
HAL Id: hal-02876003
https://hal.science/hal-02876003

Submitted on 20 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RTRobMultiAxisControl: A framework for real-time
multi-axis and multi-robot control

H. Fischer, Margot Vulliez, P. Laguillaumie, P. Vulliez, J.-P. Gazeau

To cite this version:
H. Fischer, Margot Vulliez, P. Laguillaumie, P. Vulliez, J.-P. Gazeau. RTRobMultiAxisControl: A
framework for real-time multi-axis and multi-robot control. IEEE Transactions on Automation Science
and Engineering, 2019, 16 (3), pp.1205-1217. �10.1109/TASE.2018.2889813�. �hal-02876003�

https://hal.science/hal-02876003
https://hal.archives-ouvertes.fr

RTRobMultiAxisControl: A framework for real-time

multi-axis and multi-robot control

H. Fischer, M. Vulliez, P. Laguillaumie, P. Vulliez, J.P. Gazeau
Institut Pprime, dept. GMSC

Université de Poitiers

Poitiers-Futuroscope, France

Abstract—This paper presents the challenges met in the

development of a new framework for multi-axis and multi-robot

control. The increasing demand for multi-robot collaboration

and robotic assistance, both in industry and service applications,

has raised the level of interactions between robots and humans in

a shared environment with real-time constraints. Some scientific

and technological issues need to be unlocked to ensure safe

human-robot interactions: to guarantee the response time during

the robot perception-action process, to cope with dynamic

interactions with the robot environment, to secure the

collaborations between several machines and humans, and to

improve the integration of the robots at home and in open zones

of production lines. The specifications of a new hardware and

software framework are set with respect to these observations.

The framework will meet complex research and industrial issues

for the future of multi-axis and multi-robot control. Before

introducing our approach, a brief survey of existing frameworks

and robotic middleware is given.

The foundations of our approach are based on the following

requirements: the framework must be real-time, transferable,

maintainable and multi-manufacturer. The framework design

has also to guarantee the robustness of the machine interactions

in a dynamic and collaborative environment. To evaluate the

feasibility of our design strategy and assess its performance, we

have developed mechatronic devices with a high level of human-

machine collaboration. This paper outlines two robotic

applications which require multi-robot real-time synchronization

and are based on the proposed framework. A temporal analysis

demonstrates its robustness for multi-axis and multi-robot

control.

Note to Practitioners: This paper was motivated by the

problem of proposing a transferable framework dedicated to real

time multi-axis and multi-robot control. Most of existing

middleware solutions do not unify accesses to the axis level and to

the robot control level with a common programming approach

and with real time capability. This is a key problem for achieving

multi-robot synchronization and reaction times compatible with

dynamic collaboration. Our framework is based on open robotics

and object-oriented programming and implements the industrial

standards for motion control. Multi-robots control experiments

with a high number of synchronized axis and heterogeneous

hardware demonstrate the efficiency of the approach.

Keywords — Multi-axis Control, Multi-robot Control,

Collaborative Robotics, Industrial Ethernet, Real-time, Open

Robotics, Framework, Middleware.

I. INTRODUCTION

Manufacturing uses more and more lean and agile solutions
to adapt to changes in the marketplace. Innovative technologies
must be proposed to meet the demands on production.
Traditional automation solutions do not offer such capability in
flexibility, and in customizing the products on demand.

During the last four decades, industrial robots have
gradually replaced human workers for tedious and routine jobs
or in harmful environments which may cause industrial
accidents, diseases or MSDs. In this substitution process,
although intrinsically flexible, the industrial robot was
effectively specialized, working alone in a closed cell, and
could only meet one kind of preset task. The robot was tuned
for painting, for arc welding, for spot welding, or for grasping
one specific product and the end-effector was specially
designed with respect to the target task.

Ten years ago, a new type of robot appeared: the
collaborative robot (Fig. 1). The collaborative robot aims at
assisting the worker. This new interaction feature between
human and machine offers many perspectives in working
environments and especially in SMEs, as discussed in [1]. It
introduces a new way of organizing the production lines by
associating, in the same workspace, the strength, precision and
robustness of the robot and the decision making, problem
solving capabilities, and expertise of the human being.

Iiwa (Kuka)

YuMi (ABB)

Sawyer (Rethink Robotics)

UR3 (Universal Robot)

Fig. 1. Industrial collaborative robot (with courtesy of Kuka, ABB, Rethink

Robotics and Universal Robot)

The emergence of collaborative robotics does not mean the
end of industrial robotics. Both types of robots will coexist and

This work has been sponsored by the French government research
program “Investissements d’Avenir” through the Robotex Equipment of

Excellence (ANR-10-EQPX-44). It is also supported by the Nouvelle

Aquitaine Region (program “CPER Numeric”), in partnership with the
European Union (FEDER/ERDF, European Regional Development Fund) and

French National Research Agency (ANR) through the SEAHAND program

(ANR-15-CE10-0004).

work together in order to address the issues of flexibility and
customization in the production flow.

The need for flexibility in the industry of the future requires
new software solutions that will enable the development of
robotic applications with real-time multi-robot control in a
dynamic environment. As these applications may involve
industrial robots, collaborative robots and humans in a shared
working zone, it is a major challenge to propose a common
framework meeting new industry issues.

Such a challenge can only be addressed if all the
mechatronic components in the production process are able to
communicate and exchange data with a dynamically consistent
real-time scheduling. Real-time communication and operating
systems are needed to ensure the determinism of the
application and secure the interactions between robots and
humans in a shared environment.

FANUC ROBOT :
Karel Language Kuka IIWA COBOT :

JAVA Language

STAUBLI ROBOT :
VAL 3 Language

KUKA ROBOT :
KRL Language

ABB ROBOT :
RAPID Language

Fig. 2. Industrial robots and associated programming languages

 Current industrial robots from most manufacturers do not
meet these issues; Figure 2 shows that most of them are limited
to their own universe; they can only be programmed in the
manufacturer language (Kuka uses KRL, Fanuc, KAREL,
Stäubli, VAL3 …).

 The software components used for programming do not
enable reusability and sharing of know-how between robots. It
becomes impossible with such an approach to synchronize
several robots from different manufacturers in a deterministic
scheme in the same robotic cell. Real-time communication and
a traversal programming approach are essential to meet
flexibility requirements for the development of multi-axis and
multi-robot applications.

Hence, this way of working is incompatible with the future
of industry. All robots have to communicate and interact with
their environment, with other robots and with humans in a
dynamic way, under robustness, reactivity and reliability
constraints. A common framework is proposed in this paper to
meet these requirements and ensure the flexibility of the
robotic cell. Our framework is based on open robotics and
unifies hardware and software components by using industrial
standards and object-oriented programming.

After a brief survey of robotic middleware solutions, we
will compare communication performances of ROS and hard
real-time Operating System environments in the objective of

multi-robot application. From this analysis, we will then draw
requirements to design an efficient robotic framework. In the
fourth section, the RTRobMultiAxisControl framework is
presented. Its different components are described according to
open robotic and real-time standards. Sections V and VI will
present the multi-robot platforms used to validate the design of
the robotic framework and assess the inter-component
communication efficiency.

II. OVERVIEW OF ROBOTIC MIDDLEWARE FRAMEWORKS

A difficulty that rises when designing a framework is to
manage the hardware heterogeneity while willing to simplify
software design by using common rules in the development of
a robotic application. Several robotic middleware solutions
have been developed worldwide for that purpose such as
OPRos, Orca, MIRO, Player, Marie, Aseba, CLARAty, UPNP,
RSCA, MRDS, SmartSoft, Skilligent, Webots, Irobotaware,
Pyro, Carmen, and RoboFrame.

As discussed in [2] and [3], a middleware is defined as a
layer of software between the operating system and the
application level, which provides a common programming
abstraction across a distributed system. In [2, 5, 6, 7], surveys
of current robotic middleware frameworks are proposed.
Attributes, focusing on the architecture, simulation
environment, standards and technologies, security for accessing
modules, real-time and coordination capabilities, open-source
are discussed. Most of the existing robotic middleware are
detailed. We chose to present some of them with regards to our
multi robot control purpose.

The architecture of the middleware is the organization of
the layers, components, libraries, or modules required for the
middleware implementation. For example, MIRO middleware
for mobile robotics is based on three layers [8]: a device layer
that is platform dependent, a service layer with service
abstractions for sensors and actuators, a framework layer that
contains modules like navigation, self-localization, path
planning, and visualization. Player/Stage system [9] is also a
middleware for mobile robots. It is composed of two
components; the first one, Player, is a device repository for
robots, sensors and actuators. The second component, Stage is
only for the graphical simulator which models devices. ERSP
[10] consists of three layers: a hardware abstraction layer, a
behavior execution layer and a task execution layer. Orocos
[11] (Open Robot Controls Software) is a Real-Time Toolkit
with an infrastructure and functionalities to develop C++
applications. It consists of the three following components: the
Orocos Components Library (OCL) that offers some ready-to-
use control components, the Orocos Kinematics and Dynamics
Library (KDL) that provides real-time calculation of kinematic
chains, and the Orocos Bayesian Filtering Library (BFL), with
tools such as Kalman Filters and Particle Filters. Another
middleware named Orca grew out from Orocos at KTH
Stockholm in 2003. Orca developers have replaced CORBA, a
communication middleware [12], developed since 1991 and
used in Orocos with a modern framework named ICE (Internet
Communication Engine). RT-Middleware [13], or Robotics
Technology Middleware allows the designers to build quickly
and efficiently their own robotic product. Each component is
called a RT-Component and they can be easily connected to

each other. A state machine rules the state of a component,
however RT-middleware does not provide a hard-real-time
support. ROS middleware [14] is a “metaoperating system” for
developing robotics. ROS is probably the most used robotic
middleware and proposes many packages able to integrate the
widest library of devices. ROS consists of nodes (software
modules) which communicate over topics (passed peer to peer)
sending messages. For synchronous communication Services
are used. New packages for ROS were recently proposed for
control: meta-ROS [15] and ROS Control [16]; but they do not
offer hard real time support for multi-axis or multi-robot
control. A new version of ROS, named ROS 2 is currently
under heavy development [17] for that purpose. This new
version is not compatible with the previous version as it was
necessary to review the foundations of ROS to allow hard real-
time functionalities.

This survey underlines the fact that all middleware
solutions relies on distinct architectures. These middleware are
mostly based on the three standard communication middleware
as shown in table 1: MOM, RPC or CORBA [18]. The
components, layers, libraries or modules available are quite
different, do not target the same implementations (mobile
robotics, artificial intelligence, robot and machine control…),
use different programming approaches, and most of them do
not offer real-time capabilities or real-time communication.
UDP or TCP/IP communication using sockets is often used,
inducing temporal indeterminism in the communication flow.

The table 1 highlights different issues of the existing
middleware in the field of robotics. These concerns constitute
the requirements of an optimal framework. Multi-axis and
multi-robot control requires a high level of synchronization and
temporal determinism in a dynamic environment. Hence the
robotic software framework should provide real-time
capability. Besides, the programming approach should be
based on industrial standards, which would bring robustness,
reusability and support for most of hardware components used
in industrial motion control.

Most of these middleware solutions are also far from the
controller base level, and do not offer solutions able to unify
the access to the axis control. This is a key problem for
achieving multi-robot synchronization with reaction times
compatible with dynamic collaboration schemes. The next
section analyses the temporal behavior of one of the most
popular middleware used for the development of robotic
applications: ROS.

III. EVALUATION OF ROS MIDDLEWARE COMMUNICATION

FOR MULTI-ROBOT CONTROL

 ROS is a widely known robotic middleware which gives
access to many robots, sensors and other components from
many manufacturers.

ROS is usually implemented on standard PCs with non-
Real-Time Operating Systems (RTOS) in many robotic
applications. It seemed relevant to us to highlight the limits of
this architecture. The tested version is ROS INDIGO; the
software is running on the Linux Ubuntu 14.04 operating
system on a Intel Quad Core i7 PC (CPU M620 2.7GHz, 4Go
RAM).

To evaluate the feasibility of dynamic multi-robot control
with ROS we have designed an experimental set-up featuring
two modern robots and high-speed Ethernet-based networks.

A high level of coordination and synchronization between
several axes or several robots is required to ensure temporal
determinism and robustness in a multi-robot cell.

Servo drive
ACOPOS P3

Safety PLC I/O Module

I/O Module

Servo drive ACOPOS

Brushless synchronous motors 8LVA13 Potentiometers

6-axis force
sensor

B&R PC910
B&R PLC X20CP1586

Kuka controller

EtherCat
Gateway

Controlled Node

Controlled Node

Managing Node 1.6ms

B&R PC910

Servo drive
ACOPOS P3

Safety PLC I/O Module

I/O Module

Servo drive ACOPOS

Brushless synchronous motors 8LVA13 Potentiometers

6-axis force
sensor

B&R PC910
B&R PLC X20CP1586

Kuka controller

EtherCat
Gateway

Controlled Node

Controlled Node

Managing Node 1.6ms

B&R PC910

PC with ROS

UDP communicationUDP communication

Component 1 Component 2

Fig. 3. Architecture used for the evaluation of ROS communication

For our evaluation purpose, we used the following devices
(Fig. 3):

- Component 1: an industrial PC (B&R Automation
PC910) that controls a Comau Racer 3 robot and its
peripherals (gripper and sensors) over POWERLINK
fieldbus;

- Component 2: an industrial PLC (B&R Automation
X20CP1586) that controls a Kuka iiwa robot equipped
with EtherCAT fieldbus.

The objective of the test is to connect these two complex
components with the ROS middleware in order for them to
share their respective states at a frequency suitable for
cooperation. The data exchanged between the two robots are
needed for dynamic collaboration purpose.

A. Evaluation of ROS middleware communication

ROS manages the cell components with “nodes” and
“topics” objects. Nodes are processes that perform
computations to achieve tasks (e.g. read sensors, control
motors, localize or plan paths), while topics are used to identify
the contents of messages. The messages are routed via a
publish/subscribe transport system. A node sends out a
message by publishing it to a topic, and another node reads it
by subscribing to that topic.

As we wish to evaluate the communication between two
components, one node is defined per component. All nodes are
used for communication, one node attends to data emission
(component 1) and the other for data reception (component 2)
by using streaming topics.

Table 1: Characteristics of the main robotics middleware

Middleware

Communication

Technology:

framework used

Hard
Real time

support

Motion

Control

Standard

OS

Installation
& development Layers or modules

RT-
Middleware

CORBA No No Linux
Windows

Needs loader RTC-Daemon

for RTC components

management

C++ / Java / Python

programming

1)low level layer: motors, sensors
2) middle level layer: vision and image

processing

3)high level layer: robot modeling

Orocos CORBA Yes, by

using
Xenomai

No Linux

Windows
Mac OS X

Orogen (language for

components management)

Needs RTT (Real Time

Toolkit) for components

management by using

scripts language)

Four C++ libraries

1)Components Library

2)Kinematics and Dynamics Library
3)Bayesian Filtering Library

ROS MOM RPC No No Linux

Windows

(Cygwin)

Needs loader ROS-Run for

nodes and topics

management

C++ / Java / Python

programming

12 versions, 7 unmaintained versions,

1600 packages, modules (robots,

peripherals, sensors, motion planning,
…)

ROS2.0 MOM RPC Yes, by
using

Xenomai

No Linux
Windows

Mac OS X

Needs loader ROS-Run for

nodes and topics

management

C++ / Java / Python

programming

Small number of packages

To measure the communication consistency, we chose a
basic application exchanging one integer data: component 2
needs to know continuously the state of a sensor associated to
component 1. Component 1 sends periodically sensor data
(blue dots in Figures 4 and 5) to component 2 through ROS
nodes and topics. Component 2 receives the sensor data (red
dots in Figures 4 and 5) and the transfer time is evaluated.

0

5

10

15

20

25

0 5 10 15 20 25

D
at

a
R

ec
ei

ve
d

PLC cycle

D
at

a
va

lu
e

PLC period number (1 period = 20ms)

Data value sent by
component 1

Data value received by
component 2

Fig. 4. Data received with a ROS-based architecture with a 20ms sending

period

Figures 4 and 5 illustrate the fact that the communication
time between the two components is not deterministic whatever
the period is. And we also may lose data if the exchange
frequency is high. As an example, for a 20ms period data value
number 11 was lost (Fig. 4); for a 2ms period, 50% of the
sensor values were lost during communication. The loss of data
and the lack of determinism may be a cause of failure in a
robotic application with response-time constraints.

0

5

10

15

20

25

0 5 10 15 20 25

D
at

a
R

e
ce

iv
e

d

PLC cycle

D
at

a
va

lu
e

PLC period number (1 period = 2ms)

Data value sent by
component 1

Data value received by
component 2

Fig. 5. Data received with a ROS-based architecture with a 2ms sending

period

This study concerning ROS middleware evaluation for
multi-robot control clearly states the fact that ROS is not made
to guarantee temporal determinism in the data flow between
robots. However, this condition is crucial to reach a high level
of synchronization between axes and robots and to develop
reactive control in a dynamic environment.

Therefore, we believe that the first constraint for a unifying
framework is to ensure temporal determinism in the
perception-action process thanks to hard real-time capability.
The definition of a Real-Time System (RTS) can be stated,
following [19], as: “a real-time system is a system that satisfies
explicit (bounded) response-time constraints or risk severe
consequences, including failure”. A hard RTS is a system
where it is imperative that responses occur within the specified
deadlines (for examples, aircraft control or process control
applications).

B. Evaluation of ROS 2 middleware communication

ROS 2 has an architecture close to the one of ROS. Indeed,
it uses Nodes to perform computation and topics are used to
share message between several nodes.

To evaluate ROS 2 we have used the same architecture: one
node per component. In our case, the first node receives data
and publish it on the topic. The second one subscribes to the
topic and sends data through the UDP communication. We
have modified the protocol for this test, we now send 2000
communication frames from the component, 1 per 2ms. In this
case, we highlight the latency in terms of cycle numbers. The
first 500 values are shown in Figure 6.

0

1

2

3

4

5

6

7

8

1 101 201 301 401

U
D

P
 f

ra
m

e
 d

e
la

y
in

 P
LC

 C
yc

le

Data Value

Delay cycle

Fig. 6. Delay in cycle between the data sent and the data receive with ROS2

with a 2ms sending period

This test has been performed about twenty times and no
data was lost. However, there is a latency in the exchange
period, which is not constant. These results illustrate the non-
determinism of ROS 2.

C. Evaluation of RTOS communication

As a comparison, we performed a new experimentation
with the same components, but the ROS PC was replaced with
an industrial PC with a real-time operating system (RTOS)
(Fig. 7); and the UDP communication was replaced with a
hard-real-time Ethernet communication. Among the five major
technologies in industrial Ethernet communication (Profinet,
POWERLINK, Ethernet /IP, EtherCAT, Sercos III) [20], only
three technologies provide hard real time communication:
SERCOS, EtherCAT and POWERLINK. We chose to use the
POWERLINK communication as it is a BSD-license open-
source solution and has be adopted as an IEEE standard (IEEE
61158).

The industrial PLC is built on CPU ATOM 1.6 GHz with
512 MB DDR2 RAM and is running a proprietary runtime
based on VxWorks Operating System.

The results with this architecture are illustrated in Fig. 8
with a 2ms sending period. They show no loss of sensor data
and the total communication time remains the same whatever
the exchange frequency; it means that responses occur within
the specified period. This behavior is typical for a hard-real-
time system, since it is a requirement for RTOS design
specification.

Servo drive
ACOPOS P3

Safety PLC I/O Module

I/O Module

Servo drive ACOPOS

Brushless synchronous motors 8LVA13 Potentiometers

6-axis force
sensor

B&R PC910
B&R PLC X20CP1586

Kuka controller

EtherCat
Gateway

Controlled Node

Controlled Node

Managing Node 1.6ms

B&R PC910

Servo drive
ACOPOS P3

Safety PLC I/O Module

I/O Module

Servo drive ACOPOS

Brushless synchronous motors 8LVA13 Potentiometers

6-axis force
sensor

B&R PC910
B&R PLC X20CP1586

Kuka controller

EtherCat
Gateway

Controlled Node

Controlled Node

Managing Node 1.6ms

B&R PC910

PC with RTOS

Ethernet
Powerlink communication

Component 1 Component 2

Ethernet
Powerlink communication

Fig. 7. Architecture used for the evaluation of the RTOS communication

0

5

10

15

20

25

0 5 10 15 20 25

D
at

a
R

e
ce

iv
e

d

PLC cycle

D
at

a
va

lu
e

PLC period number (1 period = 2ms)

Data value sent by
component 1

Data value received by
component 2

Fig. 8. Data received with RTOS based architecture with a 2ms sending

period

This section showed that the ROS temporal behavior will
not enable the level of synchronization required for multi-axis
control in the field of production machine design. Temporal
determinism is a major requirement when designing motion
controllers. The next section introduces our new framework
and describes its architecture.

IV. RTROBMULTIAXISCONTROL : A REAL-TIME

FRAMEWORK FOR OPEN ROBOTICS AND MULTI-AXIS CONTROL

A. A standard-based strategy

 The success of a given middleware design approach will
depend on the ability to transfer the framework outside the lab
for multi-axis machine control applications. In [21], the authors
develop MURDOCH, a novel method of dynamic task
allocation built on publish/subscribe, and they optimize the task
completion time. In [22] and [23], the importance of managing
time constraints with the use of Contract Net Protocol is
emphasized. We also believe that it is necessary to guarantee
completion time and robust communication to achieve
cooperation between robots operating in dynamic
environments.

As an example, a method with dynamic task allocation for
groups of robots [24] will not be efficient enough to ensure a
high level of synchronization and a deterministic behavior if
the robots do not provide real-time data exchange or if their
controllers do not give real-time access to low level control
loops (position, velocity, or torque control loops). The goal of
our framework is to unify the access to robot resources from an
exterior RTOS manager.

Currently, the programming of industrial machines relies on
the IEC 61131 standard which is a viable alternative to the
extensive use of proprietary languages for each robot brand.
Efficiency and robustness of machine and process control
software are also increased using a real-time communication
between motion controllers and robot controllers.
Unfortunately hard-real-time Ethernet protocol is not an option
available on most of the control cabinets of the leading
industrial robot manufacturers.

A wide variety of systems and solutions can be found on the
motion control market, but most of them are incompatible with
one another. This leads to additional costs, even for the end-
users. Without reusable software, developing an application
with new hardware begins with a white paper. In the area of
PLC programming, the first goal of PLCopen international
organization is to provide widely accepted industrial standards
such as PLCopen Motion for motion control applications. A
recent add-on of PLCopen guidelines concerns the creation of
function block libraries [25]. These recommendations aim at
shortening the development time and at easing software use
and maintenance. The hardware choice becomes less important
because the libraries are reusable, the development cost and
time, and the support cost decrease.

A compromise must be found between performance,
functionality and standardization to have an appropriate
solution. There are three kinds of development strategies. The
first one consists in developing programs closely coupled to the
hardware. Thanks to this, high performance is expected, but the
program cannot be reused, so the cost and the time of the next
development will not be reduced.

The second one is to develop numerous functionalities,
which is helpful but at the expense of performance. The last
one focuses on the standardization and the reusability of the
project components. For axis control, most of the automation
manufacturers integrate PLCopen Motion libraries applied to
their hardware solutions.

B. Software architecture

The previous subsection introduced the different design
constraints of our new framework. They consist in using:

• IEC 61131: the widely-available and standardized IEC
61131-3 languages or a consistent ANSI C / C++
integration in the IEC world ensure the development of
reusable components;

• PLCopen Motion: this provides all useful single-axis
functions and makes it possible to use hardware
configurations from any manufacturers (Siemens,
Beckoff, Schneider, B&R,…);

• Hard Real-Time communication standard [26]: both
POWERLINK IEEE 61158 and EtherCAT meet this
hard-real-time capability. The use of industrial
Ethernet protocols is the keystone of our hard-real-time
middleware. As an example, POWERLNK open
source standard sets a real-time communication, with
adjustable period, between automation components or
CPUs and it respects IEEE 802.3 Ethernet standard
with no modified Ethernet media access. By using such
protocols, the real-time scheduling of the complete
robotic cell is guaranteed at every stage of software
development.

1) Basic objects for a real-time implementation
Modern software development needs to adopt a structured

approach and re-usable codes to deal with the increasing
complexity of programs. The 3rd edition of IEC61131-3
includes the aspects of Object-Oriented Programming (OOP) to
meet these objectives. OOP compartmentalizes data into
objects (data fields) and describes object contents and
behaviors through the declaration of classes (methods). Our
framework benefits the core concepts of OPP, namely
encapsulation, polymorphism and inheritance.

The software architecture of the framework is based on two
virtual and abstract objects. The first one, the ‘RbParam’ class,
manages all static data, which are the parameters of a robot, a
component or a task. The other, ‘RbFbAbstract’, handles the
real-time and deterministic control of the robotic cell
components. These classes are derived to model all hardware
components, from low-level sensors to complex systems, such
as a robot or a robotic cell.

The parameters associated with each object are represented
by a structure ensuring the compatibility of the robot manager
software with other programs written in any IEC 61131-3
language. This structure is the template of the C++ abstract
virtual class ‘RbParam<Param_typ>’. It is composed of three
virtual public methods: Verify, Read, and Write as shown in
Fig. 9.

RbParam
Param

Error : BOOL = TRUE
ErrorID : UINT
Param : Param_typ
……….

+ Validate() : UINT
+ Verify(param_typ) : UINT
+ Read() : UINT
+ Write() : UINT
……………….

RbFbAbstract

Execute : BOOL
Abort : BOOL
………………….
Etat : UINT
CpuTime : RbCpuTime

rbHandleDormantState()
rbHandleExecutingState()
……………….
rbExecuting() : BOOL
rbAborting() : BOOL
………………….
+ Cyclic()
………………..

RbFbAbstractParam
CParam

Cparam : RbParam<Param>
………………

+ Set(Param) : UINT
+ Update(Param) : UINT
…………………

public

Fig. 9. Partial UML specification of the base classes

Dormant

Executing

Aborting

Done

Error

Aborted

Reseting
NOT Execute

Execute

TimeLimit

Ready
Condition

Error Condition

TimeOut
Condition

Abort
Error

Condition

Execute

Execute

Execute

Invocation Complete And
ResetRequest OR NOT Execute

Invocation Complete And
ResetRequest OR NOT Execute

Invocation Complete And
ResetRequest OR NOT Execute

Fig. 10. Real-time function generic block state chart (complying with PLCopen recommandations)

All functions of real-time multi-axis control software are
based on the abstract classes “RbFbAbstract” and
“RbFbAbstractParam”. The “RbFbAbstract” class has a public
cyclic method that implements the state chart represented in
Fig. 10. This state chart is compatible with PLCopen’s
compliant library writing recommendations [27]. It includes the
two functioning modes ‘Edge triggered FBs’ and ‘Level
controlled FBs’ described in the standard (the first one is
illustrated in Fig. 11). These two basic models of Function
Blocks (FBs) with the minimum inputs and outputs have two
options for activation:

• “Execute” input triggers the execution of the FB, and
“Done” signals that the FB has completed the
command;

• “Enable” input is level sensitive, and “Valid” expresses
that the other outputs can be safely used.

Fig. 11. Edge Triggered functional block

2) A unified and standard axis control
The foundations of the framework offer the programmer

nine evolutive packages enabling the management of all multi-
axis control applications. The useful FBs for motion control are
implemented in the framework by using virtual classes
inheriting from ‘RbFbAbstractParam’ or ‘RbFbAbstract’.
These virtual classes unify the access to the hierarchically-
superior complex objects. With such an approach, inputs and
outputs of the PLCopen Motion standard FBs are identical
whatever the hardware and topologies. This standard approach
provides a unified access to the different components (robots,
controllers) in the higher-level.

Motion FBs are included in the ‘RbMcPart1’ package,
while the axis control is ensured by the ‘RbRegul’ and
‘RbMcAxe’ packages. These motion control FBs are compliant
to PLCopen Motion Parts 1 & 4 [27]. Figure 12 describes the
PLCopen Motion functionalities covered by the framework.

Four additional FBs have been added to access to the dynamic
control of a drive motion, for position, velocity or torque
command (‘RbMC_MoveCyclicPosition’,
‘RbMC_MoveCyclicVelocity’, ‘RbMC_CyclicTorqueControl’,
and ‘RbMC_CyclicLoad’).

RbMC_CyclicCload

RbMC_Power

RbMC_ReadActualPosition

RbMC_ReadActualTorque

RbMC_ReadActualVelocity

RbMC_ReadActualVelocity

RbMC_ReadAxisError

RbMC_ReadAxisInfo

RbMC_ReadStatus

PLCopen Motion FBs
« Level Controlled »

RbMC_CyclicTorqueControl

RbMC_Halt

RbMC_Home

RbMC_MoveAbsolute

RbMC_MoveCyclicPosition

RbMC_MoveCyclicVelocity

RbMC_MoveVelocity

RbMC_Reset

RbMC_TorqueControl

PLCopen Motion FBs
« Edge trigerred »

RbMC_Stop

Fig. 12. The PLCopen Motion FBs implemented through virtual classes

RbMC_Stop
RbMC_Power

RbMC_Home

RbMC_MoveAbsolute
RbMC_Halt

RbMC_TorqueControl
RbMC_CyclicTorqueControl
RbMC_MoveVelocity
RbMC_MoveCyclicPosition
RbMC_MoveCyclicVelocity

Fig. 13. PLCopen Motion state machine impelemented in

RTRobMultiAxisControl motion function blocks

The package “RbRegul” contains utility classes for control
such as: trajectory interpolation, prediction, PI regulation,
feedforward. The online trajectory planning is based on the
interpolation strategy proposed in [28].

The virtual class “RbMcAxe” ensures the axis control and
sequentially performs the following tasks:

• Error check;

• Management of the PLCopen Motion generic state
machine detailed in Fig. 13;

• Trajectory planning;

• Position, velocity, and torque control.

According to the axis controller characteristics,
“RbMcAxe” provides the management and access to various
levels of control. Four types of physical topologies can be used,
as described in Figure 14. The hardware may be accessed
through:

• An H bridge: the position-velocity-torque control loops

are then handled by the software;

• Open torque control: position and velocity control

loops are handled by the software;

• Open velocity control: position loop is handled by the

software;

• Open position control; the framework only takes

charge of the generation of controlled positions.

AXIS CONTROLLER

Torque
control

Actuator

Control
Position
Velocity

PLC

H bridge
Encoder
module

Control
Position
Velocity
Torque

PLC

Velocity
control

Control
PositionPLC

Analog
module

Analog
module

Position
control

Generation
of control

positions
PLC

Real time
Field bus

Encoder
module

Actuator

Encoder
module

Actuator
Torque
control

Encoder
module

Actuator
Torque
control

Velocity
control

Fig. 14. Four types of topologies for axis control

The framework is also able to handle off the shelf industrial
axis controllers; as an example, B&R Automation ACOPOS
controllers can be used with the same unified access to the
hardware using the PLCopen Motion FBs provided by the
manufacturer.

The low-level packages “RbRegul”, “RbMcAxe” and
“RbMcPart1” provide a unified and standard interface to
control any axis. All higher-level objects can be developed by
the user regardless of the type or the manufacturer of the axis.

3) An open robotic solution
The virtual class ‘RbMC_AxeRob’is designed to manage

the different axes of a whole robotic system. This class enables
the use of unified command and information data flow generic
structures as described in Fig. 15.

Thanks to the framework standard FBs (Fig. 12),
“RbMC_AxeRob” manages the operating modes and ensure
the axis safety. All robot axes can be controlled manually or
automatically in position, velocity, or torque. The virtual class
enables to dynamically switch between these three control
strategies, without stopping the axis.

RbMC_AxeRob
class

RbAxeRobCmd_typ
struct

RbAxeRobInfo_typ
struct

Axis : *RbMcAxe
Cmd : RbAxeRobCmd_typ
Info : RbAxeRobInfo_typ
……………..

RbMcAxe
Class

Standard
PLCopen motion
part 1&2
implementation

RbFbAbstract
class

public

Power
JobControl
PositionControl
VelocityControl
TorqueControl
……

State
ActualPosition
ActualVelocity
ActualTorque
Error
……

Cmd

Info

Axis

Fig. 15. Virtual class “RbMC_AxeRob”

All control approaches commonly used in robotics can be
easily implemented by means of the RTRobMultiAxisControl
framework, whose structure is presented in Fig. 16. The
framework is a standard and unified foundation for all multi-
axis systems and can be used within any hardware architecture.
A virtual class “RbRobot” is currently under development to
integrate high-level FBs such as axis synchronization,
operational space force and position control or on-line
trajectory generation.

Fig. 16. Structure of the RTRobMultiAxisControl framework

In this section, RTRobMultiAxisControl, a novel
framework based on a hard-real-time Operating System and
industrial standards, has been detailed. PLCopen Motion and
IEC 61131 programming are used to seamlessly transfer the
framework on different targets for multi-axis control. This
standard approach eases the evolutions of the framework
components. The framework introduces a new way to unify
hardware and software, as will be illustrated with the
experiments in the next section.

V. DEXTROBC : A ROBOTIC PLATFORM FOR INDUSTRY 4.0

As a validation test bench, the framework is implemented
on the targets of the French national robotic platform
“DextRobC” which is dedicated to Industry 4.0. The objective
of this technical platform is to demonstrate innovative robotic
solutions and designs that may be transferred into the industry
of the future. To prove the efficiency of the proposed
framework, two complex robotic cells, involving the
coordination of several robots, have been used. They are
presented in this section.

A. A dexterous manipulator for flexible and fine tasks

To increase the flexibility of robots, it becomes necessary
to design new grippers able to meet a wide range of tasks.
However, reproducing the dexterity of the human hand remains
a key challenge. With this objective in mind, the new RoBioSS
dexterous hand was developed and patented (CNRS Patent FR
1459956, 10 16, 2014) [29, 30]. The hand has been designed as
an end-effector for industrial robots or collaborative robots.
The integration of a fully actuated dexterous robotic hand
requires the control of a high number of actuators. As each
finger behaves like a robot, a high level of synchronization is
needed between them to achieve proper inside hand
manipulation tasks.

A deterministic and robust communication is a necessary
element to fulfill this requirement. The RoBioSS hand with its
multi-axis control software and reliable mechanical design
encompasses the high capabilities required for fine
manipulation tasks.

Fig. 17. Dexterous hand-arm system hardware architecture

The hardware architecture of the manipulation cell is
detailed in Fig. 17. The hand is mounted on a TX60 6-axis
Stäubli serial robot powered by a uniVAL drive industrial

robotic controller. This controller offers the innovative feature
of a possible integration with an external controller. All 22 axes
- 16 axes of the hand and 6 axes of the Stäubli robot - are
driven by a B&R industrial PC. Communication between the
robot controller, the DC motor power stage and the PC runs
through a high-speed POWERLINK fieldbus which guaranties
the real-time requirement. Low-level control loops for the hand
motors also run on the industrial PC.

 As described in Fig. 18, the robot-level software of the
manipulation cell is relies on the RTRobMultiAxisControl
framework. The main program implements the state machine
of the task while the axis manager generates the axis
commands for the application. All commands are set thanks to
motion and control FBs integrated into the packages of
RTRobMultiAxisControl. The framework manages all 22 axes
of the manipulation cell. The use of standards during the
development of the libraries enabled have a unique control
software for this multi-axis robotic cell regardless of various
hardware and industrial components used. The finger motors
are powered by H-bridges whereas the uniVAL drive cabinet
provides the robot joint commands with respect to the
controller set values. For the hand control, all axes of the
fingers are given 0.4ms periodic position commands while the
period for the 6-DOF Stäubli axes is 2ms.

Fig. 18. Hardware and software architectures of the multi-robot collaborative

cell

B. A collaborative cell integrating human expertise

RoBioSS team also explores how humans can interact with
machines in the industry context. Different approaches are
studied to include the human behavior within a production line.
The developed schemes aim at improving the biomechanical
comfort and the safety of the human operator. A robotic cell
was developed for this purpose; it creates a scene where a high
level of collaboration between human and machine can be
tested. Two types of human-robot interactions are investigated:
the human may be in contact with a cooperative robot acting as
an assistant or the human can teleoperate a distant robot
through a haptic device. The haptic control system makes it
possible to accurately achieve tasks with a proper kinesthetic
sense.

Fig. 19. Collaborative multi-robot cell hardware and software set-up

Figure 19 presents the implementations of the two
interaction types. An iiwa cobot with its Kuka controller plays
the role of an assistant for the operator in a shared
environment. A Comau Racer 3 industrial robot is remotely
controlled by the operator thanks to the Delthaptic, a novel
haptic device designed in the lab [31]. Both the Comau robot
and the Delthaptic are driven by B&R industrial PCs and
ACOPOS servo drives. The iiwa cobot is driven by the
proprietary Kuka Sunrise cabinet.

The Comau robot and the Delthaptic software architectures
are similar, as presented in Fig. 19. Both robot controllers
implement the RTRobMultiAxisControl framework and use
internal control functions of the servo-drives.

The main program plans dynamic trajectories with respect
to the task while the axis manager yields the axis commands
thanks to motion and control FBs integrated into the
framework packages. As the iiwa robot has a closed controller,
the proprietary Kuka Sunrise packages must be used to drive
the robot and programs are written within the manufacturer’s
development suite. A specific library was developed to manage
the high-level control of the iiwa and to access to the Sunrise

packages; this library is based on the RTRobMultiAxisControl
basic objects to homogenize the control of all the components
in the collaborative cell.

All the cell components must cooperate in real-time under
several control schemes:

• The teleoperating mode between the Comau robot and
the Delthaptic;

• The motion control of the Racer when following preset
CNC trajectories;

• An exchange task between the Racer and the iiwa;

• A collaborative task between the human and the iiwa.

Each cell component needs to share its state and time-
dependent data with others. A robust communication with a
wide bandwidth is required to provide these control modes and
guarantee the safety of the human within the cell. The choice of
hard real-time communication is the only solution able to
synchronize our robots. The iiwa robot uses EtherCAT
communication standard whereas the Delthaptic and Racer 3
are included into a POWERLINK communication network. A

Servo drive
ACOPOS P3

Safety PLC I/O Module

I/O Module

Servo drive ACOPOS

Brushless synchronous motors 8LVA13 Potentiometers

6-axis force
sensor

B&R PC910
B&R PLC X20CP1586

Kuka controller

EtherCat
Gateway

Controlled Node

Controlled Node

Managing Node 1.6ms

B&R PC910

PLC gateway had to be inserted to exchange data between
POWERLINK and EtherCAT networks.

VI. EXPERIMENTAL RESULTS

The RTRobMultiAxisControl framework has been used to

control different multi-axis systems in two applications, as

presented in the previous section. These very different

implementation cases demonstrate the versatility, the

robustness, and how the real-time behavior of the base

components is kept at the machine level.

A. Synchronization of the fingers for accurate inside hand

manipulation

The robustness of the dexterous hand was validated through
demonstrations, proposed continuously during three days at
SPS IPC Drives 2016 international exhibition in Nuremberg.
The video link [32] illustrates the hand efficiency. Different
tasks were performed, such as grasping a glass, switching-on a
lamp or led ribbons with different kinds of buttons, or screwing
a light bulb. A second video illustrates the inside hand
manipulation capability of the hand [33]. The gripper must be
able to generate fine object motions with respect to its palm.
The fingers thus need to collaborate to produce the desired
inside-hand motion while ensuring the object stability. The
accuracy of the motion has been assessed and the
synchronization is clearly visible in the video during the
translational and rotational motions of the bottle cap.

 The development of such a complex manipulation cell
became possible because the mechanical design meets the
grasping and manipulation objectives. Fine manipulation tasks
can only be achieved thanks to a robust and hard real-time
controller. The command motions of the 6-axis industrial robot
and the 16 joints of the hand are simultaneously set during the
process. The deterministic approach of the framework ensures
that the axis commands (position, velocity or torque) are
periodically sent, even though the networks run at two different
periods (0.4ms and 2ms), without latency. The unified
approach allows to seamlessly synchronize axes of different
hardware topologies with the same software function blocks.

This manipulation cell, as a whole, shows that the
framework can be implemented at different levels of control
(Fig. 18). If the robot hardware architecture includes an internal
axis controller, such as the uniVAL Drive of the Stäubli robot,
the framework only generates trajectories for the task.
Otherwise, the framework will also handles all the control
loops. This is the case for the hand controller where all the
control levels of the RTRobMultiAxisControl are running. The
hand control part of the software exhibits a very small
computation time of 40μs for the managing all four fully
actuated fingers.

B. Real-time cooperation between robots and humans

A typical application of collaborative robotics has been
developed to demonstrate the benefits of a collaborative
platform for Industry 4.0, with the idea of relocating the human
worker at the heart of the production process.

Such a cooperation level between several robots and human
operators requires hard real-time communication between all
the cell components and real-time Operating Systems. This
deterministic behavior of the robotic cell is paramount to
provide a proper functioning of the demonstration set-up and to
ensure safety of the human operator. For this purpose,
POWERLINK and EtherCAT hard real-time communication
protocols are used between the Delthaptic, the Comau and the
iiwa robots. Four data flow structures where created to
exchange significant data for the process (state information,
robot dynamic data, sensor data…).

The use of a safety PLC to secure the Comau robot motions
sets the communication rate to 1.6ms for all exchanges
between the components over POWERLINK networks. The
EtherCAT communication rate of the iiwa robot is fixed by
Kuka to 4ms. A repetitive delay alternates between 17.6ms and
19.2ms for a poll request cycle from the POWERLINK
network (Racer3 and Delthaptic) to the iiwa. This delay
originates from the two communication rates, from the
application cycle time, and from the POWERLINK –
EtherCAT data conversion in the PLC gateway. The variation
in the latency is due to non-consistent cycle times of the two
networks.

Both Racer 3 and Delthaptic controllers are fully based on

the RTRobMultiAxisControl framework (Fig. 19). The

programs cyclically compute the robot models and control

schemes for the application. All computation times of the

main programs and the axis managers are very small and they

are compatible with the communication rate of the network.

Although the Kuka controller is based on Sunrise, a closed

programming environment, the specific motion FBs developed

for the iiwa robot rely on the framework basic objects. The use

of virtual and abstract objects guarantees that all the function

blocks used in the controllers of the cell components share a

deterministic behavior. In this way, the real-time feature of the

Operating Systems are transferred to all software components.

 In the cobotic demonstration scenario, each robot controller
switches between the different control modes introduced in the
previous section. The application is based on the following
cycle: a cylinder part is grasped by Racer 3 remotely piloted by
the operator through the haptic device. Then, the Racer
transmits the part to the iiwa cobot to be handled and visually
inspected by a second operator. The video link [34] shows this
cobotic application. The whole cycle is composed of 6 steps:

• The human operator teleoperates the Racer robot
through the haptic device to grab the part. A torque
control of the Delthaptic interface compensates for its
own gravity and provide the haptic feedback in
operational space.

• Delthaptic returns to the origin of its workspace under
position control. During this step, Racer still tracks the
position of the haptic device. The tracking of
Delthaptic in real-time is accurate, the tracking error
being mostly due to the joint kinematic limits of the
Racer.

• The Comau robot executes a CNC trajectory to go to
the exchange position.

• Step 4 consists in the exchange of the part between the
robots: the iiwa moves to the exchange point, grips the
part, and asks Racer to release the part by opening its
gripper.

• The Comau robot returns to its home position. Iiwa
cooperates with the second operator who visually
checks the part. This collaborative mode integrates
different cooperation functions. The detection of a
contact, measured through a force threshold at the end-
effector, stops the robot motion for the safety of the
operator. A gravity compensation mode allows the
operator to move freely the part hold by the robot
without carrying its weight. These cooperation
functions ensure the safety of the operator and redefine
the robot’s role as an assistant for the human. Once the
part is controlled by the operator, iiwa autonomously
adjusts its end-point to the height of the receptacle,
drops it and returns to its home position.

• In the last step, the Racer robot waits for the operator
to grab the handle of Delthaptic to begin a new cycle.

The programming of the three robots in the cell is based on

the presented framework even though their software and

hardware are provided by different manufacturers. The

framework unifies the access to the management of these

robots with a hard real-time behavior. Thanks to this approach,

the temporal determinism in the data flow communication and

the real-time determinism in the perception-action process

enable the implementation of robust and secured interactions

between robots and humans in a shared environment.

VII. CONCLUSION

Within the context of the DextRobC technological
platform, we aim at developing innovative robotic devices and
at implementing Industry 4.0 principles. Interoperability is a
key challenge in the industry of future. As we wish to secure
interaction between humans and machine in an open space, the
temporal determinism of software architecture and
communication between all the components of an industrial
environment is required.

This paper focuses on a software development approach
that meets this issue. The foundation of our approach is based
on strong requirements: unify the programming of the
components, use hard-real-time communication and operating
system, use motion control standards.

 The framework we developed is fundamentally multi-
level, multi-agent and manufacturer-independent. The strategy
is based on the integration of modern and robust industrial
standards: PLCopen Motion (at the axis and coordinated
motion levels) and hard real-time communication
(POWERLINK or EtherCAT). These standards guarantee the
temporal coordination of all agents in the scene, without
dependence on the manufacturers. We also chose to benefit

from the possibilities offered by the most recent automation
software to use Object-Oriented programming.

The RTRobMultiAxisControl framework has been
evaluated in a multi-robot and multi-manufacturer
environment: on one hand for the coordination of 16-dof
RoBioSS dexterous hand with an industrial Staubli 6-dof robot,
and on the second hand for the development of a complete
cobotic cell with three different robots and two types of
human-robot interactions. The implementation of the
framework demonstrates its robustness and performances.

Future developments will consist in adding low-level
autonomous reflex behaviors to the robots to be able to adapt to
dynamic events occurring in the cell. Such a unified framework
used for the coordination of multi-agents systems may support
recent coordination strategies such as self-organization or
shared-autonomy [35].

REFERENCES

[1] Erik Nieves, “Overview of Collaborative Robots”, RIA, International
collaborative robots workshop, October 2016,] Cincinnati, USA.

[2] Ayssam Elkady and Tarek Sobh, “Robotics Middleware: A
Comprehensive Literature Survey and Attribute-Based Bibliography”
May 2012, Journal of Robotics 2012, pp.1687-9600.

[3] D. Bakken, “Middleware,” in Encyclopedia of Distributed Computing, J.
Urban and P. Dasgupta, Eds., Kluwer Academic, Dodrecht, The
Netherlands, 2001.

[4] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro—
middleware for mobile robot applications,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 4, pp. 493–497, 2002.

[5] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: a survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–
132, 2007.

[6] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics: a
survey,” in Proceedings of the IEEE International Conference on
Robotics, Automation and Mechatronics (RAM ’08), pp. 736–742,
September 2008.

[7] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “A review of middleware for
networked robots,” International Journal of Computer Science and
Network Security, vol. 9, no. 5, pp. 139–148, 2009.

[8] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in In Proceedings
of the 11th International Conference on Advanced Robotics, 2003, pp.
317–323. 1

[9] Kranz, M., Rusu, R. B., Maldonado, A., Beetz, M., & Schmidt, A.
(2006). A player/stage system for context-aware intelligent
environments. Proceedings of UbiSys, 6(8), 17-21.

[10] Ersp 3.1 software development kit, 2010,
http://www.evolution.com/products/ersp/.

[11] Soetens, P., & Bruyninckx, H. (2005, April). Realtime hybrid task-based
control for robots and machine tools. In Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference
on (pp. 259-264).

[12] Object Management Group (1998). The Common Object Request
Broker: Architecture and Specification Revision 2.2. 492 Old
Connecticut Path, Framingham, MA 01701, USA.

[13] Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., & Yoon, W. K. (2005,
August). RT-middleware: distributed component middleware for RT
(robot technology). In Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on (pp. 3933-3938).
IEEE.

[14] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E.
Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot operating
system,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.

[15] https://github.com/bmwcarit/meta-ros

[16] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Rodríguez
Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola, M.
Lüdtke and E. Fernandez Perdomo "ros_control: A generic and simple
control framework for ROS", The Journal of Open Source Software,
2017; see: https://github.com/ros-controls/ros_control

[17] KAY JACKIE, RODRIGUEZ Tsouroukdissian
https://roscon.ros.org/2015/presentations/RealtimeROS2.pdf

[18] Harrisson Fischer, Philippe Vulliez, Jean-Pierre Gazeau, Saïd Zeghloul,
“An industrial standard based control architecture for multi-robot real
time coordination”, IEEE 14th International Conference on Industrial
Informatics (INDIN), 2016.

[19] Krishna Kavi1, Robert Akl1, Ali Hurson, “Real-Time Systems: An
Introduction and the State-of-the-Art”, DOI:
10.1002/9780470050118.ecse344, Wiley Encyclopedia of Computer
Science and Engineering, Mars 2009.

[20] Industrial ethernet system comparison : the 5 major technologies, 3rd
Edition of Industrial Ethernet Facts magazine, Ethernet Powerlink
Standardization Group (http://www.ethernet-powerlink.org).

[21] Brian P. Gerkey and Maja J. Mataric, “Sold!: Auction Methods for
Multirobot Coordination”, IEEE Transactions on Robotics And
Automation, Vol.18, No 5, October 2002.

[22] T. Sandholm, “An implementation of the contract net protocol based on
marginal cost calculations,” in Proc. Nat. Conf. Artificial Intelligence
(AAAI), Washington, DC, 1993, pp. 256–262.

[23] C. Ramos, “A holonic approach for task scheduling in manufacturing
systems,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
Minneapolis, MN, Apr. 1996, pp. 2511–2516.

[24] L. E. Parker, “ALLIANCE: An architecture for fault-tolerant multirobot
cooperation,” IEEE Trans. Robot. Automat., vol. 14, pp. 220–240, Apr.
1998.

[25] Creating PLCopen compliant libraries,
http://www.plcopen.org/pages/pc2_training/fb_libraries.htm

[26] Industrial ethernet system comparison : the 5 major technologies, 3rd
Edition of Industrial Ethernet Facts magazine, Ethernet Powerlink
Standardization Group (http://www.ethernet-powerlink.org).

[27] PLCopen Motion: standard for single axis and multi axis control,
http://www.plcopen.org/pages/tc2_motion_control/

[28] Biagiotti L. and Zanasi R., "Time-optimal regulation of a chain of
integrators with saturated input and internal variables: an application to
trajectory planning." 8th IFAC Symposium on Nonlinear Control
Systems, 2010, p. 1278-1283

[29] Mnyusiwalla, H., Vulliez, P., Gazeau, J. P., & Zeghloul, S. (2016). A
New Dexterous Hand Based on Bio-Inspired Finger Design for Inside-
Hand Manipulation. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 46(6), 809-817.

[30] Vulliez, P., Gazeau, J-P., Laguillaumie, P., Mnyusiwalla, H., Seguin P.
“Focus on the mechatronics design of a new dexterous robotic hand for
inside hand manipulation”. Robotica, 2018, vol. 36, no 8, p. 1206-1224.

[31] Vulliez, M., Zeghloul, S., et Khatib, O. “Design strategy and issues of
the Delthaptic, a new 6-DOF parallel haptic device.” Mechanism and
Machine Theory, 2018, vol. 128, p. 395-411.

[32] The RoBioSS hand in Nuremberg SPS-IPC International Exhibit :
https://www.youtube.com/watch?v=X87KKuVESS8

[33] The RoBioSS hand video cited in the newspaper “Le Monde”
(Keywords : Le Monde – Gazeau) follow the link :
https://www.youtube.com/watch?v=O_P69haNA4A

[34] The RoBioSS multi-robot collaborative cell :
https://www.youtube.com/watch?v=IJF9DG1Zlqo

[35] Koorehdavoudi, Hana, and Paul Bogdan. "A statistical physics
characterization of the complex systems dynamics: quantifying
complexity from spatio-temporal interactions.", Nature, Scientific
reports 6 (2016): 27602.

H. Fischer received his Ph.D. degree in

Robotics (2018) at Pprime Institute, and

his M.S. degree in Computer Sciences,

Industrial System Engineering (2014), from the University of

Poitiers. His current research focuses on the interaction

between human and robot, risk assessment and path planning.

M. Vulliez is a postdoctoral research

fellow in the Stanford Robotics Lab at

Stanford University. She received her

Ph.D. degree in Robotics (2018) from

the University of Poitiers, her M.S.

degree in Mechanical Engineering,

Advanced Systems and Robotics (2015),

and her M.S. degree in Faculty Training

for Higher Education, Mechanical

Engineering (2014), from the Ecole Normale Supérieure de

Cachan. Her current research interests include mechatronic

design, haptics, and HRI.

P. Laguillaumie is a teacher at the Faculty

of Sciences of Poitiers University and

works as an application engineer at

Pprime Institute. He graduated from the

Ecole Normale Supérieure de Cachan and

received his M.S in Biomechanics in

2000. His fields of expertise cover

mechanical design and industrial

automation. He is currently involved in

the design of a new robotic assistant for human-machine

collaboration in industrial workspace and contributes to the

development of a new walking robot platform.

P. Vulliez received his engineer degree in

Mechanical Engineering (1981) from

Ecole Normale Supérieure de Cachan, and

his M.S. degree in Mechanical

Engineering (1982), from LMT, Cachan

(France). He is presently an assistant

professor at the Fundamental and Applied

Sciences Faculty of the University of

Poitiers, where he teaches mechatronics.

He is preparing his Ph.D. in Robotics. His main research is

focused on mechatronics and on the design and control of

dexterous robot hands.

J.P. Gazeau received his M.S. degree in

Mechanical Engineering (1994) and his

Ph.D. degree in Mechanics (2000), from

the University of Poitiers. He is currently

a CNRS research engineer at Pprime

Institute UPR 3346. His research interests

are: object manipulation with mechanical

hands, robot control, and electronic design

for embedded systems. He oversees the

animation of the multi-scale manipulation workgroup in the

French Robotics Research Group, GDR Robotique. He is also

the team leader of RoBioSS team at Pprime Institute.

https://github.com/bmwcarit/meta-ros
https://github.com/ros-controls/ros_control
https://roscon.ros.org/2015/presentations/RealtimeROS2.pdf
http://www.ethernet-powerlink.org/
http://www.plcopen.org/pages/pc2_training/fb_libraries.htm
http://www.ethernet-powerlink.org/
http://www.plcopen.org/pages/tc2_motion_control/
https://www.youtube.com/watch?v=X87KKuVESS8
https://www.youtube.com/watch?v=O_P69haNA4A
https://www.youtube.com/watch?v=IJF9DG1Zlqo

