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Abstract

Let g be a complex simple Lie algebra with Borel subalgebra b. Consider the
semidirect-product Ib = b⋉ b∗, where b∗, the dual of b, is equipped with the coadjoint
action of b and is considered as an abelian ideal of Ib. Given an automorphism γ the
extended Dynkin diagram of g, we construct an automorphism of Ib of the same order.

In type A, these automorphisms were recently constructed by Dror Bar-Natan and
Roland Van Der Veen in [Bv20] (where Ib is denoted by Iun). Their construction is by
hand and they ask for an explanation: this note fully answers the question.

1 Introduction

Given any Lie algebra a, one can form its “inhomogeneous version” Ia := a ⋉ a∗. It is the
semidirect product of a with its dual a∗ where a∗ is considered as an abelian Lie algebra and
a acts on a∗ via the coadjoint action.

Here we consider the case when a = b is the Borel subalgebra of some complex simple
Lie algebra g. In this case, b∗ can be understood differently. Indeed, let n be the derived
subalgebra of b and b− be the opposite Borel subalgebra of b (relatively to some fixed Cartan
subalgebra). Now, b− identifies with g/n and hence inherits from a structure of a b-module.
Then b− identifies with b∗ as a b-module.

Consider now the affine Kac-Moody Lie algebra gKM, its center Z(gKM) and its Borel
subalgebra bKM. Let nKM denote the derived subalgebra of bKM. By killing the semidirect-
product and the central extension from the construction of gKM, one gets

g̃ := [gKM, gKM]/Z(gKM)
∼= C[t±1]⊗ g,

and
b̃ := (bKM ∩ [gKM, gKM])/Z(gKM) ⊂ g̃

ñ := (nKM ∩ [gKM, gKM])/Z(gKM) = [b̃, b̃].

We identify g with the subspace C⊗ g ⊂ g̃.
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Theorem 1. The map

Ib −→ b̃/(tñ)
ξ + ζ 7−→ ξ + tζ,

with ξ ∈ b and ζ ∈ b− is a well defined isomorphism of Lie algebras.

Consider now an automorphism γ of the extended Dynkin diagram D̃g of g. Since gKM

is canonically defined from its Dynkin diagram, γ induces an automorphism (still denoted
by γ) of gKM. Moreover, by construction γ preserves both the Cartan subalgebra of gKM, its
Borel subalgebra bKM and nKM. Thus it induces an isomorphism γ̄ of b̃/(tñ).

Corollary 2. The above construction induces an injective morphism from Aut(D̃g) to Aut(Ib).

At the end of the paper, a table sums up the groups Aut(D̃g) for g simple.

Comments. This note was first sent to the authors of [Bv20]. We thank Dror Bar-
Natan and Roland van der Veen for their prompt answers. In doing so, we learned that
they were already informed by A. Knutson that very similar connexion was made in [KZJ07,
Sections 2.1 and 2.3], at least in type A.

2 Proof

The proofs are simple checkings. First, it follows from the constuction of the affine Kac-
Moody algebra that we have the following decompositions

b̃ = C[t]b⊕ tC[t]n−

ñ = C[t]n⊕ tC[t]b−,

where n− is the derived subalgebra of b−. Then, it is obvious that tñ is an ideal of b̃ and that
b̃/(tñ) is a Lie algebra. These decompositions imply that the linear map from Theorem 1 is
well defined.

Consider the quotient map π : g−→g/b ≃ b−.
Let ξ, ξ′ ∈ b and ζ, ζ ′ ∈ b−. Then, computing in b̃, we get:

[ξ + tζ, ξ′ + tζ ′] = [ξ, ξ′] + t([ζ, ξ′] + [ζ ′, ξ]) + t2[ζ, ζ ′].

Its class modulo tñ is
[ξ, ξ′] + tπ([ζ, ξ′] + [ζ ′, ξ]).

This implies that the map is a Lie algebra isomorphism.

Finally, a diagram automorphism γ is characterized by the induced permutation of the
root spaces of gKM associated to simple roots. Since these root spaces survive in Ib, the
injectivity statement in the corollary is clear.
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Ã1

Ãℓ (ℓ ≥ 2)
B̃ℓ (ℓ ≥ 3)

Aut(D̃) = Z/2Z Aut(D̃) = D(ℓ+1) Aut(D̃) = Z/2Z

G̃2 C̃ℓ (ℓ ≥ 2)
D̃ℓ (ℓ ≥ 5)

Aut(D̃) is trivial Aut(D̃) = Z/2Z Aut(D̃) = (Z/2Z)3

Ẽ6
Ẽ7 F̃4

Aut(D̃) = S3 Aut(D̃) = Z/2Z Aut(D̃) is trivial

D̃4
Ẽ8

Aut(D̃) = S4 Aut(D̃) is trivial
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