Comment on "Efficient and Secure Outsourcing Scheme for RSA Decryption in Internet of Things" Damien Vergnaud, Member, IEEE Abstract-Internet of Things (IoT) devices have grown in popularity over the past few years. The RSA public-key cryptographic primitive is time-consuming for resource-constrained IoT. Recently, Zhang, Yu, Tian, Tong, Lin, Ge and Wang proposed a two-party outsourcing protocol between a client and a server for RSA decryption in IoT. It relies on the Chinese Remainder Theorem as proposed by Quisquater and Couvreur in 1982 and is very efficient.

We show that their protocol does not achieve the claimed security guarantees: (1) the (secret) decryption exponent, the plaintext and the factorization of the RSA modulus are revealed to a passive adversary, and (2) a malicious server can make the client accept an (invalid) value of its choice as the result of the delegated computation.

Index Terms-Cloud computing, Edge computing, Secure outsourcing, RSA, Internet of Things, Cryptanalysis

I. INTRODUCTION

T HE Internet of Things (IoT) is growing quickly and brings a new set of security concerns. It connects billions of physical devices (classical computing and communication devices, but all kinds of objects used in our everyday lives: cars, door locks, personal medical devices, . . .) for collecting and sharing data, putting more sensitive information at risk.

Deploying cryptographic mechanisms on IoT devices is thus often desired (for securing communication, protecting firmware, and authentication). However, the computational resources of IoT devices can be very limited, and it seems very natural, as most of them are online to securely delegate the costly cryptographic operations to a device capable of carrying out them. Outsourcing cryptographic computations is a classical problem which was formalized in [START_REF] Hohenberger | How to securely outsource cryptographic computations[END_REF]. This problem is particularly challenging for public-key cryptography such as the RSA primitive [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF]. In [START_REF] Zhang | Efficient and secure outsourcing scheme for RSA decryption in Internet of Things[END_REF], Zhang, Yu, Tian, Tong, Lin, Ge and Wang designed an efficient outsourcing scheme for RSA decryption in IoT. RSA decryption is achieved via modular exponentiation and their protocol is based on the Chinese Remainder Theorem (CRT) as proposed in 1982 by Quisquater and Couvreur [START_REF] Quisquater | Fast decipherment algorithm for RSA public key cryptosystem[END_REF]. Zhang et al. claimed that their delegation protocol is highly efficient for both the client and the server and that the private key and the plaintext are concealed concurrently within the proposed scheme. They also claimed that it enables the client to detect any misbehavior of the server with a probability of 99.17%. They provided an efficiency analysis and they also mentionned that they D. Vergnaud was with Sorbonne Universit, CNRS, LIP6, F-75005 Paris, France and Institut Universitaire de France, e-mail: damien.vergnaud@sorbonne-universite.fr.

provided rigorous proofs of security and verifiability in the formal security model from [START_REF] Hohenberger | How to securely outsource cryptographic computations[END_REF].

In this note, we show that their protocol does not achieve the claimed security guarantees: (1) the (secret) decryption exponent, the plaintext and the factorization of the RSA modulus are revealed to a passive adversary, and (2) a malicious server can make the client accept an (invalid) value of its choice as the result of the delegated computation.

II. DESCRIPTION OF ZHANG et al.'S PROTOCOL

We first provide a short description of the classical "textbook" RSA public-key encryption scheme [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] (using the notations from [START_REF] Zhang | Efficient and secure outsourcing scheme for RSA decryption in Internet of Things[END_REF]): Key Generation: On input a parameter λ ∈ N, the algorithm picks uniformly at random two distinct prime numbers p and q of bit-length λ. It has been proposed as soon as in 1982 by Quisquater and Couvreur [START_REF] Quisquater | Fast decipherment algorithm for RSA public key cryptosystem[END_REF] to use the Chinese Remainder Theorem (CRT) in order to improve the efficiency of the decryption algorithm. The "textbook" RSA-CRT public-key encryption scheme is modified as follows:

Key Generation: With the same notation as above, the algorithm additionally computes

d p = d mod (p -1) (1)
d q = d mod (q -1). (2)
It outputs (n, e) as the public-key and (n, d p , p, d q , q) as the private key. Decryption: To decrypt a ciphertext C ∈ Z n with a private key (n, d p , p, d q , q), the algorithm first computes M p = C dp mod p and M q = C dq mod q and outputs the unique M ∈ Z n such that M ≡ M p mod p and M ≡ M q mod q (thanks to the knowledge of p -1 mod q and q -1 mod p):

M = p • (p -1 mod q) • M q + q • (q -1 mod p) • M p mod n
Zhang et al.'s delegation protocol for RSA-CRT public-key encryption scheme works as follows 1) Given a ciphertext C ∈ Z n , the client picks uniformly at random two integers r 1 and r 2 of Λ bits (for some integer parameter Λ) and computes:

d p1 = d p + r 1 (p -1) (3)
d q1 = d q + r 2 (q -1) (4)
2) For the purpose of verification, it also picks uniformly at random two integers r 3 and r 4 of Λ bits and three integers t 1 , t 2 , k in the range {2, 3, 4, . . . , 11}. The client then computes:

d p2 = d p t 1 + k + r 3 (p -1) (5)
d q2 = d q t 2 + k + r 4 (q -1) (6)
3) The client queries the server (in a random order) the modular exponentiation of C to the power d p1 , d p2 , d q1 and d q2 . 4) The serveur computes the values M p = C dp 1 mod n, M p = C dp 2 mod n, M q = C dq 1 mod n and M q = C dq 2 mod n and sends them to the client. 5) The client checks whether the following equalities hold:

M t1 p C = M p mod p (7)
M t2 q C k = M q mod q. (8
)
If this is the case, the client outputs

M = p•(p -1 mod q)•M q +q •(q -1 mod p)•M p mod n
as the plaintext corresponding to C.

III. CRYPTANALYSIS

A. Passive Attack on the Protocol Privacy

In this subsection, we describe an adversary which can recover the (secret) plaintext, the (secret) decryption exponent and the factorization of n from a passive eavesdropping of a single execution of the delegation protocol. Following Kerckhoff's principles [START_REF] Kerckhoffs | La cryptographie militaire[END_REF], it is natural to assume that the adversary knows the public key (n, e) it attacks. Zhang et al. [START_REF] Zhang | Efficient and secure outsourcing scheme for RSA decryption in Internet of Things[END_REF], indeed do not add the value of the public exponent e to the list of secret inputs in their "security proof". Actually, in practical applications, RSA users very often use e = 2 16 + 1 = 65537 as the public exponent. In [START_REF] Arjen | Public keys[END_REF], Lenstra, Hughes, Augier, Bos, Kleinjung and Wachter performed a sanity check of public keys collected on the web and found in particular that more than 98.4% of RSA keys in X.509 certificates and more than 48.8% of RSA public keys in PGP (giving a 95.4 percentage over all the keys) used e = 65537 as the public exponent. For all considered RSA keys, less than 0.008% of all keys used a public exponent that does not belong to a very short list of 10 values.

Let us first assume that the adversary knows which query to the server corresponds to which exponent in the set {d p1 , d p2 , d q1 , d q2 }. From (1), there exists an integer γ such that ed p = 1 + γ(p -1).

Combined with (3), we get

ed p1 = e(d p + r 1 (p -1)) = ed p + e • r 1 (p -1) = 1 + (γ + e • r 1)(p -1)
and thus (p -1) is a divisor of (ed p1 -1).

Similarly from (2) and (4), we obtain that (q-1) is a divisor of (ed q1 -1). We thus get that (ed p1 -1)(ed q1 -1) is a multiple of (p -1)(q -1) = ϕ(n).

In [START_REF] Michael | Digitalized signatures and public-key functions as intractable as factorization[END_REF], [START_REF] Michael | Probabilistic algorithm for testing primality[END_REF], Rabin provided a probabilistic polynomialtime algorithm which given an RSA modulus n = pq and its Euler totient function ϕ(n), outputs the factorization (p, q) in expected polynomial time. Rabin algorithm consists simply in computing some modular exponentiations modulo n of a random base with an exponent smaller than the known multiple of ϕ(n). The expected number of these computations is constant and each of them has binary complexity

O(log(n) 2 • (log(n • e 2) + Λ)) = O(log(n) 3 + log(n) 2 • Λ)
and is thus polynomial time.

The knowledge 1 of (ed p1 -1)(ed q1 -1) therefore allows the adversary to recover the factorization (p, q) of n. It can then compute ϕ(n) = (p -1)(q -1) and from this knowledge, it obtains d = e -1 mod ϕ(n) and recover the plaintext corresponding to C as M = C d mod n.

In the general case where the adversary does not know which delegated exponentiation in (C, α 1), (C, α 2), (C, α 3) and (C, α 4) corresponds to which exponent in {d p1 , d q2 , d p2 , d q2 }, it can simply apply the previous attack for the six pairs {x, y} ⊂ {α 1 , α 2 , α 3 , α 4 } and apply Rabin's algorithm with the 6 values (ex-1)(ey-1) as a possible multiple of ϕ(n). This increases the running time only by a constant factor. Zhang et al.'s protocol does not provide privacy since this probabilistic polynomial time recovers the plaintext, the (secret) decryption exponent and the factorization of n from a passive eavesdropping of a single execution of the protocol (and Theorem 1 from [START_REF] Zhang | Efficient and secure outsourcing scheme for RSA decryption in Internet of Things[END_REF] is therefore flawed).

Remark 1. It is worth mentioning that even if we assume that the public exponent e is kept secret, an adversary can run the same attack by using the information obtained in two independent executions of the protocol. Indeed, given the pair (d p1 , d q1) from the first execution and (d p1 , d q1) from the second execution, it can computes d p1 -d p1 which is a multiple of (p-1) and d q1 -d q1 which is a multiple of (q -1). From those two multiples, the adversary can again compute a multiple of ϕ(n) and run the previous attack.

B. Active Attack on the Protocol Verifiability

In this subsection, we show that a malicious server can make the client accept (with overwhelming probability) an arbitrary message M ∈ Z n with M = M as the output of a delegation protocol.

First of all, when it receives the four exponentiation queries (C, α 1), (C, α 2), (C, α 3) and (C, α 4), the server runs the previous attack to obtain the decryption exponent d and the factorization (p, q) of n.

The malicious server then computes d p = d mod (p -1) and d q = d mod (q -1). Among the four received exponents (α 1 , α 2 , α 3 , α 4), it identifies d p1 as the α i such that (d p -α i) is a multiple of (p -1) for i ∈ {1, 2, 3, 4} (and d q1 as the α j such that (d q -α j) is a multiple of (q-1), for j ∈ {1, 2, 3, 4}). With overwhelming probability (over the randomness used in the key generation algorithm), these exponents d p1 and d q1 are identified uniquely.

To identify d p2 , the server checks which of the two remaining exponents modulo (p-1) is equal to [d p t+k mod (p-1)] for t and k in the range {2, 3, 4, . . . , 11}. Again, with overwhelming probability (over the randomness used in the key generation algorithm), the exponent d p2 is identified uniquely and when this is done the four exponents sent in a random order are identified. Eventually, using an exhaustive search over the range {2, 3, 4, . . . , 11}, the malicious server can also compute the integers t 1 , t 2 and k which satisfy (5) and (6).

It can then set M p = M mod p and M q = M mod q for an arbitrary M = M in Z n . It computes M p = M p t1 C k mod p and M q = M q t2 C k mod q. It reply to the client with the 4-tuple (M p , M p , M q , M q) in the order corresponding to the identified exponents (d p1 , d p2 , d q1 , d q2). These values satisfy [START_REF] Laih | Two efficient serveraided secret computation protocols based on the addition sequence[END_REF] and (8) and the user outputs M = M as the plaintext corresponding to C.

Zhang et al.'s protocol does not achieve verifiability since this probabilistic polynomial time (and Theorem 2 from [START_REF] Zhang | Efficient and secure outsourcing scheme for RSA decryption in Internet of Things[END_REF] is therefore flawed).

IV. CONCLUSION

There is a long history of protocols for outsourcing group exponentiations in different settings (e.g. public/secret, fixed/variable bases and public/secret exponents) in groups of known prime order and in the RSA setting of groups of secret unknown prime order (see [START_REF] Matsumoto | Speeding up secret computations with insecure auxiliary devices[END_REF], [START_REF] Laih | Two efficient serveraided secret computation protocols based on the addition sequence[END_REF], [START_REF] Béguin | Fast server-aided RSA signatures secure against active attacks[END_REF], [START_REF] Hoon | Security and performance of server-aided RSA computation protocols[END_REF], [START_REF] Castelluccia | Improving secure server performance by re-balancing SSL/TLS handshakes[END_REF], [START_REF] Chen | New algorithms for secure outsourcing of modular exponentiations[END_REF], [START_REF] Wang | Securely outsourcing exponentiations with single untrusted program for cloud storage[END_REF], [START_REF] Chevalier | Privately outsourcing exponentiation to a single server: Cryptanalysis and optimal constructions[END_REF], [START_REF] Vergnaud | Secure outsourcing in discrete-logarithm-based and pairing-based cryptography (Invited talk)[END_REF]). Chevalier et al. [START_REF] Chevalier | Privately outsourcing exponentiation to a single server: Cryptanalysis and optimal constructions[END_REF] provided simple constructions (essentially optimal in terms of operations in the underlying group) in groups of known prime order. For RSA-based cryptography, most proposed protocols are variants of two protocols (named RSA-S1 and RSA-S2) that were proposed by Matsumoto, Kato and Imai in 1988 [START_REF] Matsumoto | Speeding up secret computations with insecure auxiliary devices[END_REF] and analyzed by Mefenza and Vergnaud [START_REF] Mefenza | Cryptanalysis of server-aided RSA protocols with private-key splitting[END_REF]. For a variable base (which is the case of interest for RSA decryption/signature), all known secure delegation protocols only improve the client efficiency by a constant factor and are thus probably not suitable for limited devices in IoT. Chevalier et al. proved lower bounds on the efficiency for generic modular outsourcing protocols (in prime order groups) [START_REF] Chevalier | Privately outsourcing exponentiation to a single server: Cryptanalysis and optimal constructions[END_REF]. These bounds suggest that improving the protocols from [START_REF] Mefenza | Cryptanalysis of server-aided RSA protocols with private-key splitting[END_REF] in unknown order groups is probably difficult.

 It then computes n = pq and ϕ(n) = (p -1)(q -1) the Euler totient function of n. It picks uniformly at random an integer e ∈ {1, . . . , ϕ(n)} coprime with ϕ(n) and computes the integer d ∈ {1, . . . , ϕ(n)} such that ed ≡ 1 mod ϕ(n). It outputs (n, e) as the public-key and (n, d) as the private key. Encryption: To encrypt a plaintext M ∈ Z n for a public key (n, e), the algorithm outputs C = M e mod n. Decryption: To decrypt a ciphertext C ∈ Z n with a private key (n, d), the algorithm outputs M = C d mod n.

The knowledge of (edp 1 -1) is most likely sufficient since for x ∈ Z * n , we have x (edp 1 -1) ≡ 1 mod p and in most cases x (edp 1 -1) ≡ 1 mod q and thus gcd(x (edp 1 -1) -1, n) = p reveals the factorization (p, q) of n.

ACKNOWLEDGMENT

The author is supported in part by the French ANR ALAM-BIC Project (ANR-16-CE39-0006). Olivier Blazy is gratefully acknowledged for providing a copy of the paper [18]. Finally, the author thanks the anonymous referees for their reviews and comments and the Editor Kim-Kwang Raymond Choo for handling the manuscript.