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Abstract—This paper presents the challenges met in the 

development of a new framework for multi-axis and multi-robot 

control. The increasing demand for multi-robot collaboration 

and robotic assistance, both in industry and service applications, 

has raised the level of interactions between robots and humans in 

a shared environment with real-time constraints. Some scientific 

and technological issues need to be unlocked to ensure safe 

human-robot interactions: to guarantee the response time during 

the robot perception-action process, to cope with dynamic 

interactions with the robot environment, to secure the 

collaborations between several machines and humans, and to 

improve the integration of the robots at home and in open zones 

of production lines. The specifications of a new hardware and 

software framework are set with respect to these observations. 

The framework will meet complex research and industrial issues 

for the future of multi-axis and multi-robot control. Before 

introducing our approach, a brief survey of existing frameworks 

and robotic middleware is given. 

The foundations of our approach are based on the following 

requirements: the framework must be real-time, transferable, 

maintainable and multi-manufacturer. The framework design 

has also to guarantee the robustness of the machine interactions 

in a dynamic and collaborative environment. To evaluate the 

feasibility of our design strategy and assess its performance, we 

have developed mechatronic devices with a high level of human-

machine collaboration. This paper outlines two robotic 

applications which require multi-robot real-time synchronization 

and are based on the proposed framework. A temporal analysis 

demonstrates its robustness for multi-axis and multi-robot 

control. 

Note to Practitioners: This paper was motivated by the 

problem of proposing a transferable framework dedicated to real 

time multi-axis and multi-robot control. Most of existing 

middleware solutions do not unify accesses to the axis level and to 

the robot control level with a common programming approach 

and with real time capability. This is a key problem for achieving 

multi-robot synchronization and reaction times compatible with 

dynamic collaboration. Our framework is based on open robotics 

and object-oriented programming and implements the industrial 

standards for motion control. Multi-robots control experiments 

with a high number of synchronized axis and heterogeneous 

hardware demonstrate the efficiency of the approach. 

Keywords — Multi-axis Control, Multi-robot Control,  

Collaborative Robotics, Industrial Ethernet, Real-time, Open 

Robotics, Framework, Middleware. 

I.  INTRODUCTION  

Manufacturing uses more and more lean and agile solutions 
to adapt to changes in the marketplace. Innovative technologies 
must be proposed to meet the demands on production. 
Traditional automation solutions do not offer such capability in 
flexibility, and in customizing the products on demand.  

During the last four decades, industrial robots have 
gradually replaced human workers for tedious and routine jobs 
or in harmful environments which may cause industrial 
accidents, diseases or MSDs. In this substitution process, 
although intrinsically flexible, the industrial robot was 
effectively specialized, working alone in a closed cell, and 
could only meet one kind of preset task. The robot was tuned 
for painting, for arc welding, for spot welding, or for grasping 
one specific product and the end-effector was specially 
designed with respect to the target task.  

Ten years ago, a new type of robot appeared: the 
collaborative robot (Fig. 1). The collaborative robot aims at 
assisting the worker. This new interaction feature between 
human and machine offers many perspectives in working 
environments and especially in SMEs, as discussed in [1]. It 
introduces a new way of organizing the production lines by 
associating, in the same workspace, the strength, precision and 
robustness of the robot and the decision making, problem 
solving capabilities, and expertise of the human being. 

 
Iiwa (Kuka) 

 
YuMi (ABB) 

 
Sawyer (Rethink Robotics) 

 
UR3 (Universal Robot) 

Fig. 1.  Industrial collaborative robot (with courtesy of Kuka, ABB, Rethink 

Robotics and Universal Robot) 

The emergence of collaborative robotics does not mean the 
end of industrial robotics. Both types of robots will coexist and 
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work together in order to address the issues of flexibility and 
customization in the production flow. 

The need for flexibility in the industry of the future requires 
new software solutions that will enable the development of 
robotic applications with real-time multi-robot control in a 
dynamic environment. As these applications may involve 
industrial robots, collaborative robots and humans in a shared 
working zone, it is a major challenge to propose a common 
framework meeting new industry issues. 

Such a challenge can only be addressed if all the 
mechatronic components in the production process are able to 
communicate and exchange data with a dynamically consistent 
real-time scheduling. Real-time communication and operating 
systems are needed to ensure the determinism of the 
application and secure the interactions between robots and 
humans in a shared environment. 

FANUC ROBOT :
Karel Language Kuka IIWA COBOT :

JAVA Language

STAUBLI ROBOT :
VAL 3 Language

KUKA ROBOT :
KRL Language

ABB ROBOT :
RAPID Language

 

Fig. 2. Industrial robots and associated programming languages  

 Current industrial robots from most manufacturers do not 
meet these issues; Figure 2 shows that most of them are limited 
to their own universe; they can only be programmed in the 
manufacturer language (Kuka uses KRL, Fanuc, KAREL, 
Stäubli, VAL3 …).  

 The software components used for programming do not 
enable reusability and sharing of know-how between robots. It 
becomes impossible with such an approach to synchronize 
several robots from different manufacturers in a deterministic 
scheme in the same robotic cell. Real-time communication and 
a traversal programming approach are essential to meet 
flexibility requirements for the development of multi-axis and 
multi-robot applications. 

Hence, this way of working is incompatible with the future 
of industry. All robots have to communicate and interact with 
their environment, with other robots and with humans in a 
dynamic way, under robustness, reactivity and reliability 
constraints. A common framework is proposed in this paper to 
meet these requirements and ensure the flexibility of the 
robotic cell. Our framework is based on open robotics and 
unifies hardware and software components by using industrial 
standards and object-oriented programming. 

After a brief survey of robotic middleware solutions, we 
will compare communication performances of ROS and hard 
real-time Operating System environments in the objective of 

multi-robot application. From this analysis, we will then draw 
requirements to design an efficient robotic framework. In the 
fourth section, the RTRobMultiAxisControl framework is 
presented. Its different components are described according to 
open robotic and real-time standards. Sections V and VI will 
present the multi-robot platforms used to validate the design of 
the robotic framework and assess the inter-component 
communication efficiency. 

II. OVERVIEW OF ROBOTIC MIDDLEWARE FRAMEWORKS 

A difficulty that rises when designing a framework is to 
manage the hardware heterogeneity while willing to simplify 
software design by using common rules in the development of 
a robotic application. Several robotic middleware solutions 
have been developed worldwide for that purpose such as 
OPRos, Orca, MIRO, Player, Marie, Aseba, CLARAty, UPNP, 
RSCA, MRDS, SmartSoft, Skilligent, Webots, Irobotaware, 
Pyro, Carmen, and RoboFrame. 

As discussed in [2] and [3], a middleware is defined as a 
layer of software between the operating system and the 
application level, which provides a common programming 
abstraction across a distributed system. In [2, 5, 6, 7], surveys 
of current robotic middleware frameworks are proposed. 
Attributes, focusing on the architecture, simulation 
environment, standards and technologies, security for accessing 
modules, real-time and coordination capabilities, open-source 
are discussed. Most of the existing robotic middleware are 
detailed. We chose to present some of them with regards to our 
multi robot control purpose. 

The architecture of the middleware is the organization of 
the layers, components, libraries, or modules required for the 
middleware implementation. For example, MIRO middleware 
for mobile robotics is based on three layers [8]: a device layer 
that is platform dependent, a service layer with service 
abstractions for sensors and actuators, a framework layer that 
contains modules like navigation, self-localization, path 
planning, and visualization. Player/Stage system [9] is also a 
middleware for mobile robots. It is composed of two 
components; the first one, Player, is a device repository for 
robots, sensors and actuators. The second component, Stage is 
only for the graphical simulator which models devices. ERSP 
[10] consists of three layers: a hardware abstraction layer, a 
behavior execution layer and a task execution layer. Orocos 
[11] (Open Robot Controls Software) is a Real-Time Toolkit 
with an infrastructure and functionalities to develop C++ 
applications. It consists of the three following components: the 
Orocos Components Library (OCL) that offers some ready-to-
use control components, the Orocos Kinematics and Dynamics 
Library (KDL) that provides real-time calculation of kinematic 
chains, and the Orocos Bayesian Filtering Library (BFL), with 
tools such as Kalman Filters and Particle Filters. Another 
middleware named Orca grew out from Orocos at KTH 
Stockholm in 2003. Orca developers have replaced CORBA, a 
communication middleware [12], developed since 1991 and 
used in Orocos with a modern framework named ICE (Internet 
Communication Engine). RT-Middleware [13], or Robotics 
Technology Middleware allows the designers to build quickly 
and efficiently their own robotic product. Each component is 
called a RT-Component and they can be easily connected to 



each other. A state machine rules the state of a component, 
however RT-middleware does not provide a hard-real-time 
support. ROS middleware [14] is a “metaoperating system” for 
developing robotics. ROS is probably the most used robotic 
middleware and proposes many packages able to integrate the 
widest library of devices. ROS consists of nodes (software 
modules) which communicate over topics (passed peer to peer) 
sending messages. For synchronous communication Services 
are used. New packages for ROS were recently proposed for 
control: meta-ROS [15] and ROS Control [16]; but they do not 
offer hard real time support for multi-axis or multi-robot 
control. A new version of ROS, named ROS 2 is currently 
under heavy development [17] for that purpose. This new 
version is not compatible with the previous version as it was 
necessary to review the foundations of ROS to allow hard real-
time functionalities. 

This survey underlines the fact that all middleware 
solutions relies on distinct architectures. These middleware are 
mostly based on the three standard communication middleware 
as shown in table 1: MOM, RPC or CORBA [18]. The 
components, layers, libraries or modules available are quite 
different, do not target the same implementations (mobile 
robotics, artificial intelligence, robot and machine control…), 
use different programming approaches, and most of them do 
not offer real-time capabilities or real-time communication. 
UDP or TCP/IP communication using sockets is often used, 
inducing temporal indeterminism in the communication flow. 

The table 1 highlights different issues of the existing 
middleware in the field of robotics. These concerns constitute  
the requirements of an optimal framework. Multi-axis and 
multi-robot control requires a high level of synchronization and 
temporal determinism in a dynamic environment. Hence the 
robotic software framework should provide real-time 
capability. Besides, the programming approach should be 
based on industrial standards, which would bring robustness, 
reusability and support for most of hardware components used 
in industrial motion control. 

Most of these middleware solutions are also far from the 
controller base level, and do not offer solutions able to unify 
the access to the axis control. This is a key problem for 
achieving multi-robot synchronization with reaction times 
compatible with dynamic collaboration schemes. The next 
section analyses the temporal behavior of one of the most 
popular middleware used for the development of robotic 
applications: ROS. 

III. EVALUATION OF ROS MIDDLEWARE COMMUNICATION 

FOR MULTI-ROBOT CONTROL   

 ROS is a widely known robotic middleware which gives 
access to many robots, sensors and other components from 
many manufacturers.  

ROS is usually implemented on standard PCs with non-
Real-Time Operating Systems (RTOS) in many robotic 
applications. It seemed relevant to us to highlight the limits of 
this architecture. The tested version is ROS INDIGO; the 
software is running on the Linux Ubuntu 14.04 operating 
system on a Intel Quad Core i7 PC (CPU M620 2.7GHz, 4Go 
RAM). 

To evaluate the feasibility of dynamic multi-robot control 
with ROS we have designed an experimental set-up featuring 
two modern robots and high-speed Ethernet-based networks. 

A high level of coordination and synchronization between 
several axes or several robots is required to ensure temporal 
determinism and robustness in a multi-robot cell. 
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Fig. 3. Architecture used for the evaluation of ROS communication  

For our evaluation purpose, we used the following devices 
(Fig. 3):  

- Component 1: an industrial PC (B&R Automation 
PC910) that controls a Comau Racer 3 robot and its 
peripherals (gripper and sensors) over POWERLINK 
fieldbus; 

-  Component 2: an industrial PLC (B&R Automation 
X20CP1586) that controls a Kuka iiwa robot equipped 
with EtherCAT fieldbus.  

The objective of the test is to connect these two complex 
components with the ROS middleware in order for them to 
share their respective states at a frequency suitable for 
cooperation. The data exchanged between the two robots are 
needed for dynamic collaboration purpose. 

A. Evaluation of ROS middleware communication 

ROS manages the cell components with “nodes” and 
“topics” objects. Nodes are processes that perform 
computations to achieve tasks (e.g. read sensors, control 
motors, localize or plan paths), while topics are used to identify 
the contents of messages. The messages are routed via a 
publish/subscribe transport system. A node sends out a 
message by publishing it to a topic, and another node reads it 
by subscribing to that topic. 

As we wish to evaluate the communication between two 
components, one node is defined per component. All nodes are 
used for communication, one node attends to data emission 
(component 1) and the other for data reception (component 2) 
by using streaming topics. 

 



Table 1: Characteristics of the main robotics middleware 

Middleware 

Communication 

Technology: 

framework used   

Hard 
Real time 

support 

Motion 

Control 

Standard 

OS 

Installation  
& development Layers or modules 

RT-
Middleware 

CORBA No No Linux 
Windows 

Needs loader RTC-Daemon 

for RTC components 

management 

C++ / Java / Python 

programming 

1)low level layer: motors, sensors 
2) middle level layer: vision and image 

processing 

3)high level layer: robot modeling  

Orocos CORBA Yes, by 

using 
Xenomai  

No Linux 

Windows 
Mac OS X 

Orogen (language for 

components management) 

Needs RTT (Real Time 

Toolkit) for components 

management by using 

scripts language) 

 

Four C++ libraries 

1)Components Library 

2)Kinematics and Dynamics Library 
3)Bayesian Filtering Library 

ROS MOM RPC No No Linux 

Windows 

(Cygwin) 

Needs loader ROS-Run for 

nodes and topics 

management 

C++ / Java / Python 

programming 

12 versions, 7 unmaintained versions, 

1600 packages, modules (robots, 

peripherals, sensors, motion planning, 
…)  

ROS2.0 MOM RPC Yes, by 
using 

Xenomai 

No Linux 
Windows 

Mac OS X 

Needs loader ROS-Run for 

nodes and topics 

management 

C++ / Java / Python 

programming 

Small number of packages 

 

To measure the communication consistency, we chose a 
basic application exchanging one integer data: component 2 
needs to know continuously the state of a sensor associated to 
component 1. Component 1 sends periodically sensor data 
(blue dots in Figures 4 and 5) to component 2 through ROS 
nodes and topics. Component 2 receives the sensor data (red 
dots in Figures 4 and 5) and the transfer time is evaluated. 
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Fig. 4. Data received with a ROS-based architecture with a 20ms sending 

period  

Figures 4 and 5 illustrate the fact that the communication 
time between the two components is not deterministic whatever 
the period is. And we also may lose data if the exchange 
frequency is high. As an example, for a 20ms period data value 
number 11 was lost (Fig. 4); for a 2ms period, 50% of the 
sensor values were lost during communication. The loss of data 
and the lack of determinism may be a cause of failure in a 
robotic application with response-time constraints. 

0

5

10

15

20

25

0 5 10 15 20 25

D
at

a 
R

e
ce

iv
e

d

PLC cycle

D
at

a 
va

lu
e 

PLC period number (1 period = 2ms) 

Data value sent by 
component 1

Data value received by 
component 2

 
Fig. 5. Data received with a ROS-based architecture with a 2ms sending 

period  

This study concerning ROS middleware evaluation for 
multi-robot control clearly states the fact that ROS is not made 
to guarantee temporal determinism in the data flow between 
robots. However, this condition is crucial to reach a high level 
of synchronization between axes and robots and to develop 
reactive control in a dynamic environment. 

Therefore, we believe that the first constraint for a unifying 
framework is to ensure temporal determinism in the 
perception-action process thanks to hard real-time capability. 
The definition of a Real-Time System (RTS) can be stated, 
following [19], as: “a real-time system is a system that satisfies 
explicit (bounded) response-time constraints or risk severe 
consequences, including failure”. A hard RTS is a system 
where it is imperative that responses occur within the specified 
deadlines (for examples, aircraft control or process control 
applications).  



B. Evaluation of ROS 2 middleware communication 

ROS 2 has an architecture close to the one of ROS. Indeed, 
it uses Nodes to perform computation and topics are used to 
share message between several nodes. 

To evaluate ROS 2 we have used the same architecture: one 
node per component. In our case, the first node receives data 
and publish it on the topic. The second one subscribes to the 
topic and sends data through the UDP communication. We 
have modified the protocol for this test, we now send 2000 
communication frames from the component, 1 per 2ms. In this 
case, we highlight the latency in terms of cycle numbers. The 
first 500 values are shown in Figure 6. 
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Fig. 6. Delay in cycle between the data sent and the data receive with ROS2 

with a 2ms sending period  

 

This test has been performed about twenty times and no 
data was lost. However, there is a latency in the exchange 
period, which is not constant. These results illustrate the non-
determinism of ROS 2. 

C. Evaluation of RTOS communication 

As a comparison, we performed a new experimentation 
with the same components, but the ROS PC was replaced with 
an industrial PC with a real-time operating system (RTOS) 
(Fig. 7); and the UDP communication was replaced with a 
hard-real-time Ethernet communication. Among the five major 
technologies in industrial Ethernet communication (Profinet, 
POWERLINK, Ethernet /IP, EtherCAT, Sercos III) [20], only 
three technologies provide hard real time communication: 
SERCOS, EtherCAT and POWERLINK. We chose to use the 
POWERLINK communication as it is a BSD-license open-
source solution and has be adopted as an IEEE standard (IEEE 
61158). 

The industrial PLC is built on CPU ATOM 1.6 GHz with 
512 MB DDR2 RAM and is running a proprietary runtime 
based on VxWorks Operating System. 

The results with this architecture are illustrated in Fig. 8 
with a 2ms sending period. They show no loss of sensor data 
and the total communication time remains the same whatever 
the exchange frequency; it means that responses occur within 
the specified period. This behavior is typical for a hard-real-
time system, since it is a requirement for RTOS design 
specification. 
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Fig. 7. Architecture used for the evaluation of the RTOS communication  
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Fig. 8. Data received with RTOS based architecture with a 2ms sending 

period  

 

This section showed that the ROS temporal behavior will 
not enable the level of synchronization required for multi-axis 
control in the field of production machine design. Temporal 
determinism is a major requirement when designing motion 
controllers. The next section introduces our new framework 
and describes its architecture. 

IV. RTROBMULTIAXISCONTROL : A REAL-TIME 

FRAMEWORK FOR OPEN ROBOTICS AND MULTI-AXIS CONTROL 

A. A standard-based strategy 

 The success of a given middleware design approach will 
depend on the ability to transfer the framework outside the lab 
for multi-axis machine control applications. In [21], the authors 
develop MURDOCH, a novel method of dynamic task 
allocation built on publish/subscribe, and they optimize the task 
completion time. In [22] and [23], the importance of managing 
time constraints with the use of Contract Net Protocol is 
emphasized. We also believe that it is necessary to guarantee 
completion time and robust communication to achieve 
cooperation between robots operating in dynamic 
environments. 



As an example, a method with dynamic task allocation for 
groups of robots [24] will not be efficient enough to ensure a 
high level of synchronization and a deterministic behavior if 
the robots do not provide real-time data exchange or if their 
controllers do not give real-time access to low level control 
loops (position, velocity, or torque control loops). The goal of 
our framework is to unify the access to robot resources from an 
exterior RTOS manager. 

Currently, the programming of industrial machines relies on 
the IEC 61131 standard which is a viable alternative to the 
extensive use of proprietary languages for each robot brand. 
Efficiency and robustness of machine and process control 
software are also increased using a real-time communication 
between motion controllers and robot controllers. 
Unfortunately hard-real-time Ethernet protocol is not an option 
available on most of the control cabinets of the leading 
industrial robot manufacturers. 

A wide variety of systems and solutions can be found on the 
motion control market, but most of them are incompatible with 
one another. This leads to additional costs, even for the end-
users. Without reusable software, developing an application 
with new hardware begins with a white paper. In the area of 
PLC programming, the first goal of PLCopen international 
organization is to provide widely accepted industrial standards 
such as PLCopen Motion for motion control applications. A 
recent add-on of PLCopen guidelines concerns the creation of 
function block libraries [25]. These recommendations aim at 
shortening the development time and at easing software use 
and maintenance. The hardware choice becomes less important 
because the libraries are reusable, the development cost and 
time, and the support cost decrease. 

A compromise must be found between performance, 
functionality and standardization to have an appropriate 
solution. There are three kinds of development strategies. The 
first one consists in developing programs closely coupled to the 
hardware. Thanks to this, high performance is expected, but the 
program cannot be reused, so the cost and the time of the next 
development will not be reduced. 

The second one is to develop numerous functionalities, 
which is helpful but at the expense of performance. The last 
one focuses on the standardization and the reusability of the 
project components. For axis control, most of the automation 
manufacturers integrate PLCopen Motion libraries applied to 
their hardware solutions. 

B. Software architecture  

The previous subsection introduced the different design 
constraints of our new framework. They consist in using: 

• IEC 61131: the widely-available and standardized IEC 
61131-3 languages or a consistent ANSI C / C++ 
integration in the IEC world ensure the development of 
reusable components; 

• PLCopen Motion: this provides all useful single-axis 
functions and makes it possible to use hardware 
configurations from any manufacturers (Siemens, 
Beckoff, Schneider, B&R,…); 

• Hard Real-Time communication standard [26]: both 
POWERLINK IEEE 61158 and EtherCAT meet this 
hard-real-time capability. The use of industrial 
Ethernet protocols is the keystone of our hard-real-time 
middleware. As an example, POWERLNK open 
source standard sets a real-time communication, with 
adjustable period, between automation components or 
CPUs and it respects IEEE 802.3 Ethernet standard 
with no modified Ethernet media access. By using such 
protocols, the real-time scheduling of the complete 
robotic cell is guaranteed at every stage of software 
development.  

1) Basic objects for a real-time implementation 
Modern software development needs to adopt a structured 

approach and re-usable codes to deal with the increasing 
complexity of programs. The 3rd edition of IEC61131-3 
includes the aspects of Object-Oriented Programming (OOP) to 
meet these objectives. OOP compartmentalizes data into 
objects (data fields) and describes object contents and 
behaviors through the declaration of classes (methods). Our 
framework benefits the core concepts of OPP, namely 
encapsulation, polymorphism and inheritance. 

 

The software architecture of the framework is based on two 
virtual and abstract objects. The first one, the ‘RbParam’ class, 
manages all static data, which are the parameters of a robot, a 
component or a task. The other, ‘RbFbAbstract’, handles the 
real-time and deterministic control of the robotic cell 
components. These classes are derived to model all hardware 
components, from low-level sensors to complex systems, such 
as a robot or a robotic cell. 

The parameters associated with each object are represented 
by a structure ensuring the compatibility of the robot manager 
software with other programs written in any IEC 61131-3 
language. This structure is the template of the C++ abstract 
virtual class ‘RbParam<Param_typ>’. It is composed of three 
virtual public methods: Verify, Read, and Write as shown in 
Fig. 9. 

RbParam
Param

# Error : BOOL = TRUE
# ErrorID : UINT
# Param : Param_typ
……….

+ Validate() : UINT
+ Verify(param_typ) : UINT
+ Read() : UINT
+ Write() : UINT
……………….

RbFbAbstract

# Execute : BOOL
# Abort : BOOL
………………….
# Etat : UINT
# CpuTime : RbCpuTime

# rbHandleDormantState()
# rbHandleExecutingState()
……………….
# rbExecuting() : BOOL
# rbAborting() : BOOL
………………….
+ Cyclic()
………………..

RbFbAbstractParam
CParam

# Cparam : RbParam<Param>
………………

+ Set(Param) : UINT
+ Update(Param) : UINT
…………………

public

 

Fig. 9. Partial UML specification of the base classes 
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Fig. 10. Real-time function generic block state chart (complying with PLCopen recommandations)

All functions of real-time multi-axis control software are 
based on the abstract classes “RbFbAbstract” and 
“RbFbAbstractParam”. The “RbFbAbstract” class has a public 
cyclic method that implements the state chart represented in 
Fig. 10. This state chart is compatible with PLCopen’s 
compliant library writing recommendations [27]. It includes the 
two functioning modes ‘Edge triggered FBs’ and ‘Level 
controlled FBs’ described in the standard (the first one is 
illustrated in Fig. 11). These two basic models of Function 
Blocks (FBs) with the minimum inputs and outputs have two 
options for activation:  

• “Execute” input triggers the execution of the FB, and 
“Done” signals that the FB has completed the 
command; 

• “Enable” input is level sensitive, and “Valid” expresses 
that the other outputs can be safely used.  

 

Fig. 11. Edge Triggered functional block 

2) A unified and standard axis control 
The foundations of the framework offer the programmer 

nine evolutive packages enabling the management of all multi-
axis control applications. The useful FBs for motion control are 
implemented in the framework by using virtual classes 
inheriting from ‘RbFbAbstractParam’ or ‘RbFbAbstract’. 
These virtual classes unify the access to the hierarchically-
superior complex objects. With such an approach, inputs and 
outputs of the PLCopen Motion standard FBs are identical 
whatever the hardware and topologies. This standard approach 
provides a unified access to the different components (robots, 
controllers) in the higher-level. 

Motion FBs are included in the ‘RbMcPart1’ package, 
while the axis control is ensured by the ‘RbRegul’ and 
‘RbMcAxe’ packages. These motion control FBs are compliant 
to PLCopen Motion Parts 1 & 4 [27]. Figure 12 describes the 
PLCopen Motion functionalities covered by the framework. 

Four additional FBs have been added to access to the dynamic 
control of a drive motion, for position, velocity or torque 
command (‘RbMC_MoveCyclicPosition’, 
‘RbMC_MoveCyclicVelocity’, ‘RbMC_CyclicTorqueControl’, 
and ‘RbMC_CyclicLoad’). 

RbMC_CyclicCload

RbMC_Power

RbMC_ReadActualPosition

RbMC_ReadActualTorque

RbMC_ReadActualVelocity

RbMC_ReadActualVelocity

RbMC_ReadAxisError

RbMC_ReadAxisInfo

RbMC_ReadStatus

PLCopen Motion FBs
« Level Controlled »

RbMC_CyclicTorqueControl

RbMC_Halt

RbMC_Home

RbMC_MoveAbsolute

RbMC_MoveCyclicPosition

RbMC_MoveCyclicVelocity

RbMC_MoveVelocity

RbMC_Reset

RbMC_TorqueControl

PLCopen Motion FBs
« Edge trigerred »

RbMC_Stop
 

Fig. 12. The PLCopen Motion FBs implemented through virtual classes 

RbMC_Stop
RbMC_Power

RbMC_Home

RbMC_MoveAbsolute
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RbMC_CyclicTorqueControl
RbMC_MoveVelocity
RbMC_MoveCyclicPosition
RbMC_MoveCyclicVelocity

 

Fig. 13. PLCopen Motion state machine impelemented in 

RTRobMultiAxisControl motion function blocks 



The package “RbRegul” contains utility classes for control 
such as: trajectory interpolation, prediction, PI regulation, 
feedforward. The online trajectory planning is based on the 
interpolation strategy proposed in [28]. 

The virtual class “RbMcAxe” ensures the axis control and 
sequentially performs the following tasks: 

• Error check; 

• Management of the PLCopen Motion generic state 
machine detailed in Fig. 13; 

• Trajectory planning; 

• Position, velocity, and torque control. 

According to the axis controller characteristics, 
“RbMcAxe” provides the management and access to various 
levels of control. Four types of physical topologies can be used, 
as described in Figure 14. The hardware may be accessed 
through: 

• An H bridge: the position-velocity-torque control loops 

are then handled by the software; 

• Open torque control: position and velocity control 

loops are handled by the software; 

• Open velocity control: position loop is handled by the 

software; 

• Open position control; the framework only takes 

charge of the generation of controlled positions. 
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Fig. 14. Four types of topologies for axis control 

The framework is also able to handle off the shelf industrial 
axis controllers; as an example, B&R Automation ACOPOS 
controllers can be used with the same unified access to the 
hardware using the PLCopen Motion FBs provided by the 
manufacturer. 

The low-level packages “RbRegul”, “RbMcAxe” and 
“RbMcPart1” provide a unified and standard interface to 
control any axis. All higher-level objects can be developed by 
the user regardless of the type or the manufacturer of the axis. 

3) An open robotic solution 
The virtual class ‘RbMC_AxeRob’is designed to manage 

the different axes of a whole robotic system. This class enables 
the use of unified command and information data flow generic 
structures as described in Fig. 15. 

Thanks to the framework standard FBs (Fig. 12), 
“RbMC_AxeRob” manages the operating modes and ensure 
the axis safety. All robot axes can be controlled manually or 
automatically in position, velocity, or torque. The virtual class 
enables to dynamically switch between these three control 
strategies, without stopping the axis. 

 

RbMC_AxeRob
class

RbAxeRobCmd_typ
struct

RbAxeRobInfo_typ
struct

# Axis : *RbMcAxe
# Cmd : RbAxeRobCmd_typ
# Info : RbAxeRobInfo_typ
……………..

RbMcAxe
Class

Standard 
PLCopen motion 
part 1&2 
implementation

RbFbAbstract
class

public

Power
JobControl
PositionControl
VelocityControl
TorqueControl
……

State
ActualPosition
ActualVelocity
ActualTorque
Error
……

Cmd

Info

Axis

 

Fig. 15. Virtual class “RbMC_AxeRob” 

All control approaches commonly used in robotics can be 
easily implemented by means of the RTRobMultiAxisControl 
framework, whose structure is presented in Fig. 16. The 
framework is a standard and unified foundation for all multi-
axis systems and can be used within any hardware architecture. 
A virtual class “RbRobot” is currently under development to 
integrate high-level FBs such as axis synchronization, 
operational space force and position control or on-line 
trajectory generation.  

 

Fig. 16. Structure of the RTRobMultiAxisControl framework 



In this section, RTRobMultiAxisControl, a novel 
framework based on a hard-real-time Operating System and 
industrial standards, has been detailed. PLCopen Motion and 
IEC 61131 programming are used to seamlessly transfer the 
framework on different targets for multi-axis control. This 
standard approach eases the evolutions of the framework 
components. The framework introduces a new way to unify 
hardware and software, as will be illustrated with the 
experiments in the next section. 

V. DEXTROBC : A ROBOTIC PLATFORM FOR INDUSTRY 4.0 

As a validation test bench, the framework is implemented 
on the targets of the French national robotic platform 
“DextRobC” which is dedicated to Industry 4.0. The objective 
of this technical platform is to demonstrate innovative robotic 
solutions and designs that may be transferred into the industry 
of the future. To prove the efficiency of the proposed 
framework, two complex robotic cells, involving the 
coordination of several robots, have been used. They are 
presented in this section. 

A. A dexterous manipulator for flexible and fine tasks 

To increase the flexibility of robots, it becomes necessary 
to design new grippers able to meet a wide range of tasks. 
However, reproducing the dexterity of the human hand remains 
a key challenge. With this objective in mind, the new RoBioSS 
dexterous hand was developed and patented (CNRS Patent FR 
1459956, 10 16, 2014) [29, 30]. The hand has been designed as 
an end-effector for industrial robots or collaborative robots. 
The integration of a fully actuated dexterous robotic hand 
requires the control of a high number of actuators. As each 
finger behaves like a robot, a high level of synchronization is 
needed between them to achieve proper inside hand 
manipulation tasks.  

A deterministic and robust communication is a necessary 
element to fulfill this requirement. The RoBioSS hand with its 
multi-axis control software and reliable mechanical design 
encompasses the high capabilities required for fine 
manipulation tasks. 

 

Fig. 17. Dexterous hand-arm system hardware architecture 

The hardware architecture of the manipulation cell is 
detailed in Fig. 17. The hand is mounted on a TX60 6-axis 
Stäubli serial robot powered by a uniVAL drive industrial 

robotic controller. This controller offers the innovative feature 
of a possible integration with an external controller. All 22 axes 
- 16 axes of the hand and 6 axes of the Stäubli robot - are 
driven by a B&R industrial PC. Communication between the 
robot controller, the DC motor power stage and the PC runs 
through a high-speed POWERLINK fieldbus which guaranties 
the real-time requirement. Low-level control loops for the hand 
motors also run on the industrial PC. 

 As described in Fig. 18, the robot-level software of the 
manipulation cell is relies on the RTRobMultiAxisControl 
framework. The main program implements the state machine 
of the task while the axis manager generates the axis 
commands for the application. All commands are set thanks to 
motion and control FBs integrated into the packages of   
RTRobMultiAxisControl. The framework manages all 22 axes 
of the manipulation cell. The use of standards during the 
development of the libraries enabled have a unique control 
software for this multi-axis robotic cell regardless of various 
hardware and industrial components used. The finger motors 
are powered by H-bridges whereas the uniVAL drive cabinet 
provides the robot joint commands with respect to the 
controller set values. For the hand control, all axes of the 
fingers are given 0.4ms periodic position commands while the 
period for the 6-DOF Stäubli axes is 2ms. 

 

Fig. 18. Hardware and software architectures of the multi-robot collaborative 

cell 

B. A collaborative cell integrating human expertise 

RoBioSS team also explores how humans can interact with 
machines in the industry context. Different approaches are 
studied to include the human behavior within a production line. 
The developed schemes aim at improving the biomechanical 
comfort and the safety of the human operator. A robotic cell 
was developed for this purpose; it creates a scene where a high 
level of collaboration between human and machine can be 
tested. Two types of human-robot interactions are investigated: 
the human may be in contact with a cooperative robot acting as 
an assistant or the human can teleoperate a distant robot 
through a haptic device. The haptic control system makes it 
possible to accurately achieve tasks with a proper kinesthetic 
sense. 

 



Fig. 19. Collaborative multi-robot cell hardware and software set-up 

Figure 19 presents the implementations of the two 
interaction types. An iiwa cobot with its Kuka controller plays 
the role of an assistant for the operator in a shared 
environment. A Comau Racer 3 industrial robot is remotely 
controlled by the operator thanks to the Delthaptic, a novel 
haptic device designed in the lab [31]. Both the Comau robot 
and the Delthaptic are driven by B&R industrial PCs and 
ACOPOS servo drives. The iiwa cobot is driven by the 
proprietary Kuka Sunrise cabinet. 

The Comau robot and the Delthaptic software architectures 
are similar, as presented in Fig. 19. Both robot controllers 
implement the RTRobMultiAxisControl framework and use 
internal control functions of the servo-drives.  

The main program plans dynamic trajectories with respect 
to the task while the axis manager yields the axis commands 
thanks to motion and control FBs integrated into the 
framework packages. As the iiwa robot has a closed controller, 
the proprietary Kuka Sunrise packages must be used to drive 
the robot and programs are written within the manufacturer’s 
development suite. A specific library was developed to manage 
the high-level control of the iiwa and to access to the Sunrise 

packages; this library is based on the RTRobMultiAxisControl 
basic objects to homogenize the control of all the components 
in the collaborative cell. 

All the cell components must cooperate in real-time under 
several control schemes:  

• The teleoperating mode between the Comau robot and 
the Delthaptic; 

• The motion control of the Racer when following preset 
CNC trajectories; 

• An exchange task between the Racer and the iiwa; 

• A collaborative task between the human and the iiwa. 

Each cell component needs to share its state and time-
dependent data with others. A robust communication with a 
wide bandwidth is required to provide these control modes and 
guarantee the safety of the human within the cell. The choice of 
hard real-time communication is the only solution able to 
synchronize our robots. The iiwa robot uses EtherCAT 
communication standard whereas the Delthaptic and Racer 3 
are included into a POWERLINK communication network. A 
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PLC gateway had to be inserted to exchange data between 
POWERLINK and EtherCAT networks. 

VI. EXPERIMENTAL RESULTS 

The RTRobMultiAxisControl framework has been used to 

control different multi-axis systems in two applications, as 

presented in the previous section. These very different 

implementation cases demonstrate the versatility, the 

robustness, and how the real-time behavior of the base 

components is kept at the machine level.  

A. Synchronization of the fingers for accurate inside hand 

manipulation  

The robustness of the dexterous hand was validated through 
demonstrations, proposed continuously during three days at 
SPS IPC Drives 2016 international exhibition in Nuremberg. 
The video link [32] illustrates the hand efficiency. Different 
tasks were performed, such as grasping a glass, switching-on a 
lamp or led ribbons with different kinds of buttons, or screwing 
a light bulb. A second video illustrates the inside hand 
manipulation capability of the hand [33]. The gripper must be 
able to generate fine object motions with respect to its palm. 
The fingers thus need to collaborate to produce the desired 
inside-hand motion while ensuring the object stability. The 
accuracy of the motion has been assessed and the 
synchronization is clearly visible in the video during the 
translational and rotational motions of the bottle cap. 

 The development of such a complex manipulation cell 
became possible because the mechanical design meets the 
grasping and manipulation objectives. Fine manipulation tasks 
can only be achieved thanks to a robust and hard real-time 
controller. The command motions of the 6-axis industrial robot 
and the 16 joints of the hand are simultaneously set during the 
process. The deterministic approach of the framework ensures 
that the axis commands (position, velocity or torque) are 
periodically sent, even though the networks run at two different 
periods (0.4ms and 2ms), without latency. The unified 
approach allows to seamlessly synchronize axes of different 
hardware topologies with the same software function blocks. 

This manipulation cell, as a whole, shows that the 
framework can be implemented at different levels of control 
(Fig. 18). If the robot hardware architecture includes an internal 
axis controller, such as the uniVAL Drive of the Stäubli robot, 
the framework only generates trajectories for the task. 
Otherwise, the framework will also handles all the control 
loops. This is the case for the hand controller where all the 
control levels of the RTRobMultiAxisControl are running. The 
hand control part of the software exhibits a very small 
computation time of 40μs for the managing all four fully 
actuated fingers. 

B. Real-time cooperation between robots and humans 

A typical application of collaborative robotics has been 
developed to demonstrate the benefits of a collaborative 
platform for Industry 4.0, with the idea of relocating the human 
worker at the heart of the production process. 

Such a cooperation level between several robots and human 
operators requires hard real-time communication between all 
the cell components and real-time Operating Systems. This 
deterministic behavior of the robotic cell is paramount to 
provide a proper functioning of the demonstration set-up and to 
ensure safety of the human operator. For this purpose, 
POWERLINK and EtherCAT hard real-time communication 
protocols are used between the Delthaptic, the Comau and the 
iiwa robots. Four data flow structures where created to 
exchange significant data for the process (state information, 
robot dynamic data, sensor data…).  

The use of a safety PLC to secure the Comau robot motions 
sets the communication rate to 1.6ms for all exchanges 
between the components over POWERLINK networks. The 
EtherCAT communication rate of the iiwa robot is fixed by 
Kuka to 4ms. A repetitive delay alternates between 17.6ms and 
19.2ms for a poll request cycle from the POWERLINK 
network (Racer3 and Delthaptic) to the iiwa. This delay 
originates from the two communication rates, from the 
application cycle time, and from the POWERLINK – 
EtherCAT data conversion in the PLC gateway. The variation 
in the latency is due to non-consistent cycle times of the two 
networks. 

Both Racer 3 and Delthaptic controllers are fully based on 

the RTRobMultiAxisControl framework (Fig. 19). The 

programs cyclically compute the robot models and control 

schemes for the application. All computation times of the 

main programs and the axis managers are very small and they 

are compatible with the communication rate of the network. 

Although the Kuka controller is based on Sunrise, a closed 

programming environment, the specific motion FBs developed 

for the iiwa robot rely on the framework basic objects. The use 

of virtual and abstract objects guarantees that all the function 

blocks used in the controllers of the cell components share a 

deterministic behavior. In this way, the real-time feature of the 

Operating Systems are transferred to all software components. 
 

 In the cobotic demonstration scenario, each robot controller 
switches between the different control modes introduced in the 
previous section. The application is based on the following 
cycle: a cylinder part is grasped by Racer 3 remotely piloted by 
the operator through the haptic device. Then, the Racer 
transmits the part to the iiwa cobot to be handled and visually 
inspected by a second operator. The video link [34] shows this 
cobotic application. The whole cycle is composed of 6 steps:  

• The human operator teleoperates the Racer robot 
through the haptic device to grab the part. A torque 
control of the Delthaptic interface compensates for its 
own gravity and provide the haptic feedback in 
operational space. 

• Delthaptic returns to the origin of its workspace under 
position control. During this step, Racer still tracks the 
position of the haptic device. The tracking of 
Delthaptic in real-time is accurate, the tracking error 
being mostly due to the joint kinematic limits of the 
Racer. 



• The Comau robot executes a CNC trajectory to go to 
the exchange position. 

• Step 4 consists in the exchange of the part between the 
robots: the iiwa moves to the exchange point, grips the 
part, and asks Racer to release the part by opening its 
gripper. 

• The Comau robot returns to its home position. Iiwa 
cooperates with the second operator who visually 
checks the part. This collaborative mode integrates 
different cooperation functions. The detection of a 
contact, measured through a force threshold at the end-
effector, stops the robot motion for the safety of the 
operator. A gravity compensation mode allows the 
operator to move freely the part hold by the robot 
without carrying its weight. These cooperation 
functions ensure the safety of the operator and redefine 
the robot’s role as an assistant for the human. Once the 
part is controlled by the operator, iiwa autonomously 
adjusts its end-point to the height of the receptacle, 
drops it and returns to its home position. 

• In the last step, the Racer robot waits for the operator 
to grab the handle of Delthaptic to begin a new cycle. 

 

The programming of the three robots in the cell is based on 

the presented framework even though their software and 

hardware are provided by different manufacturers. The 

framework unifies the access to the management of these 

robots with a hard real-time behavior. Thanks to this approach, 

the temporal determinism in the data flow communication and 

the real-time determinism in the perception-action process 

enable the implementation of robust and secured interactions 

between robots and humans in a shared environment. 
 

VII. CONCLUSION 

Within the context of the DextRobC technological 
platform, we aim at developing innovative robotic devices and 
at implementing Industry 4.0 principles. Interoperability is a 
key challenge in the industry of future. As we wish to secure 
interaction between humans and machine in an open space, the 
temporal determinism of software architecture and 
communication between all the components of an industrial 
environment is required. 

This paper focuses on a software development approach 
that meets this issue. The foundation of our approach is based 
on strong requirements: unify the programming of the 
components, use hard-real-time communication and operating 
system, use motion control standards. 

 The framework we developed is fundamentally multi-
level, multi-agent and manufacturer-independent. The strategy 
is based on the integration of modern and robust industrial 
standards: PLCopen Motion (at the axis and coordinated 
motion levels) and hard real-time communication 
(POWERLINK or EtherCAT). These standards guarantee the 
temporal coordination of all agents in the scene, without 
dependence on the manufacturers. We also chose to benefit 

from the possibilities offered by the most recent automation 
software to use Object-Oriented programming.  

The RTRobMultiAxisControl framework has been 
evaluated in a multi-robot and multi-manufacturer 
environment: on one hand for the coordination of 16-dof 
RoBioSS dexterous hand with an industrial Staubli 6-dof robot, 
and on the second hand for the development of a complete 
cobotic cell with three different robots and two types of 
human-robot interactions. The implementation of the 
framework demonstrates its robustness and performances. 

Future developments will consist in adding low-level 
autonomous reflex behaviors to the robots to be able to adapt to 
dynamic events occurring in the cell. Such a unified framework 
used for the coordination of multi-agents systems may support 
recent coordination strategies such as self-organization or 
shared-autonomy [35].  
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