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On the automorphisms of the Drinfel'd double of a Borel Lie subalgebra

Let g be a complex simple Lie algebra with Borel subalgebra b. Consider the semidirect product Ib = b ⋉ b * , where the dual b * of b, is equipped with the coadjoint action of b and is considered as an abelian ideal of Ib. We describe the automorphism group Aut(Ib) of the Lie algebra Ib. In particular we prove that it contains the automorphism group of the extended Dynkin diagram of g. In type A n , the dihedral subgroup was recently proved to be contained in Aut(Ib) by Dror Bar-Natan and Roland Van Der Veen in [Bv20] (where Ib is denoted by Iu n ). Their construction is handmade and they ask for an explanation: this note fully answers the question.

Introduction

Given any complex Lie algebra a, one can form its "inhomogeneous version" Ia := a ⋉ a * . It is the semidirect product of a with its dual a * where a * is considered as an abelian ideal and a acts on a * via the coadjoint action.

As mentioned in [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], for applications in knot theory and representation theory, the most important case is when a = b is the Borel subalgebra of some simple Lie algebra g. It is precisely the situation studied here. In addition to [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], several examples of these algebras appear with variations in the litterature. In [START_REF] Chiara | Wess-Zumino-Witten model based on a nonsemisimple group[END_REF], Nappi-Wittney use the case when g = sl 2 in conformal field theory. Several authors also consider b ⋉ n * where n is the derived subalgebra of b. It is the quotient of Ib by its center. In [START_REF] Knutson | A scheme related to the Brauer loop model[END_REF], Knutson and Zinn-Justin meet this algebra for g = gl n in the associative setting, see below. In [START_REF] Feigin | G M a degeneration of flag varieties[END_REF][START_REF] Feigin | Degenerate flag varieties and the median Genocchi numbers[END_REF], Feigin uses b ⋉ n * in order to study degenerate flag varieties for g = sl n . For a general semisimple Lie algebra g, in [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF], Panyushev and Yakimova study the invariants of b ⋉ n * under the action of their adjoint group. Finally, in [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF][START_REF] Phommady | Semi-invariants symétriques de contractions paraboliques[END_REF], similar considerations are studied replacing b by an arbitrary parabolic subalgebra of g.

The aim of this note is to give a new interpretation of Ib in the language of Kac-Moody algebras and to completely describe the automorphism group of Ib.

Before describing this group, we introduce some notation. Let r denote the rank of g and G the adjoint group with Lie algebra g. 

C * ⋉ (B ⋉ g/b) × M r (C) .
The group of components Aut(Ib)/Aut(Ib) • is isomorphic to the automorphism group of the affine Dynkin diagram of g and can be lift as a subgroup of Aut(Ib).

The details of how these subgroups act on Ib are given in Section 3. Section 4 explain how the semidirect products are formed.

One of the amazing facts is that the extended Dynkin diagram of g plays a crucial role in Aut(Ib). On one hand, we explain this by constructing the extended Cartan matrix of g in terms of Ib in Section 3.1. On the other hand, this diagram is the Dynkin diagram of the untwisted affine Lie algebra constructed from the loop algebra of g. A second explanation is given by Theorem 2 that realizes Ib as a subquotient of the affine Lie algebra associated to g.

In [START_REF] Knutson | A scheme related to the Brauer loop model[END_REF], Knutson and Zinn-Justin defined a degeneration • of the standard associative product on M n (C). Let b denote the set of upper triangular matrices. Identifying the vector space M n (C) with b × M n (C)/b in a natural way one gets

(R, L) • (V, M) = (RV, RM + LV ), for any R, V ∈ b and L, M ∈ M n (C)/b. The Lie algebra of the group (M n (C), •) × of invertible elements of this algebra is b ⋉ M n (C)/b
, where the product is defined similarly with that of Ib. Note also that a cyclic automorphism (corresponding in our setting with the cyclic automorphism of the affine Dynkin diagram of type A n-1 and with the unexpected cyclic automorphism of [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF]) appears in [START_REF] Knutson | A scheme related to the Brauer loop model[END_REF]. Moreover [KZJ07, Proposition 2], which realizes (M n (C), •) as a subquotient of M n (C[t]), is similar with our Theorem 2.

Motivation and story of this work. In [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], the authors constructed an "unexpected" cyclic automorphism of Ib when g = gl n (C). The first version of this work was an explanation for this automorphism by using affine Lie algebras. Simultaneously with this first version, A. Knutson mentioned to Bar-Natan his earlier work [START_REF] Knutson | A scheme related to the Brauer loop model[END_REF] with Zinn-Justin.

Acknowledgements. We are very grateful to Dror Bar Natan for useful discussions that have motivated this work. The authors are partially supported by the French National Agency (Project GeoLie ANR-15-CE40-0012). In this section, we define the Lie bracket [ , ] ǫ on V depending on the complex parameter ǫ, interpolating between Ib and the direct product g ⊕ h.

Let n and n -denote the derived subalgebras of b and b -respectively. Fix ǫ ∈ C. Define the skew-symmetric bilinear bracket [ , ] ǫ on V by

[x, x ′ ] ǫ = [x, x ′ ] ∀x, x ′ ∈ b [y, y ′ ] ǫ = ǫ[y, y ′ ] ∀y, y ′ ∈ b - [x, y] ǫ = (ǫX + ǫ H 2 , H 2 + Y ) ∀x ∈ b y ∈ b -where [x, y] = X + H + Y ∈ n ⊕ h ⊕ n -
Then [ , ] ǫ satisfies Jacobi identity (see below for a proof). Endowed with this Lie bracket, V is denoted by g ǫ + . Assume, for a momennt that ǫ in nonzero. The invertible linear map

ϕ ǫ : b ⊕ b --→ b ⊕ b - (x, y) -→ (x, ǫy) for any x ∈ b, y ∈ b -
allows to interpret g ǫ + as an Inönü-Wigner contraction [START_REF] Inonu | On the contraction of groups and their representations[END_REF] of g 1 + . Indeed, for any nonzero ǫ, we have

[X, Y ] ǫ = ϕ ǫ -1 ([ϕ ǫ (X), ϕ ǫ (Y )] 1 ) ∀X, Y ∈ V. (1) 
We now describe g 1 + . Using the triangular decomposition

g = n ⊕ h ⊕ n -, (2) 
one defines the injective linear map

ι 1 g : g = n ⊕ h ⊕ n --→ g 1 + (ξ, α, ζ) -→ (ξ + α 2 , α 2 + ζ)
and checks that it is a Lie algebra homomorphism. Moreover, the image of

ι 1 h : h -→ g 1 + α -→ (-α, α)
is the center of g 1 + and

g 1 + = ι 1 g (g) ⊕ ι 1 h (h). (3) 
Observe that we never used the Jacobi identity for [ , ] 1 to prove the isomorphism (3). Hence we can deduce from it that [ , ] 1 satisfies the Jacobi identity. Then, the expression (1) with ϕ ǫ of [ , ] ǫ from [ , ] 1 implies that [ , ] ǫ satisfies the Jacobi identity for any nonzero ǫ. Since this property is closed on the space of bilinear maps, it is satisfied by [ , ] 0 too.

Consider now Ib with its Lie bracket [ , ]

Ib defined by: b * is an abelian ideal on which b acts by the coadjoint action. Denote by κ : g -→ g * the Killing form on g. Since the orthogonal of b with respect to κ is n, b * identifies with g/n as a b-module. Identify g/n with b -in a canonical way (that is by y ∈ b --→ y + n) and denote by π :

g -→ b -the quotient map. Then Ib = b ⊕ b * identifies with b ⊕ b -= V. Let [ , ] I denote the Lie bracket transported to V from [ , ] Ib . Let x, x ′ ∈ b and y, y ′ ∈ b -and decompose [x, y ′ ] -[x ′ , y] as X + H + Y with respect to g = n ⊕ h ⊕ n -. Then [(x, y), (x ′ , y ′ )] I = ([x, x ′ ], H + Y ). (4) 
We now describe g 0 + . The Lie bracket [ , ] 0 on V = g 0 + is given by

[(x, y), (x ′ , y ′ )] 0 = ([x, x ′ ], H 2 + Y ). (5) 
Comparing (4) and (5), one gets that the following linear map η is a Lie algebra isomorphism:

η : V = b ⊕ (h ⊕ n -) -→ b ⊕ b * = Ib (x, h, y) -→ (x, κ(2h + y, )).

The affine Kac-Moody Lie algebra

The affine Kac-Moody Lie algebra g KM is constructed from the semisimple Lie algebra g. We refer to [Kum02, Chapters I and XIII] for the basic properties of g KM . Denote by z(g KM ) the one dimensional center of g KM . Consider the Borel subalgebra b KM of g KM and its derived subalgebra n KM . By killing the semi-direct product and the central extension from the construction of g KM , one gets

g := [g KM , g KM ]/z(g KM ) ∼ = C[t ±1 ] ⊗ g,
and b := (b KM ∩ [g KM , g KM ])/z(g KM ) ⊂ g ñ := (n KM ∩ [g KM , g KM ])/z(g KM ) = [ b, b].
Identify g with the subspace C ⊗ g ⊂ g. Note that g KM /z(g KM ) = g + Cd where d acts as the derivation with respect to t.

We consider the set of (positive) roots Φ (+) (resp. Φ(+) ) of g (resp. g KM ) and the set of simple roots

∆ (resp. ∆) with respect to h ⊂ b ⊂ g (resp. h + Cd + z(g KM ) ⊂ b KM ⊂ g KM ).
We recall the following classical facts:

n KM ∼ = ñ = α∈ Φ+ gα where gα ∼ = g KM α
is the root space associated to α. Moreover, ñ is generated, as a Lie algebra by the subspaces (g α ) α∈ ∆. The identification of ∆ with {α ∈ ∆ | α(d) = 0} yields the abovedescribed embedding g ⊂ g. Denoting by δ the indivisible positive imaginary root in Φ, we have

Φ = {nδ + α | α ∈ ∆ ∪ {0}, n ∈ Z} \ {0} ∆ = ∆ ∪ {α 0 + δ}
where -α 0 is the highest root of Φ.

Finally, the extended Dynkin diagram can be reconstructed from the combinatorics of ∆ in Φ. Indeed, the nodes correspond to the elements of ∆ and the non-diagonal entries a α,β of the generalized Cartan matrix (encoding the arrows of the diagram) are a α,β = -max{n ∈ N|β + nα ∈ Φ} by Serre relations.

We list in Figure 1 the extended Dynkin diagram Dg in each simple type. The black node corresponds to the simple root α 0 + δ. We also provide the automorphism group of Dg . Note that by the definition of g KM given in [Kum02, §1.1], any θ ∈ Aut( Dg ) provides an automorphism θ KM ∈ Aut(g KM ) stabilizing both h+Cd+z(g KM ) and b KM and permuting ∆ 1 as θ does. Since z(g KM ) and [g KM , g KM ] are characteristic in g KM , this yields an automorphism θ ∈ Aut(g).

Realisation of g ǫ

+

The Lie algebras b and ñ decompose as

b = C[t]b ⊕ tC[t]n -, ñ = C[t]n ⊕ tC[t]b -.
Moreover, (t -ǫ)ñ is an ideal of b, and b/((t -ǫ)ñ) is a Lie algebra.

Theorem 2. Let ǫ ∈ C. The Lie algebras g ǫ + and b/(t -ǫ)ñ are isomorphic.

Proof. From Section 2.1, we have g

1 + v.s.
= b ⊕ b -. Elements of g 1 + will be written as couples with respect to this decomposition.

Set

g 1 + := C[t ±1 ]⊗g 1 + and extend ι 1 g to an injective C[t ±1 ]-linear map g → g 1 + . Consider the subspace w := C[t]b ⊕ tC[t]b -that is a Lie subalgebra of g 1 + .
The Inönü-Wigner contraction on g 1 + with respect to the decomposition b ⊕ b -gives rise to g ǫ + (ǫ ∈ C). In particular, the linear map

g ǫ + -→ w/(t -ǫ)w (x, y) -→ x + ty + (t -ǫ)w for any x ∈ b and y ∈ b -. (6) is a Lie algebra isomorphism Set b - 0 := ι 1 g (b -) = {(h, h)|h ∈ h} ⊕ n -. Observe that tb - 0 is contained in w. Indeed, for any h ∈ h, the element t(h, h) = t(h, 0) + t(0, h) belongs to C[t]b ⊕ tC[t]b -.
In particular, one gets a linear map induced by the inclusions of b and tb - 0 in w:

b ⊕ tb - 0 -→w.

One can easily check that it induces a linear isomorphism b ⊕ tb - 0 -→w/(t -ǫ)w. Setting bw := b ⊕ tb - 0 Lie ⊂ w, we thus get a Lie algebra isomorphism. bw /((t -ǫ)w ∩ bw )-→w/(t -ǫ)w.

Since

, b = {(h, 0)|h ∈ h} ⊕ ι 1 g (n) and ι 1 g (n) ⊕ ι 1 g (tb -) Lie = ι 1 g ( n ⊕ tb - Lie ) = ι 1 g (ñ), we have bw = {(h, 0)|h ∈ h} ⊕ ι 1 g (ñ) ∼ = ι 1 g ( b) ∼ = b, (8) 
the middle Lie isomorphism being the identity on ι 1 g (ñ) and sending (h, 0)

to 1 2 (h, h) for each h ∈ h. Moreover, (t-ǫ)w∩ bw = (t-ǫ)ι 1 g (ñ). Indeed, (t-ǫ)ι 1 g (ñ) is contained in (t-ǫ)w∩ bw , and b ⊕ tb - 0 is complementary to (t -ǫ)ι 1 g (ñ) in bw . We finally get the desired Lie isomorphism b/(t -ǫ)ñ (8) ∼ = bw /(t -ǫ)ι 1 g (ñ) (7) ∼ = w/(t -ǫ)w (6) ∼ = g ǫ +
In addition, we can make explicit the isomorphism of Theorem 2:

γ ǫ : g ǫ + ∼ = -→ b/(t -ǫ)ñ x -→ x if x ∈ n y -→ ty if y ∈ n - (a, b) -→ (a -ǫb) + 2tb if a, b ∈ h
and its inverse map is induced by

θ : b -→ V P x -→ P (ǫ)x if x ∈ n tRy -→ R(ǫ)y if y ∈ n - Qh -→ ( Q(ǫ)+Q(0) 2 h, Q(ǫ)-Q(0) 2ǫ h) if h ∈ h (ǫ = 0) (Q(0)h, 1 2 Q ′ (0)h) if h ∈ h (ǫ = 0)
Note that, in order to prove Theorem 2, we could alternatively have checked directly that θ is a Lie algebra homomorphism from b onto g ǫ + with Kernel (t -ǫ)ñ.

3 Some subgroups of Aut(Ib) From now on, this identification will be made systematically. In particular, we write Ib = b ⊕ tb -. We first describe some basic properties of Ib in this language.

The roots of Ib

Lemma 3.

1. The subalgebra c := h ⊕ th is a Cartan subalgebra of Ib. Namely, c is abelian and equal to its normalizer.

Under the action of c, Ib decomposes as

Ib = c ⊕ α∈Φ + g α ⊕ α∈Φ - tg α .
For α ∈ Φ + , c acts on g α with the weight (α, 0) ∈ h * × th * . It acts on tg α with the weight (α, 0) ∈ h * × th * , if α ∈ Φ -. Here, we identified c * with h * × th * in a natural way.

The set of ad-nilpotent elements of

Ib is ñ/tñ = n ⊕ tb -.
4. The centre of Ib is z(Ib) = th.

The derived subalgebra of Ib is [Ib

; Ib] = ñ/tñ.
Proof. 1-2) The fact that c is abelian is clear from the definition of g. The decomposition in eigenspaces also. The action of th is zero since it sends ñ to tñ that vanishes itself in Ib. The decomposition of Ib in weight spaces under the action of c follows. Then this decomposition also implies that N Ib (c) = c.

3) The elements of ñ/tñ are clearly ad-nilpotent. From 2), an element with non-zero component in h is not ad-nilpotent. 4) Since it acts as 0 on ñ and on h, we have th ⊂ z(Ib). The decomposition in weight spaces implies the converse inclusion. 5) The inclusion [Ib, Ib] ⊂ ñ/tñ is clear. On the other hand we deduce from the weight space decomposition that the subspaces (g α ) α∈ ∆ belong to [Ib, Ib]. Since they generate ñ in g, the result follows.

From Lemma 3 (2), the set of nonzero weights Φ(Ib) of c acting on Ib identifies with Φ. It is also useful to embed Φ(Ib) in Φ by

ϕ : Φ(Ib) -→ Φ α ∈ Φ + -→ α α ∈ Φ --→ δ + α
Indeed, the weight space (Ib) α identifies with gϕ(α) , for any α ∈ Φ(Ib). In particular, for α, β ∈ Φ ∪ {0}, we have

[Ib ϕ -1 (α) , Ib ϕ -1 (β) ] ⊂ Ib ϕ -1 (α+β) with equality when α, β, α + β / ∈ {0, δ}. Set also ∆(Ib) = ϕ -1 ( ∆) = ∆ ∪ {-α 0 }. Lemma 4.
1. The derived subalgebra of Ib (1) := [Ib, Ib] is

Ib (2) = α∈Φ(Ib)\∆(Ib) (Ib) α
2. Assume that g is not sl 2 . For α, β ∈ ∆(Ib) (α = β), the corresponding entry of the generalized Cartan Matrix of g KM is given by

a α,β = -max{n ∈ N | β + nα ∈ Φ(Ib)}.
Proof. 1) Recall that ñ is generated as a Lie algebra by the (g α ) α∈ ∆. 

β + nα ∈ Φ ⇒ β + nα ∈ Φ(Ib).
When α, β ∈ ∆, the statement is clear since

Φ + ⊂ Φ(Ib). If β = δ + α 0 , then β + nα ∈ Φ means that α 0 + nα ∈ Φ. Since α 0 + nα has elements of -∆
in its support, it has to lie in Φ -. Thus β + nα ∈ Φ(Ib).

If α = δ + α 0 , then β + nα ∈ Φ means that β + nα 0 ∈ Φ. For height reasons, we must have n ∈ {0, 1}. Then, β + nα ∈ Φ(Ib).

Remark. One can observe that the first assertion of Lemma 4 is similar with

[n, n] = α∈Φ + \∆ b α .

The adjoint subgroup of Aut(Ib)

Let G be the adjoint group with Lie algebra g. Let T and B be the subgroups of G with Lie algebras h and b. Consider now b -∼ = g/n equipped with the addition as an abelian algebraic group. The adjoint action of B on g stabilizes n and induces a linear action on b -∼ = g/n by group isomorphisms. We can perform the semidirect product:

IB := B ⋉ b -.
By construction the Lie algebra of IB identifies with Ib. The adjoint action of IB on Ib is given by Note also that Ad(IB) = H ⋉ (N ⋉ g/b) where N and H are the connected subgroups of B with respective Lie algebras n and h. Since n + tb -is the set of ad-nilpotent elements of Ib, we get the following result from (9). Lemma 6.

IB × Ib -→ Ib ((b, f ), x + ty) -→ b • x + t(b • y + [f, x]) for b ∈ B, f, x ∈ b and y ∈ b -, (9) 
1. The group of elementary automorphisms Aut e (Ib) = exp(n+tb -) coincides with N ⋉ g/b.

2. Ad(IB) = exp(Ib)

An unipotent subgroup of Aut(Ib)

Lemma 7. The following map is an injective group homomorphism

Hom(Ib/[Ib, Ib], z(Ib)) -→ Aut(Ib) u -→ ū : Ib -→ Ib X -→ X + u(X) .
We denote by U ⊂ Aut(Ib) the image of this map. From Lemma 3, we have U ∼ = M r (C) where r = dim h.

Proof. Let X, Y ∈ Ib. On one hand, we have

[ū(X), ū(Y )] = [X + u(X), Y + u(Y )] = [X, Y ],
since the image of u is contained in the center. On the other hand,

ū([X, Y ]) = [X, Y ],
since u vanishes on the derived subalgebra. It follows that ū is a Lie algebra isomorphism.

Since z is contained in [Ib, Ib] the map of the lemma is a group homomorphism from (Hom(Ib/[Ib, Ib], z), +) to (Aut(Ib), •).

Note that the existence of this group of automorphisms is quite general. Indeed, the only useful property of Ib in this proof is z(Ib) ∩ [Ib, Ib] = {0}.

The loop subgroup

Lemma 8. The following map is an injective group homomorphism

C * -→ Aut(Ib) τ -→   δ τ : Ib -→ Ib x -→ x if x ∈ b ty -→ τ ty if y ∈ b -   .
We denote by D ⊂ Aut(Ib) the image of this map Proof. It is a straightforward check on b ⋉ tb -that the δ τ are automorphisms of Ib.

Remark. The map δ τ corresponds with the variable changing t → τ t in the C[t]-Lie algebra b/tñ. Moreover, the Lie algebra of D acts on Ib like Cd where d is the derivation involved in the definition of g KM .

Automorphisms stabilizing the Cartan subalgebra

For any α ∈ ∆(Ib), fix a nonzero element X α in the corresponding root space (Ib) α . Set

G := θ ∈ Aut(Ib) θ(h) ⊂ h θ({X α : α ∈ ∆(Ib)}) = {X α : α ∈ ∆(Ib)} .
Note that, since c is the sum of h with z(Ib) and since the center is characteristic, the elements of G also stabilze c.

Proposition 9. The group G is isomorphic to the automorphism group of the affine Dynkin diagram of g.

Proof. The group G stabilizes c and hence the set of weights of c acting on Ib. This yields an action of G on Φ(Ib).

Moreover, Ib (1) = [Ib, Ib] and Ib (2) = [Ib (1) , Ib (1) ] are characteristic and stabilized by G. Now, Lemma 4 implies that G stabilizes Φ(Ib) \ ∆(Ib) and hence ∆(Ib). Moreover, by Lemma 4 (2), we have for g ∈ G and α, β ∈ ∆(Ib):

a α,β = -max{n|(ad X α ) n (X β ) = 0} = -max{n|g((ad X α ) n (X β )) = 0} = -max{n|(ad X g(α) ) n (X g(β) ) = 0} = a g(α),g (β) 
.

Hence g actually induces an automorphism of the extended Dynkin diagram 2 and we thus obtain a group homomorphism Θ : G → Aut( Dg ).

We claim that Θ is surjective. Indeed, fix a group automorphism θ of Dg . As seen in Section 2.2, there exists θ ∈ Aut(g) which stabilizes both h and b and which permutes ∆(Ib) as θ does. Then it stabilizes ñ = [ b, b] and thus induces the desired element of Aut( b/tñ).

We now prove that Θ is injective. Let θ in its Kernel. By the definition of the group G, θ stabilizes h. Since the restrictions of the elements of ∆(Ib) span h * , the restriction of θ to h has to be the identity. In particular, θ acts trivially on Φ(Ib) and stabilizes each root space (Ib) α for α ∈ Φ(Ib). But θ stabilizes the set {X α : α ∈ ∆(Ib)}. Hence θ acts trivially on each gα for α ∈ ∆(Ib). Since ñ is generated by the (g α ) α∈∆(Ib) , the restriction of θ to ñ/tñ is the identity map. Finally, θ is trivial and Θ is injective.

Remark. [Bv20, Theorem 2] is the construction of an explicit order n automorphism of gl ǫ n+ . Theorem 2 and the above proof of the surjectivity of Θ also show the existence of such an automorphism for sl ǫ n+ with nonzero ǫ. Hence we just got both an explanation and an extension (to any simple g) of the Bar-Natan-van der Veen's Theorem 2.

Description of Aut(Ib)

In this section, we describe the structure of

Aut(Ib) = {g ∈ GL(Ib) : ∀X, Y ∈ Ib g([X, Y ]) = [g(X), g(Y )]}
in terms of the subgroups U, Ad(IB), D and G introduced in Section 3.

Observe that Aut(Ib) is a Zariski closed subgroup of the linear group GL(Ib).

Theorem 10. We have the following decomposition

Aut(Ib) = G ⋉ (D ⋉ (Ad(IB) × U)).
In particular, the neutral component is Aut(Ib) • = D ⋉ (Ad(IB) × U) and G ∼ = Aut( Dg ) can be seen as the component group of Aut(Ib).

The result is a consequence of the lemmas provided below. Indeed, by Lemma 12, the four subgroups generate Aut(Ib). By Lemma 11, the subgroup generated by U and Ad(IB) is a direct product U × Ad(IB). Then the structure of Aut(Ib) follows from lemma 13.

Since D, Ad(IB) and U are connected and G is discrete, Aut(Ib) = g∈G gDAd(IB)U is a finite disjoint union of irreducible subsets of the same dimension. They are thus the irreducible components of Aut(IB) and the remaining statements of Theorem 10 follow.

Lemma 11. The subgroups U and Ad(IB) are normal in Aut(Ib). Moreover, U ∩Ad(IB) = {Id}.

Proof. Recall that Ad(IB) is generated by the exponentials of ad(x) with x ∈ Ib. Then for any θ ∈ Aut(Ib), θAd(IB)θ -1 = θ exp(Ib)θ -1 = exp(θ(Ib)) = exp(Ib) = Ad(IB).

Take now u ∈ Hom(Ib/[Ib, Ib], z(Ib)) so that ū ∈ U. Since [Ib, Ib] (resp. z(Ib)) is a characteristic subspace of Ib, it is stabilized by θ -1 (resp. θ). Hence θuθ -1 vanishes on [Ib, Ib] and takes values in z. So θūθ -1 is an element of U.

Let (b, g) ∈ IB and h ∈ h. Then Ad(b, g)

(h) = b • h + t[g, h] ⊂ h + (n ⊕ tn -). As a consequence, whenever Ad(b, g)(h) ⊂ h + z we have Ad(b, g)(h) ⊂ h. Hence Ad(IB) ∩ U = {Id}.
Lemma 12. We have Aut(Ib) = GDAd(IB)U.

Proof. Let θ ∈ Aut(Ib). Since the two Cartan subalgebras c and θ(c) are Ad-conjugate (see [Bou75, §3, n • 3, th. 2]), there exists θ 1 ∈ Ad(IB)θ which stabilizes c.

Then θ 1 (h) is complementary to the center th = θ 1 (th) in c. Thus, there exists θ 2 ∈ Uθ 1 such that θ 2 stabilizes h.

Since θ 2 stabilizes c, it acts on Φ(Ib). Arguing as in the proof of Proposition 9, we show that it stabilizes ∆(Ib) and that the induced permutation is actually an automorphism of the extended Dynkin diagram. Thus there exists θ 3 ∈ Gθ 2 with the additional property that the induced permutation on ∆(Ib) and thus on Φ(Ib) are trivial. Then θ 3 acts on each (Ib) α for α ∈ ∆(Ib).

Since ∆ is a basis of h * , one can find h ∈ H ⊂ B ⊂ IB such that Ad(h) • θ 3 acts trivially on each (Ib) α for α ∈ ∆. Moreover, D acts trivially on these roots spaces and with weight 1 on (Ib) α 0 . This yields θ 4 ∈ DAd(H)GUAd(IB)θ which acts trivially on h and on each (Ib) α , α ∈ ∆(Ib).

Recall now that ñ/tñ is generated by the spaces ((Ib) α ) α∈∆(Ib) . Since θ 4 acts trivially on ñ and on h, it has to be trivial. As a consequence, θ ∈ Ad(IB)UGAd(H)D = GDAd(IB)U, the last equality following from Lemma 11. 

  Figure 1: Extended Dynkin diagrams and their automorphisms
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  The Lie algebras Ib, g ǫ + and g ⊗ C[t ±1 ] 2.1 Definitions of Ib and g ǫ + Let g be a complex simple Lie algebra with Lie bracket denoted by [ , ]. Fix a Borel subalgebra b of g and a Cartan subalgebra h ⊂ b. Let b -be the opposite Borel subalgebra of b containing h. Set V = b ⊕ b -viewed as a vector space.

From

  Sections 2.1 and 2.3, we can interpret the algebra Ib in the Kac-Moody world via the isomorphism Ib -→ b/tñ (x, y) -→ x + ty x ∈ b, y ∈ b -∼ = g/n κ ∼ = b *

  where • denotes the B action on b and on b -. It induces a morphism Ad : IB-→Aut(Ib) with Kernel Z(IB) ∼ = (1, h). In particular, one gets: Lemma 5. The image Ad(IB) is isomorphic with B ⋉ g/b.

Lemma 13 .

 13 The intersections D ∩(Ad(IB) ×U) and G ∩(D ⋉(Ad(IB) ×U)) are the trivial group {Id}. Moreover,(D ⋉ (Ad(IB) × U)) is normal in Aut(Ib). Proof. Let τ ∈ C * , b ∈ B, f ∈ g/n and u ∈ Hom(Ib/[Ib, Ib], z(Ib)) such that the elements associated δ τ ∈ D, (b, f ) ∈ IB and ũ ∈ U (see Section 3) satisfy δ τ = Ad(b, f ) • ũ. For b ′ ∈ b, we have b ′ = δ τ (b ′ ) = (Ad(b, f ) • ū)(b ′ ) = Ad(b, f )(b ′ + u(b ′ )) = b • b ′ + (b • u(b ′ ) + t([f, b ′ ])).In particular, b • b ′ = b ′ and, whenever b ′ ∈ n, [f, b ′ ] = 0 in g/n. So b ∈ B centralizes b and ad g f normalizes n. As a consequence, b = 1 B , f is 0 in g/b and u = 0. Thus the only element of D ∩ (Ad(IB) × U) is the trivial one. Since [Ib, Ib] is characteristic in Ib, we have a natural group morphism p : Aut(Ib) → Aut(Ib/[Ib, Ib]). From the description of [Ib, Ib] in Lemma 3, it is straightforward that D, Ad(IB) and U are included in Ker(p) while p |G is injective. From Lemma 12, we then deduce that D ⋉ (Ad(IB) × U) = Ker(p) and the desired properties follow.

  Thus, for weight reasons, the (g α ) α∈ Φ\ ∆ are root spaces included in [ñ, ñ]. Since ∆ is a linearly independant family, they are in fact the only root spaces not contained in [ñ, ñ]. Quotienting, this yields

	α∈Φ(Ib)\∆(Ib) (Ib) α = Ib (2) .
	2)Recall that the statement is valid if we replace Φ(Ib) by Φ, see Section 2.2. It is thus
	sufficient to show that

and even permuting the set of generators e α , α ∈ ∆

If g is sl 2 , Lemma 4 (2) does not apply. However, any permutation of ∆ is an automorphism of the extended Dynkin diagram in this case.