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Abstract  

The objective of this article is to define and study the concepts of refined neurosophic AH-ideal and AHS-ideal in 

refined neutrosophic rings.We investigate the elementary properties of these concepts. 
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1.Introduction 

Neutrosophy as a new branch of philosophy can be applied into the algebraic systems, which leads to a better 

comprehension and evolution of these systems.The notion of neutrosophic groups and rings was defined by 

Kandasamy and Smarandache in [10], and studied widely in [4, 5, 7,8]. Studies were carried out on neutrosophic 

rings and neutrosophic hyperring. See[1, 3, 4,6]. 

Refined neutrosophic rings were defined and studied carefully in [2, 3], where special substructures such as refined 

neutrosophic subrings and refined neutrosophic ideals are defined. Many interesting results were proved. In [1] 

concepts as AH-ideal and AHS-ideal were defined and studied as interesting substructures of neutrosophic ring. 

Some related concepts such as weak principal, maximal, and prime AH-ideals were introduced. These concepts have 

many properties which are similar to classical case of rings.In this paper, we try to define concepts such as AH-ideal 

and AHS-ideal in refined neutrosophic ring with some related concepts such as weak prime, principal and maximal 

refined neutrosophic AH-ideals. Also, we introduce the notion of refined AHS-homomorphism in similar way to 

AHS-homomorphism defined in [1]. 

Motivation 

This paper is the continuation of the work began in the paper entitled "On Some Special Substructures of 

Neutrosophic Rings and Their properties". 

2. Preliminaries 

Definition 2.1:[5] 

Let (R,+,×) be a ring then R(I)={a+bI; a,b∈ �} is called the neutrosophic ring where I is a neutrosophic element 

with the condition �� = �. 
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Remark 2.2: [2] 

The element I can be splitinto two indeterminacies ��	,�� with conditions: 

I�
� = I�	,��

� = ��	,���� = ���� = ��. 

Definition 2.3: [2] 

If X is a set then X(��,��)= {(�,���,���);�,�,� ∈ �} is called the refined neutrosophic set generated by X, ��,��. 

Definition 2.4: [2] 

Let (R,+,×) be a ring, (R(��,��),+ ,×) is called a refined neutrosophic ring generated by R,��,��. 

Definition 2.5: [2] 

Let (R(��,��),+ ,×) be a refined neutrosophic ring; it is called commutative if  

� × � = � × �,∀�	,� ∈ R(��,��).	 

Theorem 2.6: [2] 

Let (R(��,��),+ ,×) be a refined neutrosophic ring then it is a ring. 

Definition 2.7: [3] 

Let (R(��,��),+ ,×) be a refined neutrosophic ring and J be a nonempty subset of R(��,��) then J is called a 

neutrosophic refined ideal if: 

(a) J is a refined neutrosophic subring of R(��,��). 

(b) For every � ∈ �	and	� ∈ R(��,��) then � × � ∈ R(��,��). 

Definition 2.8:[1] 

Let R(I) be a neutrosophic ring and � = �� + ��� = {�� + ���;	�� ∈ ��,�� ∈ ��}. 

(a)We say that P is an AH-ideal if ��,�� are ideals in the ring R. 

(b)We say that P is an AHS-ideal if �� = ��. 

Definition  2.9:[1] 

Let R(I), T(J) be two neutrosophic rings and the map �: �(�)→ �(�); we say that f is a neutrosophic AHS-

homomrphism : 

Restriction of the map � on R is a ring homomorphism from R to T, i.e ��: � → � is homomorphism and 

�(� + �I)= ��(�)+ ��(�)	�. 

We say that R(I), T(J) are AHS-isomomrphic neutrosophic rings if there is a neutrosophic AHS-homomorphism  
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�: �(�)→ �(�) which is a bijective map; i.e ( R ≅ �), we say that f is a neutrosophic AHS-isomorphism. 

Definition  2.10:[1] 

Let R(I) be a neutrosophic ring and � = �� + ��� be an AH-ideal, we define the AH-factor as: 

�(�) �⁄ = � ��⁄ + � ��⁄ �. 

Theorem  2.11:[1] 

Let R(I) be a neutrosophic ring and � = �� + ��� be an AH-ideal then �(�) �⁄  is a ring. 

Theorem 2.12:[1] 

Let R(I), T(J) be two neutrosophic rings and f: R(I)→T(J) is a neutrosophic ring AHS-homomorphism, let � = �� +

��� be an AH-ideal of R(I) and � = �� + ��� be an AH-ideal of T(J), we have: 

(a) f(P) is an AH-ideal of f(R(I)). 

(b) ���(�) is an AH-ideal of R(I). 

(c) If P ia an AHS-ideal of R(I),f(P) is an AHS-ideal of f(R(I)). 

(d) �� − ���� = ����� + ������ is an AHS-ideal;�� is the restriction of f on the ring R. 

(e) The AH-factor �(�) ����⁄ 	��	��� − �������ℎ��	��	�(�(�)).  

Definition 2.13: [1] 

Let R(I) be a neutrosophic commutative ring and � = �� + ��� be an AH-ideal, we say that: 

(a) P is a weak prime AH-ideal if ��,�� are prime ideals in R. 

(b) P is a weak maximal AH-ideal if ��,�� are maximal ideals in R. 

(c) P is a weak principal AH-ideal if ��,�� are principal ideals in R. 

3. Main concepts and discussion 

Definition 3.1:  

Let (R(��,��),+ ,×) be a refined neutrosophic ring, and ��,��,�� be three ideals in the ring R then the set 

� = (��,����,����)= {(�,���,���);� ∈ ��,� ∈ ��,� ∈ ��}is called a refined neutrosophic AH-ideal. 

If �� = �� = �� then P is called a refined neutrosophic AHS-ideal. 

Definition 3.2: 

Let (R , +,×), (T, +, ×) be two rings and ��: � → � is a homomorphism : 
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The map �: R(��,��)→ T(��,��);�(�,���,���)= (��(�),��(�)��,��(�)��)	is called a refined AHS-homomorphism. 

It is easy to see that for all�	,� ∈ R(��,��),we	have	�(� + �)= �(�)+ �(�),�(� × �)= �(�)× �(�). 

Example 3.3: 

Suppose that  R = (��,+ 	,×),� = (���,+ ,×) are two rings and ��: � → �	;�(�)= 5� is homomorphism, the related 

refined AHS-homomorphism can be defined: 

�: R(��,��)→ T(��,��);�(�,���,���)= (5�,5���,5���). 

The previous example shows that refined AH-homomorphism is not a refined neutrosophic homomorphism in 

general because: 

�(��)	≠ �� 

Definition 3.4: 

(a) Let�: R(��,��)→ T(��,��) be a refined AHS-homomorphism, we define refined AH-Kernel of � by:  

AH −���� = {(�,���,���);�,�,� ∈ �����}= (�����,�������,�������). 

(b) Let S=(��	,����,����) be a subset of	R(��,��), then:  �(�)= (��(��),��(��)��,��(��)��)=

{(��(��),��(��)��,��(��)��);�� ∈ ��}. 

(c) Let S=(��	,����,����) be a subset of	T(��,��), then: 

���(�)= (��
��(��),��

��(��)��,��
��(��)��). 

Definition 3.5: 

Let�: R(��,��)→ T(��,��) be a refined AHS-homomorphism we say that � is a refined AHS-isomorphism if it is a 

bijective map, R(��,��),T(��,��) are called AHS-isomorphic refined neutrosophic rings. 

It is easy to see that restriction �� will be an isomorphism between R, T . 

Theorem 3.6: 

Let�: R(��,��)→ T(��,��) be a refined AHS-homomorphism  we have: 

(a)	�� − ���	�is a refinedneutrosophic AHS-ideal of R(��,��). 

(b) If P is a refined neutrosophic AH-ideal of R(��,��), �(�)	is a refined neutrosophic AH-ideal of T(��,��). 

(c) If P is a refined neutrosophic AHS-ideal of R(��,��), �(�)	is a refined neutrosophic AHS-ideal of T(��,��). 

Proof: 

(a) Since ����� is an ideal of R,AH − ���� =	(�����	,�������	,�������) is a refined neutrosophic AHS-ideal of 

R(��,��). 

(b)Suppose that � = (��,����,����) is a refined neutrosophic AH-ideal of R(��,��). Since ��(��) is an ideal of 

T,	�(�)= (��(��),��(��)��,��(��)��) is a refined neutrosophic AH-ideal. 
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(c) The proof is similar to (b). 

Definition 3.7: 

Let (R(��,��),+ ,×) be a refined neutrosophic ring and P= (��,����,����) be a refined neutrosophic AH-ideal then: 

(a) We say that P is a weak prime refined neutrosophic AH-ideal if ��;� ∈ {0,1,2} are prime ideals in R. 

(b) We say that P is a weak maximal refined neutrosophic AH-ideal if ��;� ∈ {0,1,2} are maximal ideals in R.  

(c) We say that P is a weak principal refined neutrosophic AH-ideal if ��;� ∈ {0,1,2} are principal ideals in R. 

(d) We define the refined neutrosophic AH-factor as:  

	R(I�,I�) P⁄ = (R P�	,⁄ R P�I�	,⁄ R P�I�)⁄ = {([�� + P�],[x� + P�]I�,[x� + P�]I�);	��,��,�� ∈ �	}. 

Theorem 3.8: 

 Let	�: R(��,��)→ T(��,��) be a refined  AHS-homomorphism and P= (��,����,����)  be a refined neutroosphic 

AH-ideal of  R(I�,I�), let Q=(��,����,����)≠ T(��,��) be a refined neutrosophic AH-ideal of T(��,��), assume that 

����� ≤ �� ≠ � then: 

(a) P is a weak prime refined neutrosophic AH-ideal of R(I�,I�) if and only if �(�) is a weak 

primerefinedneutrosophic AH-ideal in f(R(I�,I�)). 

(b) P is a weak maximal AH-ideal of R(I�,I�) if and only if �(�)	is a weak maximal in f(R(I�,I�)). 

(c) Q is a weak prime AH-ideal of T(I�,I�) if and only if ���(Q) is a weak prime in R(I�,I�). 

(d) Q is a weak maximal AH-ideal of T(I�,I�) if and only if ���(Q) is a weak maximal in R(I�,I�). 

Proof: 

The proof is similar to the Theorem 3.15 in [1]. 

It is easy to see that conditions (a), (b) are still true if P is an AHS-ideal and conditions (c), (d) are still true if Q is an 

AHS-ideal. 

Theorem 3.9: 

The refined neutrosophic AH-factor 	R(I�,I�) P⁄  is a ring with respect to the following operations: 

Let �	= (�� + ��	,(�� + ��)��	,(�� + ��)	��),	�	= (�� + ��,(�� + ��)��,(�� + ��)	��),be two arbitrary elements in 

R(��,��) then: 

� + � = ([�� + ��] + ��,([�� + ��] + ��)��,([�� + ��] + ��)	��), 

� × � = ([�� × ��] + ��,([�� × ��] + ��)��,([�� × ��] + ��)	��). 

Proof: 

The proofis similar to the Theorem 3.9 in [1]. 

Example 3.10: 
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Let R = (��,+ ,×), T= (���,+ ,×) be two rings, and �be the refined neutrosophic AHS-homomorphism defined in 

Example 3.3, we have the following: 

(a) �� = {0,2,4},�� = {0,3}are two ideals in �� thus P=(��,����,����) is a refined neutrosophic AH-ideal of 

R(I�,I�). 

(�)�(�)= (�(��),�(��)��,�(��)��)= { (0,0, 0), (0,0,5��)} is a refined neutrosophic AH-ideal in	T(I�,I�).  

(c) �� = {0,2,4,6,8} is a maximal ideal in ��� and ��
��(��)= {0,2,4}, so � = (��,����,����) is a weak maximal 

refined neutrosophic AHS-ideal in T(I�,I�), we have ���(�)=({0,2,4}, {0,2,4}��, {0,2,4}��) is a weak maximal 

refined neutrosophic AHS-ideal in R(I�,I�). 

Example 3.11: 

(a) In the ring (Z,+, ×), P= <3>, Q=<2> are two prime and maximal ideals, thus M=(P ,���,	���) = {(3a, 2b��, 2c��); 

a, b, c∈ � } is a weak maximal/prime refined neutrosophic AH-ideal of (Z(��,��), +,×). 

(b)The map �� ∶ � → ��;�(�)= �	���	6 is a homomorphism so the related refined neutrosophic AHS-

homomorphism is 

�: Z(I�,I�)→ Z�(I�,I�);�(�,���,���)= (�	���6,(�	���6)��,(�	���6)��), �� − ���� = (6Z,6Z��, 6Z��) ≤ � 

since 6Z≤ �,�. 

(c) �(�)= ({0,3},{0,2,4}��,{0,2,4}��) is a weak maximal/prime refined neutrosophic AH-ideal of Z�(I�,I�). 

Definition 3.12: 

A refined neutrosophic ring R(I�,I�)is called weak principal refined neutrosophic AH-ring if every refined 

neutrosophic AH-ideal is weak principal. 

Theorem 3.13: 

Let R be a principal ideal ring then R(I�,I�) is weak principal refined neutrosophic AH-ring. 

Proof: 

Let P= (��,����,����) be a refined neutrosophic AH-ideal of R(I�,I�). Since ��  are ideals in R and then principal 

this implies that P is a weak refined neutrosophic AH-ideal; thus R(I�,I�) must be weak principal refined 

neutrosophic AH-ring. 

Example 3.14: 

The ring (Z,+, ×) is principal ideals ring; thus Z(I�,I�) is weak principal refined neutrosophic AH-ring. 

Definition 3.15: 

Let (R(��,��),+ ,×) be a refined neutrosophic ring and P= (��,����,����), Q = (��,����,����) be two refined 

neutrosophic AH-ideals of R(��,��), then we define: 

(a) � ∩ � = (�� ∩ ��,[�� ∩ ��]��,[�� ∩ ��]��). 

(�)� + � = (�� + ��,[�� + ��]��,[�� + ��]��). 
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(c) � × � = (�� × ��,[�� × ��]��,[�� × ��]��). 

Theorem 3.16: 

Let (R(��,��),+ ,×) be a refined neutrosophic ring and P= (��,����,����), Q = (��,����,����) be two refined 

neutrosophic AH-ideals of R(��,��), then: 

� ∩ �,� + �,� × �are refined neutrosophic AH-ideals of R(��,��). 

Proof: 

As a result of Theorem 2.5 in[1], we have �� + ��,�� ∩ ��,�� × ��are ideals of R, thus the proof is complete. 

Remark 3.17: 

Theorem 3.16 is still true if P and Q are refined neutrosophic AHS-ideals. 

Example 3.18: 

Let �(��,��)= ��(��,��) and Q = {0, 4}, S = {0,2,4,6} be two principal ideals in R, then: 

(a) P = (S, Q��, S��) is a refined neutrosophic AH-ideal of �(��,��), the related refined neutrosophic AH-factor is: 

�(��,��) �⁄ = (� �⁄ ,� �⁄ ��,� �⁄ ��) = ( {S, 1+S}, {Q, 1+Q, 2+Q, 3+Q}��, {S, 1+S}��). 

To clarify addition and multiplication on �(��,��) �⁄  we take: 

� = (1 + �,(1 + �)��, S��), � = (�,(2 + �)��,(1 + �)��), we have: 

� + � = ([1 + 0] + �,([1 + 2] + �)	��,(	[0 + 1] + �	)��)= (1+S, (3+Q)��,(1 + �)��). 

� × � = ([1 × 0] + �,([1 × 2] + �)	��,(	[0 × 1] + �	)��)= (S, (2+Q) ��,���). 

Conclusion 

In this article we defined concepts of refined neutrosophic AH-ideal/ AHS-ideal in a refined neutrosophic ring.We 

studied some of elementary properties of these concepts.Also, notions as weak maximal, prime and principal refined 

neutrosophic AH-ideal and refined AHS-homomorphisms were introduced and checked. 
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