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This paper is devoted to the uncertainty quantification for 3D acoustic performance model
of nacelle liners (acoustic treatments). Uncertainties are taken into account in order to in-
crease the robustness of the predictions. A full computational acoustic propagation model
based on the convected Helmholtz equation in presence of a non-homogeneous flow velocity
field computed by solving the Linearized Euler Equations (LEE) is used. A reduced-order
computational model is deduced in order to implement the probabilistic model of uncertain-
ties. The model uncertainties induced by modeling errors have been taken into account for
the acoustic propagation model and the liner model, using the nonparametric probabilistic
approach. In addition, the uncertainties on the acoustic excitation induced by the fan have
been introduced using the parametric probabilistic approach. The developed methodology
is applied to a 3D nacelle intake and allows for computing the confidence regions of the ran-
dom far-field radiated pressure in terms of random SPL (Sound Pressure Level), which are
compared to experiments for several flight conditions and frequencies.

Nomenclature

r(x, y, z), t,ω = Space three-dimensional vector, time scalar variable, and angular frequency
X̃,X0,X = Total, static, and fluctuating thermodynamic variable, function of space and time
M∞,M = Uniform and local Mach number
cα, ϕα(x, y), kzα , kxyα = Amplitude, eigenfunction, axial, and transversal wave numbers of a duct mode α
Sduct = Cross section of the duct domain Ωduct
ρ̃, ρ0, ρ∞, ρ = Total, steady-flow, uniform, and fluctuating fluid mass density
ṽ,v0,v∞,v = Total, steady-flow, uniform, and fluctuating fluid velocity
p̃, p0, p = Total, steady-flow, and fluctuating pressure fields
Ωi,Ωo,Ωduct = Inner, outer, and duct domains of the intake acoustic problem
∂Ωi, ∂Ωo, ∂Ωduct = Inner, outer, duct domain boundaries
Γio,Γh,Γ,Γf,Γho,Γduct, = Interface between inner and outer domains, hardwall, liner, fan, outer hardwall, and duct surfaces
nio,nh,n,nf,nho,nduct = Outward unit normal of surfaces Γio,Γh,Γ,Γf,Γho,Γduct,
ψi,ψo, ϕ = Acoustic velocity potential in the inner, outer, and duct domains
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Z(r,ω), ZR(r,ω), ZI (r,ω) = Liner local impedance, resistance and reactance
vΓ(r,ω) = Wall acoustic velocity for the liner (Myers boundary condition)
∆xy = Laplacian in the transversal plane (x, y)
Sf (r,ω) = Acoustic source term induced by then fan rotation
[Zi] = Liner impedance matrix of the inner domain finite/infinite element discretization
[H(ω)] = Coupling matrix between inner and outer domain finite element discretization
[ML], [KL] = Mass and stiffness matrix of the pellicular domain
[A`], [Z`],F` = Aeroacoustic, liner matrices, and excitation vector condensed on liner dofs
q = Generalized coordinates of the Reduced-Order Model
[A], [Z],F = Generalized aeroacoustic, liner matrices, and excitation vector
[AR], [AI ] = Imaginary and real parts of the generalized Aeroacoustic matrix
[AR], [AI ] = Random real and imaginary part of the generalized Aeroacoustic matrix
[ZR], [ZI ], [Z

SS
I ], [Z

S
I ], [Z

NS] = Imaginary, real, skew-symmetric imaginary, symmetric imaginary,
= nonsymmetric parts of the generalized Liner matrix

[ZR], [ZI ], [ZSS
I ], [Z

S
I ], [Z

NS] = Random real, imaginary, skew-symmetric imaginary, symmetric imaginary,
= nonsymmetric parts of the generalized Liner matrix

QoI = Vector of the quantities of interest
Ni,No,Nf,Nd = Number of dofs in the inner, outer domains, fan surface, and number of cut-on modes
N`,n` = Number of liner dofs, number of pellicular modes
[εif] = Transfer matrix of zeros and ones selecting non zeros dofs related to fan excitation
c+ = Vector of incident duct modes amplitudes
Subscripts
LEE = Linearized Euler Equations
Dofs = Degrees of freedom
QoIs = Quantities of Interest
SPL = Sound Pressure Level

I. Introduction

In modern turbofan engines, fan noise is one of the main sources due to increased bypass ratio of the engines. Acoustic
liners (acoustic treatments) are effective in mitigating noise generated by the fan. In order to be efficient, namely

to absorb the fan noise, liners have to be studied in their operating conditions. A scheme of the generic mechanical
system involving the fan, the liner, and the nacelle intake is shown in Figure 1. The acoustic source is the fan and
we are interested in predicting the far-field radiated pressure as a function of the liner acoustic properties. As the
liner design is frozen in early phases of aircraft development, the maturity of aircraft data is relatively low, which
implies a non-negligible variability on liner design parameters. In order to account for this variability and increase the
robustness of the predictions performed using a 3D computational model of the convected acoustic propagation, a robust
design of the liner is carried out, in which modeling uncertainties in the propagation and liner models and parametric
uncertainties for the fan acoustic excitation are accounted for. The finality of such a tool would be to associate liner
acoustic performance and robustness by giving statistical information about the pressure response of a given design.
This work is devoted to the analysis of the convected acoustic propagation in the framework of lined nacelle intakes, in
presence of uncertainties. The aeroacoustic model is based on the Möhring analogy [1], in which the acoustic sources
are not accounted for since flow-induced noise is negligible with respect to the fan-generated noise. In order to ease
the writing, the word aeroacoustic refers, in this paper, to the convected acoustic propagation model. As the walls
are fixed (no wall displacement), the formulation for the acoustic propagation in the moving fluid is performed using
the linear convected Helmholtz equation for which the velocity field of the steady flow is computed by solving the
Euler potential equation. The liner performance is assessed using computational models that include a modeling of
uncertainties for the aeroacoustic model, for the liner model, and for the acoustic excitation induced by the fan. These
uncertainties are modeled in the framework of the probability theory using the nonparametric probabilistic approach
involving random matrix theory [2] and the parametric probabilistic method. Some works devoted to uncertainty quan-
tification for the liner impedance in presence of a flow have also been carried out in the last decade (see for instance [3–7]).

The paper is organized as follows. In Section II, we present the nominal computational model. This computational model
includes the convected acoustic propagation model and the liner model. This nominal computational model corresponds
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Fig. 1 Scheme of a generic 3D nacelle

to the finite/infinite element discretization of the weak formulation of the boundary value problem. Section III deals
with the construction of a computational reduced-order model that is required for reducing the numerical cost and
above all for allowing the nonparametric probabilistic approach of uncertainties to be implemented. This reduced-order
model is constructed using a modal basis that is associated with the acoustic radiation in the acoustic layer (pellicular
domain) over lined surfaces. In Section IV, we present the probabilistic model for uncertainty quantification. It consists
in constructing a probabilistic model for the aeroacoustic model, for the liner model, and for the acoustic excitation
induced by the fan. Section V is devoted to the presentation of the configuration and of the computational model of a
generic industrial 3D nacelle. Section VIII deals with a sensitivity analysis of modal SPL with respect to the levels of
uncertainties. Finally, in Section IX, we present the robust predictions of the SPL with an experimental validation.

II. Construction of the nominal computational model

A. Summarizing the methodology for constructing the nominal deterministic computational model
First, we will present the boundary value problem associated with 3D inner, outer, and duct domains of the intake
acoustic radiation problem. The linear convected Helmhlotz equation [1, 8–11] is used in the inner domain (near-field)
and in the outer domain (far-field), involving the velocity and mass density fields of the flow computed using LEE.
The boundary condition on the liner is the Myers condition [12–14] involving the local admittance of the liner model
[15] depending on the spatial point and on the frequency. At infinity, the outward Sommerfeld radiation condition is
written. For the fan excitation (see for instance [16] and [17]), the acoustic velocity field is represented on the family of
acoustic duct modes and allows for ensuring the coupling between the semi-infinite duct and the inner domain on the fan
boundary, and for representing the acoustic excitation produced by the fan. It should be noted that the wall of the duct is
rigid and its cross-section is assumed to be constant. Inside the duct, the flow is assumed to be uniform. Consequently,
the duct modes are explicitly known.

Then, the finite/infinite element discretization of the weak formulation of the boundary value problem is performed,
which allows for obtaining the computational model in the frequency domain. The unknowns of this computational
model are the discretized acoustic velocity potential fields in the inner domain and in the outer domain, and the vector of
the coefficients describing the unknown reflected sound field. In this computational model, the acoustic source term
depends on the vector of the known coefficients of the incident sound field describing the fan acoustic excitation.

Finally, for each frequency, we introduce the computational model that is a very large linear complex matrix system and
that induces a large computational cost when exploring the frequency band of analysis. In addition, the nonparametric
probabilistic approach of uncertainties [2, 18] has to be implemented in the computational model. For these two reasons,
a computational reduced-order model depending on the frequency is constructed. For this purpose, two ingredients
are introduced [19, 20]. The first one is a frequency by frequency static condensation of the aeroacoustic degrees of
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freedom on the liner dofs. Since the number of liner dofs is generally large, the reduced-order model is constructed by
introducing a pellicular basis constituted of a set of acoustic modes in a pellicular domain that is related to liner dofs.
All this methodology has been implemented in a commercial software [19, 21, 22], which will be used for the numerical
simulations presented in Section VIII

B. Definition of the geometry of the acoustic problem
For liner performance assessment, an aeroacoustic modeling of the acoustic radiation problem of a nacelle intake is used.
The boundary value problem associated with this model (see Fig. 1 and Fig. 2) is formulated using three domains. In
Fig. 2, a first domain Ωi corresponds to the nacelle near-field, which is discretized by finite elements. A second domain
Ωo corresponds to the far-field, which is discretized by infinite elements. A third domain Ωduct allows for analytically
calculating the acoustic excitation imposed by the fan, for which the model is based on analytical duct modes ([16]).
In order to numerically solve the intake acoustic radiation problem, the associated boundary value problem must be
written involving a propagation equation and boundary conditions. For a given flight condition, the flow computation
assumes that the fluid is inviscid (viscous and thermal effects are neglected) and is performed by solving potential
Euler equations on an appropriate CFD mesh. From these CFD computations, the steady-flow velocity field v0 and the
steady-flow mass density field ρ0 are deduced. The convected acoustic wave equation comes from the derivation of
the Navier-Stokes equations ([16], [8]), for which it is assumed an irrotational locally isentropic flow. The linearized
convected acoustic equation is written in the frequency domain (assuming that fluctuating thermodynamic quantities are
small compared to their mean-flow counterpart).

8

8

8
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Fig. 2 2D section of the half-3D geometry for the boundary value problem of the intake radiation problem in
presence of a flow, corresponding to the nacelle scheme in Fig 1.

Figure 2 is a 2D section of the half-3D geometry of the inlet acoustic problem, in which R3 is the whole domain, Ωi is
the inner bounded open domain of R3 of boundary ∂Ωi = Γio ∪ Γh ∪ Γ ∪ Γf, and Ωo = R

3\Ωi is the outer unbounded
open domain of R3, whose boundary ∂Ωo. The generic point in R3 is denoted as r = (x, y, z), for which the direction of
coordinate z is the one of the rotation axis of the fan.

Definition of the geometry and boundary conditions for inner domain Ωi. The unit normal to boundary ∂Ωi
outward of domain Ωi is written as, nio for Γio, nh for Γh, n for Γ, and nf for Γf. Part Γ of the boundary ∂Ωo = ∂Ωi is
the coupling interface between the acoustic part Ωi and the liner, while Γf is the part on which the fan excitation is
applied. The inner problem implies the use of the following boundary conditions:

• Γio (inner outer) represents a nonphysical interface between inner and outer domains, on which the continuity
condition is written for the acoustic velocity potential and for its gradient.

• Γh (hardwall) corresponds to rigid or "hardwall" part characterized by a zero normal acoustic velocity.
• Γ (liner) corresponds to an acoustic treatment characterized by its impedance.
• Γf (fan) corresponds to the part of the boundary on which act acoustic sources induced by the fan.
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Definition of the geometry and boundary conditions for outer domain Ωo. The boundary ∂Ωo of Ωo is written
as Γio ∪ Γho in which Γho = Γh ∪ Γ ∪ Γf (this means that ∂Ωo = ∂Ωi). The unit normal to boundary ∂Ωo outward of
domain Ωo is written as, noi = −nio for the part Γio and nho for the part Γho. For the acoustic wave propagation in the
outer domain, Γho corresponds to a rigid wall on which the normal acoustic velocity will be equal to zero.
The outer problem implies the use of the following boundary conditions:

• Γio (inner outer) is a nonphysical coupling interface between inner and outer domains, on which the continuity is
written for the acoustic velocity potential and for its gradient (note that infinite boundary elements will be used on
Γio for accounting for the effects of Ωo on Ωi through the coupling interface Γio).

• Γho (hardwall outer) corresponds to a rigid wall characterized by a zero normal acoustic velocity.

Definition of the geometry and boundary conditions for the semi-infinite duct Ωduct. A semi-infinite cylindrical
duct Ωduct is connected to the inner domain Ωi for which the coupling interface is the fan plane Γf . The boundary
∂Ωduct of semi-infinite domain Ωduct is written as ∂Ωduct = Γf ∪ Γduct in which Γduct is the cylindrical-surface part of the
boundary of Ωduct. It should be noted that this domain is only introduced for generating the acoustic excitation induced
by the fan and consequently, has to be viewed as a "fictional domain" with respect to the formulation of the boundary
value problem related to Ωi ∪Ωo. This is the reason why Ωo = R

3\Ωi. In this semi-infinite duct, the sound field is the
sum of a given incident sound field and an unknown reflected sound field, which will be represented on the duct modes
(see Section II.C.2). The wall of the boundary of Ωduct is rigid on which a zero normal acoustic velocity is applied.

C. Boundary value problem associated with innner, outer, and duct domains of the intake acoustic radiation
problem

In this subsection we only present the most important concepts and equations associated with the boundary value
problem, for which the definitions and the notations introduced in Section II.B are used.

1. Boundary value problem in the inner and outer domains Ωi and Ωo (near-field and far-field)
Linear convected Helmholtz equation in Ωi and Ωo. The linear frequency formulation of the convected wave
equation is written in Ωi ([1, 8–11]), under the following hypotheses: no aerodynamic acoustic source terms, no heat
production due to viscous dissipation, no heat transfers in the flow, no gravity forces, and the flow is locally isentropic.
The convected wave equation is then written as,

−
ω2ρ0

c2 ψi +
jωρ0

c2 v0 ·∇ψi + ∇ ·
(

jωρ0v0

c2 ψi +
ρ0v0

c2 v0 ·∇ψi − ρ0∇ψi
)
= 0 , (1)

in which the field ψi is the acoustic velocity potential in inner domain Ωi, linked to the acoustic pressure and velocity
fields by the equation,

p = − jωρ0 ψi − ρ0 v0 ·∇ψi , v = ∇ψi . (2)

In the above equations, c is the speed of sound at equilibrium, ω is the angular frequency (rad/s), j =
√
−1 is the pure

imaginary complex number, ∇ is the gradient operator with respect to space variable r = (x, y, z), and where the symbol
"dot" represents the Euclidian inner product in R3.
In the outer domain, the same convected Helmholtz equation is used, in which mean flow quantities are replaced by ρ∞
and v∞, which are the constant mass density and velocity fields of the uniform inflow in the z-direction.

Myers boundary condition related to the liner surface (inner domain Ωi). The boundary condition on Γ (liner)
is written ([12],[13]) as ,

∂ψi
∂n
=

(
1 −

1
jω

v0 · ∇ +
1
jω

n · (n · ∇)v0

) (
1

Z(r,ω)
( jω ρ0 ψi + ρ0 v0 ·∇ψi)

)
, (3)

in which
1

Z(r,ω)
denotes the local admittance at point r and at frequency ω of the liner, and where n is the unit normal

to Γ external to Ωi.
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2. Boundary value problem in the semi-infinite duct Ωduct for the inlet case and duct modes
For the fan excitation (see for instance [16] and [17]), the acoustic velocity potential field ϕ in Ωduct will be represented
on the family of acoustic duct modes and will allow (i) for ensuring the coupling between the semi-infinite duct Ωduct
and the inner domain Ωi on boundary Γf (see Fig. 2), and (ii) for representing the acoustic excitation produced by the
fan. In this work, it is assumed that Ωduct is a straight cylinder with z-axis, for which its cross-section is constant and
consequently, independent of z. The steady flow in Ωduct is assumed to be subsonic and uniform along the z-direction.

Linear convected Helmholtz equation in Ωduct. We consider the acoustic propagation in z-direction. The acoustic
velocity potential ϕ(x, y, z) verifies the following linear convected Helmholtz equation,

∆xyϕ + (1 − M2)
∂2ϕ

∂z2 − 2 j kM
∂ϕ

∂z
+ k2ϕ = 0 in Ωduct , (4)

where ∆xy is the Laplacian in the transversal plane (x, y), M = | |v∞ | |/c is the Mach number associated to the steady
flow, k = ω/c is the wave number.
The boundary condition on Γduct consists in writing that the normal derivative of the acoustic velocity potential is zero.
In addition, the continuity on interface Γf of acoustic velocity potential ϕ with acoustic velocity potential ψi is written
as ϕ = ψi on Γf .

Modal representation for the acoustic excitation by the fan and the reflected sound field. Using Rienstra’s work
[23] on constant cross-section ducts (independent of z), the acoustic velocity potential field ϕ introduced in Eq. (4) is
rewritten by keeping only a finite number Nd of duct modes and by showing the contribution of the given incident sound
field (represented by symbol +) that represents the acoustic excitation induced by the fan and the contribution of the
unknown associated reflected sound field (represented by symbol -). From Eq. (4), function ϕ(x, y, z) can be written as,

ϕ(x, y, z) =
Nd∑
α=1

ϕα(x, y)
(
c+αe jk+zα z + c−αe jk−zα z

)
, (5)

in which k+zα is the axial wavenumber of the wave propagating in the upstream direction and k−zα is the axial wavenumber
of the wave propagating in the downstream direction.
It should be noted that the acoustic excitation by the fan, which is associated with the incident sound field, will be
defined by giving the complex vector c+ = (c+1 , . . . , c

+
Nd
), while the unknown reflected sound field depends on the vector

c− = (c−1 , . . . , c
−
Nd
) and should be included with all the unknown fields of the acoustic problem.

Definition of the modal intensity I+α In the present paragraph, the frequency ω is fixed and is removed for simplifying
the writing. The acoustic pressure p is related to the velocity potential ϕ by Eq. (2) and the continuity condition ψi = ϕ
on Γf. The velocity potential ϕ, can be rewritten as ϕ = ϕ+ + ϕ− ,where

ϕ+(x, y, z) =
∑
α

c+αϕα(x, y)e
jkzα z . (6)

We then define p+α,
p+α = − jωρ0ϕ

+
α − ρ0v0 · ∇ϕ+α . (7)

in which ϕ+α is the contribution of mode α in ϕ+. The modal intensity I+α , related to pressure p+α, is defined by

I+α = 10 log10

(
|p+α |

2

p2
ref

)
, (8)

in which pref = 2×10−5 is the reference pressure.
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Modeling of the nominal modal intensity I+α Simulated data are computed following hypotheses on the modal
content that concern broadband and emergence levels, and energy repartition between the different modes. For that
purpose, a custom modal content is introduced, based on several sate-of-the-art modal contents. A broadband level is set
for all azimuthal and radial orders. One emergence level corresponding to the engine order is set, as well as two other
emergence levels for which the azimuthal order can be set. Then, a number of azimuthal orders from each side of each
emergence (corresponding to the impact of emergences over neighboring modes), for which the acoustic energy decays
as a function of the azimuthal order. For all emergences, the energy is only carried by the first radial order. Algebraically,
the modal content can be described using the following parameters. An example can be found on the figure below.

-15 -10 -5 0 5 10 15

• Imn is the modal intensity of azimuthal order m and
radial order n,

• IEO is the modal intensity of the engine order of
azimuthal order m = mEO (red bar),

• IFE− is the modal intensity of the negative flexible
emergence of azimuthal order m = mFE− (green
bar),

• IFE+ is the modal intensity of the quarter engine
order of azimuthal order m = mFE+ (cyan bar),

• IBB is the modal intensity of the broadband, Nadj is
the number of adjacent modes on which the engine
order acoustic energy is reverberated (blue bar),

• Nazi is the number of azimuthal orders, and Nrad is
the number of radial orders per azimuthal order.

D. Finite/Infinite Element discretization of the weak formulation
The weak formulation of the boundary value problem defined by Eqs (1) to (4) with ϕ given by (5) is discretized by the
Finite/Infinite Element Method (FEM/IEM). For all ω fixed in R, let ψi(ω) be the complex vector in CNi corresponding
to the finite element discretization of field ψi(r,ω) in which Ni is the number of degrees of freedom (dofs). Let ψo(ω)
be the complex vector in CNo corresponding to the infinite element discretization of field ψo(r,ω) in which No is the
number of dofs in the outer domain. We then obtain the computational model in terms of ψi(ω), ψo(ω), and c−(ω),
which is written as, 

[Ai(ω)] + [Zi(ω)] [H(ω)] −[Eif] [F−(ω)]
−[H(ω)]T [Ao(ω)] [0]
[E] [0] −[R−(ω)]



ψi(ω)
ψo(ω)
c−(ω)

 =

[Eif] [F+(ω)]
[0]

[R+(ω)]

 c+ , (9)

in which,
• the (Ni × Ni) complex matrix [Ai(ω)], the (No × No) complex matrix [Ao(ω)], and the (Ni × No) complex matrix
[H(ω)] correspond to the block decomposition of the aeroacoustic impedance matrix.

• The diagonal (Nd × Nd) complex matrices [R+(ω)] and [R−(ω)] correspond to the incident and to the reflected
modal participations in the duct domain Ωduct.

• The (Nd × Ni) constant real matrix [E] corresponds to the finite element discretization of the inner product in the
space of all the square integrable functions on boundary Γf.

• The (Ni × Nf) real matrix [Eif] constituted of ones and zeros, allows for selecting the dofs related to boundary Γf.
• The (Nf × Nd) complex matrices [F+(ω)] and [F−(ω)] represent the discretization of the incident and the reflected
modal participations in the inner domain Ωi.

III. Computational reduced-order model
In Section IV, we will present the probabilistic modeling of uncertainties in the computational model defined by Eq. (9).
These uncertainties will be taken into account for both the parametric uncertainties and the model uncertainties induced
by the modeling errors for the aeroacoustic and for the liner. Consequently, we need to reorganize the algebraic structure
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of the complex matrix equation defined by Eq. (9) in order to exhibit the unknowns related to the liner boundary, and thus
create an interface problem between the liner and the rest of the model. Moreover, since the nonparametric approach
of uncertainties is used, the system size needs to be drastically reduced. This is why we use the static condensation
coupled with a reduced-order model.

A. Frequency by frequency static condensation with respect to the liner dofs and expression of the fan acoustic
excitation
the complex vector ψ`(ω) belonging to CN` of the N` dofs of the liner and the complex vector ψa belonging to CNa

of the Na other dofs of (ψi(ω),ψo(ω),c−(ω)). This means that Na = Ni + No + Nd − N` .
The computational model defined by Eq. (9) can be rewritten in a block form as,[

[A``(ω)] [A`a(ω)]
[Aa`(ω)] [Aaa(ω)]

] [
ψ`(ω)
ψa(ω)

]
+

[
[Z`(ω)] 0

0 0

] [
ψ`(ω)
ψa(ω)

]
=

[
0

fa(ω)

]
. (10)

An ω by ω static condensation using the Schur complement method (see for instance [20]) is performed by eliminating
the vector ψa(ω), which yields,

([A`(ω)] + [Z`(ω)])ψ`(ω) = [B`(ω)] c+ . (11)

in which [A`(ω)] and [Z`(ω)] are (N` × N`) complex matrices, ψ`(ω) is a (N` × 1) complex vector, [B`(ω)] is a
(N` × Nd) complex matrix, and in which c+ is a (Nd × 1) complex vector (N` being the number of liner dofs and Nd the
number of cut-off excitation duct modes).

B. Computational reduced-order model using a pellicular projection
Following the explanations given at the beginning of Section III.A, the uncertainties will be taken into account by
using the nonparametric probabilistic approach [2]. Since there is a non negligible number of liner dofs, the static
condensation only is not sufficient. Such an approach then requires the introduction of a reduced-order model associated
with Eq (11). For such a construction we need to introduce a reduced-order basis that is chosen as a pellicular basis (see
[19, 24, 25]).
This pellicular basis is associated with the acoustic radiation of the liner delimited by its boundary Γ on which a thin
acoustic layer (the pellicular domain) is introduced. Considering that the acoustic layer thickness is infinitely thin
regarding to the acoustic wavelength, a set of acoustic modes related to the pellicular domain is computed solving the
eigenvalue problem [KL]φα = λα[ML]φα derived from the computational model, in which the symmetric (N` × N`)
real matrices [KL] and [ML] are positive definite and represent, respectively, the acoustic thickness matrix and
the associated mass matrix. The eigenvector φα belonging to RN` is called a pellicular eigenvector and λα is its
corresponding eigenvalue. These pellicular eigenvectors verify the classical orthogonal properties. Let n` be the
number of pellicular eigenvectors φ1, . . . ,φn` that are retained for the construction of the reduced-order model. We then
introduce the (N` × n`) real matrix [Φ] whose columns are φ1, . . . ,φn` .
The computational reduced-order model is obtained by projecting Eq. (11) on the subspace spanned by [Φ] and is thus
written as,

ψ`(ω) = [Φ]q(ω) , (12)

([A(ω)] + [Z(ω)])q(ω) = [B(ω)] c+ , (13)

in which q(ω), which belongs to Cn` , is a complex vector of the generalized coordinates, and where the (n` × n`)
complex matrix [A(ω)] = [Φ]T [A`(ω)][Φ], the (n` × n`) complex matrix [Z(ω)] = [Φ]T [Z`(ω)][Φ], and the (n` × Nd)

complex matrix [B(ω)] = [Φ]T [B`(ω)].
In order to implement the nonparametric probabilistic approach, matrix [A(ω)] and [Z(ω)] need specific algebraic
properties related to conservative and dissipative properties. For instance, the liner generalized impedance matrix
[Z(ω)] has to be decomposed in real, imaginary, symmetric and skew-symmetric parts in order to extract the exact term
that is responsible for the dissipative in the computational model. Such algebraic properties and decompositions are not
presented in this paper.
In the framework of the nonparametric probabilistic approach, the uncertainties in the computational model will be
implemented by substituting complex matrices [A(ω)] and [Z(ω)] by random complex matrices [A(ω)] and [Z(ω)]. The
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uncertainties on vector c+ are taken into account by the parametric probabilistic, which consists in modeling c+ by a
random vector C+.

IV. Probabilistic model for uncertainty quantification
As previously explained, three sources of uncertainties are taken into account. The first one is related to uncertainties
induced by modeling errors in the impedance matrix of the liner appearing in the computational reduced-order model.
The second one corresponds to model uncertainties in the aeroacoustic part of the computational model (including
the mean-flow computation, the convected acoustic equations, and the duct acoustic related to the fan excitation). The
third one is related to uncertainties in the acoustic excitation induced by the fan. The stochastic solver of the random
equation is presented. For each value of the frequency, the Stochastic Reduced-Order Model (SROM) is solved by the
Monte Carlo numerical simulation method [26]. The convergence analysis is carried out with respect to the number of
realizations. For the first two sources of uncertainties, the nonparametric probabilistic approach is used, in particular the
construction of the probabilistic model of the random matrices (see [2]). For the third one, the parametric probabilistic
approach is used.

A. Construction of the probabilistic model of the generalized liner impedance matrix
In the nonparametric approach of uncertainties, complex matrix [Z(ω)] introduced in Eq. (13) is then replaced by the
random matrix [Z(ω)], which exhibits a conservative part [ZNS(ω)] and a dissipative part [ZS

I (ω)] as,

[Z(ω)] = [ZNS(ω)] + j[ZS
I (ω)] . (14)

Both conservative and dissipative parts have a proper stochastic modeling that is briefly summarized in the following
paragraphs.

Construction of the probabilistic model of random complex matrix [ZNS(ω)] (conservative part). The liner
conservative impedance matrix [ZNS(ω)] is constructed as follows by using the polar decomposition (cf Appendix X.A)
of deterministic complex matrix [ZNS(ω)] (assuming that [ZNS(ω)] is invertible) as [ZNS(ω)] = [UZ(ω)] [TZ(ω)] in which
[TZ(ω)] is a positive-definite Hermitian (n` × n`) complex matrix and where [UZ(ω)] is a unitary complex (n` × n`)
matrix . Then, using the appropriate stochastic modeling for each positive frequency ω fixed, the (n` × n`) complex
random matrix [ZNS(ω)] yields,

[ZNS(ω)] = [UZ(ω)] [LZT (ω)]
∗ [GNS

Z ] [L
Z
T (ω)] , (15)

in which [LZT (ω)] is the result of the Cholesky factorization of the positive-definite Hermitian matrix [TZ(ω)]. [LZT (ω)]
is an upper triangular (n` × n`) complex matrix with positive diagonal. The random (n` × n`) real matrix [GNS

Z ] belongs
to the set SG+ε of random matrices defined in Appendix X.B in which the hyperparameter δ is denoted by δZ allows for
controling the level of uncertainties.

Construction of the probabilistic model of positive-definite symmetric real random matrix [ZS
I (ω)] (dissipative

part). The Cholesky factorization of the positive-definite symmetric real (n` × n`) matrix [ZS
I (ω)] is written as

[ZS
I (ω)] = [L

S
Z(ω)]

T [LS
Z(ω)] , (16)

in which [LS
Z(ω)] is an upper triangular (n` × n`) real matrix with positive diagonal. Let ε > 0 be a fixed positive small

parameter (ε � 1). The random (n` × n`) complex matrix [ZS
I (ω)] is then constructed as,

[ZS
I (ω)] = [L

S
Z(ω)]

T [GS
Z] [L

S
Z(ω)] , (17)

in which [GS
Z] is a random (n` × n`) real matrix belonging to the set SG+ε defined and constructed in Appendix X.B in

which the hyperparameter δ is denoted by δZ and is the same as the one used for randomizing the matrix [ZNS(ω)].
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B. Construction of the probabilistic model of the generalized aeroacoustic matrix
In order to construct the random aeroacoustic matrix [A(ω)], we use the same methodology as the one used for the
construction of the random matrix [ZNS(ω)], such that,

[A(ω)] = [UA(ω)] [TA(ω)] , (18)

in which [UA(ω)] is a unitary (n` × n`) complex matrix, such that [UA(ω)]∗ [UA(ω)] = [In` ] , and where [TA(ω)] is a
positive-definite Hermitian (n` × n`) complex matrix whose construction is done as follows,

[TA(ω)] = [LAT (ω)]
∗ [GA][LAT (ω)] , (19)

in which [LAT (ω)] corresponds to the Cholesky factorization of matrix [TA(ω)] and the random (n` × n`) real matrix
[GA] belongs to the set SG+ε defined in Appendix X.B. The hyperparameter δA controls its level of uncertainties.

C. Parametric probabilistic modeling of the fan acoustic excitation
In order to take into account the uncertainties on the complex vector c+ that has been introduced for describing the
fan acoustic excitation, vector c+ is modeled by a random vector C+ with values in CNd . This random vector C+(ω)
depends on frequency ω. Nevertheless, in order to simplify the notation, this frequency dependence will be removed in
this section.
The methodology used for performing the probabilistic construction is based on the use of the Maximum Entropy
principle. The first step consists in defining the nominal value of c+, the second one in defining the available information,
and the third one in applying the Maximum Entropy principle under the constraints defined by the available information
(see for instance [2], [27], [28], [29]). Details of the construction can be found in Appendix X.C.

For α fixed in {1, . . . ,Nd}, the component c+α of complex vector c+ = (c+1 , . . . , c
+
Nd
), which corresponds to the nominal

value is written as,

c+α = aα e jϕ
α , (20)

in which aα is the amplitude and ϕ
α
is the phase. The nominal value of complex vector c+ is then represented by

the real vector a = (a1, . . . ,aNd
) of the nominal values of the amplitudes and the real vector ϕ = (ϕ

1
, . . . , ϕ

Nd
) of the

nominal values of the phases. The nominal values are assumed to be given and consequently, the deterministic real
vectors a and ϕ are given.
Then, the random vector C+ = (C+1 , . . . ,C

+
Nd
) of component α is written as,

C+α = A+α e jΦ+α . (21)

in which A+ = (A+1 , . . . , A
+
Nd
) be the RNd -valued random variable of the amplitudes and let Φ+ = (Φ+1 , . . . ,Φ

+
Nd
) be the

RNd -valued random variable of the phases. We then have to construct the probability distribution of the random vector
(A+,Φ+) using the Maximum Entropy principle for which the available information is defined in Appendix X.C.

D. Construction of the SROM by using the nonparametric probabilistic approach of uncertainties
As previously explained, the nonparametric probabilistic approach of both the parametric uncertainties and the model
uncertainties induced by modeling errors in the computational model of the acoustic radiation of an inlet consists in
modeling matrix [Z(ω)] defined by Eq. (13) by the random complex matrix [Z(ω)] defined by Eq. (14) and [A(ω)]
defined by Eq. (13) by the random complex matrix [A(ω)] defined by Eq. (18). The uncertainties on the fan acoustic
excitation consist in modeling c+(ω) by the random complex vector C+(ω) as constructed in Section IV.C. The Quantity
of Interest is a random vector QoI(ω) depending on ω that can be written as,

QoI(ω) = [FQoI(ω)]C+(ω) − [AQoI(ω)]Q(ω) , (22)

in which,
[FqoI(ω)] = [Oobs(ω)] [Aaa(ω)]

−1 [Ba(ω)] , (23)

[AqoI(ω)] = [Oobs(ω)][Aaa(ω)]
−1[Aa`(ω)] [Φ] , (24)
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where [Oobs(ω)] is the observation matrix such that,

qoI(ω) = [Oobs(ω)]ψa(ω) . (25)

The random vector Q(ω) of the generalized coordinates verifies the random equation,

([A(ω)] + [Z(ω)])Q(ω) = [B(ω)]C+(ω) . (26)

E. Solving the stochastic matrix equation and constructing the confidence regions
The Monte Carlo method is used for solving the SROM. It consists in computing a set of νs independent realizations,
with νs sufficiently large, of the random quantities of interest by using Eqs. (22) and (26). From this set of independent
realizations, estimates of the statistics for the quantities of interest are computed, such as probability density functions,
moments (means, standard deviations), confidence intervals. The convergence of the estimates are analyzed with respect
to νs .

The frequency band of analysis [ωmin,ωmax] is sampled in nω points {ω1, . . . ωnω }. For given ωj , νs realizations
QoI(ωj ; θ`) for ` = 1, . . . , νs are given by

QoI(ωj ; θ`) = [FqoI(ωj)]C+(ωj ; θ`) − [AqoI(ωj)]Q(ωj ; θ`) , (27)

in which the realization Q(ωj ; θ`) of random vector Q(ωj) is given by solving the deterministic linear matrix equation,(
[A(ωj ; θ`)] + [Z(ωj ; θ`)]

)
Q(ωj ; θ`) = [B(ωj)]C+(ωj ; θ`) , (28)

in which {[A(ωj ; θ`)], [Z(ωj ; θ`)],C+(ωj ; θ`), ` = 1, . . . , νs} are νs independent realizations of random complex matrix
[A(ωj)], [Z(ωj)] and of random complex vector C+(ωj).

Substituting Q(ωj ; θ`) given by Eq. (28) by Eq. (27) yields,

QoI(ωj ; θ`) = [T(ωj ; θ`)]C+(ωj ; θ`) , (29)

in which,

[T(ωj ; θ`)] = [FqoI(ωj)] − [AqoI(ωj)]
(
[A(ωj)] + [Z(ωj ; θ`)]

)−1
[B(ωj)] (30)

is a complex matrix.

V. Configuration and computational model of a generic industrial nacelle
In this section, we present the computational model that is used to assess the performance of an acoustic liner in its
operating environment.
In a first step, for a given flight condition, CFD is used for calculating velocity and mass density fields in the steady flow.
In a second step, the computational aeroacoustic model is constructed.

For the aeroacoustic model including the liner, the finite/infinite element discretization shown in Figure 3, is used. There
are three fluid boundaries:

• the liner surfaces (red and orange surfaces), which allows for calculating the impedance of the liners as a function
of the thermodynamic values on their surface, and for imposing it to the incident excitation pressure field.

• the fan excitation surface (green color), which allows for constructing the incident pressure field imposed to the
system throught the duct.

• the near/far-field surface, which allows for imposing the continuity of the velocity potential between near-field and
far-field.

Note that the existence of a system symmetry allows for using a half model for which a zero pressure condition (perfect
reflection) is imposed on the symmetry plane. The system is then solved in two steps, one for the symmetric part
(positive excitation azimuthal orders), and a second one for the anti-symmetric part (negative excitation azimuthal
orders). There are 460 000 dofs in the computational model of the half system for a maximum frequency of 1000 Hz,
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Fig. 3 Left : Finite/Infinite Element discretization of the half-3D generic nacelle intake (red: liner surface,
green: fan excitation surface, purple: Infinite Elements). Right : 2D section of the half-3D generic aeroacoustic
mesh shown on the left figure.

and 3 000 000 dofs for the 2 000 Hz mesh. The quantities of interest are the far-field acoustic pressure that are captured
by a microphone array located at 46 m of the nacelle axis, as it can be seen in Figure 4, and ring acoustic pressure that
are captured by a microphone array located on the nacelle intake lip. The fan acoustic contributions are observed and
allows for computing both the far-field and the ring directivity modal SPL (Sound Pressure Level) quantities. The SPL
broadband azimuthal quantity (far-field) consists in calculating the quadratic mean of the acoustic pressure over cut-on
excitation modes, accounting for statistically independent random phases on [0,2π]. Whereas, for the ring, azimuthal (or
circumferential) SPL are computed using the phase of each microphone and the modal contribution of the fan excitation
recovered on each microphone. In the present work, several flight conditions are studied, which correspond to acoustic

46m

0°

140°

Fig. 4 Left: far-field microphone array. Right: ring microphone array located in the nacelle intake lip.

certification points following ICAO rules [30].

VI. Definition of the Quantities of Interest

A. Quantities of Interest on the ring
Acoustic pressure on the ring

pring,i(ω) =

Nazi∑
m=−Nazi

am(ω)e jmϕi , (31)

in which ω is the angular frequency, m is the azimuthal order, am(ω) is the complex amplitude of the azimuthal order m,
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and ϕi = 2π(i − 1)/Nmics is the angle in rad of the ith microphone, in which Nmics is the number of microphones on the
ring. Equation (31) can be rewritten, in a matrix form, as

pring(ω) = [Φ] a(ω) , (32)

inwhichpring(ω) = (pring,1(ω), . . . , pring,Nmics ) is the complex vector inCNmics , a(ω) = (a−Nazi (ω), . . . ,a0(ω), . . . ,aNazi (ω))

is the complex amplitude vector in C2Nazi+1, and [Φ] is the complex matrix inMNmics ,2Nazi+1(C) such that [Φ]im = e jmϕi .

Azimuthal amplitude for the ring acoustic pressure Assuming that 2Nazi + 1 ≤ Nmics, the complex amplitude
vector a(ω) is obtained by using the left pseudo-inversion, as

a(ω) =
(
([Φ]∗[Φ])

−1
[Φ]∗

)
pring(ω) . (33)

Azimuthal Sound Pressure Level for the ring acoustic pressure The azimuthal amplitude of azimuthal order m of
the acoustic pressure on the ring, expressed in dB, is defined, for m ∈ {−Nazi, . . . ,0, . . . ,Nazi}, by

SPLring,m(ω) = 10 log10

(
|am(ω)|2

p2
ref

)
. (34)

B. Quantities of Interest for the far-field
Acoustic pressure in the far-field For the ith microphone on the far-field arc defined in Fig. 4, for which there are
Nmics microphones, the acoustic pressure is denoted by pff,i(ω). The complex vector in CNmics of the acoustic far-field
pressures is then defined by

pff(ω) = (pff,1(ω), . . . , pff,Nmics (ω)) . (35)

Sound Pressure Level in the far-field The sound pressure level of the ith microphone related to pff,i(ω) (Eq. (35)) is
defined by

SPLff,i(ω) = 10 log10

(
|pff,i(ω)|

2

p2
ref

)
, (36)

C. Definition of experimental QoIs
Experimental Azimuthal Sound Pressure Level on the ring The experimental data are acquired on the ring that
consists of Nmics = 100 flush-mounted microphones distributed on the intake lip (see Figure 4). The azimuthal sound
pressure level related to aexp

m (ω) is given by Eq. (33) is written on the ring(see Eq. (37)), as

SPLexp
ring,m(ω) = 10 log10

(
|aexp

m (ω)|
2

p2
ref

)
, (37)

Experimental Sound Pressure Level in the far-field The sound pressure level in the far-field is written as

SPLexp
ff,i (ω) = 10 log10

(
|pexp

ff,i (ω)|
2

p2
ref

)
. (38)
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VII. Definition of simulated QoIs
The stochastic computational aeroacoustic model used for representing the experimental set-up depicted in Figure 4), is
the one defined in section IV. Since the aeroacoustic computational model is linear, in order to avoid the call to the
computational model a large number of times during the identification algorithm, the acoustic pressures on the ring
and in the far-field, are firstly computed for a given reference modal intensity I+,ref

α (ω). For instance, such a reference
I+,ref
α (ω) is chosen as 100 dB for all ω and for all α. Then, these results are used for computing the acoustic pressures
on the ring and in the far-field for a given modal intensity I+α (ω). This is the reason why we need to rewrite the different
QoIs in function of the modal intensity I+α through the use of the reference modal intensity I+,ref

α (ω).

A. Expression of the different Quantities of Interest as a function of the modal intensity I+α
The acoustic pressure pi(ω) for each microphone i (ring or far-field) and for mode α is computed using the computational
aeroacoustic model. This acoustic pressure corresponds to an injected acoustic modal intensity I+,ref

α for each duct
mode α. The square of the acoustic pressure modulus corresponding to each duct mode α corresponding to I+,ref

α (ω), is
defined by

|pref
α (ω)|

2 = p2
ref 10(I

+,ref
α (ω)/10) . (39)

For the modal intensity I+α (ω), the square of the acoustic pressure modulus is then written as

|pα(ω)|2 = p2
ref 10(I

+
α (ω)/10) , (40)

which can be rewritten using the reference modal intensity I+,ref
α as

|pα(ω)|2 = p2
ref 10(I

+
α (ω)−I

+,ref
α (ω))/10 , (41)

Expression of the simulated QoIs on the ring Let aα(ω) ∈ C2Nazi+1 be the complex amplitude vector of mode α
such that

aα,ref(ω) =
(
([Φ]∗[Φ])

−1
[Φ]∗

)
pα,ref

ring (ω) , (42)

in which pα,ref
ring (ω) is the vector in C

Nmics of the acoustic pressures on the ring computed for the reference modal intensity
I+,ref
α . The azimuthal sound pressure level SPLsim

ring,m(ω) on the ring for the modal intensity I+α (ω) is then given, for
m ∈ {−Nazi, . . . ,0, . . . ,Nazi}, by

SPLsim
ring,m(ω) = 10 log10

(
1

Nd

Nd∑
α=1

|aα,ref
m (ω)|2

p2
ref

× 10(I
+
α (ω)−I

+,ref
α (ω))/10

)
. (43)

Expression of the simulated far-field QoIs The sound pressure level in the far-field for the modal intensity I+α (ω) is
given by

SPLsim
ff (ω) = 10 log10

(
1

Nd

Nd∑
α=1

|pα,ref
ff (ω)|2

p2
ref

× 10(I
+
α (ω)−I

+,ref
α (ω))/10

)
, (44)

in which pα,ref
ff (ω) is the vector in CNmics of the acoustic pressures on the far-field arc computed for the reference modal

intensity I+,ref
α .

B. Notation for the random variable and the mean value of the QoIs
For the hardwall case (no liner), in the stochastic computational aeroacoustic model, the random quantities are (1) the
modal intensity I+α (ω), whose hyperparameters of the probabilistic model are I+α(ω) and σα (see Section VII.A), and (2)
the generalized aeroacoustic matrix for which the hyperparameter is δA. In this condition, the sound pressure level
becomes random and will denote these random variables and their mean values as follows.

• The random azimuthal sound pressure level on the ring, defined by Eq. (43), is denoted SPLsim
ring,m(ω) (notation

unchanged). A realization of this random variable is SPLsim
ring,m(ω; θ). Its mean value is denoted SPLsim

ring,m(ω).
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• The random sound pressure level in the far-field, defined by Eq. (44), is denoted SPLsim
ff (ω) (notation unchanged).

A realization of this random variable is SPLsim
ff (ω; θ). Its mean value is denoted SPLsim

ff (ω).

VIII. Sensitivity analysis with respect to uncertainties
This section aims to present some results of the sensitivity analysis with respect to uncertainties in order to assess their
impact on both far-field and ring modal pressure response.

A. Sensitivity study of modal Sound Pressure Levels towards uncertainties
In this subsection, the sensitivity of modal QoIs towards aeroacoustic and liner uncertainties on specific modes is
undertaken. The main objective is to observe the raw impact of uncertainties on those modes, by avoiding unwanted
effects such as the smoothing due to the averaging over all modes accounted for in the calculation of global SPLs. A
comparison between hardwall configuration with aeroacoustic uncertainties only and lined configuration with liner
uncertainties only is done as well as a comparison between far-field and ring datasets. This preliminary study is done
for the same flight condition (approach) and frequency (1 BPF), and allows for controlling the validity of the problem
physical representativeness. For this specific configuration, fan noise signature contains multimodal (broadband) noise
and tonal noise. Tonal noise is generally carried by modes for which the azimuthal order corresponds to the engine
order, and/or the rotor-stator interaction mode (Tyler and Sofrin [31]). As these specific modes are cut-on in this specific
configuration, the same sensitivity analysis should be done on another configuration, for which the excitation modal
content contains these modes. The present preliminary study is carried out for a relatively simple configuration that
allows for computational costs to remain low (and thus allow for more analyses).

First mode (m,n) = (0,1) The first mode generally radiates in the nacelle axis direction and is not impacted by lined
surfaces since its acoustic energy is concentrated at the center. This mode is then interesting to be investigated in order
to confirm that liner uncertainties will have low to zero impact on the acoustic response in this configuration.

(a) Hardwall duct view (b) Lined duct view (c) Hardwall fan view (d) Lined fan view

Fig. 5 Visualization of the acoustic pressure (norm) for the first mode (m,n) = (0,1) inside the duct from two
perspectives: side and front. Hardwall and lined configuration are depicted.

On Fig. 5, the acoustic pressure (norm) for the first mode (m,n) = (0,1) is shown from two perspectives. Inside the
duct (Fig. 5a and Fig. 5b), the acoustic pressure is quite heterogeneous along the nacelle axis, depicting a zone where
it is higher (at the top, close to the lip for the hardwall configuration, and outside along the nacelle axis for the lined
configuration). In a cross section of the nacelle where the fan is located (Fig. 5c and Fig. 5d), the difference between
hardwall and lined configuration is not important (only the global amplitude of the swelling mode is different).
On Fig. 6, the sensitivity of the mode (m,n) = (0,1) towards aeroacoustic and liner uncertainties is presented, observed
on the ring microphone array. For the hardwall condition (Fig. 6a), one can notice that the confidence region associated
with each one of the uncertainty level values (from 1 to 10%) thicken then quickly stabilize. This is a saturation
phenomenon that occurs for δA = 7.5%, and means that by adding more uncertainties, the thickness of the confidence
region would not increase much. This cannot be observed on the lined dataset for which uncertainties have a low impact
on ring acoustic pressure (Fig. 6b), which is not surprising as the acoustic energy in the duct is located at the center.
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(a) Hardwall with aeroacoustic uncertainties only

-150 -100 -50 0 50 100 150

(b) Lined with liner uncertainties only

Fig. 6 Sensitivity of modal ring SPL data towards aeroacoustic uncertainty level δA (left) and liner uncertainty
level δZ (right) for the approach condition at the blade passing frequency f = 654 Hz (1 BPF) for the mode
(m,n) = (0,1) by comparison between nominal data (black line) and simulation data for different values of
parameters δA and δZ. One graduation equals 5 dB.

10 20 30 40 50 60 70 80 90 100 110 120

(a) Hardwall configuration with aeroacoustic uncertainties
only

10 20 30 40 50 60 70 80 90 100 110 120

(b) Lined configuration with liner uncertainties only

Fig. 7 Sensitivity of far-field modal SPL data towards aeroacoustic uncertainty level δA (left) and liner uncer-
tainty level δZ (right) for the approach condition at the blade passing frequency f = 654 Hz (1 BPF) for the
mode (m,n) = (0,1) by comparison between nominal data (black line) and simulation data for different values of
parameters δA and δZ. One graduation equals 20 dB.

On Fig. 7a, the impact of aeroacoustic uncertainties over the hardwall far-field dataset is assessed for different levels.
One can notice that the confidence regions increase linearly as δA increases. The saturation effect observed on Fig. 6a
might appear for a greater value of δA on the far-field dataset. Giving the presence of a rather heterogeneous repartition
of energy inside the duct, and especially close to the lip (see Fig. 5b), the impact of aeroacoustic uncertainties seems
legitimate. For the lined configuration (Fig. 7b), the impact of liner uncertainties is far less important than aeroacoustic
uncertainties on the hardwall case. Nevertheless, the impact is much more visible on the far-field array than on the ring
array for this configuration (see Fig. 6b) simply because the dynamic is different on both figures, the confidence region
being approximately 2dB thick for both ring and far-field datasets.

Last mode (m,n) = (10,1) The second mode to be investigated correspond to the last cut-off mode of the excitation
modal content. This mode is interesting because of its energy repartition inside the duct, which is mainly concentrated
close to the duct wall. As this mode is supposed to be strongly attenuated by lined surfaces, liner uncertainties should
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have an impact on the acoustic response.

(a) Hardwall duct view (b) Lined duct view (c) Hardwall fan view (d) Lined fan view

Fig. 8 Visualization of the acoustic pressure (norm) for the mode (m,n) = (10,1) inside the duct from two
perspectives: side and front. Hardwall and lined configuration are depicted.

Fig. 8 shows the acoustic pressure (norm) for the last mode (m,n) = (10,1). Inside the duct (Fig. 8a), the acoustic
pressure is mainly concentrated close to the duct wall. This is conform with what can be seen on Fig. 8c, on which one
can observe the alternation between pressure zeros and nonzeros. Since this mode has a high cut-off ratio and a short
wavelength, and since its energy is concentrated on the wall, this mode is highly absorbed by liner surfaces. This is
verified by a simple comparison between hardwall and lined duct views for which there is a clear impact of the liner on
the acoustic pressure (Fig. 8a).

-150 -100 -50 0 50 100 150

(a) Hardwall/aeroacoustic uncertainties only

-150 -100 -50 0 50 100 150

(b) Lined/liner uncertainties only

Fig. 9 Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA for the approach condition at
the blade passing frequency f = 654 Hz (1 BPF) for the mode (m,n) = (10,1) by comparison between nominal
data (black line) and simulation data with aeroacoustic uncertainties for different values of parameters δA and
δZ. One graduation equals 5 dB.

On Fig. 9a, the saturation phenomenon is still present and even more important than previously presented (Fig. 6a) for
the first mode. For δA = 5%, ring data are saturated by aeroacoustic uncertainties. This is not the case for the lined
configuration for which liner uncertainties have a little impact on ring data. They have still more impact on this mode
than for the mode (m,n) = (0,1) (see Fig. 6b). Since this mode has a high cut-off frequency (in comparison with the
mode (m,n) = (0,1)), and consequently a short wavelength, this mode is more impacted by the presence of the liner and
so by liner uncertainties.
Fig. 10a depicts the impact of aeroacoustic uncertainties on the ring dataset corresponding to the hardwall config-
uration. The mode (m,n) = (10,1) seems very sensitive towards aeroacoustic uncertainties as confidence regions
tend to thicken and stochastic means increase as δA increase. But contrarily to the first mode (see Fig. 7a), there is
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(a) Sensitivity of azimuthal ring modal SPL towards aeroa-
coustic uncertainties

10 20 30 40 50 60 70 80 90 100 110 120

(b) Sensitivity of broadband far-field modal SPL towards
aeroacoustic uncertainties

Fig. 10 Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA and liner uncertainty level δZ
for the approach condition at the blade passing frequency f = 654 Hz (1 BPF) for the mode (m,n) = (10,1) by
comparison between nominal data (black line) and simulation data for different values of parameters δA and δZ.
One graduation equals 10 dB.

not a clear angle range for which uncertainties have no impact. The same constat can be made for the lined case (Fig. 10b).

This study’s results are not ground breaking but allow for verifying the validity of the method. The objective was to
observe the impact of uncertainties over the ring dataset for two different modes whose energy repartition is opposite:
one mode whose energy is concentrated around the nacelle axis, and another mode whose energy is located close to the
wall. Aeroacoustic uncertainties have a strong impact on both modes, whereas liner uncertainties have impact only on
the last mode, which is logical as it is strongly attenuated by liner surfaces.

B. Sensitivity of global Sound Pressure Levels towards uncertainties
In this subsection, global SPLs are used, as calculated using Eq. (43) for ring datasets, and Eq. (44) for far-field datasets.

Aeroacoustic uncertainties A first step consists in observing the impact of several aeroacoustic uncertainty levels
(δA values) towards global SPLs (for both ring and far-field data). The range of δA ranges from minimum to maximum
intuitive values such as the problem physical meaning would be respected (for example 90% of aeroacoustic uncertainties
is not a reasonable value).
On Fig. 11, the sensitivity study of global SPL towards aeroacoustic uncertainty level is presented for the approach
condition at the BPF. δA varies from 1% to 10%. On the left figure (Fig. 11a), the impact of aeroacoustic uncertainties
on the ring modal SPL is observed. One can notice that the sensitivity of SPLring,m is a logarithm function of δA. While,
it seems that the sensitivity of the far-field SPL (broadband) is a linear function of δA, as it can be seen on Fig. 11b.
This phenomenon has been encountered during the modal SPL sensitivity study (subsection VIII.A).
As explained, aeroacoustic uncertainties have a logarithmic impact on ring data, whereas a linear impact is observed on
far-field data. This difference can be explained by several factor. As the aeroacoustic uncertainties increase, a saturation
effect is quickly observed on ring data. While this saturation might eventually be obtained for a much higher value of δA
on far-field data (this is the case for δA = 50%, see Fig. 11c).
If we take the example of δA = 1%, ring data are much more impacted than far-field data. The difference of the impact
force between ring and far-field data is actually closely linked to the nature of the modes that are captured by the different
microphones. This can be explained by the relative distance of the observer (ring or far-field) to the acoustic source (the
fan). When duct modes exit the nacelle intake, they are captured by the ring, then propagate to be later captured by the
far-field microphones. Indeed, one can notice that the ring, from its relatively close distance to the emission source
(fan), is more likely to capture high cut-off frequency modes for which the acoustic wavelength is small. Whereas, as
the far-field arc of microphone is far from the source, low cut-off frequency modes (which are strongly directive) will
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Fig. 11 Sensitivity of global SPL data towards aeroacoustic uncertainty level δA for the approach condition
at the blade passing frequency f = 654 Hz (1 BPF) by comparison between experimental data (black line) and
simulation data with modified modal content and aeroacoustic uncertainties for several values. One graduation
equals 5 dB.

mainly be captured, while high cut-off frequency modes will already be attenuated. Also, because high cut-off ratio
modes have less energy than low cut-off frequency modes, the impact of uncertainties is more likely to have a stronger
impact on the former. This explains the difference observed for a low level of uncertainties.

Liner uncertainties A sensitivity study of global sound pressure levels for both ring and far-field stochastic data
towards liner uncertainties is needed to observe how the uncertainty will impact the model. For this study, a variation
of liner uncertainties is undertaken (δZ = [10%,30%,50%,70%]), keeping aeroacoustic uncertainties to zero. As it
has been seen in subsection VIII.A, liner uncertainties have a small impact towards modal SPL, for the ring as well
as the far-field data. This could be explained by the fact that the liner studied is already optimized for this flight
condition/frequency. In order to confirm or infirm this hypothesis, the global stochastic SPLs are also computed using a
lined surface for which the admittance has been manually altered by a factor 200%. Results can be seen on Fig. 12b.
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(a) Nominal impedance
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(b) Altered impedance

Fig. 12 Sensitivity of global Azimuthal SPL data towards liner uncertainty level δZ for the approach condition
at the blade passing frequency f = 654 Hz (1 BPF) by comparison between experimental data (black line) and
simulation data with modified modal content and aeroacoustic uncertainties for several values: δA = 10% (cyan
confidence region), δA = 30% (green confidence region), δA = 50% (red confidence region), and δA = 70% (blue
confidence region). Left: optimized admittance; Right: altered admittance by a factor 200%. One graduation
equals 5 dB.

On Fig. 12 (both left and right figures), one can observe that lined uncertainties have a low impact on global ring
data, especially for azimuthal orders in the range [−6; 6]. Whereas outside this range, the azimuthal SPL is slightly
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affected by liner uncertainties. As it has been extensively explained in the previous subsection, high cut-off frequency
modes are more inclined to be affected by uncertainties since they are poorly energetic. The alteration of the admittance
nevertheless implies a more important effectiveness of uncertainties, which is a good result in the framework of the liner
optimization for which an optimum in terms of acoustic absorbtion as well as robustness is expected.
One can observe that on Fig. 12, the sensitivities towards liner uncertainties are slightly different when the liner
admittance is not optimal. Altought this result is reassuring, it cannot be considered as conclusive. Liner uncertainties
should have a more important impact on the detuned liner. Another study would consist in doing this analysis for a
different flight condition and frequency for which the fan noise signature is more exhaustive.

IX. Inverse identification of uncertainty levels
In this section, we present the results of the inverse identification of aeroacoustic, liner, and modal content uncertainty

levels, which is the main objective of this paper. This study is divided into 4 main steps that are (1) the identification of
the deterministic modal content Iα using the hardwall configuration, (2) the identification of aeroacoustic uncertainties
using the hardwall configuration, (3) the identification of liner uncertainties using the lined configuration and the
previously identified aeroacoustic uncertainties, and (4) the identification of modal content uncertainty levels in presence
of the previously identified aeroacoustic and liner uncertainty levels. For this purpose, the underneath objective is to try
to frame experimental data with the 95% confidence region associated with the stochastic response on both ring and
far-field arrays. We use global SPLs (see (44) and (43)), that have different sensitivities towards uncertainties. The
identification could be simply done by using only far-field data but, as the modal content of experimental data is not
known, we expect to reduce the error on the modal content by identifying one using different datasets.

A. Identification of the mean modal content
The lack of knowledge related to the acoustic excitation induced by the fan rotation is a major contribution to the overall
uncertainty of the computational model. As explained in Section II.C.2, the acoustic excitation is represented by a
finite sum of Nd duct modes imposed to the acoustic system. In Section IV.C, the deterministic modal intensity I+α
and its random counterpart I+α of the duct modes have been defined. Concerning the construction of I+α, an empirical
model based on civil-aircraft-manufacturer expertise is used. The current section aims to present the identification of
the level of uncertainty associated with the acoustic excitation modal content. For that purpose, experimental data are
used, corresponding to acoustic pressures measured at points located on a ring at the intake lip, and also on a far-field
microphones array. The ring pressures are also simulated with the stochastic computational aeroacoustic model defined
in Section IV. The identification of the mean value I+α and the hyperparameter σα of the random variable I+α is then
performed by minimizing the distance between experimental and simulated data.

In this subsection, the deterministic modal content is identified by comparing experimental data and simulation data for
which the modal content is modified, as explained in section II.C.2. The method consists in amplifying specific modes
in order to lower the difference between simulation and experimental SPL quantities. For that purpose, the hardwall
configuration is used (no liners).
Fig. 13 shows the results of the modal content optimization using the custom modal content specified in Section II.C.2
for which a broadband level, one positive azimuthal and one negative azimuthal emergence, and one emergence for
the first mode are determined. The left figure (Fig. 13a) shows the azimuthal modified content associated with this
optimization, in which emergences are shown. The right figure (Fig. 13b) shows the modification of the global sound
pressure levels for both ring and far-field data (red line). The black line refers to the nominal calculation, without any
modification of the modal content (all modes sent with a level of 100 dB). The main goal here is to try to tune the modal
content so as to reduce the difference between experimental data and simulated data to a minimum, for both ring and
far-field data.

B. Identification of the aeroacoustic uncertainty level
Once the modal content is coarsely defined, the aeroacoustic uncertainties are identified by varying the parameter δA
from 0 to 1. The main goal is to try to frame a maximum number of experimental points within the 95% confidence
region plotted using superior and inferior quantiles.
As it has been showed in the previous paragraph VIII.B, an aeroacoustic uncertainty level δA = 7.5% is sufficent to
represent aeroacoustic uncertainties. In this paragraph, the associated results are shown for both ring and far-field global
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(a) Visualization of the excitation azimuthal content
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(b) Top: Ring data. Bottom: Far-field data

Fig. 13 Identification of the deterministic modified modal content for the approach condition at the blade
passing frequency f = 654 Hz (1 BPF) by comparison between experimental data (blue line), nominal data
(black line), and simulation data with modified modal content (red line). One graduation equals 10 dB for both
plots.

SPLs.
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(a) Hardwall/Aeroacoustic uncertainties
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(b) Lined/Aeroacoustic and Liner uncertainties

Fig. 14 Left: Identification of the aeroacoustic uncertainty level δA (one graduation equals 10dB for top and
5dB for bottom figure). Right: Identification of the liner uncertainty level δZ. Approach condition at the blade
passing frequency f = 654 Hz (1 BPF). Comparison between experimental data (blue line) and simulation data
with modified modal content and aeroacoustic uncertainties (with the red line being the statistical mean, and
the yellow patch the confidence region at 95% (one graduation equals 20dB for top and 5dB for bottom figure).
Top: Azimuthal SPL of ring data. Bottom: Broadband SPL of far-field data

On Fig. 14a, global SPL for both ring and far-field data are computed for an aeroacoustic uncertainty level δA = 7.5%.
One can observe that for both configurations of microphones, the confidence region frames a satisfying number of
experimental points, with the far-field being the most important target. Now that aeroacoustic uncertainties are coarsely
identified, liner uncertainties can be added to the computational model in order to identify their level.
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C. Identification of the liner uncertainty level
As liner uncertainties are introduced, the computational model changes from hardwall to lined. Liner uncertainties
are identified by varying the parameter δZ from 0 to 1. The main goal is to try and frame a maximum number of
experimental points within the 95% confidence region plotted using superior and inferior quantiles. As it has been seen
in the paragraph VIII.B, liner uncertainties have a relatively small impact on global SPL. The choice of their level is
then difficult to make. We then intuitively decide to apply a reasonable level of liner uncertainty δZ = 30%.
On Fig. 14b, one can notice that the confidence region calculated using both aeroacoustic and liner uncertainties is not
sufficiently large. By adding modal content uncertainties, the confidence region should thicken.

D. Identification of the modal content uncertainty level
As aeroacoustic and liner uncertainties has been fixed, the last parameters that allow for thickening the confidence region
and frame a maximum of experimental points are the modal content uncertainties. Those are identified by varying the
parameters σEO and σBB from 0 to 10 dB, keeping a confidence region as thin as possible.
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(a) Visualization of the excitation stochastic azimuthal con-
tent
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(b) Top: Azimuthal SPL of ring data. Bottom: Broadband
SPL of far-field data

Fig. 15 Identification of the modal content uncertainty levels σEO and σBB for the approach condition at
the blade passing frequency f = 654 Hz (1 BPF) by comparison between experimental data (blue line) and
simulation data with modified modal content and aeroacoustic uncertainties (the red line being the statistical
mean, and the yellow patch the confidence region) at 95%. One graduation equals 20dB for top and 5dB for
bottom figure.

On Fig. 15a, the azimuthal stochastic content is depicted, on which the variability on each azimuthal order is observed
(±2.5dB for broadband modes and ±2.5dB for emergences). On Fig. 15b, the global ring and far-field SPL are plotted,
taking into account the modified modal content (Subsection IX.A), aeroacoustic uncertainties (SubsectionIX.B), liner
uncertainties (Subsection IX.C), and modal content uncertainties. A finer optimization is then needed to obtain a better
identification, by varying all parameters on small ranges around their previously identified values.

E. Confirmation of the method validity for a different flight condition: cutback condition at 1 BPF
As the liner is to be optimized for several engine speed (e.g flight conditions), it is important to validate the identification
method for at least one other engine speed.
Fig. 16 presents the inverse identification of all uncertainty levels in the stochastic model of acoustic propagation for the
cutback flight condition at 1 BPF. Qualitatively, the inverse identification can be considered as correctly done. There is a
sufficient number of experimental points inside the confidence region for both far-field and ring datasets. An important
thing to notice is that the far-field 40 to 60◦ angle region is very sensitive towards aeroacoustic uncertainties and grows
accordingly. This phenomenon is difficult to compensate with the modified modal content (which is logarithmic by
essence). therefore, aeroacoustic uncertainties have to be kept relatively low to avoid the growing of energy in this
specific angle range. That is why, for this example, modal content uncertainties are set to a high value, in order to
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(a) Visualization of the excitation stochastic azimuthal con-
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Fig. 16 Identification of all the uncertainty levels using relative QoIs for the cutback condition at the blade
passing frequency f = 946 Hz (1 BPF) by comparison between experimental data (blue line) and simulation data
with modified modal content, aeroacoustic, and liner uncertainties (the red line being the statistical mean, and
the yellow patch the confidence region) at 95%. Left: one graduation equals 20dB for top and 5dB for bottom
figure. Right: one graduation equals 20dB for top and 10dB for bottom figure.

increase the confidence region thickness and frame a maximum number of experimental points.

23



X. Conclusion
The main objective of the present study is the robust design of nacelle liners. As liner design is frozen in early

phases of the aircraft development, the maturity of data is still very low. The idea is to anticipate changes in aircraft data
that would impact the liner optimum design. For that purpose, uncertainties related to modeling errors and parameters
errors in the computational model for liner performance have to be accounted for. In the computational model, the main
sources of uncertainties correspond to the accounting of the flow (computed using potential Euler equations), the liner
impedance calculation, and the fan acoustic excitation.
In this paper, we present the inverse identification of the deterministic modal content, the aeroacoustic, and liner
uncertainty levels by using experimental data issued from a static ground test for different configurations. One fully
hardwall and one fully treated, as explained in section V. Also, several flight conditions (engine regimes corresponding
to approach and cutback) and one frequency (1 BPF) are studied. From these configurations, two datasets are used, one
close to the fan (on the nacelle intake lip) and one in the far-field. The main idea is to try to tune the modal content, its
uncertainty levels as well as aeroacoustic and liner uncertainty levels by decreasing the distance between experimental
and simulated ring data. Because ring microphones are evenly distributed in the circumferential direction, the azimuthal
content should be easy to determine, whereas the radial content remains unknown. Then, the previously identified
modal content and uncertainty levels (using ring data) are supposed to be coherent with far-field data. This means that,
identifying the aforementioned parameters using only ring data should be sufficiently precise to also frame far-field
experimental points.
As it has been observed for several applications presented here, the identification is not that simple. If the inverse
identification of each parameter was a simple convex optimization problem with only one possible optimum, then,
identifying parameters using ring data would be sufficient. But, this is not the case here, for there is a consequent
number of parameters to optimize simultaneously. For example, there are several modal content definitions that can
be used, each one giving different results when used on far-field data. The azimuthal "location" of emergences can
whether have a strong impact on the far-field representation, or simply none, and the same is observed for the impact of
uncertainty levels. This usually leads to severe differences between a tuning that is well-adapted to ring data, and a
tuning that is well-adapted to far-field data, which are more important in the end. A compromise between the two is
then to be made. In simpler terms, the precision of the identification of uncertainty levels strongly depends on the modal
content knowledge.
The present study is preliminary and is mainly dedicated to the validation of the methodology, in addition to the
identification of uncertainty levels. The respect of simple physical phenomena such as the impact of uncertainties over
duct modes whose energy repartition is well defined is of major importance here. Then, the sensitivity of global sound
pressure levels towards uncertainties is also assessed and allows for understanding the behavior of the stochastic modeling
in an optimization framework. Above all, the synergy between the modal content and the sources of uncertainties is
studied and allows for identifying the levels of uncertainties and the nominal modal content, as they are needed for the
robust optimization of liners.
Nevertheless, considering the lack of knowledge related to the fan excitation modal content, which is of major importance,
the identification of uncertainty levels, which has been presented here, can now be used for the robust optimization, in
which for each set of design parameters, a Monte Carlo analysis is done (for which the uncertainty levels identified in this
paper are fixed). The robust optimization then gives access to the optimum of the liner in terms of acoustic performance
(absorption) and also in terms of robustness, which is related to the level of deviation of stochastic acoustic pressures.
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Appendix

A. Polar decomposition of a complex matrix
It is assumed that the (n` × n`) complex matrix [Q(ω)] is invertible. Therefore, [Q(ω)] can be written (polar
decomposition) as,

[Q(ω)] = [UQ(ω)] [TQ(ω)] , (45)

in which [UQ(ω)] is a unitary (n` × n`) complex matrix, such that,

[UQ(ω)]∗ [UQ(ω)] = [In` ] , (46)

in which [UQ(ω)]∗ = [UQ(ω)]
T
is the transpose conjugate of matrix [UQ(ω)] and where [In` ] is the (n` × n`) identity

matrix. The matrix [TQ(ω)] belongs to the set M+n` (C) of all the positive-definite Hermitian (n` × n`) complex
matrices. This means that [TQ(ω)] is invertible, is such that [TQ(ω)]∗ = [TQ(ω)] (Hermitian symmetry), and is such that
z∗ [TQ(ω)] z > 0 for all z in Cn` such that ‖z‖ , 0 where ‖z‖ is the Hermitian norm in Cn` .

The construction of the representation defined by Eq. (45) can be done as follows. As [Q(ω)] is assumed to be invertible,
then the matrix [HQ(ω)] can be written as,

[HQ(ω)] = [Q(ω)]∗ [Q(ω)] , (47)

which belongs toM+n` (C) and consequently, its spectral decomposition can be written as

[HQ(ω)] = [ΦQ(ω)] [SQ(ω)] [ΦQ(ω)]∗ , (48)

in which [SQ(ω)] is the diagonal (n` × n`) real matrix of the positive eigenvalues of [H(ω)] and where [ΦQ(ω)] is
the (n` × n`) complex matrix of the eigenvectors such that [ΦQ(ω)]∗ [Φ(ω)] = [ΦQ(ω)] [ΦQ(ω)]∗ = [In` ]. Note that
diagonal matrix [SQ(ω)] can also be viewed as the diagonal matrix of the singular values of complex matrix [Q(ω)]. Let
us define the matrix [TQ(ω)] by

[TQ(ω)] = [ΦQ(ω)] [SQ(ω)]1/2 [ΦQ(ω)]∗ . (49)

It can be seen that [TQ(ω)] belongs toM+n` (C). Let [UQ(ω)] be the complex matrix inMn` (C) defined (see Eq. (45)) by,

[UQ(ω)] = [Q(ω)] [TQ(ω)]−1 . (50)

Therefore, it can be verified that [UQ(ω)]∗ [UQ(ω)] = [In` ].

B. Definition and construction of the set SG+ε of random matrices [2]
In this section, all the matrices are independent of frequency parameter ω. A random (n` × n`) real matrix [G]

belonging to SG+ε is a random matrix with values inM+n` (R), which is written as,

[G] =
1

1 + ε
{[G0] + ε[In` ]} , (51)

in which [G0] is a random (n` × n`) real matrix with values in M+n` (R), defined on (Θ,T ,P), which belongs to the
set SG+0 of random matrices defined in [2]. Random matrix [G0] has been constructed using the Maximum Entropy
principle under the constraints defined by the following available information,

E{[G0]} = [In` ] , E{log(det[G0])} = νG0 . (52)

in which νG0 is any constant such that |νG0 | < +∞. The probability distribution obtained of [G0] is not Gaussian,
depends on constant νG0 , and is reparameterized using the dispersion parameter δ, defined by,

δ =

{
E{| | [G0] − E{[G0]} | |

2
F }

| |E{[G0]}| |
2
F

}1/2

=

{
1
n`

E{| | [G0] − [In` ] | |
2
F

}1/2
. (53)
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Consequently, the probability distribution of the non-Gaussian random matrix [G0] depends only on one hyperparameter
that is δ. This hyperparameter allows for controlling the level of statistical fluctuations, that is to say, for controlling the
level of uncertainties. Using E{[G0]} = [In` ], Eq. (51) yields E{[G]} = [In` ]. For θ fixed in Θ, the realization [G0(θ)]
is computed by using the following representation of random matrix [G0],

[G0] = [L]T [L] , (54)

in which [L] is an upper triangular random matrix with values inMn` (R) such that,
1) the random variables {[L]j j′, j ≤ j ′} are mutually independent.
2) for j < j ′, we have [L]j j′ = σGj j′ in which σ = δ (n` + 1)−1/2 and where Gj j′ is a real-valued Gaussian random

variable with zero mean and with a variance that is equal to 1.
3) for j = j ′, we have [L]j j = σ

√
2Vj whereVj is a positive-valued Gamma random variable whose probability

density function with respect to dv is written as

pVj (v) = 1R+ (v)
1

Γ

(
n`+1
2(δ)2
+

1−j
2

) v
n`+1
2(δ)2

−
1+ j

2 e−v . (55)

The random variableVj can be rewritten as the nonlinear transformation h(Gj j ; n` ; δ) of a real-valued Gaussian
random variable Gj j with zero mean and with a variance that is equal to 1.

4) The Gaussian random variables {Gj j′,1 ≤ j ≤ j ′ ≤ n`} are statistically independent.
Remarks.

1) The algebraic representation defined by Eq. (54) shows that although the entries {[L]j j′, j ≤ j ′} of [L] are
mutually independent, the entries {[G0]j j′, j ≤ j ′} of [G0] are mutually dependent.

2) The diagonal entries [L]j j, j = 1, . . . ,n` of random matrix [L] depend on j.

C. Parametric probabilistic modeling of the fan acoustic excitation
The methodology used for performing the probabilistic construction is based on the use of the Maximum Entropy

principle. The first step consists in defining the nominal value of c+, the second one in defining the available information,
and the third one in applying the Maximum Entropy principle under the constraints defined by the available information
(see for instance [2], [27], [28], [29]).

(i) Nominal value. For α fixed in {1, . . . ,Nd}, the component c+α of complex vector c+ = (c+1 , . . . , c
+
Nd
) is written as,

c+α = aα e jϕ
α , (56)

in which aα is the amplitude and ϕ
α
is the phase. The nominal value of complex vector c+ is then represented by

the real vector a = (a1, . . . ,aNd
) of the nominal values of the amplitudes and the real vector ϕ = (ϕ

1
, . . . , ϕ

Nd
) of the

nominal values of the phases. The nominal values are assumed to be given and consequently, the deterministic real
vectors a and ϕ are given.

(ii) Available information. The component α of the complex random vector C+ = (C+1 , . . . ,C
+
Nd
) is written as,

C+α = A+α e jΦ+α . (57)

Let A+ = (A+1 , . . . , A
+
Nd
) be the RNd -valued random variable of the amplitudes and let Φ+ = (Φ+1 , . . . ,Φ

+
Nd
) be the

RNd -valued random variable of the phases. We then have to construct the probability distribution of the random vector
(A+,Φ+) using the Maximum Entropy principle for which the available information is defined as follows.

For α fixed in {1, . . . ,Nd},
1) A+α is a second-order random variable with values in R+.
2) The mean value of A+α is aα, that is to say, E{A+α} = aα.
3) For a→ 0+ (0+ denotes 0 by upper values), the probability density function a 7→ pA+α (a) must go to zero (if not,

the value of pA+α (0) should be given and we have no information about this). The weak constraint that allows for
imposing this condition is E{log(A+α)} = b+α in which |b+α | < +∞ and where log is a Neperian logarithm. This
unknown constant b+α will be reexpressed in terms of the coefficient of variation δα = σα/aα of random variable
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A+α in which σα is the standard deviation of A+α. This coefficient of variation is unknown and is, either used as a
sensitivity parameter with respect to the level of uncertaities, or identified if experimental results are available.

4) The random variable Φ+α is with values in [ϕ
α
− π , ϕ

α
+ π].

5) Φ+α is therefore a second-order random variable and it is assumed that E{Φ+α} = ϕα.
(iii) Maximum Entropy principle. We have to construct the probability density function (a,ϕ) 7→ pA+ ,Φ+ (a,ϕ) of
random variable (A+,Φ+), which is defined on {

∏Nd

α=1 R
+} × {

∏Nd

α=1[ϕα
− π , ϕ

α
+ π]}. Applying the Maximum Entropy

principle under the constraints defined by (ii)-1 to (ii)-5 yields the following results ([2]).
1) The random variables A+1 , . . . , A

+
Nd
,Φ+1 , . . . ,Φ

+
Nd

are statistically independent, which means that

pA+ ,Φ+ (a,ϕ) =
Nd∏
α=1
{pA+α (aα) × pΦ+α (ϕα)} , (58)

in which a = (a1, . . . ,aNd
) and ϕ = (ϕ1, . . . , ϕNd

). It should be noted that this result is due to the fact that no
information is given concerning the dependencies of the components of random variables A+ and Φ+.

2) For α in {1, . . . ,Nd}, A+α is a Gamma random variable for which its probability density function is written as

pA+α (aα) = 1]0 ,+∞[(aα)
(δ−2
α )

δ−2
α

Γ(δ−2
α ) aα

(
aα
aα

)δ−2
α −1

exp{−
aα
δ2
αaα
} , (59)

in which 0 ≤ δα < 1/
√

2 and where Γ(β) is the Gamma function. The random variable Φ+α is uniform and its
probability density function is written as

pΦ+α (ϕα) =
1

2π
1[ϕ

α
−π ,ϕ

α
+π](ϕα) . (60)

Taking into account Eq. (60), random variable Φ+α can be written as

Φ
+
α = ϕα

+ εαπ (2U+α − 1) , (61)

in which U+α is a uniform random variable on [0 ,1] and where we have introduced the indicator εα whose value is
zero or one. This parameter allows for killing the statistical fluctuations of the phase taking εα = 0; if not εα = 1.

(iv) Remarks concerning the use of the probabilistic model. For α fixed in {1, . . . ,Nd},
1) if δα = 0, then the amplitude A+α = aα is deterministic and equal to the nominal value. In this case, C+α = aα e jΦ+α

is a random complex coefficient with deterministic modulus and random phase. In addition, if εα = 0, then
C+α = c+α is a complex deterministic coefficient equal to the nominal value.

2) if aα = 0, then A+α = 0 because a gamma random variable with zero mean is equal to zero. In this case, the
complex random coefficient C+α is zero.

3) if aα > 0, if δα > 0, and if εα = 0, then the random complex coefficient C+α is written as C+α = A+α e jϕ
α . That is

to say, the amplitude is random and the phase is deterministic.

Definition of the modal intensity I+α In the present paragraph, the frequency ω is fixed and is removed for simplifying
the writing. The acoustic pressure p is related to the velocity potential ϕ by Eq. (2) and the continuity condition ψi = ϕ
on Γf. The velocity potential ϕ, can be rewritten as

ϕ = ϕ+ + ϕ− , (62)

where

ϕ+(x, y, z) =
∑
α

c+αϕα(x, y)e
jkzα z . (63)

We then define p+α, using Eq. (??), by

p+α = − jωρ0ϕ
+
α − ρ0v0 · ∇ϕ+α . (64)

in which ϕ+α is the contribution of mode α in ϕ+. The modal intensity I+α , related to pressure p+α, is defined by
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I+α = 10 log10

(
|p+α |

2

p2
ref

)
, (65)

in which pref is a reference pressure.

Probabilistic model of I+α The probabilistic model I+α of the random modal intensity could be derived from the one
used for C+α . Nevertheless, for civil aircraft applications, a deterministic model I+α is often used by the manufacturers
and this model has to be accounted for in the construction of the probabilistic model. This probabilistic model is thus
constructed using I+α, which is chosen as the mean value of I+α . The available information concerning the positive
random variable I+α is its mean value I+α and the amplitude of variations defined by a positive interval Iα ⊂ R+ depending
on α and containing the mean value. In addition, there is no available information concerning the statistical dependence
of the random variables I+1 , . . . , I

+
Nd

. Using the MaxEnt principle of Information Theory, it is concluded that the
random variables I+1 , . . . , I

+
Nd

are statistically independent, and the probability distribution of each I+α is uniform with
support Iα and with mean value I+α. Interval Iα is parameterized using a positive hyperparameter σα > 0 such that
Iα = [I+α(1 − σα) , I

+
α(1 + σα)]. Therefore, the random variable I+α can be written as

I+α = I+α(1 + σαUα) , 0 < σα < 1 , (66)

in which Uα is a centered uniform random variable on the interval [−1 ,1].
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