level of the semantics for each func-
tion call, transforming the original tree-shaped semantics into a word. What we
want to show is that after the path transformation, we obtain a minimal filter-
ing path query equivalent to q iff the original execution path was an equivalent
rewriting. To show this, we begin by a lemma:

Lemma C.7. Let πa a minimal filtering non-redundant execution plan. The
query P ′(πa)(x) is a minimal filtering path query and it ends either by r(a, x)
or r−(x, a), where x was the variable name of the output of πa.

Proof. By construction, P ′(πa)(x) is a minimal filtering path query. Let us con-
sider its last atom. In the case where the original filter on the constant a created
an atom r(a, x), then the result is clear: an atom r−(x, a) is added. Otherwise, it
means the original filter created an atom r−(x, a). Therefore, as observed in the
last point of the path transformation, the last atom is r(a, x), where we created
the new filter on a.

The property about the preservation of the equivalence is expressed more
formally by the following property:

Property C.8. Let us consider a query q(x) ← r(a, x), a set of unary in-
clusion dependencies UID, a set of path functions F and a minimal filtering
non-redundant execution plan πa constructed on F . Then, πa is equivalent to q
iff the minimal filtering path query P ′(πa) is equivalent to q.

Proof. First, we notice that we have πa(I) ⊆ q(I) and P ′(πa)(I) ⊆ q(I) as r(a, x)
or r−(a, x) appear in the semantics of πa(x) and in P ′(πa)(x) (see Lemma C.7).
So, it is sufficient to prove the property on the canonical database I0 obtained
by chasing the single fact r(a, b) with UID.

We first show the forward direction and suppose that πa is equiv-
alent to q. Then, its semantics has a single binding on I0. Let us
consider the ith call ci(x1, ..., xj , ...xn) (xj is the output used as in-
put by another function or the output of the plan) in πa and
its binding: r1(y1, y2), ..., rk(yk, yk+1), ..., rm(ym, ym+1). Then r1(y1, y2), ...,
rk−1(yk−1, yk), rk(yk, yk+1), ..., rm(ym, ym+1), r−m(ym+1, ym), ..., r−k (yk+1, yk) is

Title Suppressed Due to Excessive Length 33

a valid binding for the sub-semantics, as the reversed atoms can be matched
to the same atoms than those used to match the corresponding forward atoms.
Notice that the last variable is unchanged. So, in particular, the variable named
x (the output of πa) has at least a binding in I0 before at step 3 of the path
transformation. In step 4, we have two cases. In the first case, we add r−(x, a) to
the path semantics. Then we still have the same binding for x as πa is equivalent
to q. In the second case, we added a filter in the path semantics, and we still
get the same binding. Indeed, by Property 1, b has a single ingoing r-fact in
I0, which is r−(b, a). This observation means that, in the binding of the path
semantics, the penultimate variable was necessary a on I0. We conclude that
P ′(πa) is also equivalent to q.

We now show the backward direction and suppose P ′(πa) is equivalent
to q. Let us take the single binding of P ′(πa) on I0. Let us consider the
sub-semantics of a function call ci(x1, ..., xj , ...xn) (where xj is the output
used as input by another function or the output of the plan): r1(y1, y2), ...,
rk−1(yk−1, y

′
k), rk(y′k, y

′
k+1), ..., rm(y′m, ym+1), r−m(ym+1, ym), ..., r−k (yk+1, yk).

As all path queries have at most one binding on I0, we necessarily have yk = y′k,
..., ym = y′m. Thus the semantics of πa has a binding on I which uses the same
values than the binding of P ′(πa). In particular, the output variables have the
same binding. We conclude that πa is also equivalent to q.

We can now apply Corollary C.6 on P ′(πa) as it is a minimal filtering path
query : P ′(πa) is equivalent to q iff P(πa) is in Lq. So, πa is equivalent to q iff
P(πa) is in Lq.

We conclude that Lq is a capturing language for q. As our grammar Gq for Lq

can be constructed in PTIME, this concludes the proof of Theorem B.11.

C.4 Proof of Theorem B.13

Theorem B.13. Let F be a set of path functions, let q(x) ← r(a, x) be an
atomic query, and define the regular expression Pr as in Definition 5.2. Then
the language of Pr faithfully represents plans.

Proof. We first prove the forward direction: every word w of the language of Pr

is achieved as the image by the full path transformation of a minimal filter-
ing non-redundant plan. To show this, let w be a word in the language of
Pr. We first suppose we can decompose it into its elements from W and W ′:
w = wf1,i1 ...wfn−1,in−1

.wfn,in with wfn,in being final. Let πa be composed of the
successive function calls f1, . . . , fn where the input of f1 is the constant a and
the input of fk (k > 1) is the ithk−1 variable of fk−1. For the output variable and
the filter, we have two cases:

1. If the last letter of wfn,in is r, the output of the plan is the ithn variable of
fn and we add a filter to a on the (in + 1)th variable.

2. Otherwise, if the last letter of wfn,in is r−, the output of the plan is the
(in + 1)th variable of fn and we add a filter to a on the ithn variable (except
if this is the input, in which case we do nothing).

34 J. Romero et al.

We notice that πa is non-redundant. Indeed, by construction, only the first func-
tion takes a as input, and all functions have an output used as input in another
function. The added filter cannot be on the input of a function as in > 0. What
is more, πa is also a minimal filtering plan. Indeed, by construction, we create
an atom r(a, x) or an atom r−(x, a) (with x the output of the plan). Let us
show that it is the last possible filter. If we created r−(x, a), it is obvious as
x cannot be used after that atom. If we created r(a, x), we know we could not
have a following atom r−(x, y) where one could have filtered on y: this is what
is guaranteed by the third point of the definition of the final wf,i.

The only remaining point is to show that P(πa) = w. Indeed, for k < n, we
notice that wfk,ik is the skeleton of the sub-semantics of the kth call in πa. What
is less intuitive is what happens for the last function call.

Let us consider the two cases above. In the first one, the output variable is
the ithn variable of fn. We call it x. The semantics of πa(x) contains rin+1(x, a) =
r−(x, a) (as the last letter of wfn,in is r). We are in the second point of step 4
of the path transformation. The skeleton of the end of the path semantics is not
modified and it is wfn,in .

In the second case, the output variable is the (in + 1)th variable of fn. We
call it x. The semantics of πa(x) contains rin+1(a, x) = r(a, x) (as the last letter
of wfn,in is r−). We are in the first point of step 4 of the path transformation.
The skeleton of the end of the path semantics is modified to append r− and it
is now wfn,in+1r = wfn,in as expected.

This establishes that P(πa) = w in the case where w can be decomposed as
elements of W and W ′. Otherwise, w is in the language of W0, so w = wf,0 where
wf,0 is final, ends by r−, thus starts by r. We define πa as the execution plan
composed of one function call f , which takes as input a. The output of the plan
is the first output variable of the function. The plan πa is non-redundant as it
contains only one function call. It is also minimal filtering. Indeed, by definition
of wf,0, the first output variable is on the first atom. So, the semantics of πa
contains an atom r(a, x) where x is the output variable. Besides, it does not
contain an atom r−(x, y) where y is an output of the f by the third point of the
definition of a final wf,i.

Finally, we have P(πa) = w, and this concludes the first implication. The
transformation that we have here is what was performed by the transducer and
the method presented in Section C.2. The only difference is that the technique
in Section C.2 will consider all possible ways to decompose w into wf,i and into
final wf,i to get all possible non-redundant minimal filtering plans.

We now show the converse direction of the claim: the full path transfor-
mation maps non-redundant minimal filtering plans to words in the language
of Pr. Suppose that we have a non-redundant minimal filtering plan πa such
that P(πa) = w and let us show that w is in the language of Pr. For all calls
which are not the last one, it is clear that the sub-semantics of these calls are
the wf,ik with ik > 0 (as the plan is non-redundant). So the words generated by
the calls that are not the last call are words of the language of W ∗.

For the last function call, we have several cases to consider.

Title Suppressed Due to Excessive Length 35

First, if πa(x) contains a filter, then it means that either the first atom in the
semantics of πa(x) is not r(a, x) or, if it is, it is followed by an atom r−(x, a).

If we are in the situation where the semantics of πa(x) starts by
r(a, x), r−(x, a), then πa is composed of only one function call f (otherwise,
it would be redundant). Then, it is clear that P(πa) = wf,1 with wf,1 being
final, and we have the correct form.

If we are in the situation where the semantics of πa(x) does not start by
r(a, x), we have the two cases (corresponding to the two cases of the forward
transformation). We suppose that the last function call is on f , and the output
variable is the ith one in f .

If πa does not contain an atom r(a, x), then it contains an atom r−(x, a) and
the result is clear: the skeleton of the path semantics is not modified and ends
by the sub-semantics of f whose skeleton is wf,i and has the correct properties:
the last atom is r, the variable after x is not existential (it is used to filter) and
the atom after r(a, x) cannot be r−(x, y) with y an output variable of f as πa is
minimal filtering.

If πa contains an atom r(a, x), then in the definition of the path transfor-
mation, we append an atom r−(x, a) after the sub-semantics of the f . We then
have the path semantics ending by the atom names wf,i.r

− = wf,i−1 and wf,i−1,
which is final, has the adequate properties.

This shows that w is in the language of Pr in the case πa has a filter because
the word generated by the last call is in W ′.

Now, we consider the case when πa does not have a filter. It means that the
semantics of πa starts by r(a, x) and is not followed by an atom r−(x, y) where
y is the output of a function (as πa is well-filtering). Then, πa is composed of
only one function call f and it is clear that P(πa) = wf,0 which is final. So, in
this case, the word w belongs to W0.

So, w is in the language of Pr in the case πa does not have a filter. This
concludes the proof of the second direction, which establishes the property.

D Proofs for Section 4 and 5

In this section, we give the missing details for the proof of the claims given in
the main text, using the results from the previous appendices. We first cover in
Appendix D.1 the missing details of our algorithm. We then show Theorem 4.4
in Appendix D.2, and show Proposition 4.5 in Appendix D.3.

D.1 Details for our algorithm

We now make more precise the last steps of our algorithm, which were left
unspecified in the main text:

– Building all possible execution plans πa(x) from a word w of G: this is specif-
ically done by taking all preimages of w by the path transformation, which
is done as shown in Property B.9. Note that these are all minimal filtering
plans by definition.

36 J. Romero et al.

– Checking subsets of variables on which to add filters: for each minimal filter-
ing plan, we remove its filter, and then consider all possible subsets of output
variables where a filter could be added, so as to obtain a well-filtering plan
which is equivalent to the minimal filtering plan that we started with. (As
we started with a minimal filtering plan, we know that at least some subset
of output variables will give a well-filtering plan, namely, the subset of size
0 of 1 that had filters in the original minimal filtering plan.) The correct-
ness of this step is because we know by Lemma A.2 that non-redundant
equivalent plans must be well-filtering, and because we can determine using
Theorem B.2 if adding filters to a set of output variables yields a plan which
is still an equivalent rewriting.

D.2 Proof of Theorem 4.4

In this appendix, we show our main theorem:

Theorem 4.4. There is an algorithm which, given an atomic query q(x) ←
r(a, x), a set F of path function definitions, and a set UID of UIDs, decides in
polynomial time if there exists an equivalent rewriting of q. If so, the algorithm
enumerates all the non-redundant plans that are equivalent rewritings of q.

We start by taking the grammar Gq with language Lq used in Theorem B.11
and defined in Definition 5.1 and the regular expression Pr used in Theorem B.13
and defined in Definition 5.2. We make the following easy claim:

Property D.1. Lq ∩Pr is a capturing language that faithfully represents plans,
and it can be constructed in PTIME.

Proof. By construction, Pr represents all possible skeletons obtained after a full
path transformation (Theorem B.13).

So, as Pr represents all possible execution plans, and as Lq is a capturing
language (proof of Theorem B.11), then Lq ∩ Pr is a capturing language.

The only remaining part is to justify that it can be constructed in PTIME.
First, observe that the grammar Gq for Lq, and the regular expression for Pr,
can be computed in PTIME. Now, to argue that we can construct in PTIME
a context-free grammar representing their intersection, we will use the results
of [18] (in particular, Theorem 7.27 of the second edition). First, we need to con-
vert the context-free grammar Gq to a push-down automaton accepting by final
state, which can be done in PTIME. Then, we turn Pr into a non-deterministic
automaton, which is also done is PTIME. Then, we compute a push-down au-
tomaton whose language is the intersection between the push-down automaton
and the non-deterministic automaton using the method presented in [18]. This
method is very similar to the one for intersecting two non-deterministic au-
tomata, namely, by building their product automaton. This procedure is done in
PTIME. In the end, we obtain a push-down automaton that we need to convert
back into a context-free grammar, which can also be done in PTIME. So, in
the end, the context-free grammar G denoting the intersection of Lq and of the
language of Pr can be constructed in PTIME. This concludes the proof.

Title Suppressed Due to Excessive Length 37

So let us now turn back to our algorithm and show the claims. By Prop-
erty D.1, we can construct a grammar for the language Lq ∩ Pr in PTIME, and
we can then check in PTIME if the language of this new context-free grammar
is empty. If it is the case, we know that is no equivalent plan. Otherwise, we
know there is at least one. We can thus generate a word w of the language of
the intersection – note that this word is not necessarily of polynomial-size, so
we do not claim that this step runs in PTIME. Now, as Pr faithfully repre-
sents plans (Theorem B.13), we deduce that there exists an execution plan πa
such that P(πa) = w, and from Property B.9, we know we can inverse the path
transformation in PTIME to gut such a plan.

To get all plans, we enumerate all words of Lq ∩ Pr: each of them has at
least one equivalent plan in the preimage of the full path transformation, and we
know that the path transformation maps every plan to only one word, so we never
enumerate any duplicate plans when doing this. Now, by Property B.9, for any
word w ∈ Lq ∩ Pr, we can list all its preimages by the full path transformation;
and for any such preimage, we can add all possible filters, which is justified
by Theorem B.2 and Property C.2. That last observation establishes that our
algorithm indeed produces precisely the set of non-redundant plans that are
equivalent to the input query under the input unary inclusion dependencies,
which allows us to conclude the proof of Theorem 4.4.

D.3 Proof of Proposition 4.5

Proposition 4.5. Given a set of unary inclusion dependencies, a set of path
functions, an atomic query q(x) ← r(a, x) and a non-redundant execution
plan πa, one can determine in PTIME if πa is an equivalent rewriting of q.

First, we check if πa is well-filtering, which can easily be done in PTIME. If
not, using Lemma A.2 we can conclude that πa is not an equivalent rewriting.
Otherwise, we check if πa is equivalent to its associated minimal filtering plan.
This verification is done in PTIME, thanks to Theorem B.2. If not, we know from
Theorem B.3 that πa is not an equivalent rewriting. Otherwise, it is sufficient to
show that πmin

a is an equivalent rewriting. To do so, we compute w = P(πmin
a) in

PTIME and check if w is a word of the context-free capturing language defined
in Theorem B.11. This verification is done in PTIME. By Theorem B.11, we
know that w is a word of the language iff πa is an equivalent rewriting, which
concludes the proof.

	Equivalent Rewritings on Path Views with Binding Patterns (Extended Version)

