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Introduction:

One of the most distinctive changes in the evolution of the human brain was the enlargement of the cerebral cortex,
with areal expansion and folding of cortical surfaces. Such expansion may have contributed to emergence of our
capacities for high-order cognitive abilities such as language. Cortical folding starts very early in life and consists of
the formation of gyri and their counterparts called sulci in a precise spatio-temporal order. As regards to sulci, it has
been shown that sulcal pits - the locally deepest regions of sulci and the �rst to develop - are under tighter genetic
control than the rest of the cortex (Le Guen et al., 2018). Molecular analysis of multiple human, archaic hominin, and
non-human primate populations has allowed us to identify chromosomal regions showing evidence of selection along
the human lineage at varying evolutionary time points. In this study, we aimed to assess the contributions of these
chromosomal regions to the heritability of sulcal widening, using data from UK Biobank.

Methods:

From the UK Biobank dataset, we obtained T1 MRI in more than 15, 000 subjects and selected the British ancestry
subset. Using Brainvisa (Riviere et al., 2009), the sulcal widening feature in twenty two main brain sulci was extracted
and, the genome-wide association statistics using PLINK (Purcell et al., 2007) were derived with covariate accounting
for the sex, genotyping array type and age. We studied �ve sets of genomic regions that experienced selective
pressure at varying time points of primate and human evolution ranging from 30 Mya to 50 kya: Human gained
enhancers (Reilly et al., 2015), Human accelerated regions (Capra et al., 2013), Selective Sweep (Peyrégne et al, 2017),
Neanderthal introgression (Simonti et al., 2016), Neanderthal lineage depleted region (Vernot et al., 2016).
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Enrichment of heritability explained by single-nucleotide polymorphisms (SNPs) within the relevant evolutionary
regions was assessed through linkage disequilibrium (LD)-score partitioned heritability (Funicane et al., 2015).

Results:

Human fetal enhancers regulating cortical development that are found in humans but absent from non-human
primates (Reilly et al., 2015), show a signi�cant enrichment in the heritability of sulcal widening in the left and right
central sulci and calloso-marginal posterior �ssures, and in the right inferior and superior frontal, anterior inferior and
superior temporal, and intraparietal sulci (See Figure). Conversely, introgressed Neanderthal SNPs and human
accelerated regions showed a depletion of variants impacting on sulcal widening, indicating that these segments of
the genome could explain less of the heritability of this trait than expected by chance.

   ·Figure: Enrichment in heritability of sulcal widening with Human gained enhancers (p <0.05). p.c.w.: post conception
weeks, L: left, R: right.
 

Conclusions:

We show in this study that genetic variations in genomic regions that have experienced selective pressure over the
last 30 million years of human evolution may impact on the shape of different human sulci. Integration of evolutionary
signatures with data from neuroimaging genetics provides an exciting way to explore how these early developmental
anatomical features relate to brain functions in modern humans.
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