On Some Special Substructures of Refined Neutrosophic Rings
Mohammad Abobala

To cite this version:

HAL Id: hal-02876518
https://hal.science/hal-02876518
Submitted on 10 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On Some Special Substructures of Refined Neutrosophic Rings

Mohammad Abobala

Tishreen University, Faculty of Science, Lattakia, Syria

e-mail: mohammadabobala777@gmail.com

Abstract

The objective of this article is to define and study the concepts of refined neutrosophic AH-ideal and AHS-ideal in refined neutrosophic rings. We investigate the elementary properties of these concepts.

Keywords: Refined neutrosophic ring, Refined neutrosophic AH-ideal, Refined neutrosophic AHS-Ideal, Refined AHS-homomorphism.

1. Introduction

Neutrosophy as a new branch of philosophy can be applied into the algebraic systems, which leads to a better comprehension and evolution of these systems. The notion of neutrosophic groups and rings was defined by Kandasamy and Smarandache in [10], and studied widely in [4, 5, 7, 8]. Studies were carried out on neutrosophic rings and neutrosophic hyper rings. See [1, 3, 4, 6].

Refined neutrosophic rings were defined and studied carefully in [2, 3], where special substructures such as refined neutrosophic subrings and refined neutrosophic ideals are defined. Many interesting results were proved. In [1] concepts as AH-ideal and AHS-ideal were defined and studied as interesting substructures of neutrosophic ring. Some related concepts such as weak principal, maximal, and prime AH-ideals were introduced. These concepts have many properties which are similar to classical case of rings. In this paper, we try to define concepts such as AH-ideal and AHS-ideal in refined neutrosophic ring with some related concepts such as weak prime, principal and maximal refined neutrosophic AH-ideals. Also, we introduce the notion of refined AHS-homomorphism in similar way to AHS-homomorphism defined in [1].

Motivation

This paper is the continuation of the work began in the paper entitled "On Some Special Substructures of Neutrosophic Rings and Their properties".

2. Preliminaries

Definition 2.1: [5]

Let (R, +, ×) be a ring then R(I) = {a+bi; a, b ∈ R} is called the neutrosophic ring where I is a neutrosophic element with the condition I² = I.

DOI: 10.5281/zenodo.3789325

Received: January 29, 2020 Revised: April 28, 2020 Accepted: May 02, 2020
Remark 2.2: [2]
The element I can be split into two indeterminacies I_1, I_2 with conditions:

\[I_1^2 = I_1, I_2^2 = I_2, I_1I_2 = I_2I_1 = I_1. \]

Definition 2.3: [2]
If X is a set then $X(I_1, I_2) = \{(a, bl_1, cl_2); a, b, c \in X\}$ is called the refined neutrosophic set generated by $X, I_1, I_2.$

Definition 2.4: [2]
Let $(R, +, \times)$ be a ring, $(R(I_1, I_2), +, \times)$ is called a refined neutrosophic ring generated by $R, I_1, I_2.$

Definition 2.5: [2]
Let $(R(I_1, I_2), +, \times)$ be a refined neutrosophic ring; it is called commutative if

\[x \times y = y \times x, \forall x, y \in R(I_1, I_2). \]

Theorem 2.6: [2]
Let $(R(I_1, I_2), +, \times)$ be a refined neutrosophic ring then it is a ring.

Definition 2.7: [3]
Let $(R(I_1, I_2), +, \times)$ be a refined neutrosophic ring and J be a nonempty subset of $R(I_1, I_2)$ then J is called a neutrosophic refined ideal if:

(a) J is a refined neutrosophic subring of $R(I_1, I_2)$.

(b) For every $x \in J$ and $r \in R(I_1, I_2)$ then $x \times r \in R(I_1, I_2)$.

Definition 2.8: [1]
Let $R(I)$ be a neutrosophic ring and $P = P_0 + P_1I = \{a_0 + a_1I; a_0 \in P_0, a_1 \in P_1\}.$

(a) We say that P is an AH-ideal if P_0, P_1 are ideals in the ring $R.$

(b) We say that P is an AHS-ideal if $P_0 = P_1.$

Definition 2.9: [1]
Let $R(I), T(J)$ be two neutrosophic rings and the map $f: R(I) \rightarrow T(J)$; we say that f is a neutrosophic AHS-homomorphism:

Restriction of the map f on R is a ring homomorphism from R to $T,$ i.e $f_R: R \rightarrow T$ is homomorphism and

\[f(\alpha + bl) = f_R(\alpha) + f_R(b)J. \]

We say that $R(I), T(J)$ are AHS-isomorphic neutrosophic rings if there is a neutrosophic AHS-homomorphism

DOI: 10.5281/zenodo.3789325
\(f: R(I) \to T(J) \) which is a bijective map; i.e (\(R \cong T \)), we say that \(f \) is a neutrosophic AHS-isomorphism.

Definition 2.10:

Let \(R(I) \) be a neutrosophic ring and \(P = P_0 + P_1 I \) be an AH-ideal, we define the AH-factor as:

\[
R(I)/P = R/P_0 + R/P_1 I.
\]

Theorem 2.11:

Let \(R(I) \) be a neutrosophic ring and \(P = P_0 + P_1 I \) be an AH-ideal then \(R(I)/P \) is a ring.

Theorem 2.12:

Let \(R(I), T(J) \) be two neutrosophic rings and \(f: R(I) \to T(J) \) is a neutrosophic ring AHS-homomorphism, let \(P = P_0 + P_1 I \) be an AH-ideal of \(R(I) \) and \(Q = Q_0 + Q_1 J \) be an AH-ideal of \(T(J) \), we have:

(a) \(f(P) \) is an AH-ideal of \(f(R(I)) \).
(b) \(f^{-1}(Q) \) is an AH-ideal of \(R(I) \).
(c) If \(P \) is an AHS-ideal of \(R(I) \), \(f(P) \) is an AHS-ideal of \(f(R(I)) \).
(d) \(AH - ker f = ker f_R + ker f_R I \) is an AHS-ideal; \(f_R \) is the restriction of \(f \) on the ring \(R \).
(e) The AH-factor \(R(I)/ker f \) is AHS-isomorphic to \(f(R(I)) \).

Definition 2.13:

Let \(R(I) \) be a neutrosophic commutative ring and \(P = P_0 + P_1 I \) be an AH-ideal, we say that:

(a) \(P \) is a weak prime AH-ideal if \(P_0, P_1 \) are prime ideals in \(R \).
(b) \(P \) is a weak maximal AH-ideal if \(P_0, P_1 \) are maximal ideals in \(R \).
(c) \(P \) is a weak principal AH-ideal if \(P_0, P_1 \) are principal ideals in \(R \).

3. Main concepts and discussion

Definition 3.1:

Let \((R, +, \times), (T, +, \times)\) be a refined neutrosophic ring, and \(P_0, P_1, P_2 \) be three ideals in the ring \(R \) then the set \(P = (P_0, P_1 I, P_2 I_2) = \{(a, b I_1, c I_2); a \in P_0, b \in P_1, c \in P_2\} \) is called a refined neutrosophic AH-ideal.

If \(P_0 = P_1 = P_2 \) then \(P \) is called a refined neutrosophic AHS-ideal.

Definition 3.2:

Let \((R, +, \times), (T, +, \times) \) be two rings and \(f_R: R \to T \) is a homomorphism:

DOI: 10.5281/zenodo.3789325
The map \(f: R(I_1, I_2) \to T(I_1, I_2); f(x, y
\times I_1, zI_2) = (f_R(x), f_R(y)I_1, f_R(z)I_2) \) is called a refined AHS-homomorphism.

It is easy to see that for all \(x, y \in R(I_1, I_2) \), we have \(f(x + y) = f(x) + f(y), f(x \times y) = f(x) \times f(y) \).

Example 3.3:

Suppose that \(R = (Z_{30^0}^+, \times), T = (Z_{30^0}^+, \times) \) are two rings and \(f_R: R \to T; f(a) = 5a \) is homomorphism, the related refined AHS-homomorphism can be defined:

\[
f: R(I_1, I_2) \to T(I_1, I_2); f(x, y)I_1, zI_2) = (5x, 5yI_1, 5zI_2).
\]

The previous example shows that refined AHS-homomorphism is not a refined neutrosophic homomorphism in general because:

\(f(I_1) \neq I_1 \)

Definition 3.4:

(a) Let \(f: R(I_1, I_2) \to T(I_1, I_2) \) be a refined AHS-homomorphism, we define refined AH-Kernel of \(f \) by:

\[
AH - Ker f = \{ (a,b,c)I_1; a,b,c \in Ker f_R \} = (Ker f_R, Ker f_R I_1, Ker f_R I_2).
\]

(b) Let \(S = (S_0, S_1I_1, S_2I_2) \) be a subset of \(R(I_1, I_2) \), then:

\[
f(S) = (f_R(S), f_R(S_1)I_1, f_R(S_2)I_2) = (f_R(a_0), f_R(a_1)I_1, f_R(a_2)I_2); a_1 \in S_1 \).
\]

(c) Let \(S = (S_0, S_1I_1, S_2I_2) \) be a subset of \(T(I_1, I_2) \), then:

\[
f^{-1}(S) = (f_R^{-1}(S_0), f_R^{-1}(S_1)I_1, f_R^{-1}(S_2)I_2).
\]

Definition 3.5:

Let \(f: R(I_1, I_2) \to T(I_1, I_2) \) be a refined AHS-homomorphism we say that \(f \) is a refined AHS-isomorphism if it is a bijective map, \(R(I_1, I_2), T(I_1, I_2) \) are called AHS-isomorphic refined neutrosophic rings.

It is easy to see that restriction \(f_R \) will be an isomorphism between \(R, T \).

Theorem 3.6:

Let \(f: R(I_1, I_2) \to T(I_1, I_2) \) be a refined AHS-homomorphism we have:

(a) \(AH - Ker f \) is a refined neutrosophic AH-ideal of \(R(I_1, I_2) \).

(b) If \(P \) is a refined neutrosophic AH-ideal of \(R(I_1, I_2) \), \(f(P) \) is a refined neutrosophic AH-ideal of \(T(I_1, I_2) \).

(c) If \(P \) is a refined neutrosophic AH-ideal of \(R(I_1, I_2) \), \(f(P) \) is a refined neutrosophic AH-ideal of \(T(I_1, I_2) \).

Proof:

(a) Since \(Ker f_R \) is an ideal of \(RAH - ker f = (Ker f_R, Ker f_R I_1, Ker f_R I_2) \) is a refined neutrosophic AH-ideal of \(R(I_1, I_2) \).

(b) Suppose that \(P = (P_0, P_1I_1, P_2I_2) \) is a refined neutrosophic AH-ideal of \(R(I_1, I_2) \). Since \(f_R(P_0) \) is an ideal of \(T, f(P) = (f_R(P_0), f_R(P_1)I_1, f_R(P_2)I_2) \) is a refined neutrosophic AH-ideal.

DOI: 10.5281/zenodo.3789325
(c) The proof is similar to (b).

Definition 3.7:

Let \((R(I_1, I_2), +, \times)\) be a refined neutrosophic ring and \(P = (P_0, P_1 I_1, P_2 I_2)\) be a refined neutrosophic AH-ideal then:

(a) We say that \(P\) is a weak prime refined neutrosophic AH-ideal if \(P_i; i \in \{0, 1, 2\}\) are prime ideals in \(R\).

(b) We say that \(P\) is a weak maximal refined neutrosophic AH-ideal if \(P_i; i \in \{0, 1, 2\}\) are maximal ideals in \(R\).

(c) We say that \(P\) is a weak principal refined neutrosophic AH-ideal if \(P_i; i \in \{0, 1, 2\}\) are principal ideals in \(R\).

(d) We define the refined neutrosophic AH-factor as:

\[
R(I_1, I_2)/P = (R/P_0, R/P_1 I_1, R/P_2 I_2) = \left\{ ([x_0 + P_0], [x_1 + P_1] I_1, [x_2 + P_2] I_2); \ x_0, x_1, x_2 \in R \right\}.
\]

Theorem 3.8:

Let \(f: R(I_1, I_2) \rightarrow T(I_1, I_2)\) be a refined AHS-homomorphism and \(P = (P_0, P_1 I_1, P_2 I_2)\) be a refined neutrosophic AH-ideal of \(R(I_1, I_2)\), let \(Q=(Q_0, Q_1 I_1, Q_2 I_2) \neq T(I_1, I_2)\) be a refined neutrosophic AH-ideal of \(T(I_1, I_2)\), assume that \(\text{Ker} f \subseteq P_i \neq R\) then:

(a) \(P\) is a weak prime refined neutrosophic AH-ideal of \(R(I_1, I_2)\) if and only if \(f(P)\) is a weak prime refined neutrosophic AH-ideal in \(f(R(I_1, I_2))\).

(b) \(P\) is a weak maximal AH-ideal of \(R(I_1, I_2)\) if and only if \(f(P)\) is a weak maximal in \(f(R(I_1, I_2))\).

(c) \(Q\) is a weak prime AH-ideal of \(T(I_1, I_2)\) if and only if \(f^{-1}(Q)\) is a weak prime in \(R(I_1, I_2)\).

(d) \(Q\) is a weak maximal AH-ideal of \(T(I_1, I_2)\) if and only if \(f^{-1}(Q)\) is a weak maximal in \(R(I_1, I_2)\).

Proof:

The proof is similar to the Theorem 3.15 in [1].

It is easy to see that conditions (a), (b) are still true if \(P\) is an AHS-ideal and conditions (c), (d) are still true if \(Q\) is an AHS-ideal.

Theorem 3.9:

The refined neutrosophic AH-factor \(R(I_1, I_2)/P\) is a ring with respect to the following operations:

Let \(x = (x_0 + P_0, (x_1 + P_1) I_1, (x_2 + P_2) I_2), y = (y_0 + P_0, (y_1 + P_1) I_1, (y_2 + P_2) I_2)\), be two arbitrary elements in \(R(I_1, I_2)\) then:

\[
x + y = ([x_0 + y_0] + P_0, ([x_1 + y_1] + P_1) I_1, ([x_2 + y_2] + P_2) I_2).
\]

\[
x \times y = ([x_0 \times y_0] + P_0, ([x_1 \times y_1] + P_1) I_1, ([x_2 \times y_2] + P_2) I_2).
\]

Proof:

The proof is similar to the Theorem 3.9 in [1].

Example 3.10:

DOI: 10.5281/zenodo.3789325
Let \(R = (\mathbb{Z}, +, \times) \) be two rings, and \(f \) be the refined neutrosophic \(AHS \)-homomorphism defined in Example 3.3, we have the following:

(a) \(P_0 = \{0,2,4\}, P_1 = \{0,3\} \) are two ideals in \(\mathbb{Z} \) thus \(P = (P_0, P_1, I_1, I_2) \) is a refined neutrosophic \(AHS \)-ideal of \(R(1_1, I_2) \).

\[
(f(P_0), f(P_1), I_1, f(P_2)I_2) = \{(0,0,0), (0,0,5I_2)\}
\]
is a refined neutrosophic \(AHS \)-ideal in \(T(I_1, I_2) \).

(c) \(Q_0 = \{0,2,4,6,8\} \) is a maximal ideal in \(\mathbb{Z} \) and \(f^{-1}(Q_0) = \{0,2,4\} \), so \(Q = (Q_0, Q_0I_1, Q_0I_2) \) is a weak maximal refined neutrosophic \(AHS \)-ideal in \(T(I_1, I_2) \), we have \(f^{-1}(Q) = \{0,2,4\}, \{0,2,4\}I_1, \{0,2,4\}I_2 \) is a weak maximal refined neutrosophic \(AHS \)-ideal in \(R(I_1, I_2) \).

Example 3.11:

(a) In the ring \((\mathbb{Z}, +, \times) \), \(P = \langle 3 \rangle, Q = \langle 2 \rangle \) are two prime and maximal ideals, thus \(M = (P_0, Q_0I_1, Q_0I_2) = \langle 3a, 2bI_1, 2cI_2 \rangle \); \(a, b, c \in \mathbb{Z} \) is a weak maximal/prime refined neutrosophic \(AHS \)-homomorphism is

\[
\begin{align*}
\rho: \mathbb{Z}(I_1, I_2) &\rightarrow \mathbb{Z}_0(I_1, I_2); \\
\rho(a, bI_1, cI_2) &\equiv (a \mod 6, (b \mod 6)I_1, (c \mod 6)I_2), \\
\mathbb{A}H - \ker(\rho) &\equiv (6Z, 6ZI_1, 6ZI_2) \subseteq M
\end{align*}
\]

since \(6Z \leq P_0, Q_0 \).

(b) The map \(f_2: Z \rightarrow Z_0; f(a) = a \mod 6 \) is a homomorphism so the related refined neutrosophic \(AHS \)-homomorphism is

\[
\begin{align*}
\rho: \mathbb{Z}(I_1, I_2) &\rightarrow \mathbb{Z}_0(I_1, I_2); \\
\rho(a, bI_1, cI_2) &\equiv (a \mod 6, (b \mod 6)I_1, (c \mod 6)I_2), \\
\mathbb{A}H - \ker(\rho) &\equiv (6Z, 6ZI_1, 6ZI_2) \subseteq M
\end{align*}
\]

(c) \(f(M) = \{(0,3), \{0,2,4\}I_1, \{0,2,4\}I_2 \} \) is a weak maximal/prime refined neutrosophic \(AHS \)-ideal of \(\mathbb{Z}_0(I_1, I_2) \).

Definition 3.12:

A refined neutrosophic ring \(R(1_1, I_2) \) is called weak principal refined neutrosophic \(AHS \)-ring if every refined neutrosophic \(AHS \)-ideal is weak principal.

Theorem 3.13:

Let \(R \) be a principal ideal ring then \(R(1_1, I_2) \) is weak principal refined neutrosophic \(AHS \)-ring.

Proof:

Let \(P = (P_0, P_1I_1, P_2I_2) \) be a refined neutrosophic \(AHS \)-ideal of \(R(1_1, I_2) \). Since \(P_1 \) are ideals in \(R \) and then principal, this implies that \(P \) is a weak refined neutrosophic \(AHS \)-ideal; thus \(R(1_1, I_2) \) must be weak principal refined neutrosophic \(AHS \)-ring.

Example 3.14:

The ring \((\mathbb{Z}, +, \times) \) is principal ideals ring; thus \(Z(I_1, I_2) \) is weak principal refined neutrosophic \(AHS \)-ring.

Definition 3.15:

Let \((R(I_1, I_2), +, \times) \) be a refined neutrosophic ring and \(P = (P_0, P_1I_1, P_2I_2) \), \(Q = (Q_0, Q_1I_1, Q_2I_2) \) be two refined neutrosophic \(AHS \)-ideals of \(R(I_1, I_2) \), then we define:

(a) \(P \cap Q = (P_0 \cap Q_0, [P_1 \cap Q_1]I_1, [P_2 \cap Q_2]I_2) \).

(b) \(P + Q = (P_0 + Q_0, [P_1 + Q_1]I_1, [P_2 + Q_2]I_2) \).

DOI: 10.5281/zenodo.3789325
(c) \(P \times Q = (P_0 \times Q_0, [P_1 \times Q_1]_1, [P_2 \times Q_2]_2) \).

Theorem 3.16:

Let \((R(I_1, I_2), +, \times)\) be a refined neutrosophic ring and \(P = (P_0, P_1, P_2)\), \(Q = (Q_0, Q_1, Q_2)\) be two refined neutrosophic AHS-ideals of \(R(I_1, I_2)\), then:

\[P \cap Q, P + Q, P \times Q \text{ are refined neutrosophic AHS-ideals of } R(I_1, I_2). \]

Proof:

As a result of Theorem 2.5 in[1], we have \(P_i + Q_i, P_i \cap Q_i, P_i \times Q_i\) are ideals of \(R\), thus the proof is complete.

Remark 3.17:

Theorem 3.16 is still true if \(P\) and \(Q\) are refined neutrosophic AHS-ideals.

Example 3.18:

Let \(R(I_1, I_2) = Z_4(I_1, I_2)\) and \(Q = \{0, 4\}, S = \{0, 2, 4, 6\}\) be two principal ideals in \(R\), then:

(a) \(P = (S, Q_1, S_1)\) is a refined neutrosophic AHS-ideal of \(R(I_1, I_2)\), the related refined neutrosophic AHS-factor is:

\[R(I_1, I_2)/P = (R/S, R/Q_1, R/S_1) = (\{S, 1+S\}, \{Q, 1+Q, 2+Q, 3+Q\}I_1, \{S, 1+S\}I_2). \]

To clarify addition and multiplication on \(R(I_1, I_2)/P\) we take:

\[x = (1 + S, 1 + Q)I_1, S_1), y = (S, 2 + Q)I_1, (1 + S)I_2), \text{ we have:} \]

\[x + y = ([1 + 0] + S, ([1 + 2] + Q)I_1, ([0 + 1] + S)I_2) = (1 + S, (3 + Q)I_1, (1 + S)I_2). \]

\[x \times y = ([1 \times 0] + S, ([1 \times 2] + Q)I_1, ([0 \times 1] + S)I_2) = (S, (2 + Q)I_1, S_2). \]

Conclusion

In this article we defined concepts of refined neutrosophic AHS-ideal/ AHS-ideal in a refined neutrosophic ring. We studied some of elementary properties of these concepts. Also, notions as weak maximal, prime and principal refined neutrosophic AHS-ideal and refined AHS-homomorphisms were introduced and checked.

Funding: “This research received no external funding.”

Conflicts of Interest: “The authors declare no conflict of interest.”

References

